CN1725372A - 在存储设备中防止功率噪声的级联唤醒电路 - Google Patents

在存储设备中防止功率噪声的级联唤醒电路 Download PDF

Info

Publication number
CN1725372A
CN1725372A CNA200510081018XA CN200510081018A CN1725372A CN 1725372 A CN1725372 A CN 1725372A CN A200510081018X A CNA200510081018X A CN A200510081018XA CN 200510081018 A CN200510081018 A CN 200510081018A CN 1725372 A CN1725372 A CN 1725372A
Authority
CN
China
Prior art keywords
control signal
bit line
wake
memory device
precharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200510081018XA
Other languages
English (en)
Other versions
CN100541662C (zh
Inventor
崔贤洙
金炅来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1725372A publication Critical patent/CN1725372A/zh
Application granted granted Critical
Publication of CN100541662C publication Critical patent/CN100541662C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2227Standby or low power modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Static Random-Access Memory (AREA)
  • Dram (AREA)

Abstract

一种存储设备的唤醒电路采用级联链结构,其中将位线划分成多个块,如果根据块中反馈的位线电压确定一个块的位线已经经历了唤醒操作,则对后续块执行唤醒操作。因此,可以改变唤醒延迟,控制峰值电流,从而减少整个***的功率噪声。

Description

在存储设备中防止功率噪声的级联唤醒电路
本申请要求于2004年6月25日在韩国知识产权局提交的韩国专利申请No.10-2004-0048041的优先权,其全部内容援引于此以供参考。
技术领域
本发明涉及存储设备,更特别地,涉及用于在存储设备中将休眠模式转换为活动模式的唤醒方法和唤醒电路。
背景技术
在半导体存储设备中,防止由电源中的噪声产生的故障是很重要的。当半导体存储设备工作时,有几种噪声源。当对电路的已放电部分同时预充电时,如果有噪声,所产生的峰值电流是通常的来源。
特别是在存储单元阵列中,当读位单元的数据时,有很大的可能在位线对中将产生大的峰值电流。
关于普遍用于便携电话***中的存储器类型的主要考虑之一是漏电流导致的损耗量。为此,提出了几种架构,广泛使用的一种架构是通过将存储设备置于使电源电压对存储设备的施加失效的休眠模式来减少漏电流。然而,在存储设备从休眠模式转变到活动模式的唤醒操作期间,产生大量峰值电流。峰值电流由于电源线的阻抗导致IR压降(IR drop),从而供应到存储单元电源电压也下降。在最坏的情况下,电源电压可能降到存储单元的保持电压以下,从而可能导致存储单元的数据丢失。
图1和图2是现有SRAM(静态随机存取存储器)存储设备的唤醒电路的电路图。
在用于实现低漏电流SRAM的电源电压断开(power-off)结构中,在唤醒操作期间,当将SRAM从休眠模式切换到准备模式时,使用唤醒操作将所有位线从地电压预充电到电源电压。在该操作期间,产生峰值电流,反过来导致电压下降。
在如图1所示的唤醒电路中,在唤醒操作期间,包含在一列中的所有预充电电路10同时工作。然而,当如图1所示施加控制信号SC时,如果连接到控制信号线12的所有预充电电路10同时开始工作,则所有分别连接到预充电电路10的位线对同时被预充电到电源电压,从而供应到存储器的电源电压下降。即,由于电源电压降低发生的IR压降威胁到SRAM位单元的数据。
图2所示的唤醒电路分布峰值电流来解决图1所示的唤醒电路中可能发生的问题。参照图2,将连接到存储单元的多个位线对划分为多个块2_1、2_m、...、2_n。此外,多个所划分的块中的每个包括多个用于分布峰值电流的倒相器链(inverter chain)26、28...。
控制信号SC通过唤醒控制线24输入,并且对包含在第一块2_1中的位线对预充电。特别地,控制信号SC输入到包含在第一块2_1中的预充电电路20来将连接到预充电电路20的位线预充电到电源电压VDD。施加到第一块2_1的控制信号SC由倒相器链26延迟,经延迟的控制信号SC1由倒相器链26输出,并输入到包含在第二块2_2中的预充电电路22来将连接到预充电电路22的位线预充电到电源电压VDD。然后由倒相器链28对经延迟的控制信号SC1延迟,由倒相器链28输出的第二经延迟的控制信号SC2对后续块的位线对预充电。
倒相器链26、28允许唤醒操作在后续块中开始,而不必确定在前面块中唤醒操作是否已经完成。因此,可能没有适当地分布峰值电流。此外,当增加倒相器链26、28的延时来保护存储单元的数据时,可能由于增加的唤醒定时容限导致定时损失。
图3是图2所示的唤醒电路的控制信号SC、SC1和SC2的时序图。控制信号SC从控制信号输出单元(未示出)输出,而在输出控制信号SC1后,从倒相器链26输出的控制信号SC1延迟了延时d。
如图3所示,不管相关的位线是否唤醒,每个倒相器链都将输入控制信号延迟延时d。
图4是图解当图2所示的唤醒电路处于唤醒模式时所生成的电源电压的图。参照图4,当使用具有图2所示的固定的延时d的倒相器链26、28时,由于后续块的位线在前面块的位线充分唤醒前就开始唤醒,因此出现IR压降,并且如图4所示,电源电压(VDD)下降到低电压。或者,当通过增加倒相器的数量来增加倒相器链中的延时的时候,增加了唤醒操作所需的总时间。
发明内容
本发明提供了一种可以顺序唤醒多个块的级联唤醒电路。
本发明还提供了一种具有比现有倒相器链更小的电路尺寸的唤醒电路。
本发明又提供了一种影响存储设备的唤醒操作但不影响其他操作的速度的唤醒电路。
在一个方面中,本发明指导一种存储设备的唤醒电路,在该存储设备中通过延迟链结构来预充电连接到多个存储单元的位线对。唤醒电路包括:对应于多个存储块的多个位线对;唤醒控制信号输出单元,用于输出控制信号来预充电位线对,以便将存储设备从休眠模式唤醒到活动模式;和多个预充电延迟单元,用于当之前存储块中的控制信号和位线对经历唤醒操作时,将控制信号发送到与之后存储块相关的位线对。
在一个实施例中,从唤醒控制信号输出单元输出的控制信号随后通过预充电延迟单元输出到多个存储块的位线对。
在另一个实施例中,唤醒电路还包括:连接单元,用于将控制信号发送到位线;和预充电电路,用于分别预充电位线对。每个连接单元包括:NAND(与非)门,用于对控制信号和预充电信号执行NAND操作;和连接延迟单元,用于延迟NAND门的输出以及将经延迟的输出输出到位线对。
在再一个实施例中,连接延迟单元包括多个倒相器。
在再一个实施例中,从连接延迟单元输出的控制信号被输入到预充电开关单元来提供电源电压到位线对。
在再一个实施例中,预充电延迟单元包括:第一开关,用于响应于预充电延迟单元的输出信号,将信号从位线对传送到第一节点;NAND门,用于对从前面块接收的控制信号和从第一节点接收的信号执行NAND操作,并且将结果输出到第二节点;第二开关,用于响应于从第二节点接收的信号,将电源电压传送到第一节点;和倒相器,用于反转从第二节点接收的信号,并且将控制信号作为预充电延迟单元的输出信号发送到后续块。
在再一个实施例中,第一和第二开关是PMOS晶体管。
在再一个实施例中,存储设备是SRAM设备。
在另一个方面中,本发明指导一种存储设备,包括
包括:多个存储单元;多个连接到多个存储单元并且被划分成多个存储块的位线对;唤醒控制信号输出单元,用于输出控制信号来预充电位线对以便将存储设备从休眠模式唤醒到活动模式;和多个预充电延迟单元,用于当确定之前存储块中的输出控制信号和位线对已经执行唤醒操作时,将控制信号发送到与之后存储块相关联的位线对。
在一个实施例中,该存储设备还包括:连接单元,用于将控制信号发送到位线;和预充电电路,用于分别预充电位线对。每个连接单元包括:NAND门,用于对控制信号和预充电信号执行与非操作;和连接延迟单元,用于延迟NAND门的输出以及将经延迟的输出输出到位线对。
在另一个实施例中,连接延迟单元包括多个倒相器。
在再一个实施例中,从连接延迟单元输出的控制信号被输入到预充电开关单元来传送电源电压到位线对。
在再一个实施例中,预充电延迟单元包括:第一开关,用于响应于预充电延迟单元的输出信号,将信号从位线对提供到第一节点;NAND门,用于对从前面块接收的控制信号和从第一节点接收的信号执行与非操作,并且将结果输出到第二节点;第二开关,用于响应于从第二节点接收的信号,将电源电压提供到第一节点;和倒相器,用于反转从第二节点接收的信号,并且将控制信号作为预充电延迟单元的输出信号发送到后续块。
在再一个实施例中,第一和第二开关是PMOS晶体管。
在再一个实施例中,存储设备是SRAM设备。
在另一个方面中,本发明指导一种存储设备的唤醒方法,在该存储设备中连接到单字线的、划分成多个存储块的、多个存储单元的位线对从休眠模式转变到活动模式。该方法包括:输入唤醒控制信号;预充电对应于一个存储块的位线对;确定在该块中的位线是否已经经历了唤醒操作;和如果该块的位线对已经经历了唤醒操作,则将唤醒控制信号发送到对应于后续块的位线对。
在一个实施例中,所述确定包括:响应于唤醒控制信号,将该块中的位线对的预充电电压反馈到控制信号延迟单元;和对对应于该块的位线的预充电电压和唤醒控制信号执行逻辑操作,并且输出在控制信号延迟单元中的逻辑操作的结果。
在另一实施例中,存储设备是SRAM设备。
附图说明
通过参照附图对其示范性实施例进行详细描述,本发明的上述和其他特点及优点将变得更加清楚。
图1和2是现有SRAM(静态随机存取存储器)存储设备的唤醒电路的电路图;
图3是图2所示的唤醒电路的控制信号的时序图;
图4是图解当图2所示的唤醒电路处于唤醒模式时所生成的电源电压的图;
图5是根据本发明的一个实施例的、SRAM的唤醒电路的电路图;
图6是图5所示的唤醒电路的控制信号的时序图;
图7是图解当图5所示的唤醒电路处于唤醒模式时所生成的电源电压的图;和
图8是图解根据本发明的另一实施例的、SRAM的唤醒方法的流程图。
具体实施方式
现在将更全面地参考其中显示了本发明实施例的附图来描述本发明。
在本发明中,提供一种级联型唤醒电路,其中在已经将前面块置于唤醒模式中后将后续块置于唤醒模式中。此外,本发明的唤醒电路在尺寸上比包括倒相器链的现有唤醒电路要小。此外,本发明的唤醒电路可以检测由特定处理引起的唤醒延迟的改变,从而可以通过使用前面块的位线作为NAND反馈架构的输入来控制峰值电流。此外,唤醒电路只影响存储设备的唤醒操作,而不影响其他***操作的性能。
图5是根据本发明的一个实施例的、SRAM设备的唤醒电路的电路图。
参照图5,SRAM唤醒电路包括多个存储单元的位线对,其连接到单一字线并且通过延迟链结构来预充电。为此,唤醒电路包括:多个位线对BL和/BL,被划分成多个块3_1,...,3_n-1和3_n;唤醒控制信号输出单元(未示出);连接单元36;预充电电路30;和预充电延迟单元32。
唤醒控制信号输出单元输出控制信号SC来预充电位线对以便将存储设备从休眠模式唤醒。连接单元36将控制信号SC发送到用于预充电位线对BL和/BL的预充电电路30。预充电延迟单元32确定由唤醒控制信号输出单元所输出的控制信号SC是否导致对应的多个块和与前面块相关联的位线对唤醒,如果是,则将控制信号SC施加到与前面块相关的位线对。
由于预充电电路30和连接单元36的电路结构和功能与现有技术相同,省略对其详细的描述。
预充电延迟单元32包括:第一开关41,用于响应于预充电延迟单元32的输出信号,将信号“sbit”40从位线对BL和/BL发送到第一节点37;NAND门43,用于对输入到前面块3_1的控制信号SC和从第一节点37接收的信号执行NAND操作,并且将NAND门的输出信号提供到第二节点38;第二开关42,用于响应于从第二节点38接收的信号,将电源电压VDD提供到第一节点37;和倒相器44,用于反转从第二节点38接收的信号,并且将控制信号SC1发送到后续块。
在该示范性实施例中,第一开关41和第二开关42是PMOS晶体管,当输入到门的信号为低电平时,这些开关打开。
参照图5,当SRAM存储设备处于休眠模式中时,模式控制信号SC、SC1、...、SCn开始变到低电平。因此,第二节点38处于高电平,而第二开关42维持在不活动状态。由于控制信号SC1仍处于低电平,第一开关41维持在活动状态。或者,当SRAM存储设备从活动模式改变到休眠模式时,导致控制信号SC、SC1、...、SCn以固定时延t1的间隙顺序地过渡为低电平。
当SRAM设备处于SRAM设备从休眠模式变到活动模式的唤醒模式时,控制信号SC变到高电平。然后,将高电平的控制信号SC发送到预充电电路30来预充电包含在第一块3_1中的位线对BL和/BL。因此,从位线(/BL)输出到预充电延迟单元32的信号“sbit”变到高电平。
由于倒相器44的输出信号SC1仍然处于低电平,第一开关MP1保持在导通状态。因此,将信号“sbit”从位线(/BL)发送到第一节点,并且NAND门43的输出以低电平发送。因此,由于作为NAND门43的输出节点的第二节点38的电势低,所以第二开关42导通,并且电源电压VDD供应到第一节点37。然后,从倒相器44输出的控制信号SC1发送高电平,该高电平反过来导致后续块的位线对BL和/BL的预充电操作开始。
如果没有充分预充电包含在前面块中的位线对BL和/BL,则NAND门43的输出为高电平,并且从预充电延迟单元32输出的控制信号SC1停留在低电平,这是因为从位线(/BL)反馈到预充电延迟单元32的信号“sbit”为低电平。因此,如果没有充分预充电包含在前面块中的位线对BL和/BL,则用于控制包含在后续块中的位线对BL和/BL的控制信号保持在低电平,从而唤醒操作不继续到后续块。
即,只有当充分预充电包含在前面块中的位线对BL和/BL时,根据从位线对BL和/BL反馈的信号“sbit”,预充电延迟单元32的控制信号才能传送到后续块。
表1图解了处于休眠模式和唤醒模式的每个信号和每个开关的状态。
表1
  休眠模式   SC=“低”   MP2=关
  MP1=开;受sbit影响
  SC1~SCn=“低”
  唤醒模式   SC=“高”   sbit=“低”→“高”;由唤醒操作预充电
  MP2=关→开;在sbit=“高”后
  MP1=开→关;在关后不受sbit影响
  SC1=“低→高”
  ...
  SCn=“低→高”
即,在图5中,通过输入控制信号SC和用于指示多个块的第一块中的所有列从放电电压电平ΔV上升到电源电压VDD的信号来执行唤醒操作,其中划分多个块用于减少峰值电流。从位线/BL反馈的信号“sbit”随着列和由NAND门所产生的后续块的控制信号SC1的电压而上升到电源电压VDD。通过重复该操作,顺序地唤醒多个块,并且通过分布唤醒电流减少了功率噪声。
当执行唤醒操作时,第一开关41发送位线电压“sbit”,并且在动态(读/写)操作期间阻止(block)位线电压“sbit”。当第一开关41为断开时,第二开关42维持NAND门的输入电平。唤醒电路可以配置成使得在通过选择适当尺寸的晶体管适当设置NAND门的逻辑阈电压来对前面块充分执行唤醒操作后,操作后续块。
图6是图5所示的唤醒电路的控制信号的时序图。控制信号SC、SC1、...、SCn分别从串联的预充电延迟单元发出。控制信号SC、SC1、...、SCn分别控制第一块的位线、第二块的位线、第三块的位线和第n块的位线。
当SRAM从活动模式变到休眠模式时,将每个控制信号SC、SC1、...、SCn的变换延迟设置的延时t1并将其输出。此外,在其中SRAM从休眠模式变回到活动模式的唤醒模式中,每个控制信号都延迟可变的延时(图6中的t2和t3),直到充分唤醒给定的块的位线为止,并将其输出。延时t2和t3表示当块中的位线充分唤醒时的时间,并且可以随着块而改变。
图7是图解当图5所示的唤醒电路处于唤醒模式时所生成的电源电压的图。
参照图7,由于每个控制信号是根据从在前面块中已经充分唤醒的位线BL和/BL所反馈的信号“sbit”的电压的,因此唤醒电流的分布式取出(draw)最小化了***IR压降。因此,如图7所示,相比图4中所示,大大减少了由唤醒操作产生的电源电压VDD的下降。
图8是图解根据本发明一个实施例的、SRAM的唤醒方法的流程图。
参照图8,主机或其他外部控制***指示处于休眠模式的SRAM唤醒到活动模式(操作800)。然后,发送唤醒控制信号(操作802),并且预充电在第一块中的所有位线(操作804)。预充电延迟单元32确定该块中的反馈位线电压是否大于预定电压(操作806)。如果位线电压不够高,预充电延迟单元不发送控制信号到后续块,并且等待该块中的位线充分唤醒。
当位线电压高于预定电压时,预充电延迟单元的NAND门发送唤醒控制信号(操作808)。如果该块是最后的块(操作810),则唤醒操作结束,如果该块不是最后的块,则预充电延时单元发送唤醒控制信号到后续块(操作812)。然后,预充电后续块中的所有位线(操作804)。
使用根据本发明的SRAM的唤醒电路,开销比使用图2所示的现有倒相器时少。此外,唤醒延迟可以根据从位线反馈的信号而不同地设置,从而可以控制峰值电流。同时,使用根据本发明的唤醒电路只影响存储设备的唤醒操作,而不影响该设备的其他操作的速度。
根据本发明,可以通过使用从前面块中的位线反馈的信号来确定何时发送唤醒控制信号,从而唤醒电路中的峰值电流。此外,因为控制了峰值电流,减少了电源电压的变化,从而减少了功率噪声并且可以保护存储单元的数据。
虽然参照其示范性实施例特别显示和描述了本发明,但本领域普通技术人员应当理解,在不背离由权利要求书所定义的本发明的宗旨和范围的前提下可以对形式和细节进行各种改变。

Claims (18)

1.一种存储设备的唤醒电路,在该存储设备中通过延迟链结构来预充电连接到多个存储单元的位线对,该唤醒电路包括:
对应于多个存储块的多个位线对;
唤醒控制信号输出单元,用于输出控制信号来预充电位线对,以便将存储设备从休眠模式唤醒到活动模式;和
多个预充电延迟单元,用于当之前存储块中的控制信号和位线对经历唤醒操作时,将控制信号发送到与之后存储块相关的位线对。
2.如权利要求1所述的唤醒电路,其中,从唤醒控制信号输出单元输出的控制信号随后通过预充电延迟单元输出到多个存储块的位线对。
3.如权利要求1所述的唤醒电路,还包括:
连接单元,用于将控制信号发送到位线;和
预充电电路,用于分别预充电位线对,
其中每个连接单元包括:
NAND门,用于对控制信号和预充电信号执行与非操作;和
连接延迟单元,用于延迟NAND门的输出以及将经延迟的输出输出到位线对。
4.如权利要求3所述的唤醒电路,其中连接延迟单元包括多个倒相器。
5.如权利要求4所述的唤醒电路,其中,从连接延迟单元输出的控制信号被输入到预充电开关单元来提供电源电压到位线对。
6.如权利要求1所述的唤醒电路,其中预充电延迟单元包括:
第一开关,用于响应于预充电延迟单元的输出信号,将信号从位线对传送到第一节点;
NAND门,用于对从前面块接收的控制信号和从第一节点接收的信号执行与非操作,并且将结果输出到第二节点;
第二开关,用于响应于从第二节点接收的信号,将电源电压传送到第一节点;和
倒相器,用于反转从第二节点接收的信号,并且将控制信号作为预充电延迟单元的输出信号发送到后续块。
7.如权利要求6所述的唤醒电路,其中第一和第二开关是PMOS晶体管。
8.如权利要求1所述的唤醒电路,其中存储设备是SRAM设备。
9.一种存储设备,包括:
多个存储单元;
多个连接到多个存储单元并且被划分成多个存储块的位线对;
唤醒控制信号输出单元,用于输出控制信号来预充电位线对以便将存储设备从休眠模式唤醒到活动模式;和
多个预充电延迟单元,用于当确定之前存储块中的输出控制信号和位线对已经执行唤醒操作时,将控制信号发送到与之后存储块相关联的位线对。
10.如权利要求9所述的存储设备,还包括:
连接单元,用于将控制信号发送到位线;和
预充电电路,用于分别预充电位线对,
其中每个连接单元包括:
NAND门,用于对控制信号和预充电信号执行与非操作;和
连接延迟单元,用于延迟NAND门的输出以及将经延迟的输出输出到位线对。
11.如权利要求10所述的存储设备,其中连接延迟单元包括多个倒相器。
12.如权利要求11所述的存储设备,其中,从连接延迟单元输出的控制信号被输入到预充电开关单元来传送电源电压到位线对。
13.如权利要求9所述的存储设备,其中预充电延迟单元包括:
第一开关,用于响应于预充电延迟单元的输出信号,将信号从位线对提供到第一节点;
NAND门,用于对从前面块接收的控制信号和从第一节点接收的信号执行与非操作,并且将结果输出到第二节点;
第二开关,用于响应于从第二节点接收的信号,将电源电压提供到第一节点;和
倒相器,用于反转从第二节点接收的信号,并且将控制信号作为预充电延迟单元的输出信号发送到后续块。
14.如权利要求13所述的存储设备,其中第一和第二开关是PMOS晶体管。
15.如权利要求9所述的存储设备,其中存储设备是SRAM设备。
16.一种存储设备的唤醒方法,在该存储设备中连接到单一字线的、划分成多个存储块的、多个存储单元的位线对从休眠模式转变到活动模式,该唤醒方法包括:
输入唤醒控制信号;
预充电对应于一个存储块的位线对;
确定在该块中的位线是否已经经历了唤醒操作;和
如果该块的位线对已经经历了唤醒操作,则将唤醒控制信号发送到对应于后续块的位线对。
17.如权利要求16所述的唤醒方法,其中所述确定包括:
响应于唤醒控制信号,将该块中的位线对的预充电电压反馈到控制信号延迟单元;和
对对应于该块的位线的预充电电压和唤醒控制信号执行逻辑操作,并且输出在控制信号延迟单元中的逻辑操作的结果。
18.如权利要求16所述的唤醒方法,其中存储设备是SRAM设备。
CNB200510081018XA 2004-06-25 2005-06-27 在存储设备中防止功率噪声的级联唤醒电路 Active CN100541662C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040048041A KR100546415B1 (ko) 2004-06-25 2004-06-25 메모리 장치의 파워 노이즈를 방지하는 직렬 웨이크 업 회로
KR48041/04 2004-06-25

Publications (2)

Publication Number Publication Date
CN1725372A true CN1725372A (zh) 2006-01-25
CN100541662C CN100541662C (zh) 2009-09-16

Family

ID=35505507

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200510081018XA Active CN100541662C (zh) 2004-06-25 2005-06-27 在存储设备中防止功率噪声的级联唤醒电路

Country Status (5)

Country Link
US (2) US7193921B2 (zh)
JP (1) JP4824952B2 (zh)
KR (1) KR100546415B1 (zh)
CN (1) CN100541662C (zh)
TW (1) TWI264731B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890960A (zh) * 2011-07-21 2013-01-23 瑞萨电子株式会社 半导体器件
CN113808632A (zh) * 2020-08-31 2021-12-17 台湾积体电路制造股份有限公司 存储器电路以及控制存储器阵列的唤醒操作的方法

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546415B1 (ko) * 2004-06-25 2006-01-26 삼성전자주식회사 메모리 장치의 파워 노이즈를 방지하는 직렬 웨이크 업 회로
JP4851189B2 (ja) * 2006-01-11 2012-01-11 エルピーダメモリ株式会社 半導体記憶装置及びそのテスト方法
CN103280239B (zh) 2006-05-12 2016-04-06 苹果公司 存储设备中的失真估计和消除
WO2007132452A2 (en) * 2006-05-12 2007-11-22 Anobit Technologies Reducing programming error in memory devices
WO2007132457A2 (en) * 2006-05-12 2007-11-22 Anobit Technologies Ltd. Combined distortion estimation and error correction coding for memory devices
WO2007132456A2 (en) * 2006-05-12 2007-11-22 Anobit Technologies Ltd. Memory device with adaptive capacity
KR100776751B1 (ko) 2006-06-09 2007-11-19 주식회사 하이닉스반도체 전압 공급 장치 및 방법
WO2008026203A2 (en) 2006-08-27 2008-03-06 Anobit Technologies Estimation of non-linear distortion in memory devices
US7975192B2 (en) 2006-10-30 2011-07-05 Anobit Technologies Ltd. Reading memory cells using multiple thresholds
WO2008053473A2 (en) 2006-10-30 2008-05-08 Anobit Technologies Ltd. Memory cell readout using successive approximation
US7924648B2 (en) 2006-11-28 2011-04-12 Anobit Technologies Ltd. Memory power and performance management
US8151163B2 (en) * 2006-12-03 2012-04-03 Anobit Technologies Ltd. Automatic defect management in memory devices
US7900102B2 (en) * 2006-12-17 2011-03-01 Anobit Technologies Ltd. High-speed programming of memory devices
US7593263B2 (en) * 2006-12-17 2009-09-22 Anobit Technologies Ltd. Memory device with reduced reading latency
US8151166B2 (en) * 2007-01-24 2012-04-03 Anobit Technologies Ltd. Reduction of back pattern dependency effects in memory devices
US7751240B2 (en) * 2007-01-24 2010-07-06 Anobit Technologies Ltd. Memory device with negative thresholds
WO2008111058A2 (en) * 2007-03-12 2008-09-18 Anobit Technologies Ltd. Adaptive estimation of memory cell read thresholds
US8001320B2 (en) * 2007-04-22 2011-08-16 Anobit Technologies Ltd. Command interface for memory devices
US7414878B1 (en) * 2007-05-04 2008-08-19 International Business Machines Corporation Method for implementing domino SRAM leakage current reduction
US8234545B2 (en) * 2007-05-12 2012-07-31 Apple Inc. Data storage with incremental redundancy
US8429493B2 (en) 2007-05-12 2013-04-23 Apple Inc. Memory device with internal signap processing unit
US7925936B1 (en) 2007-07-13 2011-04-12 Anobit Technologies Ltd. Memory device with non-uniform programming levels
KR101471554B1 (ko) * 2007-07-23 2014-12-11 삼성전자주식회사 파워 업시 피크 전류를 줄이는 멀티칩 패키지
US8259497B2 (en) 2007-08-06 2012-09-04 Apple Inc. Programming schemes for multi-level analog memory cells
US7778093B2 (en) * 2007-08-08 2010-08-17 Mediatek Inc. Memory control circuit capable of dynamically adjusting deglitch windows, and related method
US8174905B2 (en) * 2007-09-19 2012-05-08 Anobit Technologies Ltd. Programming orders for reducing distortion in arrays of multi-level analog memory cells
US7773413B2 (en) 2007-10-08 2010-08-10 Anobit Technologies Ltd. Reliable data storage in analog memory cells in the presence of temperature variations
US8000141B1 (en) 2007-10-19 2011-08-16 Anobit Technologies Ltd. Compensation for voltage drifts in analog memory cells
US8527819B2 (en) * 2007-10-19 2013-09-03 Apple Inc. Data storage in analog memory cell arrays having erase failures
US8068360B2 (en) * 2007-10-19 2011-11-29 Anobit Technologies Ltd. Reading analog memory cells using built-in multi-threshold commands
US8270246B2 (en) * 2007-11-13 2012-09-18 Apple Inc. Optimized selection of memory chips in multi-chips memory devices
US8225181B2 (en) 2007-11-30 2012-07-17 Apple Inc. Efficient re-read operations from memory devices
US8677165B2 (en) * 2007-12-12 2014-03-18 Hewlett-Packard Development Company, L.P. Variably delayed wakeup transition
US8209588B2 (en) * 2007-12-12 2012-06-26 Anobit Technologies Ltd. Efficient interference cancellation in analog memory cell arrays
US8456905B2 (en) 2007-12-16 2013-06-04 Apple Inc. Efficient data storage in multi-plane memory devices
US8085586B2 (en) * 2007-12-27 2011-12-27 Anobit Technologies Ltd. Wear level estimation in analog memory cells
US8156398B2 (en) * 2008-02-05 2012-04-10 Anobit Technologies Ltd. Parameter estimation based on error correction code parity check equations
US7924587B2 (en) * 2008-02-21 2011-04-12 Anobit Technologies Ltd. Programming of analog memory cells using a single programming pulse per state transition
US7864573B2 (en) 2008-02-24 2011-01-04 Anobit Technologies Ltd. Programming analog memory cells for reduced variance after retention
US8230300B2 (en) * 2008-03-07 2012-07-24 Apple Inc. Efficient readout from analog memory cells using data compression
US8400858B2 (en) 2008-03-18 2013-03-19 Apple Inc. Memory device with reduced sense time readout
US8059457B2 (en) * 2008-03-18 2011-11-15 Anobit Technologies Ltd. Memory device with multiple-accuracy read commands
US7924613B1 (en) 2008-08-05 2011-04-12 Anobit Technologies Ltd. Data storage in analog memory cells with protection against programming interruption
US7995388B1 (en) 2008-08-05 2011-08-09 Anobit Technologies Ltd. Data storage using modified voltages
US8169825B1 (en) 2008-09-02 2012-05-01 Anobit Technologies Ltd. Reliable data storage in analog memory cells subjected to long retention periods
US8949684B1 (en) 2008-09-02 2015-02-03 Apple Inc. Segmented data storage
US8000135B1 (en) 2008-09-14 2011-08-16 Anobit Technologies Ltd. Estimation of memory cell read thresholds by sampling inside programming level distribution intervals
US8482978B1 (en) 2008-09-14 2013-07-09 Apple Inc. Estimation of memory cell read thresholds by sampling inside programming level distribution intervals
US8239734B1 (en) 2008-10-15 2012-08-07 Apple Inc. Efficient data storage in storage device arrays
US8261159B1 (en) 2008-10-30 2012-09-04 Apple, Inc. Data scrambling schemes for memory devices
JP5210812B2 (ja) * 2008-11-07 2013-06-12 ルネサスエレクトロニクス株式会社 半導体記憶装置及びそのリードアクセス方法
US8208304B2 (en) 2008-11-16 2012-06-26 Anobit Technologies Ltd. Storage at M bits/cell density in N bits/cell analog memory cell devices, M>N
US8248831B2 (en) * 2008-12-31 2012-08-21 Apple Inc. Rejuvenation of analog memory cells
US8174857B1 (en) 2008-12-31 2012-05-08 Anobit Technologies Ltd. Efficient readout schemes for analog memory cell devices using multiple read threshold sets
US8924661B1 (en) 2009-01-18 2014-12-30 Apple Inc. Memory system including a controller and processors associated with memory devices
JP5246123B2 (ja) * 2009-01-29 2013-07-24 富士通セミコンダクター株式会社 半導体記憶装置、半導体装置及び電子機器
US9916904B2 (en) 2009-02-02 2018-03-13 Qualcomm Incorporated Reducing leakage current in a memory device
US8228701B2 (en) 2009-03-01 2012-07-24 Apple Inc. Selective activation of programming schemes in analog memory cell arrays
US8832354B2 (en) * 2009-03-25 2014-09-09 Apple Inc. Use of host system resources by memory controller
US8259506B1 (en) 2009-03-25 2012-09-04 Apple Inc. Database of memory read thresholds
US8238157B1 (en) 2009-04-12 2012-08-07 Apple Inc. Selective re-programming of analog memory cells
US8479080B1 (en) 2009-07-12 2013-07-02 Apple Inc. Adaptive over-provisioning in memory systems
US8495465B1 (en) 2009-10-15 2013-07-23 Apple Inc. Error correction coding over multiple memory pages
US8677054B1 (en) 2009-12-16 2014-03-18 Apple Inc. Memory management schemes for non-volatile memory devices
US8982659B2 (en) * 2009-12-23 2015-03-17 Intel Corporation Bitline floating during non-access mode for memory arrays
US8694814B1 (en) 2010-01-10 2014-04-08 Apple Inc. Reuse of host hibernation storage space by memory controller
US8572311B1 (en) 2010-01-11 2013-10-29 Apple Inc. Redundant data storage in multi-die memory systems
US8694853B1 (en) 2010-05-04 2014-04-08 Apple Inc. Read commands for reading interfering memory cells
US8572423B1 (en) 2010-06-22 2013-10-29 Apple Inc. Reducing peak current in memory systems
US8595591B1 (en) 2010-07-11 2013-11-26 Apple Inc. Interference-aware assignment of programming levels in analog memory cells
US9104580B1 (en) 2010-07-27 2015-08-11 Apple Inc. Cache memory for hybrid disk drives
US8767459B1 (en) 2010-07-31 2014-07-01 Apple Inc. Data storage in analog memory cells across word lines using a non-integer number of bits per cell
US8856475B1 (en) 2010-08-01 2014-10-07 Apple Inc. Efficient selection of memory blocks for compaction
US8694854B1 (en) 2010-08-17 2014-04-08 Apple Inc. Read threshold setting based on soft readout statistics
US9021181B1 (en) 2010-09-27 2015-04-28 Apple Inc. Memory management for unifying memory cell conditions by using maximum time intervals
KR102022355B1 (ko) 2012-07-10 2019-09-18 삼성전자주식회사 파워 게이팅 회로
US8947967B2 (en) * 2012-12-21 2015-02-03 Advanced Micro Devices Inc. Shared integrated sleep mode regulator for SRAM memory
US9685224B2 (en) * 2014-10-17 2017-06-20 Taiwan Semiconductor Manufacturing Company, Ltd. Memory with bit line control
US9449655B1 (en) 2015-08-31 2016-09-20 Cypress Semiconductor Corporation Low standby power with fast turn on for non-volatile memory devices
JP6590662B2 (ja) * 2015-11-28 2019-10-16 キヤノン株式会社 メモリを制御する制御装置及びメモリの省電力制御方法
KR20180085418A (ko) 2017-01-18 2018-07-27 삼성전자주식회사 불휘발성 메모리 장치 및 그것을 포함하는 메모리 시스템
US11361819B2 (en) * 2017-12-14 2022-06-14 Advanced Micro Devices, Inc. Staged bitline precharge
US10797078B2 (en) 2018-08-14 2020-10-06 Taiwan Semiconductor Manufacturing Company Limited Hybrid fin field-effect transistor cell structures and related methods
US10971218B2 (en) 2019-05-28 2021-04-06 Synopsys, Inc. Method and apparatus for memory noise-free wake-up protocol from power-down
US11361810B2 (en) * 2020-01-30 2022-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Power mode wake-up for memory on different power domains
CN113205845A (zh) 2020-01-30 2021-08-03 台湾积体电路制造股份有限公司 电力控制***
US11626158B2 (en) 2020-10-28 2023-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Bit line pre-charge circuit for power management modes in multi bank SRAM
US11556416B2 (en) 2021-05-05 2023-01-17 Apple Inc. Controlling memory readout reliability and throughput by adjusting distance between read thresholds
US11847342B2 (en) 2021-07-28 2023-12-19 Apple Inc. Efficient transfer of hard data and confidence levels in reading a nonvolatile memory
US11854587B2 (en) * 2021-12-03 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Low power wake up for memory
WO2023250032A1 (en) * 2022-06-22 2023-12-28 Silvaco Inc. Multistage wake up circuit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819793A (ja) * 1981-07-27 1983-02-04 Toshiba Corp 半導体メモリ装置
JPH02105391A (ja) * 1988-10-13 1990-04-17 Nec Corp プリチャージ回路
JP2628942B2 (ja) * 1990-11-06 1997-07-09 三菱電機株式会社 プルアップ抵抗コントロール入力回路及び出力回路
DE4303839A1 (de) 1993-02-10 1994-08-11 Wilo Gmbh Kreiselpumpe mit zwei Ausgangskanälen und einem Umsteuerventil
KR100225951B1 (ko) 1996-10-22 1999-10-15 김영환 노이즈 감소형 반도체 메모리 장치
US5812482A (en) 1996-11-13 1998-09-22 Integrated Silicon Solution Inc. Wordline wakeup circuit for use in a pulsed wordline design
KR100335397B1 (ko) 1998-05-25 2002-09-05 주식회사 하이닉스반도체 센스앰프순차구동장치
JP2000215672A (ja) * 1999-01-19 2000-08-04 Seiko Epson Corp 半導体記憶装置
JP2001093275A (ja) * 1999-09-20 2001-04-06 Mitsubishi Electric Corp 半導体集積回路装置
JP3425916B2 (ja) * 1999-12-27 2003-07-14 Necエレクトロニクス株式会社 半導体記憶装置
JP4707255B2 (ja) * 2001-04-26 2011-06-22 ルネサスエレクトロニクス株式会社 半導体記憶装置
KR20030055998A (ko) 2001-12-27 2003-07-04 삼성전자주식회사 피크 전류를 감소시킬 수 있는 프리차지 회로 및 이를구비하는 반도체 메모리장치
KR100546415B1 (ko) 2004-06-25 2006-01-26 삼성전자주식회사 메모리 장치의 파워 노이즈를 방지하는 직렬 웨이크 업 회로
KR100610020B1 (ko) * 2005-01-13 2006-08-08 삼성전자주식회사 반도체 메모리 장치에서의 셀 파워 스위칭 회로와 그에따른 셀 파워 전압 인가방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890960A (zh) * 2011-07-21 2013-01-23 瑞萨电子株式会社 半导体器件
CN102890960B (zh) * 2011-07-21 2016-12-21 瑞萨电子株式会社 半导体器件
US9557790B2 (en) 2011-07-21 2017-01-31 Renesas Electronics Corporation Semiconductor device
CN106409333A (zh) * 2011-07-21 2017-02-15 瑞萨电子株式会社 半导体器件
US10192613B2 (en) 2011-07-21 2019-01-29 Renesas Electronics Corporation Semiconductor device
CN106409333B (zh) * 2011-07-21 2019-06-14 瑞萨电子株式会社 半导体器件
US10650883B2 (en) 2011-07-21 2020-05-12 Renesas Electronics Corporation Semiconductor device
CN113808632A (zh) * 2020-08-31 2021-12-17 台湾积体电路制造股份有限公司 存储器电路以及控制存储器阵列的唤醒操作的方法
CN113808632B (zh) * 2020-08-31 2024-04-02 台湾积体电路制造股份有限公司 存储器电路以及控制存储器阵列的唤醒操作的方法

Also Published As

Publication number Publication date
KR20050123400A (ko) 2005-12-29
KR100546415B1 (ko) 2006-01-26
US20050286322A1 (en) 2005-12-29
US7193921B2 (en) 2007-03-20
US20070189086A1 (en) 2007-08-16
JP4824952B2 (ja) 2011-11-30
TW200612439A (en) 2006-04-16
CN100541662C (zh) 2009-09-16
TWI264731B (en) 2006-10-21
JP2006012403A (ja) 2006-01-12
US7414911B2 (en) 2008-08-19

Similar Documents

Publication Publication Date Title
CN1725372A (zh) 在存储设备中防止功率噪声的级联唤醒电路
CN1308961C (zh) 半导体存储器件
CN1811986A (zh) 半导体存储元件的电源开关电路及其电源电压施加方法
US6794902B2 (en) Virtual ground circuit
JP5951357B2 (ja) フル・スイング・メモリ・アレイを読み出すための方法及び装置
CN1274200A (zh) 时间数字转换器以及利用该转换器的锁定电路和方法
CN1828772A (zh) 在半导体存储器内控制时钟信号的装置与方法
CN1627438A (zh) 半导体集成电路装置
CN1117378C (zh) 产生内部指令信号的半导体电路和方法
CN1489155A (zh) 半导体存储器及其控制方法
CN1469380A (zh) 存储装置
CN1172329A (zh) 检测电路
CN1695291A (zh) 半导体集成电路装置
CN1173402C (zh) 半导体集成电路
CN1427994A (zh) 组合的按内容寻址存储器
CN1898744A (zh) 低电压工作动态随机访问存储器电路
CN1431664A (zh) 半导体存储装置
CN1157735C (zh) 数据读出电路,读出放大器及其操作方法
US4635234A (en) Memory circuit with an improved output control circuit
CN1898748A (zh) 在dram装置的刷新操作期间用于多次再循环电荷的方法和电路配置
CN1949396A (zh) 半导体存储器件的修复电路
CN1666291A (zh) 半导体存储装置中字线的锁存方法
CN1237769A (zh) 半导体存储器件及老化检测的方法
CN102034523B (zh) 半导体存储装置和减少半导体存储装置芯片面积的方法
CN1489153A (zh) 具有9的倍数位的数据输入/输出结构的半导体存储装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant