CN1738781A - 用于光转化的陶瓷复合材料及其应用 - Google Patents

用于光转化的陶瓷复合材料及其应用 Download PDF

Info

Publication number
CN1738781A
CN1738781A CNA2004800024937A CN200480002493A CN1738781A CN 1738781 A CN1738781 A CN 1738781A CN A2004800024937 A CNA2004800024937 A CN A2004800024937A CN 200480002493 A CN200480002493 A CN 200480002493A CN 1738781 A CN1738781 A CN 1738781A
Authority
CN
China
Prior art keywords
ceramic composite
phototransformation
light
phase
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800024937A
Other languages
English (en)
Inventor
坂田信一
和久芳春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of CN1738781A publication Critical patent/CN1738781A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

用于光转化的陶瓷复合材料,其是包括两种或者多种基体相的凝固体,基体相的各组分是两种或者多种选自金属氧化物和复氧化物中的氧化物,每种复氧化物由两种或者多种金属氧化物形成,其中,该基体相中至少有一种是含有已活化的氧化物的荧光体相。该凝固体优选的用单向凝固法获得。这种用于光转化的陶瓷复合材料在亮度,光混和性能,耐热性和抗紫外光性能上是优异的。

Description

用于光转化的陶瓷复合材料及其应用
技术领域
本发明涉及用于光转化的陶瓷复合材料,其具有将一些照射光转化成与照射光波长不同的光,并同时将转化的光与未转化的照射光相混和,转化成与照射光色调不同的光的功能,还涉及它的应用。
背景技术
随着近来蓝光发光二极管实用化,利用这种二极管作光发射源开发白光光源的研究正积极进行。白光作照明光源具有很大需求,另外,白光的很大好处是,与现有的白光光源相比,发光二极管具有低的功耗,并能确保长的寿命。
依据这种方法,用具有光转化功能的材料将从蓝光发光二极管中发出的蓝光转化成白光,其中,在三种基本光颜色中,除了蓝光包含在从蓝光发光二极管发出的光中外,必须要发出绿光和红光。为此目的,使用可以吸收特定波长的光并可发出与所吸收的光波长不同的光的荧光体。
根据例如日本未审专利公开(Kokai)No.2000-208815中所描述的将蓝光发光二极管的蓝光转化成白光的方法,在发光器件的前端采用了含有可吸收部分蓝光并发出黄光的荧光体的涂层,以及将光源的蓝光与此涂层的黄光相混和的模制层。参照图1,涂层2位于发光器件1的前端,在其上进一步提供模制层3。在图中,4是电导线,5和6各为引线。此时,颜色混和不仅发生在模制层3中,而且发生在涂层2中。
对于在传统技术中采用的涂层,在发光器件上涂覆的是环氧树脂和铈化合物掺杂的YAG(钇-铝-石榴石)粉的混和物(参见Kokai No.2000-208815)。然而,依据这种方法,几乎不能得到具有好的可重复性的均匀白光,这是因为难以控制使得,例如保证荧光粉和树脂的均匀混和,或者优化涂层膜的厚度。同时,使用透光性低的荧光粉对制造高亮度的发光二极管是一个障碍。而且,当要得到高强度的光时,热量储存的提升也是一个问题,对于涂层和模制层,树脂的耐热性和抗紫外性成为重要问题。
为了克服这些问题,必需要有可以通过吸收发光二极管发出的蓝光而发射出黄光,并同时呈现出优异的光混和性能和高的耐热性的材料。
本发明的一个目的就是提供不但具有光转化功能,即吸收特定波长的光并发射出与所吸收的光波长不同的光的功能,而且可确保高亮度和好的光混和性能,以及优异的耐热性和抗紫外性的陶瓷复合材料。
发明内容
本发明人已发现上述目的可以通过包括两种或多种氧化物并包括含可发出荧光的化合物的基体相的凝固体来实现。本发明的完成正是基于这一发现。
即,本发明所提供的如下:
(1)用于光转化的陶瓷复合材料,其是包括两种或多种基体相的凝固体,所述基体相的各组分是两种或者多种选自金属氧化物和复氧化物的氧化物,每种复氧化物由两种或者多种金属氧化物形成,其中,这些基体相至少有一种是含有活化的氧化物的荧光体相。
(2)如上面(1)中所述的用于光转化的陶瓷复合材料,其中,这种凝固体用单向凝固法得到。
(3)如上面(2)中所述的用于光转化的陶瓷复合材料,其中,各基体相都是连续且三维分布的,并彼此交错。
(4)如上面(1)至(3)任意之一中所述的用于光转化的陶瓷复合材料,其中,金属氧化物选自Al2O3,MgO,SiO2,TiO2,ZrO2,CaO,Y2O3,BaO,BeO,FeO,Fe2O3,MnO,CoO,Nb2O5,Ta2O5,Cr2O3,SrO,ZnO,NiO,Li2O,Ga2O3,HfO2,ThO2,UO2,SnO2以及稀土元素氧化物(La2O3,Y2O3,CeO2,Pr6O11,Nd2O3,Sm2O3,Gd2O3,Eu2O3,Tb4O7,Dy2O3,Ho2O3,Er2O3,Tm2O3,Yb2O3以及Lu2O3)。
(5)如上面(1)至(3)任意之一中所述的用于光转化的陶瓷复合材料,其中,由两种或者多种金属氧化物的组合形成的复氧化物选自3Al2O3·2SiO2(莫来石),MgO·Al2O3,Al2O3·TiO2,BaO·6Al2O3,BaO·Al2O3,BeO·3Al2O3,BeO·Al2O3,3BeO·Al2O3,CaO·TiO2,CaO·Nb2O3,CaO·ZrO2,2CoO·TiO2,FeAl2O4,MnAl2O4,3MgO·Y2O3,2MgO·SiO2,MgCr2O4,MgO·TiO2,MgO·Ta2O5,MnO·TiO2,2MnO·TiO2,3SrO·Al2O3,SrO·Al2O3,SrO·2Al2O3,SrO·6Al2O3,SrO·TiO3,TiO2·3Nb2O5,TiO2·Nb2O5,3Y2O3·5Al2O3,2Y2O3·Al2O3,2MgO·2Al2O3·5SiO2,LaAlO3,CeAlO3,PrAlO3,NdAlO3,SmAlO3,EuAlO3,GdAlO3,DyAlO3,Yb4Al2O9,Er3Al5O12,11Al2O3·La2O3,11Al2O3·Nd2O3,11Al2O3·Pr2O3,EuAl11O18,2Gd2O3·Al2O3,11Al2O3·Sm2O3,Yb3Al5O12,CeAl11O18以及Er4Al2O9
(6)如上面(1)至(3)任意之一中所述的用于光转化的陶瓷复合材料,其中,构成基体的相是α-Al2O3相和Y3Al5O12相两种相。
(7)如上面(1)至(6)任意之一中所述的用于光转化的陶瓷复合材料,其中,活化元素是铈。
(8)一种光转化方法,包括通过使用上面(1)至(7)任意之一中所述的用于光转化的陶瓷复合材料将从发光二极管中发出的光的颜色转化成一种不同的颜色。
(9)一种光转化方法,包括使用用于光转化的陶瓷复合材料将蓝光转化成白光,该陶瓷复合材料包括的基体中的组分相是α-Al2O3相和Y3Al5O12相,并且Y3Al5O12相是用铈活化的荧光体。
(10)发光二极管,其包括发光二极管芯片和上面(1)至(7)任意之一中所述的用于光转化的陶瓷复合材料。
(11)上面(10)中所述的发光二极管,其中,用于光转化的陶瓷复合材料中包括能被从发光二极管芯片中发出的可见光激发,并能发出波长比激发波长长的可见光荧光的基体相。
(12)上面(10)或者(11)中所述的发光二极管,其中,用于光转化的陶瓷复合材料将发光二极管芯片发出的蓝光转化成白光。
附图说明
图1:传统发光二极管的截面图。
图2:本发明的发光二极管的一个实施例的截面图。
图3:由一个实施例中得到的材料的组织的电子显微镜照片。
图4:在一个实施例中得到的材料中的YAG相结构的电子显微镜照片。
图5:实施例1中得到的材料的荧光特性谱。
图6:测量荧光特性的方法的简略示意图。
图7:在探测器中的检测示例的视图。
图8:光转化材料的荧光特性与样品厚度之间的关系的示例。
图9:光转化材料的荧光特性与样品厚度之间的关系的示例。对530nm的光,放大了比例尺。
图10:实施例2和对比实施例中得到的材料的荧光特性谱。
具体实施方式
在本发明的陶瓷复合材料中,通过控制制造条件,可以得到没有晶团(colony)和空隙的均匀组织。而且在对制备为包括预定组分的混和粉末用压力烧结得到的通常的烧结体中存在的晶界并不存在。并且,通过控制制造条件,还可以得到这样的陶瓷复合材料,其中构成这种复合材料每种氧化物或者复氧化物都由单晶/单晶,单晶/多晶或者多晶/多晶构成。在本发明中采用的“单晶”指的是这样一种晶体结构状态,通过X射线衍射只能看到特定晶面的衍射峰。另外,还可以通过向构成该复合材料的一个相中溶解或者去除除了组分氧化物之外的氧化物,或者使其存在在界面处,来改变光学性能,机械性能和热性能。
本发明的陶瓷复合材料具有这样的结构,其中的组分氧化物相是均匀的,并且在微观尺度上是连续连接的。可以通过改变凝固条件来控制每种相的尺寸。其通常是从1到50微米。
本发明的陶瓷复合材料通过将原料氧化物熔融,并然后将其凝固而制得。例如,将熔融体装入到保持在预定温度的坩埚中,然后在控制冷却温度的同时使其冷却凝固,通过这种简单容易的方法可以得到凝固体。最优选的是单向凝固法。这种工艺粗略的描述如下。
将形成基体相的金属氧化物和做荧光发射源的金属氧化物按照所希望的组成比混和,得到混和粉末。混和的方法不受具体限定,干混法和或者湿混法和都可以采用。接着,将混和粉末用熟知的熔融炉比如电弧炉在足够的温度下加热并熔融,使装入的原材料熔融。例如,对于Al2O3和ErO3,将混和粉末加热并在1900至2000℃下熔融。
将所得到的熔融体原样装入到坩埚中进行单向凝固,或者在熔体一旦凝固后,将所得到的块体粉碎,装入到坩埚中,再次进行加热/熔融,然后通过把坩埚从熔融炉的加热区中退出,使得到的熔融液体单向凝固。熔体的单向凝固可在大气压下进行,为了得到在晶相中缺陷较少的材料,其优选的要在4000Pa或者更低的压力下进行,更优选的为0.13Pa(10-3Torr)或者更低。
依据熔体的组成,将坩埚从加热区中的退出速度,也就是熔体的凝固速度设定在合适的值。退出速度通常为50mm/hour或者更低,优选的为1-20mm/hour。
对于单向凝固所用的设备,可以采用熟知的设备,其中坩埚垂直安放在沿垂直方向放置的圆筒状容器里,加热用的感应线圈安在圆筒容器中部的外壁上,还装有降低容器中空间压力的真空泵。
在本发明中用于光转化的,构成该陶瓷复合材料的至少一种基体相的荧光体可以通过向金属氧化物或者复氧化物中加入活化元素而得到。这种荧光体材料是熟知的,不需要另外做具体描述。在本发明的用于光转化的陶瓷复合材料所用的陶瓷复合材料中,使至少一种基体相有荧光体相的功能,而且,该陶瓷复合材料与在例如本发明申请人(受让人)以前提出的日本的未审专利申请(Kokai)Nos.7-149597,7-187893,8-81257,8-253389,8-253390和9-67194以及它们相应的美国申请(U.S.专利Nos.5569547,5484752和5902763)中所公开的那些基本相同,并且,可以用在这些专利申请(专利)中公开的方法制造。这里,将在这些专利申请和专利中所公开的内容用作参考。
从所得到的凝固体上切下所需形状的块体,用作将某种波长的光转化成具有其它目标色调的光的陶瓷复合材料衬底。
对于构成基体相的氧化物的种类来讲,可以采用各种组合,但优选的是选自金属氧化物和由两种或多种金属氧化物制成的复氧化物的陶瓷。
金属氧化物的例子包括氧化铝(Al2O3),氧化锆(ZrO2),氧化镁(MgO),氧化硅(SiO2),氧化钛(TiO2),氧化钡(BaO),氧化铍(BeO),氧化钙(CaO),氧化铬(Cr2O3),以及稀土元素氧化物(La2O3,T2O3,CeO2,Pr6O11,Nd2O3,Sm2O3,Gd2O3,Eu2O3,Tb4O7,Dy2O3,Ho2O3,Er2O3,Tm2O3,Yb2O3,Lu2O3)。
由这些金属氧化物制成的复氧化物的例子包括LaAlO3,CeAlO3,PrAlO3,NdAlO3,SmAlO3,EuAlO3,GdAlO3,DyAlO3,ErAlO3,Yb4Al2O9,Y3Al5O12,Er3Al5O12,11Al2O3·La2O3,11Al2O3·Nd2O3,3Dy2O3·5Al2O3,2Dy2O3·Al2O3,11Al2O3·Pr2O3,EuAl11O18,2Gd2O3·Al2O3,11Al2O3·Sm2O3,Yb3Al5O12,CeAl11O18以及Er4Al2O9
例如,当为Al2O3和Gd2O3的组合时,Al2O3:78mol%和Gd2O3:22mol%形成共晶,所以,可以得到其中包括Al2O3相和钙钛矿结构的GdAlO3相的陶瓷复合材料,GdAlO3是Al2O3和Gd2O3的复氧化物。相似的,α-Al2O3相和GdAlO3相的部分可以分别在大约20-80vol%和80-20vol%的范围内变化。其它的由两种或多种金属氧化物制成的,并具有钙钛矿结构的复氧化物的例子包括LaAlO3,CeAlO3,PrAlO3,NdAlO3,SmAlO3,EuAlO3和DyAlO3。当这些复氧化物中的任何一种构成本发明中的复合材料时,可以得到具有精细组织和大机械强度的陶瓷复合材料。
并且,当为Al2O3和Er2O3的组合时,Al2O3:81.1mol%和Er2O3:18.9mol%形成共晶,所以,可以得到其中包括Al2O3相和石榴石结构的Er3Al5O12相的陶瓷复合材料,Er3Al5O12是Al2O3和Er2O3的复氧化物。相似的,α-Al2O3相和Er3Al5O12相的部分可以分别在大约20-80vol%和80-20vol%的范围内变化。其它的由两种或多种金属氧化物制成的,并具有石榴石结构的复氧化物的例子包括Yb3Al5O12。当这些复氧化物中的任何一种构成本发明中的复合材料时,可以得到具有高蠕变强度的陶瓷复合材料。
在这些中,Al2O3和稀土元素氧化物的组合是优选的。这是因为可以得到机械性能和光学性能都优异的材料,还因为可以采用下面描述的单向凝固法方便的获得其中各个基体相都是三维且连续交错在一起的复合材料,并且可以形成可让包括稀土金属氧化物的荧光体稳定存在的基体相。具体的,包括由Al2O3和Y2O3制成的Al2O3和Y3Al5O12两种基体相的复合材料是优选的。
通过向上述金属氧化物或者复氧化物中加入活化元素得到荧光体。
结合到基体相中的活化元素(荧光源)根据光源的波长和对光源的颜色进行转化所需要的色调进行合适的选择。例如,为了将蓝光发光二极管的430-480nm的蓝光转化成白光,优选的用铈做活化元素,并加入铈氧化物。当然,可以通过加入多种元素来对颜色进行调节,例如,铈和另外一种荧光源。除了铈外,活化元素依赖于基体氧化物的种类而变化,例如,可以用铽,铕,锰,铬,钕和镝。
对于将活化元素(荧光源)加入到基体氧化物相中,可以通过加入预定量的活化元素的氧化物来实现。
本发明的陶瓷复合材料包括几种基体相,为活化而加入的元素被认为依据分布系数存在且出现在每个基体相中。发射的荧光的相取决于组分。例如,包括氧化铝(Al2O3)和Y3Al5O12基体相的复合材料由Al2O3和Y2O3制成。荧光从Y3Al5O12相中发出,这种相被认为是可用Y3Al5O12:Ce表示的铈活化的荧光体。依据分布系数,在该复合物中的Ce大多数存在于Y3Al5O12相中,很少存在于氧化铝相中。其中包含活化元素的相并不总是荧光体,不能不加选择的认为是荧光体,因为荧光体的形成取决于本发明的陶瓷复合材料的组分,至少一种基体相是用于发射荧光的相。
氧化铝和Y3Al5O12的每个都是透明的,包括以Y3Al5O12:Ce表示的铈活化的荧光体的基体相基本上也是透明的。在包括氧化铝(Al2O3)和Y3Al5O12:Ce基体相的复合材料中,进入并透过氧化铝的蓝光是原来的蓝光,而进入到Y3Al5O12:Ce相中的部分蓝光被转化为黄光。这些光在该复合物中混和,由此透射光看上去是白光。
通过单向凝固法,可以得到具有每种基体相都是三维的并彼此复杂的相互交错的结构的复合材料(参见例如图3和4)。具体的,当采用Al2O3和稀土金属氧化物时,具有这种结构的复合材料很容易获得。这种结构有利于作为光转化材料,因为除了Al2O3相的高透明度外,Y3Al5O12:Ce基体相可以作为整体起到均匀的荧光体的作用(决定光发射的活化元素在原子尺度上均匀分布在整个基体相中)。由于这些相是三维的并复杂交错在一起的结构的原因,实现了透射光和荧光的高亮度和有效的颜色混和。
而且,在将荧光体粉末和树脂混和而得到的材料的情况下,在粉末表面发生光散射,而本发明的复合材料中没有这种光散射,使得光的透过性高,可以有效利用发光二极管的光(蓝光)。
另外,本发明的复合材料是具有高熔点的陶瓷材料,因此,其优点是热稳定性非常高,由此不会产生在树脂材料中的耐热性问题,也不会产生因紫外光而产生的破坏问题。
因此,本发明的陶瓷复合材料是这样的陶瓷复合材料,其不但具有转化的功能,也就是吸收某种波长的光,并发射出与所吸收的光波长不同的荧光的功能,而且,在亮度,光的透过性,光的混和性能,光利用性,耐热性和抗紫外性上都是优异的。这是适合用作发光二极管颜色转化目的的用于光转化的陶瓷复合材料。
在将本发明的进行光转化的陶瓷复合材料用于发光二极管的情况下,发光二极管可以按例如图2所示制作,将本发明的用于光转化的陶瓷复合材料8置于发光二极管(LED)芯片1的前端。在图2中,与图1中相似,4是电导线,5和6每一个都是引线。芯片(元件)1还可以放置的与用于光转化的陶瓷复合材料8相接触,这从元件热辐射的角度考虑看上去是更加优选的。容器或者板的形状可以按需要改变,构造材料也可以按需要进行选择。
下面,参照具体实施例对本发明进行更详细的描述。
实施例
(实施例1)
将α-Al2O3粉末(纯度:99.99%)和Y2O3粉末(纯度:99.999%)按82∶18的摩尔比混和,并将CeO2粉末(纯度:99.99%)混入使其比率为在每摩尔由所加入的氧化物反应生成的Y3Al5O12中为0.01摩尔。将这些粉末在乙醇中球磨16小时湿法混和,然后,用蒸发器将乙醇去除,得到原料粉末。将该原料粉末在真空炉中初步熔融,作为单向凝固所用的原料。
将得到的原料装入到钼坩埚中,然后将坩埚放到单向凝固设备中。将此原料在1.33×10-3Pa(10-5Torr)的压力下熔融,在同样的气氛中,将此坩埚以5mm/hour的速度下移,由此得到凝固体。该凝固体呈现黄色。
图3所示的是沿垂直于其凝固方向的凝固体的截面组织。白色区域是Y3Al5O12(更确切的是Y3Al5O12:Ce)相,黑色区域是Al2O3相。可以看出这种凝固体中没有晶团或者晶界相,所具有的均匀组织中不存在任何的气泡或者空隙。
图4是沿垂直于凝固方向给出的样品中的Y3Al5O12相三维结构的电子显微照片,样品这样得到,沿所述同一方向切出样品,然后将其和碳粉一起在1600℃加热,去除样品表面附近的Al2O3相。
观测了从基本上垂直于凝固方向的表面上得到的X射线衍射,结果,只观测到了分别对应于YAG的(110)面和α-Al2O3的(110)面的衍射峰。
从这些结果可以看出,在这种复合材料中,存在两种相,α-Al2O3单晶相和Y3Al5O12单晶相。这些相是连续且三维的分布,并彼此交错。
沿与凝固方向垂直的方向,从该凝固体上切下1mm厚的衬底,用荧光测试设备对这种材料的荧光特性进行测试。结果如图5所示。发现当用大约450nm的蓝光照射时,这种材料具有宽谱的黄色荧光,并在大约530nm处有峰。因此,Y3Al5O12相是可表示为Y3Al5O12:Ce的荧光体。
此后,按图6所示的方法,用蓝光进行了证实混和性能的测量。将镜子14放在样品13的底部,这样透过样品的光可以返回到探测器中。当镜子按这种方式放置时,从样品的表面或者内部反射的光进入到探测器6中。所采用的发射光12是来自光源1的450nm的蓝光。采用的样品厚度有四种:0.1mm,0.2mm,0.5mm和1.0mm。
图7是探测器中的探测示例。在此图中,采用了两个厚度不同的样品,可以看出随着样品厚度的增加,450nm的蓝光变弱。
图8给出的是样品厚度与蓝光强度和黄色荧光强度之间的关系。对于黄色荧光,图9通过改变坐标尺度给出了放大图。随着样品厚度的增加,蓝光强度变弱,但在厚度等于或者大于0.5mm时基本上恒定。而黄色荧光的强度随着样品厚度的增加而增强,并在达到最大值后,强度变弱,与蓝光相似,在厚度等于或者大于0.5mm时,基本上恒定。在样品厚度大的区域测量值变恒定的原因是,测量的是来自样品表面的蓝光的反射光和来自表面的从低于某个特定值深度的相中产生的黄色荧光的散射光。这表明,对于厚样品,入射光被样品吸收引起波长转化,不能透过样品,相反,对于薄样品,入射光的一部分透过样品,在镜子上反射,部分的反射光会再次从样品中出来。
从这些观测结果可以看出,这种材料可透过蓝色的入射光,并同时将部分蓝光转化成宽谱的在530nm附近有峰的黄光,这两种光混和发出白光。还知道,通过控制材料的厚度,可以对颜色进行调节。
(实施例2)
从实施例1中制得的用于光转化的陶瓷复合材料上,用金刚石切割器切下一薄片,将该薄片加工成圆盘状的可固定在如图2中所示的发光二极管上的样品,制成了发光二极管。所用蓝光发光二极管芯片的波长为470nm。图10是这样得到的白光发光二极管的发光光谱。观察到了大约470nm的蓝光和从用于光转化的陶瓷复合材料中发出的530nm的光。
而且,将这种发光二极管放到积分球中测量颜色。结果,发射光的颜色具有的CIE色度标为x=0.27和y=0.34,被证实是白光。
(对比实施例1)
将Al2O3(纯度:99.99%)和Y2O3(纯度:99.999%)按实施例1中所描述的方法混和,Ce的活化量为每摩尔Y3Al5O12中0.03摩尔,并干燥以得到原料。另外,向100份重量的原料中混入5份重量的氟化钡(BaF2)做熔剂。将混和物装入到氧化铝坩埚中,并在空气中于1600℃烧制1小时。在坩埚恢复到室温后,将样品取出,并用硝酸溶液洗涤去除熔剂。之后,将40份重量的这样的Ce活化的YAG粉末与100份重量的环氧树脂揉捏在一起,将树脂在120℃下硬化1小时,在150℃下4小时得到致密体。将该致密体加工成圆盘状,制出图2所示的发光二极管。调节圆盘的厚度使发光二极管可发出与实施例2中相同颜色的发射光。以此方式测得的圆盘的厚度基本上与实施例2中的陶瓷复合材料圆盘的厚度相同。发光二极管的颜色具有的CIE色度标为x=0.27和y=0.36。用积分球在380-780nm范围内测量了这样制得的发光二极管的辐射能。并以相同的方式对实施例2中的发光二极管的辐射能进行了测量。图10给出的是这些白光二极管的发光光谱。结果,实施例2的辐射能是对比实施例1的大约1.5倍。这表明本发明的用于波长转化的陶瓷复合材料可以透过更多数量的光,能够制造高亮度的发光二极管。
工业适用性
本发明的用于光转化的陶瓷复合材料在亮度,光混和性能,耐热性和抗紫外性上是优异的。特别的,本发明的用于光转化的陶瓷复合材料在由蓝光得到白光上性能优异,所以通过合理采用低功耗长寿命的发光二极管,其具有作为照明光源的高的实用价值。

Claims (12)

1.用于光转化的陶瓷复合材料,其是包括两种或者多种基体相的凝固体,所述基体相的各组分是两种或者多种选自金属氧化物和复氧化物中的氧化物,每种复氧化物由两种或者多种金属氧化物形成,其中,所述基体相中至少有一种是含有已活化氧化物的荧光体相。
2.根据权利要求1中的用于光转化的陶瓷复合材料,其中,该凝固体用单向凝固法得到。
3.根据权利要求2中的用于光转化的陶瓷复合材料,其中,各基体相都是连续且三维的分布,并彼此交错。
4.根据权利要求1-3任意之一中的用于光转化的陶瓷复合材料,其中,金属氧化物选自Al2O3,MgO,SiO2,TiO2,ZrO2,CaO,Y2O3,BaO,BeO,FeO,Fe2O3,MnO,CoO,Nb2O5,Ta2O5,Cr2O3,SrO,ZnO,NiO,Li2O,Ga2O3,HfO2,ThO2,UO2,SnO2以及稀土元素氧化物(La2O3,Y2O3,CeO2,Pr6O11,Nd2O3,Sm2O3,Gd2O3,Eu2O3,Tb4O7,Dy2O3,Ho2O3,Er2O3,Tm2O3,Yb2O3以及Lu2O3)。
5.根据权利要求1-3任意之一中的用于光转化的陶瓷复合材料,其中,由两种或者多种金属氧化物的组合形成的复氧化物选自3Al2O3·2SiO2(莫来石),MgO·Al2O3,Al2O3·TiO2,BaO·6Al2O3,BaO·Al2O3,BeO·3Al2O3,BeO·Al2O3,3BeO·Al2O3,CaO·TiO2,CaO·Nb2O3,CaO·ZrO2,2CoO·TiO2,FeAl2O4,MnAl2O4,3MgO·Y2O3,2MgO·SiO2,MgCr2O4,MgO·TiO2,MgO·Ta2O5,MnO·TiO2,2MnO·TiO2,3SrO·Al2O3,SrO·Al2O3,SrO·2Al2O3,SrO·6Al2O3,SrO·TiO3,TiO2·3Nb2O5,TiO2·Nb2O5,3Y2O3·5Al2O3,2Y2O3·Al2O3,2MgO·2Al2O3·5SiO2,LaAlO3,CeAlO3,PrAlO3,NdAlO3,SmAlO3,EuAlO3,GdAlO3,DyAlO3,Yb4Al2O9,Er3Al5O12,11Al2O3·La2O3,11Al2O3·Nd2O3,11Al2O3·Pr2O3,EuAl11O18,2Gd2O3·Al2O3,11Al2O3·Sm2O3,Yb3Al5O12,CeAl11O18以及Er4Al2O9
6.根据权利要求1-3任意之一中的用于光转化的陶瓷复合材料,其中,构成基体的相是α-Al2O3相和Y3Al5O12相两种相。
7.根据权利要求1-6任意之一中的用于光转化的陶瓷复合材料,其中,活化元素是铈。
8.光转化方法,其包括通过使用权利要求1-7任意之一中的用于光转化的陶瓷复合材料,将从发光二极管中发出的光的颜色转化成不同的颜色。
9.光转化方法,其包括通过使用用于光转化的陶瓷复合材料将蓝光转化成白光,该陶瓷复合材料包括的基体中的组分相是α-Al2O3相和Y3Al5O12相,并且Y3Al5O12相是用铈活化的荧光体。
10.发光二极管,其包括发光二极管芯片和权利要求1-7任意之一中的用于光转化的陶瓷复合材料。
11.根据权利要求10中的发光二极管,其中,用于光转化的陶瓷复合材料包括能被从发光二极管芯片中发出的可见光激发,并能发出波长比激发波长长的可见光荧光的基体相。
12.根据权利要求10或11中的发光二极管,其中,用于光转化的陶瓷复合材料将发光二极管芯片发出的蓝光转化成白光。
CNA2004800024937A 2003-01-20 2004-01-19 用于光转化的陶瓷复合材料及其应用 Pending CN1738781A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10887/2003 2003-01-20
JP2003010887 2003-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2009101280225A Division CN101555128A (zh) 2003-01-20 2004-01-19 用于光转化的陶瓷复合材料及其应用

Publications (1)

Publication Number Publication Date
CN1738781A true CN1738781A (zh) 2006-02-22

Family

ID=32767267

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004800024937A Pending CN1738781A (zh) 2003-01-20 2004-01-19 用于光转化的陶瓷复合材料及其应用
CNA2009101280225A Pending CN101555128A (zh) 2003-01-20 2004-01-19 用于光转化的陶瓷复合材料及其应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2009101280225A Pending CN101555128A (zh) 2003-01-20 2004-01-19 用于光转化的陶瓷复合材料及其应用

Country Status (7)

Country Link
US (1) US8900480B2 (zh)
EP (2) EP1588991B1 (zh)
JP (1) JP4609319B2 (zh)
KR (1) KR100639647B1 (zh)
CN (2) CN1738781A (zh)
TW (1) TWI314364B (zh)
WO (1) WO2004065324A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249660A (zh) * 2011-04-22 2011-11-23 中国科学院上海光学精密机械研究所 GaInN白光LED用复合结构荧光陶瓷及其制备方法
CN101953230B (zh) * 2008-02-21 2013-03-27 日东电工株式会社 具有半透明陶瓷板的发光装置
CN103468257A (zh) * 2013-10-11 2013-12-25 电子科技大学 一种蓝光紫外连续可调的铝酸盐荧光粉及其制备方法
CN104204135A (zh) * 2012-03-22 2014-12-10 肖特公开股份有限公司 白光的产生
CN104609848A (zh) * 2015-02-10 2015-05-13 中国科学院上海光学精密机械研究所 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
CN104710164A (zh) * 2014-11-24 2015-06-17 南京工业大学 一种光学识别透明陶瓷条形码材料及其制备方法
CN105176526A (zh) * 2015-10-28 2015-12-23 上海洞舟实业有限公司 一种低压高亮度橙红色硫化锌基荧光材料的制备方法
CN106458597A (zh) * 2014-06-13 2017-02-22 沙特基础工业全球技术公司 由二元和三元基于铈的氧化物制备合成气
CN107311653A (zh) * 2016-04-27 2017-11-03 比亚迪股份有限公司 锆基复合陶瓷材料及其制备方法与外壳或装饰品
TWI624529B (zh) * 2014-03-18 2018-05-21 Ube Industries Ceramic composite material for light conversion, method for producing the same, and light-emitting device therewith
CN109891275A (zh) * 2016-10-28 2019-06-14 日本特殊陶业株式会社 光波长转换构件的制造方法、光波长转换构件、光波长转换部件及发光装置
WO2019179118A1 (zh) * 2018-03-21 2019-09-26 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
CN111410514A (zh) * 2020-03-31 2020-07-14 青海大学 一种光学测温材料及其制备方法和非接触式测温材料
CN111875335A (zh) * 2020-08-09 2020-11-03 苏州智本工程技术有限公司 建筑楼地面和浮筑楼面专用砂浆及生产方法
CN116332632A (zh) * 2022-12-12 2023-06-27 南京工业大学 一种多光谱抑制陶瓷材料的制备方法

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340240A (ja) * 2004-05-24 2005-12-08 Cimeo Precision Co Ltd 透光色変換部材及びその製造方法
US20080093976A1 (en) * 2004-09-23 2008-04-24 Koninklijke Philips Electronics, N.V. Light-Emitting Device
WO2006043719A1 (ja) 2004-10-21 2006-04-27 Ube Industries, Ltd. 発光ダイオード素子、発光ダイオード用基板及び発光ダイオード素子の製造方法
JP4513541B2 (ja) * 2004-12-17 2010-07-28 宇部興産株式会社 光変換用セラミック複合体を用いた発光装置
JP2006173433A (ja) * 2004-12-17 2006-06-29 Ube Ind Ltd 光変換用セラミック複合体およびそれを用いた発光装置
WO2006064930A1 (ja) * 2004-12-17 2006-06-22 Ube Industries, Ltd. 光変換構造体およびそれを利用した発光装置
EP1838808B1 (en) * 2005-01-10 2011-06-15 Philips Intellectual Property & Standards GmbH Illumination system comprising ceramic luminescence converter
CN101129095B (zh) 2005-02-17 2014-07-09 皇家飞利浦电子股份有限公司 包括发绿光的陶瓷发光转换器的照明***
WO2006093011A1 (ja) * 2005-03-01 2006-09-08 Kabushiki Kaisha Toshiba 発光装置
EP1862035B1 (en) * 2005-03-14 2013-05-15 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same
CN100566490C (zh) * 2005-03-14 2009-12-02 皇家飞利浦电子股份有限公司 多晶陶瓷结构中的磷光体和包括该磷光体的发光元件
JP2008537002A (ja) * 2005-04-19 2008-09-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 赤色光を放射するセラミック・ルミネッセンス・コンバータから成る照明システム
JP4810152B2 (ja) * 2005-07-25 2011-11-09 三井金属鉱業株式会社 赤色蛍光体及び白色発光装置
US7863636B2 (en) * 2005-08-10 2011-01-04 Ube Industries, Ltd. Substrate for light-emitting diode, and light-emitting diode
GB2429011B (en) 2005-08-10 2007-05-30 Filtronic Comtek Microwave Dielectric Ceramic
EP1928977B1 (en) * 2005-08-24 2016-08-17 New STS Limited Luminescent material compositions and structures incorporating the same
US7514721B2 (en) * 2005-11-29 2009-04-07 Koninklijke Philips Electronics N.V. Luminescent ceramic element for a light emitting device
JP4957557B2 (ja) * 2006-01-19 2012-06-20 宇部興産株式会社 セラミックス複合体光変換部材およびそれを用いた発光装置
JP5025143B2 (ja) * 2006-02-27 2012-09-12 京セラ株式会社 発光装置および照明装置
CN101401222B (zh) 2006-03-06 2010-12-01 皇家飞利浦电子股份有限公司 发光二极管模块
ATE542248T1 (de) * 2006-03-21 2012-02-15 Koninkl Philips Electronics Nv Elektrolumineszenz-gerät
US20090122409A1 (en) * 2006-03-30 2009-05-14 Ube Industries Ltd Light-transmitting scatterer and use thereof
CN101431934B (zh) * 2006-04-26 2011-01-05 皇家飞利浦电子股份有限公司 具有改进的转换元件的光传输装置
JP5308618B2 (ja) * 2006-04-26 2013-10-09 日亜化学工業株式会社 半導体発光装置
US20090256167A1 (en) * 2006-06-08 2009-10-15 Koninklijke Philips Electronics N.V. Light-emitting device
JP4956064B2 (ja) * 2006-06-20 2012-06-20 ハリソン東芝ライティング株式会社 高輝度発光デバイス
JP2008004645A (ja) * 2006-06-20 2008-01-10 Harison Toshiba Lighting Corp 発光デバイス
JP5083211B2 (ja) * 2006-06-22 2012-11-28 宇部興産株式会社 光変換用複合体、それを用いた発光装置および色調制御方法
JP5157909B2 (ja) * 2006-09-25 2013-03-06 宇部興産株式会社 光変換用セラミックス複合体およびそれを用いた発光装置
US20100012964A1 (en) * 2006-11-10 2010-01-21 Koninklijke Philips Electronics N.V. Illumination system comprising monolithic ceramic luminescence converter
JP5034653B2 (ja) * 2007-04-25 2012-09-26 宇部興産株式会社 光変換用セラミックス複合体を用いた発光装置
WO2009031696A1 (ja) * 2007-09-04 2009-03-12 Ube Industries, Ltd. 発光素子形成用複合基板及びその製造方法
CN101878540B (zh) 2007-11-29 2013-11-06 日亚化学工业株式会社 发光装置及其制造方法
CN101250410B (zh) * 2008-01-03 2010-06-16 湘潭大学 一种共掺铈、铁铝酸锂的转光荧光粉及其制备方法
DE102008011866B4 (de) 2008-02-29 2018-05-03 Osram Opto Semiconductors Gmbh Lichtquellenanordnung mit einer Halbleiterlichtquelle
CN101779303B (zh) * 2008-05-20 2011-06-15 松下电器产业株式会社 半导体发光器件及包括该半导体发光器件的光源装置和照明***
US8029595B2 (en) * 2008-06-02 2011-10-04 Nitto Denko Corporation Method and apparatus of producing nanoparticles using nebulized droplet
EP2297278A1 (en) 2008-06-02 2011-03-23 Panasonic Corporation Semiconductor light emitting apparatus and light source apparatus using the same
CN101462867B (zh) * 2009-01-16 2011-09-14 中南大学 一种利用凝胶注模成型技术制备BeO陶瓷的方法
US8183778B2 (en) * 2009-04-17 2012-05-22 Panasonic Corporation Stoichiometric phosphor, and light emitting device and plasma display panel utilizing the phosphor
CN102449111B (zh) 2009-06-01 2014-12-24 日东电工株式会社 发光陶瓷和使用发光陶瓷的发光装置
WO2010141235A1 (en) * 2009-06-01 2010-12-09 Nitto Denko Corporation Light-emitting divice comprising a dome-shaped ceramic phosphor
JP2011012215A (ja) * 2009-07-03 2011-01-20 Covalent Materials Corp セラミックス複合体
US8206672B2 (en) * 2009-07-10 2012-06-26 Nitto Denko Corporation Production of phase-pure ceramic garnet particles
WO2011125422A1 (ja) * 2010-03-31 2011-10-13 宇部興産株式会社 光変換用セラミック複合体、その製造方法、及びそれを備えた発光装置
CN102823000B (zh) 2010-04-08 2016-08-03 日亚化学工业株式会社 发光装置及其制造方法
US9133392B2 (en) 2010-07-22 2015-09-15 Osram Opto Semiconductors Gmbh Garnet material, method for its manufacturing and radiation-emitting component comprising the garnet material
JP5153014B2 (ja) * 2010-09-17 2013-02-27 コバレントマテリアル株式会社 緑色蛍光体
EP2653521B1 (en) * 2010-12-16 2015-08-12 Ube Industries, Ltd. Ceramic composite for photoconversion, method for producing same, and light-emitting device comprising same
US9617469B2 (en) 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode
KR20120121588A (ko) * 2011-04-27 2012-11-06 삼성전자주식회사 발광소자 패키지 및 이의 제조방법
WO2013008751A1 (ja) 2011-07-08 2013-01-17 宇部興産株式会社 光変換用セラミック複合体の製造方法
JP5712916B2 (ja) * 2011-12-22 2015-05-07 信越化学工業株式会社 イットリウムセリウムアルミニウムガーネット蛍光体及び発光装置
JP5472339B2 (ja) * 2012-02-09 2014-04-16 宇部興産株式会社 光変換用セラミックス複合体を用いた発光装置
WO2013146994A1 (ja) 2012-03-30 2013-10-03 宇部興産株式会社 光変換用セラミック複合体およびそれを用いた発光装置
DE112013002508B4 (de) * 2012-05-16 2020-09-24 Panasonic Intellectual Property Management Co., Ltd. Wellenlängen-Umwandlungselement, Verfahren zu seiner Herstellung und LED-Element und Laserlicht emittierendes Halbleiterbauteil, die das Wellenlängen-Umwandlungselement verwenden
US9284485B2 (en) * 2012-11-07 2016-03-15 Rolex Sa Persistent phosphorescent composite material
DE102013100821B4 (de) 2013-01-28 2017-05-04 Schott Ag Polykristalline Keramiken, deren Herstellung und Verwendungen
JP6215545B2 (ja) * 2013-03-19 2017-10-18 スタンレー電気株式会社 複合セラミックスの製造方法、波長変換部材の製造方法及び発光装置の製造方法
JP6232827B2 (ja) * 2013-08-12 2017-11-22 宇部興産株式会社 セラミックス複合体の製造方法
DE102014105470A1 (de) 2014-04-16 2015-10-22 Schott Ag Schichtverbund, Verfahren zu dessen Herstellung, sowie dessen Verwendungen
CN104556971B (zh) * 2014-12-16 2016-12-07 广东华辉煌光电科技有限公司 一种白光led用的透明陶瓷
EP3100992A1 (en) * 2015-06-02 2016-12-07 Eoswiss Engineering Sarl Method of producing a light conversion object
CN107636113B (zh) * 2015-06-12 2020-09-22 株式会社东芝 荧光体及其制造方法、以及led灯
WO2016207380A1 (en) * 2015-06-24 2016-12-29 Seaborough Ip I B.V. Phosphor ceramic
CN105130414B (zh) * 2015-08-13 2017-11-28 航天材料及工艺研究所 一种制备超高温隔热Yb3Al5O12陶瓷元件的方法
JP2017202962A (ja) * 2016-05-13 2017-11-16 宇部興産株式会社 光変換用セラミックス複合材料、その製造方法、およびそれを備えた発光装置
KR102307670B1 (ko) * 2016-10-28 2021-09-30 니뽄 도쿠슈 도교 가부시키가이샤 광 파장 변환 부재 및 발광 장치
CN106566550A (zh) * 2016-11-15 2017-04-19 扬州大学 复合材料上转换发光材料的制备方法及其应用
DE102017101729A1 (de) * 2017-01-30 2018-08-02 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
CN111051932B (zh) * 2018-01-30 2022-03-22 松下知识产权经营株式会社 荧光体及其制造方法
CN110240468B (zh) * 2018-03-09 2022-03-25 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法
CN110272279B (zh) * 2018-03-16 2022-04-12 深圳市绎立锐光科技开发有限公司 波长转换元件及其制备方法、照明光源
JP7062281B2 (ja) * 2018-05-31 2022-05-06 株式会社オキサイド 蛍光体素子評価方法、蛍光体素子評価プログラムおよび蛍光体素子評価装置
WO2020013016A1 (ja) 2018-07-11 2020-01-16 日本特殊陶業株式会社 光波長変換部材及び発光装置
WO2020026819A1 (ja) 2018-07-31 2020-02-06 日本特殊陶業株式会社 光波長変換部材及び発光装置
CN109369183B (zh) * 2018-12-13 2020-07-17 东北大学 一种红外透明陶瓷材料及其制备方法
US11920072B2 (en) * 2019-04-11 2024-03-05 Nichia Corporation Method for producing rare earth aluminate sintered body
CN110981472B (zh) * 2019-12-30 2022-06-07 江西赛瓷材料有限公司 一种高强度绿色氧化锆陶瓷粉体及其制备方法和应用
CN111254495A (zh) * 2020-03-16 2020-06-09 长飞光纤光缆股份有限公司 一种由多晶原料制备铽镓石榴石单的方法
CN112110740B (zh) * 2020-09-27 2022-11-25 景德镇陶瓷大学 一种原位反应制备氧化铝基复合生物陶瓷材料的方法及其制得的产品
CN113213928B (zh) * 2021-05-08 2022-11-04 松山湖材料实验室 荧光陶瓷、其制备方法及应用
CN114436650B (zh) * 2022-02-23 2023-03-17 山东国瓷功能材料股份有限公司 氧化锆组合物、氧化锆烧结体、牙科修复体及制备方法
CN116199429A (zh) * 2022-12-22 2023-06-02 隆基绿能科技股份有限公司 一种涂层材料及其在光伏组件用玻璃中的应用和光伏组件

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691482A (en) * 1970-01-19 1972-09-12 Bell Telephone Labor Inc Display system
HU200033B (en) 1988-03-28 1990-03-28 Tungsram Reszvenytarsasag Method for making luminous powder in yellow-green range and mercury vapour gas-discharge lamp containing the said powder
JP3216683B2 (ja) 1993-10-08 2001-10-09 宇部興産株式会社 セラミックス複合材料
US5484752A (en) 1993-11-12 1996-01-16 Ube Industries, Ltd. Ceramic composite material
JP3264106B2 (ja) 1993-11-12 2002-03-11 宇部興産株式会社 セラミックス複合材料
JP3128044B2 (ja) 1993-11-12 2001-01-29 宇部興産株式会社 セラミックス複合材料
EP0722919B1 (en) 1995-01-19 1999-08-11 Ube Industries, Ltd. Ceramic composite
JP3412379B2 (ja) 1995-01-19 2003-06-03 宇部興産株式会社 セラミックス複合材料
JP3412378B2 (ja) 1995-01-19 2003-06-03 宇部興産株式会社 セラミックス複合材料
JP3412381B2 (ja) 1995-01-19 2003-06-03 宇部興産株式会社 セラミックス複合材料
CN1211312C (zh) * 1996-07-01 2005-07-20 宇部兴产株式会社 陶瓷复合材料和多孔陶瓷材料及其生产方法
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP2000272955A (ja) * 1999-03-26 2000-10-03 Ube Ind Ltd 希土類選択エミッター材料
KR100683364B1 (ko) * 1999-09-27 2007-02-15 필립스 루미리즈 라이팅 캄파니 엘엘씨 완전한 형광 물질 변환에 의해 백색광을 생성하는 발광다이오드 소자
US6607570B1 (en) * 2000-02-02 2003-08-19 3M Innovative Properties Company Fused Al2O3-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
JP3488911B2 (ja) 2000-05-17 2004-01-19 大阪大学長 高融点材料からなる成形体の製造方法
JP2002252372A (ja) 2001-02-26 2002-09-06 Nichia Chem Ind Ltd 発光ダイオード
JP4151284B2 (ja) * 2001-03-05 2008-09-17 日亜化学工業株式会社 窒化物半導体発光素子及び発光装置並びにそれらの製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101953230B (zh) * 2008-02-21 2013-03-27 日东电工株式会社 具有半透明陶瓷板的发光装置
TWI493746B (zh) * 2008-02-21 2015-07-21 Nitto Denko Corp 具有半透明陶瓷板之發光元件
CN102249660B (zh) * 2011-04-22 2013-05-08 中国科学院上海光学精密机械研究所 GaInN白光LED用复合结构荧光陶瓷及其制备方法
CN102249660A (zh) * 2011-04-22 2011-11-23 中国科学院上海光学精密机械研究所 GaInN白光LED用复合结构荧光陶瓷及其制备方法
CN104204135B (zh) * 2012-03-22 2017-03-22 肖特公开股份有限公司 白光的产生
CN104204135A (zh) * 2012-03-22 2014-12-10 肖特公开股份有限公司 白光的产生
CN103468257A (zh) * 2013-10-11 2013-12-25 电子科技大学 一种蓝光紫外连续可调的铝酸盐荧光粉及其制备方法
TWI624529B (zh) * 2014-03-18 2018-05-21 Ube Industries Ceramic composite material for light conversion, method for producing the same, and light-emitting device therewith
CN106458597A (zh) * 2014-06-13 2017-02-22 沙特基础工业全球技术公司 由二元和三元基于铈的氧化物制备合成气
CN104710164A (zh) * 2014-11-24 2015-06-17 南京工业大学 一种光学识别透明陶瓷条形码材料及其制备方法
CN104710164B (zh) * 2014-11-24 2016-08-31 南京工业大学 一种光学识别透明陶瓷条形码材料及其制备方法
CN104609848A (zh) * 2015-02-10 2015-05-13 中国科学院上海光学精密机械研究所 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
CN104609848B (zh) * 2015-02-10 2017-09-12 中国科学院上海光学精密机械研究所 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
CN105176526A (zh) * 2015-10-28 2015-12-23 上海洞舟实业有限公司 一种低压高亮度橙红色硫化锌基荧光材料的制备方法
CN107311653A (zh) * 2016-04-27 2017-11-03 比亚迪股份有限公司 锆基复合陶瓷材料及其制备方法与外壳或装饰品
CN109891275A (zh) * 2016-10-28 2019-06-14 日本特殊陶业株式会社 光波长转换构件的制造方法、光波长转换构件、光波长转换部件及发光装置
CN109891275B (zh) * 2016-10-28 2021-08-24 日本特殊陶业株式会社 光波长转换构件的制造方法、光波长转换构件、光波长转换部件及发光装置
WO2019179118A1 (zh) * 2018-03-21 2019-09-26 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
CN110294627A (zh) * 2018-03-21 2019-10-01 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
CN111410514A (zh) * 2020-03-31 2020-07-14 青海大学 一种光学测温材料及其制备方法和非接触式测温材料
CN111875335A (zh) * 2020-08-09 2020-11-03 苏州智本工程技术有限公司 建筑楼地面和浮筑楼面专用砂浆及生产方法
CN116332632A (zh) * 2022-12-12 2023-06-27 南京工业大学 一种多光谱抑制陶瓷材料的制备方法

Also Published As

Publication number Publication date
EP2497758B1 (en) 2019-05-29
CN101555128A (zh) 2009-10-14
KR20050093839A (ko) 2005-09-23
KR100639647B1 (ko) 2006-11-01
EP2497758A3 (en) 2016-05-25
US8900480B2 (en) 2014-12-02
JPWO2004065324A1 (ja) 2006-05-18
JP4609319B2 (ja) 2011-01-12
TWI314364B (en) 2009-09-01
EP2497758A2 (en) 2012-09-12
EP1588991A4 (en) 2011-05-18
TW200425540A (en) 2004-11-16
US20060124951A1 (en) 2006-06-15
EP1588991B1 (en) 2019-04-17
WO2004065324A1 (ja) 2004-08-05
EP1588991A1 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
CN1738781A (zh) 用于光转化的陶瓷复合材料及其应用
CN101605866B (zh) 包含复合物单片陶瓷发光转换器的照明***
JP7056553B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
EP1837921B1 (en) Photo-conversion structure and light-emitting device using same
EP2596080B1 (en) Garnet material, method for its manufacturing and radiation-emitting component comprising the garnet material
JP6897387B2 (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
JP6222612B2 (ja) 透明蛍光サイアロンセラミックスおよびその製造方法
EP1760794A1 (en) White light emitting diode device
WO2007083907A1 (en) Sheet type phosphors, preparation method thereof, and light emitting devices using these phosphors
KR101483657B1 (ko) 다상 sialon 기반 세라믹 재료를 포함하는 발광 장치
JP6642557B2 (ja) 波長変換部材の製造方法
KR20090089384A (ko) 모놀리식 세라믹 발광 변환기를 포함하는 조명 시스템, 복합 모놀리식 세라믹 발광 변환기 및 복합 모놀리식 세라믹 발광 변환기 제조 방법
JP2005035864A (ja) 発光素子搭載用基板
JP2006173433A (ja) 光変換用セラミック複合体およびそれを用いた発光装置
WO2018038259A1 (ja) 窒化物蛍光体粒子分散型サイアロンセラミックス、蛍光部材、窒化物蛍光体粒子分散型サイアロンセラミックスの製造方法
WO2009083867A1 (en) Color filter for a light emitting device
JP4513541B2 (ja) 光変換用セラミック複合体を用いた発光装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication