CN1416362A - 用于制备基本上含亚微型金属粒子的液体分散体的方法 - Google Patents

用于制备基本上含亚微型金属粒子的液体分散体的方法 Download PDF

Info

Publication number
CN1416362A
CN1416362A CN01806154A CN01806154A CN1416362A CN 1416362 A CN1416362 A CN 1416362A CN 01806154 A CN01806154 A CN 01806154A CN 01806154 A CN01806154 A CN 01806154A CN 1416362 A CN1416362 A CN 1416362A
Authority
CN
China
Prior art keywords
carbonyl
gas
liquid pool
metal
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01806154A
Other languages
English (en)
Other versions
CN1200761C (zh
Inventor
E·B·瓦斯蒙德
G·O·R·威廉斯
K·K·库斯尼
R·M·绍贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vale Canada Ltd
Original Assignee
Vale Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vale Canada Ltd filed Critical Vale Canada Ltd
Publication of CN1416362A publication Critical patent/CN1416362A/zh
Application granted granted Critical
Publication of CN1200761C publication Critical patent/CN1200761C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/006Metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种在已知浓度的液体分散体中制备基本上为亚微型金属粒子的方法。羰基金属气体和一种惰性载气及可选择的稀释气被送至热液池中,其中所述羰基金属被分解为亚微型纯金属粒子。所述粒子悬浮在所述液体中。所述液体被处理以生成浆液和浆料。

Description

用于制备基本上含亚微型金属粒子的液体分散体的方法
技术领域
本发明总体上涉及金属粉末,更具体地说,涉及制备亚微型金属粒子的连续方法。这些粒子具体可用作浆液和浆料的掺杂物,所述浆液和浆料被指定地用在电化学单元(如电池)和电容器中。
背景技术
象Mond和Langer在1889年发现的,在约150-315℃温度范围内四羰基镍容易分解为基本上纯净的金属镍和一氧化碳。所述剧烈的Mond方法的主要缺点是四羰基镍是强毒性的。同样地,一氧化碳必须被非常谨慎地处理。因此,世界上很少有机构使用该方法。
多层电容器浆料市场需要亚微型(小于1微米)镍粉,且不含大于约1微米大小的聚合颗粒。
大多数由市场上购得的细镍粉由化学蒸发沉积法(“CVD”)、氯化物还原或水合沉积法制备。这些现有技术就规模化生产来说是昂贵的。
多层电容器制造商使用的镍粉产物最初被卖作干粉。接下来该细粉被分散到液体中以形成浆液,所述浆液是所述浆料生产过程的一部分。所述浆料的制造明显增加了最终产品的生产成本。
近十年来,受托人已经使(四)羰基镍在气相中分解以生产各种细纯镍粉。超细镍粉(具有粒径小于约0.5微米的初级颗粒)由所述羰基镍在高于约400℃的温度中气相分解而制备。不幸的是,在这些条件下,颗粒碰撞产生了许多使颗粒结合的机会,从而使得粉末含有一些粒径超过约1微米的不期望的粒子。
所有制备包含亚微型粒子的现有技术需要昂贵的多步骤间歇式操作,以制得所需要的浆液和浆料。
在羰基镍技术的早期发展中(约在上个世纪末期),人们认识到羰基镍与氢通过能产生催化作用的流体时会发生反应并形成有机化合物。参见Shukoff的德国专利241823(1911年)。
类似地,Ellis的美国专利1138201教导了热油的加氢作用。所述羰基镍在油中被用作具有优良催化性能的镍源。
在上述两种情况下,所述镍粒子从加氢化合物遗留的液体中被分离出来。然而,人们显然没有认识到接下来要处理的夹带了镍粒子的液体分散体(如浆料或浆液)具有任何用途。
因而需要人们开发出一种廉价的连续方法,该方法在液体分散体中制造亚微型金属粉末,因而简化了大量的中间处理步骤。
发明概述
本发明提供了一种连续的低成本方法,用于制备纯金属的亚微型粒子的液体分散体。
羰基金属蒸气泡在惰性载气下被送入热液体中。随着所述气泡的上升,所述羰基金属被分解为亚微型金属粒子,所述粒子不会聚成块同时又分散到整个液体中。所得到的初级镍粒子平均粒径约为0.1微米,该粒径的数量级小于大多数由当前市场上购得的镍粒子的粒径。
附图的简要说明
图1是本发明的实施方案的流程图。
本发明优选的实施方案。
参照图1,该图示出了用于制备被夹带在液体中的亚微型镍粒子的样品***10。
虽然本发明的方法讨论的重点直接涉及镍,但是也涉及能形成羰基化合物的其他金属,如铁、钴、铬和钼。
“亚微型”指粒子的粒径小于约1微米。
“惰性载气”指该气体不能直接与羰基镍蒸气或热液体反应。然而,根据标准动力学和热力学原理,所述气体可能影响反应的速度和程度。
一种气态羰基镍源12借助惰性载气被送到静止混合器14。来自供应源16的惰性载气(优选一氧化碳)调整供应至混合器14的Ni(CO)4的流速和流量,所述载气和羰基镍最后到达热反应容器18,优选高压釜。可选择的氮或其它惰性稀释气体20增加了所需输送到容器18的Ni(CO)4。所述一氧化碳用于保护羰基在与液体24接触之前免受分解并影响所述粒子的大小。
对于本领域技术人员来说显然应该知道由于羰基镍的危险性,一定要采取严格的安全保护措施以保护操作者和环境,以防止羰基和一氧化碳的泄漏。因此,所有的泵、管、阀、传感器等一定是羰基适配等级的。
所述气态Ni(CO)4和载气通过管22被送到所述容器18。优选地向所述容器18的底部输送羰基蒸气,从而该蒸气通过所述容器18内分布的液体24鼓泡上升26。除雾器28或类似设备除去流出容器18的一氧化碳携带的任何液体。
一些设备如压力计30、温度探头32和其他处理设备和安全设备(图中未示出)帮助调节和控制所述反应器18的处理过程。
游离的一氧化碳气体通过分解器34以分解掉有毒的一氧化碳气体。最后的火焰分解器38既能中和掉任何残余的一氧化碳,又使人们直观地看出所述排放气流在安全限度内。
通过设在容器18的热液体中直接分解所述羰基镍蒸气,产生所述亚微型镍粒子。由于形成所述粒子,它们被保护起来以防止通过液-固边界层发生表面反应和碰撞。同样地,通过将所述液体保持在一个固定的均衡温度下,所得到的粒子便具有更加均匀的显微结构。
气态羰基镍与载气混合后进入所述容器18,并通过任何适宜的分配器被输入到热液体24中,该分配器对于本领域技术人员来说是公知的。例如,冷却的分配器如喷嘴、鼓泡器、多孔盘或孔板,所述分配器使所述蒸气通过液体24鼓泡上升。需要冷却分配器以防止镍在所述装置聚集。通过调整气流流速、鼓泡分配器的大小、气体浓度和液体24的温度,从而控制所述镍粒子的物理尺寸。
所述惰性载气起到流动加速的作用。
当气泡通过液体24升高,羰基镍将在气泡中分解和/或在分解之前溶入液体。羰基镍化合物的分解将促使亚微型镍微粒液体分散,不会产生明显数量的大于1微米的凝聚微粒。分解反应受温度、所选择的液体类型、羰基金属的气体浓度和气流速度的流体动力学性能影响。
所得到的固/液分散体可通过一些传统的操作(如蒸发、离心过滤、磁分离和超滤)被增加至所需要的固体含量和粘度。
通过直接制作含于液体分散体中的镍粒子,一些传统的先前存在的处理步骤被省去,这些步骤用于制造包含镍粒子的浆料。
使用了所述***10的两个实施例的试验证实了本发明方法的功效。
实施例1
每分钟2升气态氮(90%)、羰基镍(5%)和一氧化碳(5%)通过烧结的盘分配器被送到所述容器柱18的底部,所述容器柱中装有350ml被加热至160℃并基本上处于大气压下的液体(参见图1)。试验在如下条件进行:(1)癸醇(CAS112-30-1);(2)FlutecTMpp10低蒸气压碳氟化合物(CAS 307-08-04);(3)硅酮油(CAS 63148-58-3);(4)十二烷(CAS 112-40-3);和(5)α-萜品醇(CAS 10482-56-1)。在所述分解器34的焚烧过程中通过火焰38的颜色证实了羰基镍的完全分解。经过8分钟后(即生成足够的产品以用于评估之后)所述试验被停止。所述液体被冷却并在室温下被吹扫。通过扫描电子显微镜(“SEM”)、动态光散射和X-射线衍射(“XRD”)对所述显微结构进行初步分析证实所述镍粒子的大小约为0.1微米。特别地,掺杂了α-萜品醇的镍粒子被用作电容器电极浆料。
实施例2
每分钟2升气态氮(90%)、羰基镍(5%)和一氧化碳(5%)通过烧结盘被送到所述容器柱18的底部,所述容器柱中装有350ml热α-萜品醇(CAS-10482-56-1),所述操作持续约8分钟并基本上处在大气压下。所述试验在120℃、130℃、140℃和160℃下重复进行。发现在120℃下没有镍粉生成,指示没有反应或镍粉明显地积累在所述分解器34的内部部件上。较高的温度导致了镍粒子的产生。
虽然上面的试验经过8分钟后被停止以评价所述产物,但是所述反应看起来几乎是瞬间发生的。因此,连续方式将使所述产物以相当稳定的速度被放出;所述速度是液体的进料负载参数、压力、温度和体积的函数。
虽然根据法律条款的规定,这里介绍了描述了本发明的具体实施方案,但是对于本领域技术人员来说,应该理解到根据本发明的形式所做的各种变化被包括在权利要求书中,及本发明的某些技术特征有时可在没有相应地使用其他技术特征的情况下被优选使用。

Claims (14)

1.一种制备包含亚微型金属粒子的液体分散体的方法,所述方法包括:
a)在一个容器中提供液池;
b)将金属-羰基气体与一种惰性载气混合以形成金属-羰基气体混合物;
c)输入所述金属-羰基气体混合物至所述液池中;
d)通过所述液池鼓泡所述金属-羰基气体混合物;
e)使至少一部分金属-羰基气体在所述液池中分解以形成预定大小的金属粒子并保留在其中;及
f)金属粒子在所述液池中形成具有预定粘度的液体分散体。
2.根据权利要求1所述的方法,其特征在于,所述液池被加热。
3.根据权利要求2所述的方法,其特征在于,所述液池被加热以超过约120℃。
4.根据权利要求1所述的方法,其特征在于,所述金属-羰基气体由羰基镍、羰基铁、羰基钴、羰基铬和羰基钼组成的组中选择。
5.根据权利要求1所述的方法,其特征在于,至少大多数金属粒子的尺寸小于约1微米。
6.根据权利要求1所述的方法,其特征在于,所述液池由癸醇、低蒸气压碳氟化合物、硅油、十二烷和α-萜品醇组成的组中选择。
7.根据权利要求1所述的方法,其特征在于,所述金属粒子的液体分散体被浓缩。
8.根据权利要求7所述的方法,其特征在于,所述金属粒子的液体分散体的浓缩方法选自蒸发法、离心法、磁分离法和超滤法。
9.根据权利要求1所述的方法,其特征在于,所述液体分散体是浆液或浆料。
10.根据权利要求1所述的方法,其特征在于,所述惰性载气是一氧化碳。
11.根据权利要求1所述的方法,其特征在于,一种稀释气体被加至所述金属-羰基气体混合物中。
12.根据权利要求11的所述方法,包括向所述液池中输入约90%的稀释气体、约5%金属-羰基气体和约5%一氧化碳。
13.根据权利要求11所述的方法,其特征在于,所述稀释气体是氮气。
14.根据权利要求11所述的方法,包括向所述液池中输入约90%的氮气、约5%羰基镍气体和约5%一氧化碳。
CNB018061540A 2001-01-08 2001-10-05 用于制备基本上含亚微型金属粒子的液体分散体的方法 Expired - Fee Related CN1200761C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/756,253 2001-01-08
US09/756,253 US6506229B2 (en) 2001-01-08 2001-01-08 Two experimental trials using the system 10 demonstrate the efficacy of the present process:

Publications (2)

Publication Number Publication Date
CN1416362A true CN1416362A (zh) 2003-05-07
CN1200761C CN1200761C (zh) 2005-05-11

Family

ID=25042664

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018061540A Expired - Fee Related CN1200761C (zh) 2001-01-08 2001-10-05 用于制备基本上含亚微型金属粒子的液体分散体的方法

Country Status (12)

Country Link
US (1) US6506229B2 (zh)
JP (1) JP3986964B2 (zh)
KR (1) KR100505174B1 (zh)
CN (1) CN1200761C (zh)
AU (1) AU2001295323B8 (zh)
CA (1) CA2401026C (zh)
GB (1) GB2380188B (zh)
NO (1) NO20024199D0 (zh)
NZ (1) NZ520717A (zh)
RU (1) RU2237547C2 (zh)
TW (1) TW501940B (zh)
WO (1) WO2002053315A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746511B2 (en) 2002-07-03 2004-06-08 Inco Limited Decomposition method for producing submicron particles in a liquid bath
US20070283783A1 (en) * 2005-08-10 2007-12-13 Mercuri Robert A Process for the production of nano-scale metal particles
US20070283782A1 (en) * 2005-08-10 2007-12-13 Mercuri Robert A Continuous process for the production of nano-scale metal particles
DE102007045878B4 (de) * 2007-09-25 2009-06-18 Albert-Ludwigs-Universität Freiburg Verfahren zur Herstellung von metallhaltigen Nanopartikeln
DE102009005923A1 (de) * 2009-01-23 2010-07-29 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Ableitung von Leckagegas aus einem Verdampfer
RU2741024C1 (ru) * 2020-07-23 2021-01-22 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Способ получения спиртовой дисперсии наночастиц оксида тантала

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3A (en) * 1836-08-11 Thomas blanchard
US4A (en) * 1836-08-10 Stock
DE241823C (zh) 1910-01-18 1911-12-14
GB191100974A (en) * 1910-04-20 1911-08-10 Farbenfabriken Vormals Friedri Manufacture and Production of New Trisazodyestuffs.
US1138201A (en) 1912-04-24 1915-05-04 Carleton Ellis Hydrogenating unsaturated organic material.
US1759658A (en) 1924-12-15 1930-05-20 Ig Farbenindustrie Ag Manufacture of pure iron
US1759661A (en) 1926-07-06 1930-05-20 Ig Farbenindustrie Ag Finely-divided metals from metal carbonyls
GB974627A (en) 1960-09-13 1964-11-11 California Research Corp Dispersions of ferromagnetic metals
US3228882A (en) 1963-01-04 1966-01-11 Chevron Res Dispersions of ferromagnetic cobalt particles
US3504895A (en) 1964-05-25 1970-04-07 Int Nickel Co Apparatus for the production of metal powders and metal-coated powders
US4252671A (en) 1979-12-04 1981-02-24 Xerox Corporation Preparation of colloidal iron dispersions by the polymer-catalyzed decomposition of iron carbonyl and iron organocarbonyl compounds
US4808216A (en) * 1987-04-25 1989-02-28 Mitsubishi Petrochemical Company Limited Process for producing ultrafine metal powder
US5064464A (en) * 1988-11-10 1991-11-12 Mitsubishi Petrochemical Company Limited Process for producing ultrafine metal particles
US5137652A (en) 1989-12-18 1992-08-11 National Research Institute For Metals Method of manufacturing particle colloid or a magnetic fluid containing metal nitrides
US6033624A (en) 1995-02-15 2000-03-07 The University Of Conneticut Methods for the manufacturing of nanostructured metals, metal carbides, and metal alloys
CA2296964A1 (en) * 2000-01-25 2001-07-25 Chemical Vapour Metal Refining Inc. Cobalt recovery process

Also Published As

Publication number Publication date
AU2001295323B8 (en) 2010-03-25
WO2002053315A3 (en) 2002-09-06
JP3986964B2 (ja) 2007-10-03
US20020088306A1 (en) 2002-07-11
AU2001295323B1 (en) 2004-07-22
WO2002053315A2 (en) 2002-07-11
GB2380188B (en) 2004-11-10
KR20020081689A (ko) 2002-10-30
US6506229B2 (en) 2003-01-14
NZ520717A (en) 2004-03-26
NO20024199L (no) 2002-09-03
RU2237547C2 (ru) 2004-10-10
CA2401026C (en) 2005-03-29
GB2380188A (en) 2003-04-02
TW501940B (en) 2002-09-11
NO20024199D0 (no) 2002-09-03
CN1200761C (zh) 2005-05-11
CA2401026A1 (en) 2002-07-11
GB0218017D0 (en) 2002-09-11
KR100505174B1 (ko) 2005-08-03
JP2004516389A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
US6077329A (en) Selection of size of aluminum particles prepared by solution method
KR100979761B1 (ko) 나노사이즈 백금-티타늄 합금을 제조하는 방법
CN1241211C (zh) 制备液体浴中的亚微颗粒的分解方法
US20080105085A1 (en) Method Of Production Of High Purity Silver Particles
US8609060B1 (en) Method of producing carbon coated nano- and micron-scale particles
CN1200761C (zh) 用于制备基本上含亚微型金属粒子的液体分散体的方法
US20060073275A1 (en) Process and apparatus for producing single-walled carbon nanotube
US10486981B2 (en) Method of producing sub-stoichiometric titanium oxide fine particles
Serp et al. One-step preparation of highly dispersed supported rhodium catalysts by low-temperature organometallic chemical-vapor-deposition
Chao et al. Synthesis of a supported metal catalyst using nanometer-size clusters
WO2006085930A9 (en) Method of preparing aluminum nanorods
CN114131009A (zh) 一种液态金属粉末及其制备方法
JP3943156B2 (ja) エロゾル分解による酸化第一銅粉体の製造方法
JP2007153662A (ja) 金属窒化物ナノ粒子及びその製造方法
JPS6169906A (ja) 超微粒子金属コバルト分散体の製造法
JP5512487B2 (ja) 金微粒子の製造方法
US9492870B2 (en) Aeosol synthesis of faceted aluminum nanocrystals
CN1144967A (zh) 金属磁性液体的制造方法及装置
KR20040040833A (ko) 구형 니켈 금속 미세분말의 제조방법
JP3412189B2 (ja) 窒化鉄粒子の製造方法
KR20060023151A (ko) 기화방법 및 기화기
JPH026837A (ja) 超微粉の製造装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050511

Termination date: 20151005

EXPY Termination of patent right or utility model