CN1645617A - 铁电体膜、铁电存储器、以及压电元件 - Google Patents

铁电体膜、铁电存储器、以及压电元件 Download PDF

Info

Publication number
CN1645617A
CN1645617A CNA2005100025230A CN200510002523A CN1645617A CN 1645617 A CN1645617 A CN 1645617A CN A2005100025230 A CNA2005100025230 A CN A2005100025230A CN 200510002523 A CN200510002523 A CN 200510002523A CN 1645617 A CN1645617 A CN 1645617A
Authority
CN
China
Prior art keywords
ferroelectric
film
pzt
addition
pztn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100025230A
Other languages
English (en)
Other versions
CN100463180C (zh
Inventor
木岛健
宫泽弘
滨田泰彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Leap LLC
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1645617A publication Critical patent/CN1645617A/zh
Application granted granted Critical
Publication of CN100463180C publication Critical patent/CN100463180C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种可以得到可靠性高的铁电装置的铁电体膜,其由用ABO3表示的钙钛矿结构铁电体构成,在A位上包括作为A位补偿离子的Si2+、Ge2+、以及Sn2+中的至少一种,在B位上包括作为B位补偿离子的Nb5+

Description

铁电体膜、铁电存储器、以及压电元件
技术领域
本发明涉及一种铁电体膜。另外,本发明还涉及一种包括铁电体膜的铁电存储器、以及压电元件。
背景技术
已知的作为用ABO3表示的钙钛矿结构铁电体有Pb(Zr、Ti)O3(PZT)。
至今在铁电存储器(FeRAM)中使用的PZT系材料,一般使用B位的组成范围在Zr/Ti=52/48~40/60的立方晶、菱形晶的混合区域的物质。由于可靠性高并且价格便宜的观点,至今的FeRAM主要采用上述的组成。
但是,在这个区域,所谓的P-E磁滞形状圆而方形性不充分。磁滞形状圆是说明,在极化反转的时候,各个极化成分反转时的反转电压从低到高各不相同地存在。这是因为,极化轴在PZT的立方晶和菱形晶中不同,在立方晶中是(001)、在菱形晶中是(111)。即,磁滞形状圆是说明,如果施加任意的电位,从在低电压反转的极化成分逐渐反转,数据可能被消除。也就是说,本来就具有数据保持特性弱的一面。至今使用的FeRAM采用的是允许某种程度的磁滞移位的抗电压(Vc)的3倍的3~5V驱动。
另外,FeRAM的批量生产,当初从PZT的MPB组成(立方晶域和菱形晶域的相界共存相)开始,其高可靠性是根据经验证据,本来,应该具有高可靠性的组成范围的PZT,由于别的原因,破坏可靠性。因此,为了提高P-E磁滞形状的方形性,全部极化成分优选在相同的电压被同时极化反转。即,无论是立方晶,还是菱形晶,重要的是,统一为一种结晶系,并90°磁畴和180°磁畴的晶向都在相同的电压同时反转的方向。即,重要的是设计磁畴。
另一方面,至今的铁电电容器的用途中,作为电极材料几乎都使用Pt(111)和Ir(111),使用的PZT也易取向于(111),取向于(111)的PZT,且有效地活用磁畴的是,立方晶PZT。另一方面,立方晶PZT的可靠性低。
即,立方晶PZT(Ti含量多的区域),漏电电流增大,显著劣化静态刻印特性(将写入一次的数据,在室温或加热的环境下保存一定时间后,读出的数据的P-V磁滞曲线上的施加电压轴方向的移位量)、以及数据保持特性(将写入一次的数据,在室温或加热的环境下保存一定时间后,读出的数据的P-V磁滞曲线上的残留极化轴方向的移位量)明显劣化。
非专利文献1:J.Cross,M.Fujiki,M.Tsukada,K.Matsuura,S.Otani,M.Tomotani,Y.Kataoka,Y.Kotaka and Y.Goto,Integ.Ferroelectrics,25,265(1999)。
非专利文献2:I.Stolichnov,A.Tagantsev,N.Setter,J.Cross andM.Tsukada,Appl.Phys.Lett.,74,3552(1999)。
非专利文献3:T.Morimoto,O.Hidaka,Y.Yamakawa,O.Ariusumi,H.Kanaya,T.Iwamoto,Y.Kumura,I.Kunishima and A.Tanaka,Jpn.J.Appl.Phys.,39,2110(2000)。
发明内容
本发明的目的是提供一种铁电体膜,其可以得到可靠性高的铁电体装置。本发明的另一个目的是提供利用该铁电体膜的铁电存储器以及压电元件。
本发明涉及一种铁电体膜,其由用ABO3表示的钙钛矿结构铁电体构成,其特征在于,在A位上包括作为A位补偿离子的Si2+、Ge2+、以及Sn2+中的至少一种,在B位上包括作为B位补偿离子的Nb5+。根据本发明,由于Nb和O的共价键强,可以有效的防止氧缺陷,其是决定钙钛矿结构铁电体的可靠性的一个因素。另外,在本发明中,通过在钙钛矿结构铁电体中添加Nb和Si,可以在B位中固溶足量的Nb。
本发明涉及一种铁电体膜,其由包括氧离子缺陷的用ABO3表示的钙钛矿结构铁电体构成,其特征在于,在A位上包括作为A位补偿离子的Si2+、Ge2+、以及Sn2+中的至少一种,在B位上包括作为B位补偿离子的Nb5+,所述A位补偿离子的价数和由于添加B位补偿离子而剩余的全部B位价数的合计,小于等于对应于所述氧离子缺陷量的不足价数。根据本发明,由于Nb的稳定价数是+5,具有比B位离子的价数多+1价以上的价数。因此,在本发明中,可以用该剩余价数防止氧(-2)离子的缺陷。即,用添加的Nb离子置换B位离子,防止氧离子的缺陷,可以使用ABO3表示的钙钛矿结构的电荷中性成立。例如,用ABO3表示的钙钛矿结构铁电体是PZT系铁电体的时候,铁电体膜的A位补偿离子的+2价和由于添加B位补偿离子而剩余的价数+1((Nb:+5价)-(Ti:+4价)=(+1价))的合计(Nb添加量×(+1价)),小于等于对应于氧离子缺陷量的不足价数(氧离子缺陷量×(-2价)。
根据本发明的铁电体膜,所述氧离子缺陷的量对于所述钙钛矿结构铁电体的化学当量比小于等于15摩尔%。
根据本发明的铁电体膜,所述A位添加离子的含有量对于所述钙钛矿结构铁电体的化学当量比小于等于16摩尔%,所述B位添加离子的含有量对于所述钙钛矿结构铁电体的化学当量比小于等于30摩尔%。
根据本发明的铁电体膜,所述钙钛矿结构铁电体是包括作为A位离子的Pb2+、以及包括作为B位离子的Zr4+和Ti4+的PZT系铁电体。
根据本发明的铁电体膜,所述钙钛矿结构铁电体由(111)晶向的立方晶构成。
根据本发明的铁电体膜,所述钙钛矿结构铁电体由(001)晶向的菱形晶构成。
本发明可以适用于包括上述铁电体膜的铁电存储器。
本发明可以适用于包括上述铁电体膜的压电器件。
附图说明
图1是根据本实施形式的铁电电容器的剖面示意图。
图2是表示将Si的添加量在0mol%~20mol%范围内改变而制造的PT膜的XRD图案的图。
图3是表示将Si添加量为20mol%的PT膜的XRD图案的图。
图4是表示不添加Si的PT膜的表面形态。
图5是表示Si添加量为2mol%的PT膜的表面形态。
图6是表示Si添加量为4mol%的PT膜的表面形态。
图7是表示Si添加量为12mol%的PT膜的表面形态。
图8是表示Si添加量为14mol%的PT膜的表面形态。
图9是表示Si添加量为16mol%的PT膜的表面形态。
图10是表示Si添加量为18mol%的PT膜的表面形态。
图11是表示Si添加量为20mol%的PT膜的表面形态。
图12是表示对Si添加量分别为16mol%和18mol%的PT膜进行观察的TEM像。
图13是表示Si添加量为16mol%的PT膜的喇曼分光图。
图14示出了将Si的添加量在0mol%~20mol%范围内改变而制造的PT膜用喇曼分光法进行分析的结果。
图15是表示Si添加量为12mol%的PT膜的磁滞特性的图。
图16是表示Si添加量为14mol%的PT膜的磁滞特性的图。
图17是表示Si添加量为16mol%的PT膜的磁滞特性的图。
图18是表示Si添加量为18mol%的PT膜的磁滞特性的图。
图19是表示Si添加量为20mol%的PT膜的磁滞特性的图。
图20是表示膜厚为60nm的PT膜的磁滞特性的图。
图21是表示膜厚为120nm的PT膜的磁滞特性的图。
图22是表示膜厚为240nm的PT膜的磁滞特性的图。
图23是Zr/Ti比为30/70和20/80时的PZT膜的表面形态图。
图24是Zr/Ti比为30/70和20/80时的PZT膜的磁滞特性的图。
图25是添加16mol%的Si的PZT膜的漏电流特性图。
图26是添加16mol%的Si的PZT膜的疲劳特性图。
图27是添加16mol%的Si的PZT膜的静态刻印特性图。
图28是膜厚为60nm~240nm的PZT膜的SEM剖面像。
图29是添加Si而制造的PZTN膜的表面形态。
图30是表示添加Si而制造的PZTN膜、PZT膜、以及添加Si而制造的PZTS膜的XRD图案的图。
图31是表示添加Si而制造的PZTN膜的SEM剖面像的图。
图32是表示膜厚为100nm、150nm、200nm的PZTN膜的磁滞特性。
图33是表示Nb添加量和磁滞特性的关系的图。
图34是表示Nb添加量和漏电特性的关系的图。
图35是在PZT、PbSiO3中添加16mol%的Si后,比较PZT以及PZTN的漏电流特性的图。
图36是在PZT、PbSiO3中添加16mol%的Si后,比较PZT以及PZTN的疲劳特性的图。
图37是表示125℃下保持272小时数据时的PZTN膜的静态刻印特性的图。
图38是表示在85℃的恒温环境下进行的PZTN膜的动态刻印特性的图。
图39是表示在150℃的恒温环境下进行的PZTN膜的静态刻印特性的图。
图40是表示在150℃的恒温环境下进行的PZT(Zr/Ti=20/80)膜的静态刻印特性的图。
图41是表示在150℃的恒温环境下进行的PZT(Zr/Ti=30/70)膜的静态刻印特性的图。
图42是表示PZTN膜的二次离子质量分析(SIMS)的结果的图。
图43是表示PZTN膜的二次离子质量分析(SIMS)的结果的图。
图44是表示PZTN膜的二次离子质量分析(SIMS)的结果的图。
图45是表示PTN(PbTi1-XNbXO3∶X=0~0.3)的喇曼分光光谱的图。
图46是表示被称为A1(2TO)的B位离子起因的振动模式的峰的位置和Nb添加量的关系的图。
图47是表示PZT(Zr/Ti=40/60)/Pt/TiOX电容器的TEM剖面像的图。
图48是表示PZTN(Zr/Ti/Nb=20/60/20)/Pt/TiOX电容器的TEM剖面像的图。
图49是表示加工成0.8μm×0.8μm的电容器的磁滞特性的图。
图50是表示加工成1μm×1μm的电容器的磁滞特性的图。
图51是表示加工成2μm×2μm的电容器的磁滞特性的图。
图52是表示加工成3μm×3μm的电容器的磁滞特性的图。
图53是表示加工成5μm×5μm的电容器的磁滞特性的图。
图54是表示加工成10μm×10μm的电容器的磁滞特性的图。
图55是表示加工成20μm×20μm的电容器的磁滞特性的图。
图56是表示加工成50μm×50μm的电容器的磁滞特性的图。
图57是表示加工成100μm×100μm的电容器的磁滞特性的图。
图58是表示根据第一原理模拟的结果的图。
图59是表示PZTV(Zr/Ti/V=20/60/20)、PZTW(Zr/Ti/V/W=20/70/10)、PZTTa(Zr/Ti/Ta=20/60/20)的磁滞特性的图。
图60是表示PZT和PZTN系的电子状态密度的图。
图61是本发明实施形态的简单矩阵型铁电存储器装置的结构示意图。
图62是本发明实施形态的一例存储器单元阵列和周边电路共同集成在同一基片上的铁电存储器装置的截面图。
图63是本发明实施形态变形例的1T1C型铁电存储器装置的截面图以及其电路图。
图64是本发明实施形态所涉及的记录头的分解立体图。
图65是本发明实施形态所涉及的记录头的平面图以及截面图。
图66是本发明实施形态所涉及的压电元件的层结构的概要图。
图67是本发明实施形态所涉及的一例喷墨式记录装置的概要图。
具体实施方式
以下参照附图说明本发明的优选实施形式。
1.铁电体膜以及使用该膜的铁电电容器
图1是根据本发明的实施形式的具有铁电体膜101的铁电电容器100剖面示意图。
如图1所示,铁电电容器100是由用ABO3表示的钙钛矿结构的铁电体构成的铁电体膜101、第一电极102、以及第二电极103构成。
第一电极102和第二电极103由Pt、Ir、Ru等贵金属的单体或由上述的贵金属为主成分的复合材料构成。如果在第一电极102和第二电极103中扩散铁电体的元素,那么产生电极和铁电体膜101之间的界面部位的组成偏差,磁滞现象的方形性降低,因此第一电极102和第二电极103需要具有不扩散铁电体元素的致密性。为了提高第一电极102和第二电极103的致密性,采取例如用质量重的气体喷射成膜的方法或把Y、La等的氧化物分散在贵金属电极中的方法等。
铁电体膜101由PZT系的铁电体形成,该PZT系的铁电体由包括Pb、Zr、Ti元素的氧化物构成。特别是在本实施形式中,该铁电体膜101的特点是采用了Ti位(B位)中掺杂Nb的Pb(Zr、Ti、Nb)O3(PZTN)。即,在本实施形式中,Nb5+作为Ti位补偿离子而被添加。
Nb与Ti相比大小(离子半径接近,原子半径相同)几乎相同,重量为2倍,因此即使是由于晶格振动引起的原子间的碰撞,也不会使原子轻易从晶格脱落。再有原子价为+5价而稳定,比如即使Pb被脱落掉,也容易通过Nb5+补偿脱落掉的Pb价。另外,在结晶时,即使发生了Pb的脱落,相对于脱落尺寸大的O,进入尺寸小的Nb更容易。
另外,Nb还有+4价,因此可以充分地替换Ti4+。并且,实际上Nb的共价键非常强,因此可以认为Pb也不容易脱落。(H.Miyazawa,E.Natori,S.Miyashita;Jpn.J.Appl.Phys.39(2000)5679)
目前为止,在PZT中掺杂Nb主要是在Zr丰富的菱形晶区域中进行的,其量为约0.2~0.025mol%(J.Am.Ceram.Soc,84(2001)902;Phys.Rev.Let,83(1999)1347)的极少的量。不能够大量掺杂Nb的原因是,例如添加10mol%的Nb,那么结晶化温度就上升到800℃以上。
因此,在本实施形式的铁电体膜101中还添加了PbSiO3硅酸盐(Si2+离子)。由此可以降低PZTN的结晶化能量。即,把PZTN作为铁电体膜101的材料时,通过添加Nb的同时还添加PbSiO3硅酸盐来降低PZTN的结晶化温度。另外,可以不采用硅酸盐(Si2+)而采用锗酸铋(Ge2+)、或者也可以添加其他含Sn2+离子的化合物。即,在本实施形式中,能够将Si2+、Ge2+、Sn2+中的至少一种离子作为Pb位(A位)补偿离子来添加。
另外,在本实施形式中,为了防止铁电体膜101中Pb的脱落,可以考虑用+3价以上的元素替换Pb的方法,作为这些元素的候补可以列举La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb以及Lu等镧系元素。
以下,说明适用于根据本实施形式的铁电电容器100的PZTN铁电体膜101的成膜方法的一个例子。
PZTN铁电体膜101可以通过以下方法获得。首先准备混合溶液,其由包括Pb、Zr、Ti以及Nb中至少一种元素的第一原料溶液~第三原料溶液构成,然后通过热处理等方法将这些混合液中的氧化物结晶。
第一原料溶液可以是,为了形成由PZTN铁电体相的构成金属元素中的Pb以及Zr形成的PbZrO3钙钛矿结晶,把缩聚物在n-丁醇等溶剂中以无水状态溶解的溶液。
第二原料溶液可以是,为了形成由PZTN铁电体相的构成金属元素中的Pb以及Ti形成的PbTiO3钙钛矿结晶,把缩聚物在n-丁醇等溶剂中以无水状态溶解的溶液。
第三原料溶液可以是,为了形成由PZTN铁电体相的构成金属元素中的Pb以及Nb形成的PbNbO3钙钛矿结晶,把缩聚物在n-丁醇等溶剂中以无水状态溶解的溶液。
用上述的第一原料溶液、第二原料溶液以及第三原料溶液,例如形成由PbZr0.2Ti0.8Nb0.2O3(PZTN)构成的铁电体膜101时,以(第一原料溶液)∶(第二原料溶液)∶(第三原料溶液)=2∶6∶2的比例混合,即使直接把该混合溶液结晶,制造PZTN铁电体膜101时还是需要高结晶温度。也就是说,混合Nb时,由于结晶的温度突然上升,在700℃以下的可形成元件的温度范围内不可能结晶,因此目前为止5mol%以上的Nb没有作为替换Ti的元素使用过,一直限制使用在添加剂的范围内。再者,目前为止从来没有过Ti的含量比Zr含量多的PZT立方晶。这件事实记载在参考文献J.Am.Ceram.Soc,84(2001)902和Phys.Rev.Let,83(1999)1347等中。
于是,在本实施形式中是通过如下的方法解决上述问题。将第四原料溶液以1mol%以上但不足5mol%的浓度添加到上述混合溶液中,该第四原料溶液是,为了形成PbSiO3结晶,把缩聚物在n-丁醇等溶剂中以无水状态溶解的溶液。
也就是说,通过使用上述第一溶液、第二溶液、第三溶液以及第四溶液的混合溶液,可以将PZTN的结晶温度控制在可形成元件的700℃以下温度范围内,并进行结晶。
具体地,把混合溶液涂布步骤—除去乙醇步骤—干燥热处理步骤—脱脂热处理步骤等一系列的步骤进行必要的次数后,通过结晶退火过程烧成后形成铁电体膜101。
下面说明各步骤的条件的示例。
首先在Si衬底上覆盖Pt等电极用贵金属成膜下部电极。其次以旋转涂层的方法进行混合液的涂布。具体地,在Pt覆盖衬底上滴落混合溶液。用约500rpm进行旋转使被滴落的溶液在衬底上全面铺开,然后把转数降到50rpm以下后旋转10秒左右。干燥热处理步骤在150℃~180℃进行。干燥热处理步骤在大气环境下用电炉等进行。同样,脱脂热处理步骤是在温度保持为300℃~350℃的电炉上,在大气环境下进行。结晶化的烧成步骤是在氧气环境下通过快速热退火(RTA)等方法进行。
还有,烧结后的膜厚约为100~200nm。其次,用溅射法等形成第一电极后,以第二电极和铁电体薄膜的界面形成、以及改善铁电体薄膜的结晶性能为目的,与烧成时一样在氧气环境下用RTA等进行后期退火,形成铁电电容器100。
实施例1
对于1mol的PbTiO3,添加了作为PbSiO3的Si 20mol%以下。下面,本文中所提的Si是指作为PbSiO3而添加的Si。在本实施例中,添加在钙钛矿构造铁电体中的Si绝对不是以SiO2形式添加的。并且,如果添加TEOS或Si的烃氧基金属时,也就是说直接添加SiO2的时候,首先SiO2覆盖在Pt电极表面,不可能得到钙钛矿结晶。
在本实施例中,以表1的条件制造了添加Si的PbTiO3膜。再者,在以下的实施例中没有添加PbSiO3时简略表示为PT或SO,Si的添加量为2mol%时表示为S2。
【表1】
                               制造条件
组成     PT(Pb/Ti=110/100)+PbSi(2~20mol%)
    PZT(Pb/Zr/Ti=110/20/80或110/30/70)+PbSi(2~20mol%)
转数     2000~5000rpm
热处理     650℃
                  烧成条件
下部电极     Pt/TiOx/SiO2/Si(2step)
涂布     2000~5000rpm,30sec.
干燥+准烧成     150℃,2min.+300℃,4min.
结晶化     550℃,5min.,O2,50℃/sec.
上部电极     Pt
后期退火     650℃,15min.,O2,50℃/sec.
本实施例中获得的样品的XRD图案如图2以及图3(A)、(B)所示。图2是将Si的添加量在0mol%~20mol%范围内改变而制造的PT膜的XRD图案用纵轴对数来表示的图。图3(A)、(B)是将Si添加量为20mol%的PT膜的XRD图案用纵轴对数来表示的图。
根据图2,可以确认所有PT膜都是钙钛矿单相。还有根据图3(A)、(B),还可以确认PT膜是几乎没有异相的(111)单一取向膜。
另外,图4~图11是表示根据本实施例获得的PT膜的表面形态。如图4~图11所示,随着Si的添加,PT结晶的粒径变得微小。特别是在S16中所显示的是非常良好的平坦性,但是S18以后也就是说Si添加量超过18mol%时,可以确认表面的异相。在图2中显示的XRD图案中没有确认异相,因此可以推测异相是非结晶相。
于是对本实施例的PT膜,用TEM像比较Si添加量为16mol%的样品S16和18mol%的样品S20,其结果如图12(A)、(B)所示。从图12(A)中可以看出,在样品S16中与Pt电极之间的界面部分也不存在异相,是良好的钙钛矿结晶相。但从图12(B)中可以看出,在样品S20中不仅是表面,与Pt电极之间的界面部分也是非结晶相。
另外,对样品S16的PT膜通过喇曼分光法进行分析,图13为其喇曼分光图。如图13所示,与根据XRD图案的分析结果以及根据TEM像的观察结果一样,仅确认了钙钛矿相的振动模式。
另外,图14示出了通过喇曼分光法对在本实施例中得到的全部PT膜进行分析的结果。如图14所示,随着Si的添加量的增多,表示被称之为E(1TO)的A位离子的振动模式的峰发生移位,并且被称之为A1(2TO)的B位离子的振动模式中完全看不到有变化,Si成为Si2+,并部分置换A位的Pb。然而,在S18以后,A位振动模式的峰移位小,16mol%以上的Si对A位置换不起作用。因此,可以认为在本实施例的PT膜中被确认的非结晶相是SiO2
图15~图19是评价按上述方法制造出来的膜厚为240nm的薄膜的磁滞特性的图。如图15~图19所示,在钙钛矿构造的铁电体中添加Si时,改善表面形态的同时抑制漏电流,Si添加量为16mol%时得到最好的磁滞曲线。另外,如图18以及图19所示,如果Si添加量超过18mol%,那么由于界面中出现的SiO2的影响,电场不能充分地施加到铁电体部分中,这样就会出现在磁滞特性中残留极化值变小的倾向。即,通过本实施例明确了在PT等由ABO3表示的钙钛矿构造的铁电体中添加的硅酸盐量优选为16mol%。再者,将Si添加量为16mol%如果用原子%(at%)换算是13.7原子%,所有的Si作为Si2+来置换A位。另外,Si添加量为16mol%时,由于漏电流密度被抑制,因此可以得到良好的磁滞特性。
然后将Si的添加量固定为13.7at%,以不同的膜厚形成PT膜,对铁电体膜的新的薄膜化进行了研究。图20~图22示出了该研究的磁滞特性。图20示出了膜厚为60nm、图21示出了膜厚为120nm、图22示出了膜厚为240nm的情况。从图20~图22可以看出,膜厚为60nm~240nm的范围内可以得到良好的磁滞作用,在PT添加Si有助于改善漏电特性。
其次,利用对PT膜进行的试验中得到的Si添加量13.7at%(16mol%),在与PT同样以ABO3表示的钙钛矿构造的铁电体PZT中添加Si。图23(A)、(B)示出了这时得到的PZT膜的表面形态。图23(A)是Zr/Ti比为30/70时的PZT膜的表面形态图,图23(B)是Zr/Ti比为20/80时的PZT膜的表面形态图。另外,图24(A)、(B)示出了这时得到的PZT膜的磁滞特性。图24(A)是Zr/Ti比为30/70时的PZT膜的磁滞特性图,图24(B)是Zr/Ti比为20/80时的PZT膜的磁滞特性图。如图23以及图24所示,在PZT膜也可以得到良好的表面形态和磁滞特性。
其次,图25~27示出了在化学计算组成方面对添加了16mol%(13.7at%)Si的PZT膜进行了可靠性评价(漏电流特性、疲劳特性、静态刻印特性)后得到的结果。图25是漏电流特性图,图26是疲劳特性图,图27是静态刻印特性图。根据图25~图27可以看出,本实施例的PZT膜显示为非常低的可靠性。例如,漏电流特性虽然与没有添加Si时比较,降低了约10倍的漏电流,但是随着Ti含量的增加漏电流也增加,因此通过添加Si来降低漏电流的效果不是很理想。疲劳特性也同样,虽然随着Si的添加有少许的提高,但还是很不理想。特别是对于刻印特性完全没有效果。
于是对本实施例的PZT膜分析了SEM剖面像,其结果为图28(A)~图28(C)所示。从图28(A)~图28(C)可以看出,添加了Si的PZT膜不是通常的PZT膜的柱状结构,而是形成了粒状结构。因此,可以推测出在电场方向形成了许多电容串联连接起来的结构,这样一来虽然在改善漏电流方面有了效果,但许多粒界的存在成了空间电荷极化的原因,使疲劳特性和刻印特性恶化。
如上所述,通过在富含Ti的立方晶PZT中添加硅酸盐,可以稍微改善漏电流,但是对与FeRAM的可靠性相关性大的疲劳特性和刻印特性等没有改善作用,因此需要一个改善方法。
实施例2
通过实施例1明确了在富含Ti的PZT中添加Si的效果对确保设备的可靠性不是很理想。但是为了铁电体内存的高集成化,还是需要富含Ti的立方形结晶薄膜(立方晶薄膜)。即,通过富含Ti提高磁滞作用的方形性来提高抗电场作用,由此可以设计出薄膜化时抗串扰的结构。另外,由于相对介电常数从1500降低到300左右,因此可以实现高速动作。
于是,在本实施例中以立方形(立方晶)PZT为基楚,通过本发明中以ABO3表示的钙钛矿构造铁电体中的B位里添加离子的方法同时实现良好的磁滞作用和高可靠性。
首先,论述关于PZT铁电体材料的课题。以前PZT的漏电流密度问题没有被重视,这是因为读取数据时用几个MHz以上的脉冲电场,因此可以忽略漏电流的影响。但是如果我们认为是PZT材料本身存在其原因,由此增大了漏电流密度的情况时,对于铁电体材料来说漏电流增大是个非常大的问题。于是本发明把降低立方晶PZT的漏电流为目的进行了研究。
首先对漏电流密度增大的原因,已经论述了PZT铁电体材料本身就漏电,如果增加Ti的含量漏电就会更严重。其次,如果认为是氧缺陷引起的,在钙钛矿构造中,阳离子的周围总是存在氧离子,因此阳离子的缺陷将成为固定电荷,不容易被移动。另一方面,氧离子在钙钛矿的结晶构造中从上到下被连接着,因此可以认为氧缺陷对漏电流起作用。另外,一般地PZT铁电体材料与Bi层状构造铁电体材料相比漏电流的密度更高,且随着Ti的增加漏电流的密度也增加。从这些也可以推断Pb和Ti也是漏电流增大的原因。
表2是PZT构成元素的各种物理性质值的总结。
【表2】
  名称     原子量     价数 原子半径     结合能   电离电位
    (离子半径())     () M-O(kcal/mol)     (eV)
    Pb     207.2     +2(1.08),+4(0.78)     1.33     38.8     7.416
    Zr     91.224     +4(0.72)     1.6     185     6.84
    Ti     47.88     +2(0.86),+3,+4(0.61)     1.47     73     6.82
    Nb     92.906     +3,+4,+5(0.64)     1.47     177-189     6.88
    O     54.36     -1,-2(1.4)     0.61     119     13.618
铅的蒸气压高,在150℃左右成为蒸气开始蒸发,而且从表2可以看出与氧的结合能非常小,是39kcal/mol。即,可以推测到为了使PZT结晶,如果一般实施700℃以下的结晶化热处理,那么由于该结晶化热处理时施加的热能而Pb-O键被切断,形成Pb缺陷。然后,由于Pb的缺陷,按照电荷中性原理,产生O的缺陷。
另一方面,通过表2可以知道Ti在PZT构成元素中的原子量最小,为47.87。在这里构成结晶的各原子经常重复地进行旋转和碰撞。各原子根据自己所在的环境,特别是根据温度经常重复地进行振动、旋转和互相碰撞。更不用说进行结晶化热处理时,各原子更激烈地重复碰撞。这时,最轻的Ti最容易受到碰撞的影响。也就是说,可以推测Ti也同Pb一样容易发生缺陷。因此,结晶化热处理时,有可能根据施加的热能Ti-O键被切断,生成Ti缺陷。如果生成Ti缺陷时由于电荷中性原理而发生氧缺陷,那么所谓的立方晶PZT中容易发生肖特基缺陷(阳离子和阴离子成对生成的缺陷),由于肖特基缺陷而引起漏电流的密度增大。
如果上面论述的立方晶PZT的漏电流密度增大模式成立,那么这些课题只在PZT中很难得到解决。因为根据表2,难以控制Pb的蒸发以及缺陷。如果这样,那么在允许Pb缺陷的情况下,只要即使发生了Pb缺陷也不发生氧缺陷,从而不增大漏电流密度就可以。
于是,在本实施例中尝试了在以ABO3表示的钙钛矿构造的铁电体材料中,给Ti离子存在的B位中搀杂Nb离子的方法。即,将同Pb一样形成缺陷的B位的Ti离子用Nb置换一部分,这样就可以减少Ti的含量。
其次,说明作为B位的添加离子选择Nb的原因。Nb原子与Ti的大小几乎相同,重量正好为2倍,因此受到原子碰撞的影响小一些。并且,从能量角度考虑,加入小的Nb比大的氧原子发生缺陷更容易。另外,Nb的稳定价数为+5,比Ti的+4价多+1价。本发明的特点之一就是把该多余的+1价用于防止氧(-2价)离子的缺陷。也就是说,用两个Nb离子置换Ti离子,这样可以防止一个氧离子的缺陷,由此保持电荷中性。另外,根据第一原理模拟,Nb和氧的共价键非常强,由于Nb被置换到B位,因此氧本身变得难以产生缺陷。(参考文献1:H.Miyazawa,E.Natori,S.Miyashita,T.Shimoda,F.Ishii and T.Oguchi,Jpn.J.Appl.Phys.39,5679(2000))。
在这里所说的将Nb离子搀杂到PZT的例子过去也尝试过,但是几乎都认为搀杂Nb非常困难。(参考文献2:T.Matsuzaki and H.Funakubo,J.Appl.Phys.86,4559(1999),参考文献3:G.Bums andB.A.Scott,Phys.Rev.Lett.,25,1191(1970)。
有代表性的例子是,用气相沉积法(MOCVD)把PbTiO3(PT)中的Ti离子用Nb离子置换2.3at%时,可以得到单一钙钛矿层,但是没有报道大的特性变化。并且,以前添加Nb的理由是为了通过Nb的过剩价来抵消PZT发生的Pb缺陷。但是,如果把Pb缺陷设想为固定电荷,那么也无法说明漏电量增大的原因。另外,在参考文献3中提出了当添加5at%的Nb时,会产生常电介质焦绿石相,还是说明了搀杂Nb的难度。
在本实施例中以PZT(Zr/Ti=20/80)为基础进行了研究,结果为在本实施例的条件下制造的PZT中存在10at%以上的氧缺陷。即,如果参考文献3中报道的PT与本实施例中的PZT有同等的氧缺陷,那么添加2.3at%的Nb时只能改善相同于Nb添加量的一半量的氧缺陷,也就是说仅有1.15at%,可以认为没有多大效果。另外,MOCVD法是从气态可以直接获得固态的方法,气体变为固体状态需要大的能量变化,因此尽管在降低结晶化温度的效果方面是一个很有效的成膜法,但是从得到低温态的焦绿石来看,是由于Nb的添加而使PZT的结晶化温度大幅上升。
然后,如果说PZT存在10at%以上的氧缺陷,那么为了达到防止PZT的氧缺陷目的,需要20at%左右的Nb添加量。但是,还必须同时考虑降低结晶化温度。于是在本实施例1中表示了用Si来置换A位,由此用极少量也可以把表面形态改善为致密平滑。
根据以上的研究结果,在本实施例中,添加Nb的同时添加了浓度为5at%以下的极少量Si,而没有如实施例1那样添加能够破坏PZT柱状结构的大量Si。用表3的条件形成PZT膜。
【表3】
                            制造条件
组成     PZT(Pb/Zr/Ti=110/X/100-X)+20%PbNb(Pb/Nb=110/100)+1~3%Si  X=2.5~40mol%
转数     2000~5000rpm
热处理     700℃
                  烧成条件
下部电极     Pt/TiOx/SiO2/Si
涂布     2000~5000rpm,30sec.
干燥+准烧成     150℃,2min.+300℃,4min.
结晶化     700℃,5min.,O2,50℃/sec.
上部电极     Pt
后期退火     700℃,15min.,O2,50℃/sec.
在本实施例中采用旋转涂布法,在用以形成PZT的溶胶-凝胶溶液中事先添加Nb以及Si,在650~800℃的氧气环境下制造膜厚为200nm的PZTN(Pb/Zr/Ti/Nb=110/20/60/20)膜。铁电体膜是在电极上形成,电极材料是Pt。
图29(A)~图(C)示出了得到的铁电体膜表面形态。图30(A)~图30(C)示出了各铁电体膜的XRD图案。如果完全不添加Si(图29(A),图30(A)),在800℃的高温烧成时仅存在常电介质焦绿石态。其次,添加0.5mol%的Si(图29(B),图30(B)),在烧成温度650℃下存在常电介质焦绿相,而且还观察到从钙钛矿相反射的峰。另外,Si添加量为1mol%(图29(C),图30(C))时,在650℃下得到钙钛矿单一层,同时具有良好的表面形态。
另外,如图31(A)~(C)中显示的SEM剖面像,在本实施例中得到的PZTN膜保持PZT铁电体膜特有的柱状构造,与实施例1的添加硅酸盐的膜相比,膜构造完全不同。
在本实施例中得到的200nm-PZTN膜上用喷射法形成100μmφ-Pt上部电极,然后评价电特性,如图32(A)~图32(C)所示,其结果获得具有良好的方形性的P-E磁滞特性。例如,图32(C)所示的膜厚为200nm时,可以明确极化量Pr为约35μC/cm2,抗电场Ec为80kv/cm(磁滞为±1.6v时极化为0,故Ec=1.6v/200nm=80kv/cm2)的铁电体特性。需要强调的是,即使具有良好的方形性,又拥有80kv/cm的大抗电场,但在100kv/cm的电场,铁电体磁滞几乎饱和。
图33(A)~图33(D)是表示Nb添加量和磁滞特性的关系图。图33(A)是Nb添加量为0(at%)的情况,图33(B)是Nb添加量为5(at%)的情况,图33(C)是Nb添加量为10(at%)的情况,图33(D)是Nb添加量为20(at%)的情况。图34是Nb添加量和漏电特性的关系图。如图33(A)显示,Nb添加量为0at%时,也就是说常规的PZT时,漏电特性不好,如图中的虚线○印部分所示,由于含有大量漏电流,因此磁滞上部鼓起来。如图34所示,Nb添加量为5at%时,尽管漏电特性被改善,但是如图中的虚线○印部分所示,欧姆电路部分依然存在,改善不是很理想。如图33(B)所示,Nb添加量为5at%时方形性不是很好,且饱和特性也不是很好,因此难以用低电压驱动装置。
另外,如图33(C)、(D)所示,Nb添加量为10at%以及20at%时,可以得到具有良好的饱和特性的核型非常好的磁滞特性,如图34所示,漏电特性中欧姆电流区域也被大幅度的改善。Nb添加量为20at%时,如图33(D)所示,因为决定铁电体特性的B位离子的置换多到20at%,高电压上升到1.6%附近,但在2v以下范围内被饱和。这种饱和特性是PZTN铁电体材料的最大特性。以上的事实可以说明由于PZT的氧缺陷超过10%,Nb的添加量需要达到20at%,最低也要添加10at%。
图35是在膜厚为200nm的PZT和PbSiO3中添加Si16mol%后,比较PZT以及PZTN的漏电流特性的结果图。根据图35,PZT是随着加大电压漏电流密度也增加,但是PZTN在5v以下的低电压加大范围内几乎看不到漏电流密度的增加,即使在所谓的肖特基放出电流结构部分,在5v以上的电压加大幅度,有漏电流密度的增加,但是与PZT比较漏的等级还是低的。这是由于PZT和PZTN之间的氧缺陷密度不同,漏电流部分从肖特基放出电流部分移动到漏电流增加的部分去的电压,在PZT和PZTN中是不同的缘故。作为其结果,可以看到在该薄膜的使用电压(1.8v~3v)下,PZTN比PZT的漏电流密度减低约4位数左右,还可以确认PZTN与PZT比较,拥有约10000倍的绝缘性。
其次,表示疲劳特性的图为图36。使用在特性测定中的铁电电容器无论是上部电极还是下部电极都使用Pt,作为纯粹的铁电体材料对其特性进行了比较。如果使用Pt电极,一般PZT是用109周期退化到极化量减到一半以下为止。以前,PZT材料在Pt电极上很容易疲劳,但是本例子中的结果为不是PZT疲劳,而是暗示了氧缺陷的PZT在退化。象这样,本发明不简单是对以前开始就存在PZT的改良,而完全是关于新材料的发明。
然后,对刻印特性以及数据保持特性的评价结果进行说明,测定方法是参考了参考文献4、5。(参考文献4;J.Lee,R.Ramesh,V.Karamidas,W.Warren,G.Pike and J.Evans.,Appl.Phys.Lett.,66,1337(1995),参考文献5;A.M.Bratkovsky and A.P.Lebanyuk.Phys.Rev.Lett.,84,3177(2000))。
图37是125℃下把数据保持了272小时时的保持/静态刻印特性评价结果。另外,图38是在85℃的恒温环境下进行的108周期的刻印时的动态刻印特性。根据图38,观察刻印后的磁滞现象曲线的电压轴方向的移动量,可以看出PZTN比PZT得到的移动量明显减少。
然后,在150℃的高温环境下进行了静态刻印特性的评价试验,其结果如图39~图41。图39是,关于本实施例的PZTN膜的结果。图40是有关PZT(Zr/Ti=20/80)膜的结果。图41是有关PZT(Zr/Ti=30/70)膜的结果。对于PZT,读取时丢失40%的极化量,但PZTN的情况,读取的极化量几乎没有变化。这两者的区别主要在于PZT和PZTN的静态刻印特性的区别。即,根据图39~图41,只有在图39PZTN膜被确认了良好的刻印特性。
如上所述,PZTN与PZT相比较具有相当高的可靠性。
在本实施例中为了确认得到预期的PZTN材料的高可靠性,是否与防止氧缺陷相关,而进行了各种分析。首先,采用二次离子质量分析(SIMS)调查了氧缺陷量,其结果如图42~图44。在各图中实线为PZTN,虚线为PZT的情况。通过图44的PZTN与PZT比较后得知,PZTN的氧浓度高10%左右,这可以认为是对添加Nb可以抑制氧缺陷的效果的证明。同时,通过图43又确认了Ti离子浓度比PZT低10%左右,这个少的10%就是被Nb置换下来的那一部分。
在这里,SIMS是因为Nb的测定灵敏度不是很高的缘故,采用诱导等离子体发射光谱法(ICP)以及X射线光电子光谱法(XPS)进行了对Nb浓度的测定,其结果见表4、表5,可以明确关于PZTN中的B位(Zr、Ti、Nb)的Nb浓度为约20at%。
【表4】
  XPS   Unit   Pb-4f   Zr-3d   Ti-2p   Nd-3d   O-1s   Si-sp   Total
  PZT   Atomic%   24.8   5.7   21.0   -   48.4   0.1   100
  PZTN   Atomic%   24.4   5.7   15.3   5.7   48.8   0.1   100
【表5】
 ICP     Unit     Pb     Zr     Ti     Nd   Total
 PZT     μg     351     26     58.5     -   435.5
    Atomic%     53.0     8.9     38.1     -   100
 PZTN     μg     391     34     54.2     33   512.2
    Atomic%     50.3     9.8     30.3     9.6   100
之后,用喇曼分光法对Nb是否被置换到B位进行分析。图45示出了改变掺杂量时的PTN(PbTi1-XNbXO3∶X=0~0.3)的喇曼分光光谱。
如图45所示的表示被称为A1(2TO)的B位离子起因的振动模式的峰,与图46(A)所示的Nb掺杂量的增加同时移位到低波数侧,这表示Nb被置换到B位。另外,表示PZTN(PbZrYTi1-Y-XNbXO3∶X=0~0.1)的图46(B)中,也可以确认Nb被置换到B位。从上述的研究结果,本发明中的PZTN材料具有良好的特性的原因是,在PZT中的B位导入的20at%的Nb,与简单的PZT相比,防止10at%的氧缺陷。在本实施例中,添加极少量的Si,就可以掺杂大量Nb的原因是,Si具有降低结晶化温度的效果,并可使Nb固溶。
其次,图47和48示出了用干蚀刻法,实际加工成10μm×10μm的电容器的TEM剖面像。图47是PZT(Zr/Ti=40/60)/Pt/TiOX电容器的观察结果,图48是PZTN(Zr/Ti/Nb=20/60/20)/Pt/TiOX电容器的观察结果。进行蚀刻,切断的PZT和PZTN的最两端部分,可能是变质而引起的对比(contrast)有白的脱落,在PZT中可以确认蚀刻附近的长度为1~1.5μm的对比脱落,并且,可以确认与上部Pt电极的全部界面的对比脱落。另外,测定该部分的膜组成,确认了Pb组成大幅减少。另一方面,在PZTN中,只有加工的最两端部分存在对比脱落,分析最两端的邻近部分的组成,完全没有发现Pb的脱落。同时进行中央部分的组成分析,同样完全没有发现Pb的脱落。如上所述,根据本发明的PZTN铁电体具有用至今的常识无法想象的耐加工破坏性。
因此,评价了分别加工成0.8μm×0.8μm~100μm×100μm的电容器的磁滞特性,如图49~57所示,获得了几乎与尺寸不相关的磁滞特性。这也是不能用以前的常识解释,是适用本发明的PZTN的新特性。
实施例3
在本实施例中,说明作为B位置换物质特别选择Nb的原因。
从图58的第一原理模拟结果也可以看出,Nb和O的共价键强。并且,为了有效地防止氧缺陷,需要与氧结合的力即共价键强。因此,在本实施例中,利用Ta、V以及W,进行代替Nb的研究。
Ta和V是+5价,与Nb同样,制造了置换20at%的Ti的PbZr0.2Ti0.6Ta0.2O3以及PbZr0.2Ti0.6V0.2O3。由于W的+6价,因此,制造了置换10at%的Ti的PbZr0.2Ti0.7W0.1O3。Pb剩余量、烧成条件以及其他条件与表3相同。
其结果,得到了图59(A)~59(C)所示的磁滞特性。图59(A)表示PZTV(Zr/Ti/V=20/60/20)的情况,图59(B)表示PZTW(Zr/Ti/V/W=20/70/10)的情况,图59(C)表示PZTTa(Zr/Ti/Ta=20/60/20)的情况。图59(A)、(B)示出的V、W的情况,由于与氧的共价键弱,因此示出了比Nb漏,方形性不好的磁滞特性。另一方面,Ta的情况,在表3的烧成条件下,磁滞特性不好。并且,在850℃进行烧成,如图59(C)所示,得到较好的磁滞。但是,没有Nb好,与添加Nb时比较,结晶化温度上升,难以适用于元件。如上所述,从试验结果也可以证实图58的第一原理计算结果。
接着,从第一原理计算考察PZTN材料具有非常高的绝缘性的原因。迁移金属氧化物基本由离子结合性的结晶构成。但是,对于其铁电性的显现机理,从第一原理计算的立场详细的解释,迁移金属d轨道和最接近氧2p轨道之间的共价结合性起到重要的作用。原子状态的迁移金属d轨道能和氧2p轨道能的差越小,其共价结合性越强,铁电性增强。
另一方面,在由ABO3钙钛矿结构构成的迁移金属化合物中,A位中进入Pb或Bi时,Pb和Bi的6p轨道和其最接近氧2p轨道之间生成新的共价结合,与B位迁移金属的共价结合性一起,铁电性增强。这可能是PZT或BIT中的高的居里温度和大的极化转矩的原因。在此,用第一原理计算,研究PZT系的电子状态和高绝缘性的关系。假定结晶结构为(2×2×2)的超晶胞。
图60(A)~图60(E)示出了PZT和PZTN系的电子状态密度。图60(A)是没有缺陷的Pb(Zr0.25Ti0.75)O3的状态密度。价电子带的顶端由氧的2p轨道构成。另外,传导带的底部由迁移金属、特别是Ti的d轨道构成。图60(B)表示将PZT的B位25%的Ti替换为Nb时的情况。观察费米能级的位置,就可以知道传导带中搀杂电子。并且,其搀杂量正好对应于Nb比Ti多一个的5价电子提供给系的离子描像。图60(C)表示将PZT的Pb缺陷12.5%时的情况。同样可以知道空穴被搀杂在价电子带。其空穴搀杂量为对应于作为2+离子振动的Pb从系中缺失而失去的价电子的量。图60(D)表示将B位25%的Ti替换为Nb,同时Pb缺陷12.5%时的情况。分别被搀杂的电子和空穴互相抵消,费米面消失,绝缘性被恢复。比较图28(A)和图60(D),带隙近旁的电子结构,从状态密度来观察比较相似,在图60(D)的操作中,可能是没有破坏原来的PZT的电子状态(刚性带的变化)。
在此,对于Nb的B位置换量δ,为了保持系的绝缘体,有必要缺陷有限的Pb,其缺陷量必须为δ/2。图60(D)对应于PZTN系的电子状态。另一方面,图60(E)是对于PZT,Pb和与其相邻的氧成对地缺陷12.5%时(肖特基缺陷)的状态密度。带隙被打开,但在传导带的底部出现可认为杂质能级的状态。因此,带隙对于图60(A)大幅下降。对于图60(A)的带隙,PZTN系的图60(D)下降0.2eV,虽然具有相同的缺陷量,但图60(E)下降1.2eV。图60(E)中的带隙的大幅下降由于氧缺陷而引起。这是因为,迁移金属d轨道的静电电位,本来相邻的氧电子云由于氧缺陷而被失去,从而下降。系的绝缘特性由带隙的大小决定。但是,绝缘体的带隙广是良好绝缘体的必要条件。因此,在PZTN系中绝缘性高的原因是,氧缺陷少、带隙的下降小而引起的。并且,现有的PZT的绝缘性不好的原因是,化学计算法(化学当量组成)大量存在Pb-O的肖特基缺陷,因此,可以推测,如图60(E)所示带隙降低,在电极界面带偏移的下降。
实施例1~3的总结
添加Nb的同时仅添加约1%的极少量Si,可以对PZT中的B位固溶20at%以上的Nb。Si具有固溶Nb的功能。
100nm~200nm-PZTN薄膜示出了方形性良好的磁滞特性,漏电电流密度为10-8A/cm2以下、具有现有的1000~10000倍绝缘性,并且,具有良好的可靠性。
分析膜组成,与单纯的PZT比较,减少10%的氧缺陷。
2.铁电存储器
图61(A)以及图61(B)为在本发明实施形态的简单矩阵型铁电存储器装置300的结构示意图。图61(A)为其平面图,图61(B)为沿图61(A)的A-A线的截面图。铁电存储器装置300,如图61(A)以及图61(B)所示,具有配列给定数量的字线301~303和配列给定数量的位线304~306,它们都形成在基片308上。在字线301~303和位线304~306之间,***了由在上述实施形态中说明的PZTN形成的铁电体膜307,而在字线301~303和位线304~306的交叉区域内形成了铁电电容器。
在配列了由该简单矩阵构成的存储器单元的铁电存储器装置300中,向形成在字线301~303和位线304~306的交叉区域内的铁电电容器的写入和读出,是通过图中未示出的周边驱动电路和读出用放大电路等(称此为“周边电路”)进行。该周边电路,由存储单元阵列和其它基片上的MOS晶体管形成,也可连接在字线301~303和位线304~306,或者通过在基片308上使用单晶硅基片,将周边电路和存储器单元阵列集成在同一基片上。
图62为示出一例铁电存储器装置300的截面图,该铁电存储器装置300在本实施形态中,存储器单元阵列和周边电路共同集成在同一基片上。
在图62中,在单晶硅基片401上形成了MOS晶体管402,而该晶体管形成区域即成为周边电路部分。MOS晶体管402,由单晶硅基片401、源漏区域405、门极绝缘膜403、以及门电极404构成。
另外,铁电存储器装置300,具有元件分离用氧化膜406、第一层间绝缘膜407、第一配线层408、以及第二层间绝缘膜409。
另外,铁电存储器装置300,具有由铁电电容器420构成的存储器单元阵列,铁电电容器420,作为字线或位线的下部电极(第一电极或第二电极)410、包含铁电体相和常介电体相的铁电体膜411、以及形成在铁电体膜411上而成为位线或字线的上部电极(第二电极或第一电极)412构成。
还有,铁电存储器装置300,在铁电电容器420上具有第三层间绝缘膜413,通过第二配线层414使存储器单元阵列和周边电路部分相连接。此外,在铁电存储器装置300中,在第三层间绝缘膜413和第二配线层414上形成了保护膜415。
根据具有以上结构的铁电存储器装置300,可将存储器单元阵列和周边电路部分集成在同一基片上。此外,图62所示的铁电存储器装置300,是在其周边电路部分上形成了存储器单元阵列的结构,但是周边电路部分上不配置存储器单元阵列,而存储器单元阵列平面连接于周边电路部分的结构也是可以的。
本实施形态中所用到的铁电电容器420,由上述实施形态所涉及的PZTN构成,因此,矩形磁滞性非常好,具有稳定的抗干扰特性。还有,该铁电电容器420,减少由处理温度的低温化的向周边电路等或其它元件的损害,另外,也减少了处理损害(特别是水元素的还原),因此,可抑制因损害而导致的滞后的劣化。从而,通过使用铁电电容器420,使简单矩阵型铁电存储器装置300的实用化成为可能。
另外,图63(A)中示出了作为变形例的1T1C型铁电存储器装置500的构造图。图63(B)为铁电存储器装置500的等价电路图。
铁电存储器装置500,如图63(A)、(B)所示,是与由开关用晶体管元件507(1T)形成的DRAM结构相似的存储器元件。该开关用晶体管元件507(1T),具有电容器504(1C),其由下部电极501、连接在屏极线的上部电极502、以及适用本实施形态的PZTN铁电体的铁电体膜503形成;门电极506,源漏极的一方连接在数据线505上,从而连接在字线上。1T1C型存储器,其写入以及读出可以以100ns以下高速进行,并且写入的数据不易失从而有望替代SRAM等。
3.压电元件以及喷墨式记录头
下面,对本发明实施形态的喷墨式记录头进行详细说明。
喷墨式记录头,其连通了吐出墨滴的喷咀开口的压力产生室的一部分由振动板构成,而通过压电元件使该振动板变形而向压力产生室的墨水加压,从而从喷咀开口吐出墨滴。在喷墨式记录头中,使用了向压电元件的轴方向伸长、收缩的纵向振动模式的压电传动装置;使用了弯曲振动模式的压电传动装置两种被实用化。
作为使用弯曲振动模式的传动装置时,例如,在振动板的整个表面上由成膜技术形成均匀的压电体层,由平版法将该压电体层切分为对应于压力产生室的形状,从而通过设置使得每个压力产生室独立。
图64为示出本发明的一个实施形态所涉及的喷墨式记录头概要的分解立体图,图65为图64的平面图以及A-A’截面图,图66为示出压电元件700的层结构的概要图。如图所示,流路形成基片10,形成了厚度为1~2um的弹性膜50,其在本实施形态中由面方位(110)的硅单晶基片形成,在其一面上通过预先热氧化形成二氧化硅。在流路形成基片10上,多个压力产生室12并列设置在其宽度方向。另外,在流路形成基片10的压力产生室12的长手方向外侧的区域上形成了连通部分13,连通部分13和各压力产生室12是通过设置在每个压力产生室12的墨水供给路14连通。此外,连通部分13,连通在后面叙述的封止基片30的保留部分32,从而构成作为各压力产生室12的共同的墨水室的保留部分800的一部分。墨水供给路14,由比压力产生室12更窄的宽度形成,并将从连通部分13流入压力产生室12的墨水流路阻抗保持为一定。
另外,在流路形成基片10的开口面侧上,通过粘接剂或热焊接薄膜等固定了喷咀开关20,在该喷咀开关上设置了连通在与各压力产生室12的墨水供给路14相反一侧的端部附近的喷嘴开口21。
另一方面,在与该流路形成基片10的开口面相反一侧上,如上所述,形成了厚度例如约为0.1um的弹性膜50,而在该弹性膜50上形成有厚度例如约为0.4um的绝缘体膜55。在该绝缘体膜55上,按后述的工艺层叠而形成厚度例如约为0.2um的下电极膜60、厚度例如约为1.0um的压电体层70、厚度例如约为0.05um的上电极膜80。在此,压电元件700指包括下电极膜60、压电体层70以及上电极膜80的部分。通常,将压电元件300的某一边电极作为公共电极,而将另一电极以及压电体层70在每个压力产生室12上形成图案而构成。在此,由形成图案的某一边电极以及压电体层70构成,向两电极施加电压来生成压电偏置的部分称为压电体主动部分。在本实施形态中,虽然下电极膜60作为压电元件700的公共电极,将上电极膜80座位压电元件700的个别电极,但是在驱动电路或配线时也可以是相反。不管是哪种情况,在每个压力产生室上形成压电体主动部分。另外,在此,通过结合压电元件700和由该压电元件700的驱动产生变位的振动板统称为压电传动装置。此外,压电体层70独立设置在每个压力产生室12上,如图66所示,由多层铁电体膜71(71a~71f)构成。
喷墨式记录头,构成具备与墨水囊相连通的墨水流路的记录头单元的一部分,安装在喷墨式记录装置中。图67为示出一例其喷墨式记录装置的概要图。如图67所示,具有喷墨式记录头的记录头单元1A以及1B,设置为其构成墨水供给手段的墨水囊2A以及2B可装卸,安装了该记录头单元1A以及1B的架子3,设置得其可在安装至装置主机4上的架子轴5上沿其轴方向自由移动。该记录头单元1A以及1B,分别吐出例如黑墨水组成物以及彩色组成物。将驱动电机6的驱动力通过图中未释出的多个齿轮以及时序带7传递到架子3上,从而安装了记录头单元1A以及1B的架子3,沿着架子轴5移动。另一方面,在装置主机4上,沿着架子轴5设置了压板8,由图中未示出的给纸墨棍等给纸的纸张等的记录介质的记录座S,被搬送到压板8上。
此外,作为液体喷射头吐出墨水的喷墨式记录头的一例进行了说明,但是本发明以使用了压电元件的液体喷射头以及液体喷射装置全部为对象。作为液体喷射头,可以举例为使用在打印机等的图像记录装置的记录头、使用在液晶显示器等的彩色滤色器的制造商的色素喷射头、使用在有机EL显示器、FED(面发光显示器)等的电极形成上的电极材料喷射头、使用在生物chip制造商的生物有机物喷射头等。
本实施形态的压电元件,由于将上述实施形态所涉及的PZTN膜使用在压电体层,因此,可得到下面的效果。
(1)由于提高压电体层中的共有结合性,可提高压电常数。
(2)由于可抑制压电体层中PbO的缺损,因此,在压电体层的电极的界面中不同相的产生被抑制从而容易加在电界上,从而可提高作为压电元件的效果。
(3)由于压电体层的泄漏电流得到了抑制,因此,可使压电体层薄膜化。
另外,本实施形态的液体喷射头以及液体喷射装置,使用了包含上述压电体层的压电元件,因此,特别是可得到下面的效果。
(4)由于可降低压电体层的老化,因此,可抑制压电体层的位移量的经时变化,从而可提高可靠性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (9)

1.一种铁电体膜,其由用ABO3表示的钙钛矿结构铁电体构成,其特征在于,在A位上包括作为A位补偿离子的Si2+、Ge2+、以及Sn2+中的至少一种,在B位上包括作为B位补偿离子的Nb5+
2.一种铁电体膜,其由包括氧离子缺陷的用ABO3表示的钙钛矿结构铁电体构成,其特征在于,在A位上包括作为A位补偿离子的Si2+、Ge2+、以及Sn2+中的至少一种,在B位上包括作为B位补偿离子的Nb5+,所述A位补偿离子的价数和由于添加B位补偿离子而剩余的全部B位价数的合计,小于等于对应于所述氧离子缺陷量的不足价数。
3.根据权利要求2所述的铁电体膜,其特征在于,所述氧离子缺陷的量对于所述钙钛矿结构铁电体的化学当量比小于等于15摩尔%。
4.根据权利要求1至3中任一项所述的铁电体膜,其特征在于,所述A位添加离子的含有量对于所述钙钛矿结构铁电体的化学当量比小于等于16摩尔%,所述B位添加离子的含有量对于所述钙钛矿结构铁电体的化学当量比小于等于30摩尔%。
5.根据权利要求1至4中任一项所述的铁电体膜,其特征在于,所述钙钛矿结构铁电体是包括作为A位离子的Pb2+、以及包括作为B位离子的Zr4+和Ti4+的PZT系铁电体。
6.根据权利要求1至5中任一项所述的铁电体膜,其特征在于,所述钙钛矿结构铁电体由(111)晶向的立方晶构成。
7.根据权利要求1至5中任一项所述的铁电体膜,其特征在于,所述钙钛矿结构铁电体由(001)晶向的菱形晶构成。
8.一种铁电存储器,包括权利要求1至7中任一项所述的铁电体膜。
9.一种压电器件,包括权利要求1至7中任一项所述的铁电体膜。
CNB2005100025230A 2004-01-20 2005-01-20 铁电体膜、铁电存储器、以及压电元件 Active CN100463180C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004012160 2004-01-20
JP2004012160A JP4171908B2 (ja) 2004-01-20 2004-01-20 強誘電体膜、強誘電体メモリ、及び圧電素子

Publications (2)

Publication Number Publication Date
CN1645617A true CN1645617A (zh) 2005-07-27
CN100463180C CN100463180C (zh) 2009-02-18

Family

ID=34631885

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100025230A Active CN100463180C (zh) 2004-01-20 2005-01-20 铁电体膜、铁电存储器、以及压电元件

Country Status (6)

Country Link
US (1) US20050167712A1 (zh)
EP (1) EP1557481A3 (zh)
JP (1) JP4171908B2 (zh)
KR (1) KR100598747B1 (zh)
CN (1) CN100463180C (zh)
TW (1) TWI267188B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021371A (zh) * 2017-12-04 2019-07-16 北京有色金属研究总院 一种有机-无机钙钛矿材料的筛选方法
CN112993198A (zh) * 2021-01-26 2021-06-18 浙江大学 一种锗基钙钛矿光电材料、应用、制备方法及器件和器件制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205056B2 (en) 2001-06-13 2007-04-17 Seiko Epson Corporation Ceramic film and method of manufacturing the same, ferroelectric capacitor, semiconductor device, and other element
US20050156217A1 (en) * 2004-01-13 2005-07-21 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device and method for fabricating the same
US7497962B2 (en) * 2004-08-06 2009-03-03 Canon Kabushiki Kaisha Method of manufacturing liquid discharge head and method of manufacturing substrate for liquid discharge head
JP4462432B2 (ja) 2005-08-16 2010-05-12 セイコーエプソン株式会社 ターゲット
JP4396857B2 (ja) * 2005-08-30 2010-01-13 セイコーエプソン株式会社 絶縁性ターゲット材料の製造方法
JP4553137B2 (ja) * 2005-09-05 2010-09-29 セイコーエプソン株式会社 複合酸化物積層体の製造方法
JP2007088147A (ja) * 2005-09-21 2007-04-05 Toshiba Corp 半導体装置およびその製造方法
JP4859098B2 (ja) * 2005-10-07 2012-01-18 株式会社高純度化学研究所 ニオブテトラアルコキシジイソブチリルメタネートおよびそれを用いたPb(Zr,Ti,Nb)O3膜形成用原料溶液
JP4826744B2 (ja) * 2006-01-19 2011-11-30 セイコーエプソン株式会社 絶縁性ターゲット材料の製造方法
JP2007314368A (ja) * 2006-05-25 2007-12-06 Fujifilm Corp ペロブスカイト型酸化物、強誘電素子、圧電アクチュエータ、及び液体吐出装置
JP4501917B2 (ja) * 2006-09-21 2010-07-14 セイコーエプソン株式会社 アクチュエータ装置及び液体噴射ヘッド
JP2008266770A (ja) * 2007-03-22 2008-11-06 Fujifilm Corp 強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
EP1973177B8 (en) 2007-03-22 2015-01-21 FUJIFILM Corporation Ferroelectric film, process for producing the same, ferroelectric device, and liquid discharge device
JP5344143B2 (ja) 2008-12-11 2013-11-20 セイコーエプソン株式会社 液体噴射ヘッド及び液体噴射装置並びに圧電素子
JP2009293130A (ja) * 2009-08-26 2009-12-17 Fujifilm Corp ペロブスカイト型酸化物、強誘電体膜、強誘電体素子、及び液体吐出装置
JP5381614B2 (ja) * 2009-10-26 2014-01-08 セイコーエプソン株式会社 複合酸化物積層体、複合酸化物積層体の製造方法、デバイス
JP5903578B2 (ja) 2010-01-21 2016-04-13 株式会社ユーテック Pbnzt強誘電体膜及び強誘電体膜の製造方法
GB2503435A (en) * 2012-06-25 2014-01-01 Johannes Frantti Ferroelectric memory devices comprising lead zirconate titanate
JP6182968B2 (ja) 2012-08-14 2017-08-23 株式会社リコー 電気機械変換素子、液滴吐出ヘッド、画像形成装置及び電気機械変換素子の製造方法
WO2016031134A1 (ja) 2014-08-29 2016-03-03 富士フイルム株式会社 圧電体膜とその製造方法、圧電素子、及び液体吐出装置
JP6575743B2 (ja) * 2015-01-30 2019-09-18 セイコーエプソン株式会社 液体噴射ヘッドの駆動方法及び圧電素子並びに液体噴射ヘッド
US20170345831A1 (en) * 2016-05-25 2017-11-30 Micron Technology, Inc. Ferroelectric Devices and Methods of Forming Ferroelectric Devices
CN107481751B (zh) * 2017-09-06 2020-01-10 复旦大学 一种铁电存储集成电路
KR20210017526A (ko) * 2019-08-08 2021-02-17 삼성전자주식회사 유전체 물질층을 포함하는 박막 구조체 및 이를 구비하는 전자소자

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111568B1 (en) * 1982-05-28 1986-10-15 Matsushita Electric Industrial Co., Ltd. Thin film electric field light-emitting device
US5762816A (en) * 1995-11-14 1998-06-09 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition
JP2001181034A (ja) * 1999-12-28 2001-07-03 Tdk Corp 圧電セラミック組成物
US6518609B1 (en) * 2000-08-31 2003-02-11 University Of Maryland Niobium or vanadium substituted strontium titanate barrier intermediate a silicon underlayer and a functional metal oxide film
JP2002316871A (ja) * 2001-02-19 2002-10-31 Murata Mfg Co Ltd 圧電磁器組成物およびこれを用いた圧電素子
JP4259030B2 (ja) * 2001-10-23 2009-04-30 株式会社村田製作所 積層型圧電体セラミック素子およびそれを用いた積層型圧電体電子部品
JP2003146660A (ja) * 2001-11-13 2003-05-21 Fuji Electric Co Ltd 強誘電体および誘電体薄膜コンデンサ、圧電素子
JP4230720B2 (ja) * 2002-05-28 2009-02-25 日本化学工業株式会社 誘電体セラミック原料粉末の製造方法
JP3791614B2 (ja) * 2002-10-24 2006-06-28 セイコーエプソン株式会社 強誘電体膜、強誘電体メモリ装置、圧電素子、半導体素子、圧電アクチュエータ、液体噴射ヘッド及びプリンタ
JP4720969B2 (ja) * 2003-03-28 2011-07-13 セイコーエプソン株式会社 強誘電体膜、圧電体膜、強誘電体メモリ及び圧電素子
JP2005159308A (ja) * 2003-11-05 2005-06-16 Seiko Epson Corp 強誘電体膜、強誘電体キャパシタ、および強誘電体メモリ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021371A (zh) * 2017-12-04 2019-07-16 北京有色金属研究总院 一种有机-无机钙钛矿材料的筛选方法
CN112993198A (zh) * 2021-01-26 2021-06-18 浙江大学 一种锗基钙钛矿光电材料、应用、制备方法及器件和器件制备方法
CN112993198B (zh) * 2021-01-26 2022-02-08 浙江大学 锗基钙钛矿光电材料、应用、制备方法和器件及制备方法

Also Published As

Publication number Publication date
EP1557481A3 (en) 2006-09-20
TW200531261A (en) 2005-09-16
JP4171908B2 (ja) 2008-10-29
CN100463180C (zh) 2009-02-18
US20050167712A1 (en) 2005-08-04
KR20050076654A (ko) 2005-07-26
TWI267188B (en) 2006-11-21
KR100598747B1 (ko) 2006-07-13
JP2005209722A (ja) 2005-08-04
EP1557481A2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
CN1645617A (zh) 铁电体膜、铁电存储器、以及压电元件
CN1266032C (zh) 氧化物材料、氧化物薄膜的制造方法以及使用该材料的元件
CN1127755C (zh) 具有混合层状超点阵材料的集成电路及用于制备该电路的前体溶液
KR100810858B1 (ko) 강유전체막, 강유전체 메모리 장치, 압전 소자, 반도체 소자, 압전 액츄에이터, 액체 분사 헤드, 및 프린터
CN1269215C (zh) 铁电存储装置及其制造方法
KR100719004B1 (ko) 강유전체막 적층체, 강유전체 메모리, 압전 소자, 액체분사 헤드 및 프린터
CN1807346A (zh) 前驱体组合物及其制造方法、喷墨涂布用墨液
US20100208412A1 (en) Ferroelectric material, method of producing ferroelectric material, and ferroelectric device
JP6814915B2 (ja) 強誘電体メモリ及びその製造方法、強誘電体膜及びその製造方法
US8075795B2 (en) Piezoelectrics, piezoelectric element, and piezoelectric actuator
CN1873926A (zh) 铁电体层的制造方法及电子设备的制造方法
CN1929038A (zh) 复合氧化物层压体、复合氧化物层压体的制造方法、装置
CN1812128A (zh) 晶体管型铁电体存储器及其制造方法
CN1691352A (zh) Mfs型场效应晶体管及其制造方法、强电介质存储器及半导体装置
US9022531B2 (en) Piezoelectric element, liquid discharge head and liquid discharge apparatus
CN1636729A (zh) 介电体元件、压电体元件、喷墨头及其制造方法
JP2010043353A (ja) ペロブスカイト型酸化物、酸化物組成物、酸化物体、圧電素子、及び液体吐出装置
CN1618123A (zh) 用于集成电路应用的镧系分层超晶格材料
CN1684260A (zh) 金属薄膜及其制造方法、电介质电容器及其制造方法及半导体装置
CN1797771A (zh) 铁电膜、铁电膜的制造方法、铁电电容器、以及铁电存储器
EP1863069A2 (en) Ferroelectric capacitor, method of manufacturing ferroelectric capacitor, and ferroelectric memory
WO2018187316A1 (en) Perovskite relaxor-pbti03 based ferroelectric ceramics with ultrahigh dielectric and piezoelectric properties through polar nanoregions engineering
US7187575B2 (en) Memory device and its manufacturing method
CN1691332A (zh) 强电介质膜层叠体、强电介质存储器、压电元件
CN1706007A (zh) 强电介质膜、强电介质电容器、强电介质存储器、压电元件、半导体元件、强电介质膜的制造方法、和强电介质电容器的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240102

Address after: 15 Adindere Street, Ulanjer, Hungary

Patentee after: Crystal Leap LLC

Address before: Tokyo

Patentee before: Seiko Epson Corp.