CN1354325A - 可变容压缩机 - Google Patents

可变容压缩机 Download PDF

Info

Publication number
CN1354325A
CN1354325A CN01143183A CN01143183A CN1354325A CN 1354325 A CN1354325 A CN 1354325A CN 01143183 A CN01143183 A CN 01143183A CN 01143183 A CN01143183 A CN 01143183A CN 1354325 A CN1354325 A CN 1354325A
Authority
CN
China
Prior art keywords
compressor
separator
passage
refrigerant gas
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01143183A
Other languages
English (en)
Other versions
CN1172087C (zh
Inventor
深沼哲彦
川口真广
粥川浩明
采山博
米良实
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Publication of CN1354325A publication Critical patent/CN1354325A/zh
Application granted granted Critical
Publication of CN1172087C publication Critical patent/CN1172087C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/109Lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

一种可变容压缩机包括一个用于从排放腔将制冷气体供到曲柄腔的供给通道和一个用于从曲柄腔将制冷气体排放到吸入腔的排放通道,一个油分离器连接到一驱动轴上并位于排放通道内。该油分离器与驱动轴一起旋转以便从在排放通道内流动的制冷气体中离心地分离出润滑油。一个油腔形成在压缩机壳体内,用于接收分离出的润滑油。油腔中的压力等于或大于曲柄腔中的压力。润滑油通过一返回通道快速地返回曲柄腔。

Description

可变容压缩机
发明背景
本发明涉及用于例如车辆空调的可变容压缩机,调整曲柄腔中的压力来改变排量。
这种类型的压缩机给制冷气体增加润滑油雾来润滑压缩机的内部。润滑油可以与从压缩机排到外部制冷回路的制冷气体体隔开,如在日本未审查公开专利NO.10-281060中批露的那样。润滑油然后再循环回到压缩机内部,以便再润滑压缩机的内部。
这个结构包括位于排放腔和外部制冷回路之间的油分离器。一油返回通道连接曲柄腔和油分离器。在油分离器从制冷器中分离润滑油后,润滑油通过油返回通道回到曲柄腔。油返回通道还作为将排放腔中的压力引入曲柄腔的供给通道,以便控制压缩机排量。供给通道包括一控制阀,改变它的开口尺寸来调整曲柄箱中的压力。一排放通道连接曲柄腔和吸入腔。曲柄腔中的压力通过排放通道引入吸入腔,以便控制排量。
然而,当润滑油从曲柄腔中排出后到达油分离腔之前必然在排放通道、吸入腔、压缩腔和排放腔中流动。这样延长了润滑油再循环回到曲柄腔的时间。因此,相对小量的润滑油保存在曲柄腔中。
而且,因为整个供给通道作为油返回通道,当润滑油从油分离器流向曲柄腔时,通过控制阀。因此,控制阀的开口尺寸可能影响从油分离器流向曲柄腔的油的量。即例如,如果控制阀完全关闭供给通道,从油分离器流向曲柄腔的油截止。
发明概述
因此,本发明的一个目的是提供一个可快速地从控制腔中回收润滑油以便将该润滑油返回控制腔中的可变容压缩机。
为了达到前述和其它目的,并根据本发明的目的,本发明是一个可变容压缩机用于压缩包含润滑油的制冷气体。该压缩机压缩从吸入腔供到一压缩腔的制冷气体并当驱动轴旋转时把压缩的制冷气体送到一排放腔。压缩机的排量随着位于压缩机壳体内的控制腔中的压力而变化。压缩机具有一个用于从排放腔将制冷气体供到控制腔的供给通道和一个用于从控制腔将制冷气体排放到吸入腔的排放通道。该压缩机包括一分离器,一润滑油腔和一返回通道。该分离器位于排放通道内且和驱动轴一起旋转,因此从在排放通道中流动的制冷气体中离心地分离润滑油。该润滑油腔形成在壳体内且接收分离的润滑油。该润滑油腔中的压力等于或大于控制腔中的压力。该返回通道形成在壳体内且使润滑油从润滑油腔返回控制腔。
本发明的其它方面和优点参照附图从下面的描述中变得清晰,通过例子说明本发明的原理。
附图说明
通过下面参照附图对优化实施例的描述将更好地理解本发明连同它的目的和优点,其中:
图1表示根据本发明的可变容压缩机的横截面图;
图2表示图1压缩机的主要部分的放大图;
图3表示图1压缩机的油分离器的透视图;
图4表示一个变形的压缩机的主要部分的放大的横截面图;
图5表示图4压缩机的油分离器的透视图;
图6表示另一个变形的压缩机的主要部分的放大的横截面图;
图7表示另一个变形的压缩机的主要部分的放大的横截面图;
图8(a)和图8(b)是透视图,每一个表示另一变形的一个油分离器;
图9(a)表示另一变形的驱动轴的一端部的放大的横截面图;
图9(b)表示沿着垂直于驱动轴的轴线方向的图9的驱动轴的端部的横截面图;
图10表示另一变形的油分离器的透视图;
图11(a)和图11(b)是两个视图,每一个表示另一变形的一个第二油分离器。
优化实施例的详细描述
现在将参照图1到图3描述根据本发明的用于车辆空调的活塞型可变容压缩机(此后简称为“压缩机”)的一个实施例。
如图1所示,前壳体11与缸体12的前端相连。后壳体13通过阀板组件14与缸体12的后端相连。前壳体11,缸体12和后壳体13用螺栓(未表示)可靠地固定在一起,以便形成一个压缩机壳体。在图中,左边对应压缩机的前端,右边对应压缩机的后端。
阀板件14包括一主板14a,一吸入阀板14b,一排放阀板14c和一保持板14d。该吸入阀板14b由硬碳带钢制成。该吸入阀板14b固定到该主板14a的前侧上,而该排放阀板14c固定到该主板14a的后侧上。该保持板14d固定到该排放阀板14c的后侧上。阀板组件14在吸入阀板14b的前侧与缸体12相连。
前壳体11和缸体12形成一曲柄腔15,或控制腔。驱动轴16延伸穿过曲柄腔15以便驱动轴16的前端从前壳体11中伸出。前壳体11和缸体12可旋转地支撑驱动轴16。前壳体11通过径向轴承17支撑驱动轴16的前部。在缸体12的大约中部形成一适合的凹槽18。径向轴承19位于该凹槽18中。凹槽18通过径向轴承19支撑驱动轴的后部。轴密封20围绕驱动轴16的前部设置。
动力传送机构29可操作地将驱动轴16的前端连接到车辆发动机30上,或压缩机的外部驱动源上。动力传送机构29可以是一种离合器型(例如电磁离合器),根据外部控制程序可选择地允许或截止动力传送。另外,动力传送机构29可以是不断地传送动力的无离合器型(例如带皮带的皮带轮)。在这个实施例中,动力传送机构29是无离合器型。
缸体12内形成许多气缸孔12a(只表示了一个)并以等间隔角度围绕驱动轴16设置。每一个气缸孔12a可移动地容纳一单头活塞21。每一活塞21封闭气缸孔12a的前口,并且阀板件14封闭每一气缸孔12a的后端。每一个活塞21在圆柱孔12a内形成一压缩腔22且在气缸孔12a内移动,从而改变压缩腔22的容积。
在曲柄腔15内围绕驱动轴16固定地安装一与驱动轴一起旋转的凸盘23或旋转支撑。该凸盘23通过止推轴承24靠着前壳体11的内壁11a。该内壁11a接收由于作用于每一活塞21运动的反作用力而作用在驱动轴16上的负载。所以内壁11a作为限制驱动轴16向前轴向运动或驱动轴16滑动远离阀板组件14的向前运动限制器。
在后壳体13的中部形成一吸入腔31。在后壳体13内部围绕该吸入腔31形成一排放腔32。阀板组件14包括对应于每一压缩腔22的一吸入口33,一个可选择地打开或封闭该吸入口33的吸入阀盖34,一个对应于每一压缩腔22的的排放口35,和一个可选择地打开和封闭该排放口35的排放阀盖36。每一吸入口33将吸入腔31连接到相联的压缩腔22上。每一排放口35将压缩腔22连接到排放腔32上。一外部制冷回路(未表示)位于压缩机的外部内,用来连接吸入腔31和排放腔32。
旋转斜盘25或驱动盘位于曲柄腔15内以便驱动轴16延伸穿过旋转斜盘25上形成的孔。一铰链机构26连接凸盘23和旋转斜盘25。如上所述,驱动轴16支撑凸盘23。因此旋转斜盘25与凸盘23和驱动轴16一起旋转且当沿着驱动轴16轴向滑动时相对于驱动轴16倾斜。凸盘23,旋转斜盘25和铰链机构26形成排量变化机构。
每一个活塞21通过接头27与旋转斜盘25的外周边相连。因此,当驱动轴16旋转,并且旋转斜盘25通过铰链机构26和凸盘23一起旋转时,接头27将旋转斜盘25的旋转转变成每一活塞21的运动。凸盘23,旋转斜盘25,铰链机构26和接头27形成曲柄机构。该曲柄机构使驱动轴16旋转,从而压缩每一压缩腔22内的制冷气体。
当每一活塞21移动时,制冷气体从吸入腔31流入每一压缩腔22且在排放到排放腔32之前在压缩腔22内压缩。只要活塞21移动,这种操作就反复进行。制冷气体从排放腔32通过一排放通道流向外部制冷回路。
排放通道45延伸穿过前壳体11,缸体12,和后壳体13,从而将曲柄腔15连接到吸入腔31上。供给通道37延伸穿过缸体12和后壳体13,从而连接曲柄腔15和排放腔32。一控制阀38或一电磁阀形成在供给通道37内。该控制阀38根据供给螺线管38a的外力操作该阀体38b,从而调整供给通道37的开口尺寸。即该控制阀38用作一限流器,或更具体地用作一可变限流器。
更具体地,一控制装置(未表示)调整控制阀38的开口尺寸,从而控制供给通道37内的高压制冷气体的量和排放通道45内的制冷气体的量之间的差值。这决定曲柄腔15中的压力并因此改变曲柄腔15中的压力和每一压缩腔22中的压力之间的差值,该差值作用于相关活塞21的相对侧上。所以旋转斜盘25相对于驱动轴16倾斜的角度改变,从而改变每一活塞21的冲程或压缩机的排量。
如果供给通道37的开口尺寸降低,例如,曲柄腔15中的压力降低。这样减少了曲柄腔15中的压力和每一压缩腔22内的压力之间的差值。因此旋转斜盘25倾斜,从而增加它的倾斜角度。每一活塞21的冲程因此增加,从而提高压缩机的排量。相反,如果供给通道37的开口尺寸增加,则曲柄腔中的压力升高。这样增加了曲柄腔15中的压力和每一压缩腔22中压力之间的差值。旋转斜盘25因此倾斜,从而降低它的倾斜角度。每一活塞21的冲程因此降低,从而减少压缩机的排量。
一环形、最小倾斜限制器28围绕驱动轴16安装且位于旋转斜盘25和缸体12之间。如在图1中用双点划线表示,旋转斜盘25以最小倾斜角度倾斜,紧靠最小倾斜限制器28。而且,如图中实线所示,当直接靠在凸盘23上时,旋转斜盘25以一最大角度倾斜。
如图1到图3所示,凹槽18的大致后半部分用作一个容纳一油分离器39的润滑油腔40。径向轴承19和驱动轴16封闭该油腔40的前端。阀板组件14封闭该油腔40的后端。在阀板组件14中形成一通道41,用于连接油腔40和吸入腔31。通道41基本上沿着驱动轴16的轴线设置。一适合的限流器形成在通道41的流通区域。
在控制阀38和曲柄腔15之间的部分供给通道37位于油腔40的下面,如图1所示。一连通通道40a将该部分供给通道37连接到该油腔40的后部的最低的部分(对应于缸体12的后端)。该供给通道37的连通区域与凹槽18的区域相比充分地降低。连通通道40a和从连通通道40a向着曲柄腔15的下游的供给通道37部分形成一油返回通道。
一连通孔42延伸穿过驱动轴16连接曲柄腔15和油腔40。该连通孔42的一进口42a在驱动轴16的从径向轴承17向后的位置处对着曲柄腔15敞开。该连通孔42的出口42b在驱动轴16的后端对着油腔40敞开。
驱动轴16在它的后端具有一小直径部分。油分离器39固定地压配在小直径部分上。油分离器39的近端固定在驱动轴16上。油分离器39基本上呈圆柱形且具有从油分离器的近端向着远端(后端)倾斜的内侧,以便增加油分离器39的内部直径。故油分离器39的最大内部直径处其远端。
如图3所示,凸缘39a形成在油分离器39的远端。凸缘39a具有许多(在实施例中为4个)凹槽39b,每一个作为一个连通口。当油分离器39的远端靠在阀板组件14上时,每一凹槽39b连接油分离器39的内部和外部。凹槽39b朝者阀板组件14敞开。
油分离器39例如由SPC(冷轧钢)板或SUC304(不锈钢)压制而成。板厚是一个毫米或更小。
当油分离器39与驱动轴16装配时,凸缘39a靠近连通通道40a。连通孔42,油分离器39的内部,凹槽18(油腔40)和通道41形成排放通道45。
当油分离器39的凸缘39a靠在吸收阀板14b上时,驱动轴16停止进一步向阀板组件14滑动。即吸收阀板14b的前侧作为限制驱动轴16的向后轴向运动的轴向运动限制器或驱动轴16向阀板组件14滑动的限制器。
如果驱动轴16向着阀板组件14滑动且分离器39的凸缘39a靠在阀板组件14上,则阀板组件14封闭油分离器39的远端。然而,在这种状态下,凹槽39b连接油分离器39的内部和外部。换句话说,每一凹槽39b作为一个油从油分离器39向外部排放的排放口。
当凸盘23通过止推轴承24靠在内侧11a上,从而停止驱动轴16继续向前滑动时,在阀板组件14和油分离器39之间形成间隔。这个间隔比当活塞21位于它的上死点时每一活塞21和阀板组件14之间的最小间隔小。
当制冷气体从曲柄腔15经排放通道45流至吸入腔31时,制冷气体流过油分离器39。油分离器39具有圆柱形且包括形成部分排放通道45的内部通道。在油分离器39的内部通道中,在油分离器39内侧附近的制冷气体和油分离器39一起旋转。这样产生离心力来从制冷气体中分离润滑油雾。
分离的润滑油粘附在油分离器39内侧。然而由于油分离器39旋转产生的离心力和油分离器39内制冷气体的流动作用促使粘附的润滑油沿油分离器39内侧向它的远端流动。这样润滑油通过油分离器39的远端和阀板组件14之间的间隔和凹槽39b,从油分离器39中排放。然后润滑油收集在油腔40(围绕油分离器39的空间)中。由于制冷气体的旋转,在油分离器39内侧附近的压力(尤其在油分离器39的远端附近)增加。
如上所述,当通过油分离器39时,一些制冷气体与油分离器一起旋转。制冷气体的旋转,尤其在凸缘39a附近,增加了油腔40内围绕油分离器39的空间内的压力,或尤其是通道40a附近的压力Pc1(见图2)。所以这些压力略微比曲柄腔15中的压力高。换句话说,油分离器39用作一旋转件。
控制阀38限制制冷气体在通道40a附近的部分供给通道37内的流动。而且,在供给通道37内制冷气体的流速比曲柄腔15中的流速快。因此,通道40a附近的部分供给通道37内的压力Pc2(见图2)比曲柄腔15中的压力低。
压力Pc1和Pc2之间的差值防止润滑油从供给通道37经通道40a流向油腔40。而且这个压力差有效地将润滑油从油腔40经通道40a送到供给通道37。一旦润滑油到达供给通道37,油和制冷气体一起返回曲柄腔15。因此足量的润滑油保存在曲柄腔15中,以便较好地润滑曲柄腔15中的元件。而且减小的润滑油的量从压缩机排放到外部制冷回路中。这样防止了由于润滑油粘附到热交换器的内侧妨碍热交换器的操作。因此空调具有提高的冷却效率。
在油分离器39从制冷气体中分离润滑油后,一些制冷气体从油分离器39经通道41流向吸入腔31。然后制冷气体从吸入腔31通过压缩腔22和排放腔32排放到外部制冷回路中。
由于制冷气体的压缩作用于每一活塞21的负载通过接头27、旋转斜盘25、铰这机构26、凸盘23和止推轴承24由前壳体11的内侧11a接收。换句话说,通过凸盘23和止推轴承24,前壳体11的内侧11a支撑一个包括驱动轴16、旋转斜盘25、凸盘23和活塞21的连接体。这样限制了连接体在驱动轴16的轴线方向的向前运动。
如果车辆的加速踏板(未表示)的踩低超过预定值,例如,以致控制阀38的控制装置决定车辆加速时,控制装置使压缩机的排量最小。如果这个过程或排量最小的过程在排量处于最大时开始值,则控制阀38必须快速地从完全封闭状态转到完全打开状态。这样,高压制冷气体快速地从排放腔32流向曲柄腔15。在这种状态下,排放通道45不能从曲柄腔将足量的制冷气体排放到吸入腔31。因此曲柄腔15中的压力快速地增加。
在这种情况下,曲柄腔15中的压力可能过高,并且旋转斜盘25快速地倾斜来降低它的倾斜角。因此,当旋转斜盘25到达它的最小倾斜角时(如图1中双点划线所示),旋转盘25通过剩余力压靠在最小倾斜限制器28上。而且促使凸盘23由于剩余力通过铰链装置向后。所以驱动轴16向着阀板组件14移动。然而,油分离器39的凸缘39a和阀板组件14之间的接触使驱动轴16停止进一步向后移动。
如上所述,当驱动轴16的向前运动受限时,阀板组件14和油分离器39之间的间隔小于当活塞位于它的上死点时每一活塞21和阀板组件14之间的间隔。所以当驱动轴16的向后运动受限时,活塞21运动不会碰上阀板组件14。因此活塞21和阀板组件14保持不受损坏。
举例说明的实施例具有下述优点。
(1)油分离器39位于排放通道45内,从曲柄腔15流向吸入腔31的制冷气体中分离润滑油。因此与已有技术对比,润滑油以相对短的时间再循环回到曲柄腔15。而且,与已有技术相比油分离器39相对接近曲柄腔15。这缩短了润滑油从油分离器39流向曲柄腔15的路径。
(2)如上所述,供给通道37包括控制阀38或限流器。在曲柄腔15和控制阀38之间的部分供给通道37内的压力保持等于或低于曲柄腔15中的压力。而且,通道40a将油腔40连接到曲柄腔15和控制阀38之间的部分供给通道37上。保持油腔40中的压力等于或高于曲柄腔15中的压力。这样润滑油有效率地从油腔40通过通道40a流向供给通道37。此外,因为供给通道37的一部分用作油返回通道,与具有单独的油返回通道的压缩机相比该压缩机的结构变得相对简单。
而且,因为控制阀38用作供给通道37的限流器,不需要在供给通道37内形成一个单独的限流器。这简化了压缩机的结构。此外,如上所述,控制阀38的下游部分供给通道37形成部分油返回通道。这样,控制阀38的开口尺寸不会对从油腔40返回曲柄腔的润滑油的量产生很大的影响。换句话说,如果控制阀38完全封闭供给通道37,从油腔40返回到曲柄腔15的油返回通道保持在开放状态。润滑油从油腔40返回到曲柄腔15中。
(3)油腔40接收旋转件或油分离器39。当油分离器39与驱动轴16一起旋转时,油腔40中的压力增加。这防止润滑油从通道40a返回到油腔40。这样润滑油很容易地从油腔40通过油返回通道流向曲柄腔15。而且,因为油分离器39用作旋转件,与旋转件独立于油分离器39的情况形成相比较,压缩机的结构变得相对简单。此外,因为油腔40容纳油分离器39,压缩机具有相对简单的结构,不象那种压缩机那样,即在该压缩机中,一单独腔容纳油分离器39并且一单独的通道将这个腔连接到该油腔40上。
(4)如上所述,油分离器39通过离心力从制冷气体中分离润滑油。因为油分离器39的内部形成部分排放通道45,制冷气体顺利地与油分离器39一起旋转。这样润滑油高效率地与制冷气体分离。
(5)排放通道的一部分(连通孔42)形成在驱动轴16的内部。所以制冷气体从曲柄腔15通过驱动轴16的连通孔42流向油分离器39。因此很容易地形成了把制冷气体从曲柄腔15引入油分离器39的结构。
(6)油分离器39的内侧从近端,上游端朝远端,油分离器39的下游端倾斜,以便增加它的直径。因此粘附在油分离器39的内侧的润滑油因油分离器39的旋转产生的离心力的作用,顺利地流向油分离器39的远端。因此,润滑油通过油分离器39的远端开口和凹槽39b从油分离器39中顺利地排放。
(7)用于限定驱动轴16的向后运动的结构不需要一定是实施例中描述的那种。作为一个比较的例子,一个受压弹簧可以限制驱动轴16的向后运动。更详细地,该受压弹簧促使驱动轴16相对于前壳体11,缸体12和后壳体13向前,以便限制驱动轴16向后运动。然而在这个对比的例子中,接收受压弹簧的力的止推轴承24的耐用度可能受到妨碍,且该止推轴承24可能引起压缩机增加动力损失。并且,与受压弹簧相关的结构变得复杂。相反,在所述的实施例中,在油分离器39和阀板组件14之间的接触限制了驱动轴16的向后运动。这个结构解决了由受压弹簧引起的问题。
(8)凹槽39b形成在油分离器39的远端。当油分离器39靠在阀板组件14上时,槽39连接油分离器39的内部和外部。因此,即使阀板组件14封闭了油分离器39的远端,润滑油也能通过槽39b从油分离器39中排放到外部。
(9)容纳驱动轴16的后端部分的空间(适合的凹槽)也容纳油分离器39。这样,不管油分离器39如何,都使压缩机最小化了。
(10)油分离器39用压制形成。与油分离器39用切割方法形成相比,这样做降低了成本。
(11)油分离器39容纳在油腔40中以便油分离器39的凸缘39a位于通道40a附近。这样当油分离器39旋转时,油腔40内通道40a附近的压力Pc1容易地增加。这样有效地通过通道从油腔40引导润滑油到供给通道37并防止润滑油从供给通道37返回到油腔40。
(12)供给通道37的一部分位于油腔40的下面,如图1所示。这部分通过连通通道40a与油腔40的最下部相连。这样,与通道40a的开向油腔40的开口位于比油腔40的最低部分高的情况相比,润滑油由于重力容易从油腔40流向供给通道37。
(13)曲柄腔15容纳曲柄机构,使驱动轴16旋转来压缩压缩腔22内的制冷气体。而且曲柄腔15用作控制腔,调整它的压力来控制排量变化机构。因此曲柄机构充分地被润滑。
(14)控制阀38位于供给通道内,以便控制曲柄腔15中的压力,或压缩机的排量。这种控制型式称为“供给控制”且以制冷气体的压力相对高的供给通道37的开口尺寸为依据。因此,与根据排放通道45的开口尺寸的“排放控制”相比,供给控制对于曲柄腔15中的压力或压缩机排量变化具有相对快的反应。
(15)油分离器39通过凸缘39a靠在阀板组件14上。这样增加了油分离器39相对于阀板组件14的接触面积。从而抑制了阀板组件14和油分离器39的磨损。
(16)阀板组件14(吸收阀板14b)用作驱动轴16向后运动的限制器。这样简化了限制驱动轴16运动的结构。
(17)油分离器39和吸收阀板14b之间的接触限制了驱动轴16的向后运动。吸收阀板14b的材料与主板14a相比具有增强的抗磨损性能。即与油分离器39靠在主板14a上作为向后运动的限制器相比,所述实施例中的向后运动的限制器具有提高的抗磨损性能。
(18)动力传送机构29是无离合器型的,且只要发动机运转就不断地驱动压缩机。因此,与由离合器型动力传送机构驱动的压缩机相比较,所述实施例的曲柄腔15的元件充分地被润滑。所以本发明对于带有无离合器型动力传送机构29的压缩机尤其有效。
下面在不偏离本发明的范围和精神的情况下对本发明进行改变。
润滑油粘附的油分离器39的内侧直径不必要一定从油分离器39的近端向远端增加。例如,如图4和5所示,油分离器50具有从油分离器50的近端到远端相同直径的内侧。
如图4和5所示,油分离器50在它的远端具有凸缘50a且在凸缘50a上形成有许多象上述实施例的油分离器39那样的凹槽50b。凹槽50b连接油分离器50的内部和外部。而且油腔40在油腔40的后端具有环形空间51。环形空间51从油腔40的其余的空间径向地向外设置。环形空间51接收凸缘50a和每一凹槽50b的一部分。通道40a连接环形空间51和供给通道37。油腔50的内侧直径比油腔39的内侧的最大直径大。凸缘50a的外径比凸缘39a的外径大。
因此,凸缘50a的外周边比凸缘39a更靠近供给通道37设置。所以,在润滑油从油分离器50排出后,润滑油有效地从围绕油分离器50的空间(油腔40的环形空间51)流向供给通道37。而且,因为油分离器50的内侧直径比油分离器39大,因此当油分离器50旋转时,油分离器50的圆周速度变得相对高。进而高效率地从油分离器50内的制冷气体中分离润滑油并增加油分离器50内侧附近的压力和油腔40内(围绕油分离器50的空间)的压力。
如图6所示,一个固定的限流器52或一个另外的限流器位于控制阀38和曲柄腔15之间的部分供给通道上。通道40a连接固定限流器52和油腔40。所以固定限流器52用作所谓的文丘利管的节流喉部。即在固定限流器52处制冷气体的流速变得相对高,以便降低在固定限流器52处的制冷气体的压力。这样有效地把润滑油从油腔40引入供给通道37。
根据本发明的油分离器不必一定是圆柱形的,可以是如图7所示的形状。更详细地,转子53围绕驱动轴16的后端安装。油分离腔40包括一个在它后部设置的一环形空间54。环形空间54从油腔40的剩余空间径向向外设置。环形空间54容纳转子53。转子53包括许多围绕驱动轴16的轴线等角度间隔设置的凸片53a。凸片53a形成部分的转子53直径比油腔40的前部直径大。
因此,当转子53a与驱动轴16一起旋转时,润滑油雾由于离心泵作用从制冷气体中分离。即转子53用作油分离器。而且,转子53的旋转增加了油腔40内的压力。这样有效地将润滑油从油腔40通过通道40a引入供给通道37。
凸片可以围绕油分离器39形成。更详细地,如图8(a)所示,许多凸片55围绕油分离器39形成,围绕油分离器39的轴线等角度间距地设置。当油分离器39旋转时,凸片55进一步增加了油腔40内的压力。因此,润滑油更加有效地从油腔40通过通道40a流向供给通道37。
另外,凸片可以设置在油分离器内部。更详细地,如图8(b)所示,许多凸片56从油分离器39的内部伸出,围绕油分离器39的轴线等角度间距地设置。在这种情况下,当油分离器39旋转时,凸片56与油分离器39一起有效地使制冷气体旋转。这样通过油分离器39中的离心力从制冷气体中有效地分离润滑油。并且,凸片56的旋转增加了油分离器39内部的压力,以便更加可靠地防止润滑油从油分离器39的外部返回内部。
还有,凸片可以设置在驱动轴16的连通孔42中。更详细地,如图9所示,圆柱筒58在出口42b附近固定地安装在通孔42的一部分内。许多凸片57从圆柱筒58的内部伸出,围绕圆柱筒58的轴线等角度间隔地设置。各个孔延伸穿过圆柱筒58,以便使连接圆柱筒58的内部与外部相连接。通孔59形成在驱动轴16上。圆柱筒58上的孔和通孔59连接圆柱筒58的内部和围绕驱动轴16的空间。在此结构中,在圆柱筒58内通过离心力从制冷气体中分离润滑油后,润滑油通过圆柱筒58上的孔和通孔59排放到围绕驱动轴16的空间中。
如图10所示,在油分离器39的圆周壁上形成许多通孔60,以便连接油分离器39的内部和外部。更详细地,每一通孔60如下形成。首先,在油分离器39的圆周壁上形成许多拱形切口。每一拱形切口形成一盘状切片61。然后将每一切片61向油分离器39的内部弯折。这样形成油分离器39的圆周壁上的通孔60。每一切片61形成一小凸片。因为切片61是弯的,因此当油分离器39旋转时,制冷气体冲击切片61的表面。
当油分离器39旋转时,通孔60和切片61在油分离器39的内侧附近有效地形成制冷气体流。润滑油通过离心力有效地从制冷气体中分离。并且油分离器39中的压力有效地增加,且可靠地防止润滑油从油分离器39的外部返回到内部。
如上所述,油分离器39通过驱动轴16的旋转从制冷气体中分离润滑油。除了油分离器39,压缩机还可以使用与驱动轴16分开操作的一第二油分离器71。更详细地,图11(a)和11(b)的结构可以附加到所述实施例的压缩机中。
如图11(a)所示,在后壳体13上形成一容纳腔72。在容纳腔72内固定地安装一分隔物73以便形成油腔74。油腔74形成连接排放腔72和外部制冷回路的排放通道的一部分。在分隔件73的中间形成一出口通道73a以便连接油腔74和外部制冷回路。且供给通道37的高压侧与油腔74连接。
当制冷气体从排放腔32流到外部制冷回路时通过油腔74。如图11(b)的箭头所示,制冷气体沿着油腔74的圆柱形内侧74a旋转。即油腔74用作使制冷气体旋转的旋转腔。因此润滑油通过离心力与制冷气体分离。此后,制冷气体通过分隔件73的出口通道73a排放到外部制冷回路。另一方面,润滑油与用于控制压缩机排量的高压制冷气体一起通过供给通道37从油腔74流向曲柄腔15。
如上所述,第二油分离器71使制冷气体旋转,与驱动轴16的旋转分开且由于离心力从制冷气体中分离润滑油。因此即使当驱动轴16旋转相对较慢时,第二油分离器71也能较好地从制冷气体中分离润滑油。即第二油分离器71补偿了图1的当驱动轴16以低速旋转时油分离器39的低油分离效果。因此不管驱动轴16的旋转速度如何,曲柄腔15都能被充分地润滑。
第二油分离器71并不限定为由离心力操作的图11所示的类型。即第二油分离器71可以通过将润滑油和制冷气体碰撞在一个目标上来从制冷气体中分离润滑油,或者是惯性分离型的。另外,第二分离器71的形状可以是如图1所示的油分离器并由独立的驱动源驱动。
在所述的实施例中,油腔40容纳油分离器39。然而与油腔40分离的容纳腔也可以容纳油分离器39。在这种情况下,油分离器39在容纳腔中从制冷气体中分离润滑油。然后将润滑油由一个连通通道从容纳腔引入油腔40。
在所述例子中,通道40a可以省去。如果这样,与供给通道独立的油返回通道将润滑油从油腔40返回曲柄腔15。例如,可以扩大径向轴承19的各相邻辊针之间的空间来形成油返回通道。这样油通过这个扩大的空间从油腔40流向曲柄腔15。
在所述的例子中,包括入口42a和出口42b的连通孔42可以省去。如果这样,油腔40以与所述例子不同的方式和曲柄腔相连。例如,可以扩大径向轴承19的各相邻辊针之间的空间来形成连接油腔40和曲柄腔15的连通通道。换句话说,径向轴承19的扩大空间形成部分排放通道45。另外,连接油腔40和曲柄腔15的连通通道可以形成在缸体12内。在这种情况下,连通通道形成部分排放通道。
更详细地,在前述例子中,制冷气体在油腔40中从曲柄腔15流向围绕油分离器39的空间。因为油分离器39在油腔40内旋转,制冷气体在该空间内旋转。因此润滑油从制冷气体中分离。此后,制冷气体通过油分离器39和阀板组件14之间的间隙和槽39b流到通道41中。
另外,通道41可以从凸缘39a的外圆周径向向外延伸穿过阀板组件14。在这种情况下,当润滑油在油腔40内围绕油分离器39的空间中与制冷气体分离后,制冷气体不通过油分离器39的内部流入吸入腔31。
驱动轴16的后端可以象油分离器39那样制成圆柱体。在这种情况下,驱动轴16的后端用作油分离器。
油分离器39的远端不必一定靠近通道40a。
一连通通道连接排放腔32和油腔40。此时,高压制冷气体从排放腔32流入油腔40。因此油腔40内的压力变得比曲柄腔15内的压力高。
在所述实施例中,油分离器39由钢板压制而成。然而油分离器也可通过切割形成(例如用厚壁的圆柱体)。
在所述实施例中,控制阀38位于供给通道37中,用于控制从排放腔32流入曲柄腔15的制冷气体的量。然而控制阀也可以位于排放通道45中,用于控制从曲柄腔15流向吸入腔31的制冷气体的量。如果这样,在连接到连通通道40a上的部分供给通道37和排放腔32之间设置一个固定的限流器。
整个油分离器39,包括围绕驱动轴16安装的部分,可以制成直管形的。即油分离器39的内径从近端到远端相同。
油分离器39不必一定设有槽39b。更详细地,因为油分离器39的远端不总是与阀板组件14接触,即使油分离器没有槽39b,润滑油仍从油分离器的内部流向外部。
油分离器39不必一定包括凸缘39a。
油分离器39、50可以制成矩形平行管形的。
在油腔40内旋转的凸片可直接固定在驱动轴16上。换句话说,旋转件可以与油分离器39、50分开设置。
驱动轴16的运动可以由除了油分离器39以外的元件限制。例如,一个受压弹簧能促使驱动轴16轴向向前。
驱动轴16的向后运动可以由油分离器39和除了阀板组件14以外的部分之间的接触来限制。即向后运动限制器可以位于油腔40内,处于油分离器39和阀板组件14之间的位置。另外,部分缸体12可以伸入油腔40以便油分离器39直接靠在此凸起上。
油分离器39可以靠在主板14a上,代替吸入阀板14b来限制驱动轴16的向后运动。
在油分离器39和吸入阀盘14b的表面上可以做抗磨损喷涂。这样抑制了油分离器39和吸入阀板14b的磨损。
本发明可以应用于摆动型可变容压缩机。
虽然在所述实施例中本发明用于活塞型压缩机,但本发明也可用于旋转型可变容压缩机,例如如日本未审查专利公布No.11-324930中描述的蜗卷压缩机。
提出的例子和各实施例用于说明本发明而不是限制本发明,本发明不限定于这里所给的细节,而是可以在后附的各权利要求的范围内和等同物内进行改进。

Claims (20)

1.一种用于压缩包含润滑油的制冷气体的可变容压缩机,其中压缩机将从一吸入腔供给的制冷气体压缩到一压缩腔并当一驱动轴旋转时将压缩的制冷气体输送到一排放腔,其中该压缩机的排量随着位于压缩机壳体内的一控制腔内的压力进行变化,并且该压缩机具有一个用于从排放腔将制冷气体供到控制腔的供给通道和一个用于从控制腔将制冷气体排放到吸入腔的排放通道,该压缩机的特征在于:
一个位于排放通道中的分离器,其中该分离器与驱动轴一起旋转以便从在排放通道中流动的制冷气体中离心地分离润滑油;
一个形成在壳体内的润滑腔,其中该润滑腔接收分离的润滑油且润滑腔中的压力等于或大于控制腔中的压力;和
一个形成在壳体内的返回通道,其中该返回通道将润滑油从润滑腔返回到控制腔。
2.如权利要求1所述的压缩机,其特征在于供给通道内设置一限流器,一连通通道形成在壳体内且连接润滑腔和限流器的供给通道下游部分,并且连通通道和供给通道下游部分用作返回通道。
3.如权利要求2所述的压缩机,其特征在于一控制阀位于供给通道内且用作限流阀,其中该控制阀调整供给通道的开口尺寸,从而控制控制腔的压力。
4.如权利要求2所述的压缩机,其特征在于所述限流器为一第一限流器,其中一第二限流器位于该第一限流器的供给通道下游部分,且连通通道连接润滑腔和第二限流器。
5.如权利要求1所述的压缩机,其特征在于一旋转件位于润滑腔中,其中该旋转件与驱动轴一起设置,以便增加润滑腔内的压力。
6.如权利要求5所述的压缩机,其特征在于分离器用作旋转件。
7.如权利要求6所述的压缩机,其特征在于分离器包括促使润滑腔内压力增加的凸片。
8.如权利要求1-6中任一项所述的压缩机,其特征在于分离器具有圆柱形,且包括形成部分排放通道的一个内部通道,其中当制冷气体在排放通道中流动时,流过这个内部通道。
9.如权利要求8所述的压缩机,其特征在于排放通道的一部分形成在驱动轴内,其中制冷气体通过驱动轴内的部分排放通道从控制腔流向分离器的内部通道。
10.如权利要求9所述的压缩机,其特征在于分离器包括连接到驱动轴一端的第一端和一个与第一端相对的第二端,其中该第二端靠在壳体上,从而使驱动轴的进一步轴向运动停止,其中,当第二端靠在壳体上时,在第二端设有一个用于连接内部通道和分离器外部的连通口。
11.如权利要求10所述的压缩机,其特征在于润滑腔围绕分离器形成,其中分离器从通过内部通道的制冷气体中分离润滑油并通过连通口将分离出的润滑油输送到润滑腔。
12.如权利要求8所述的压缩机,其特征在于内部通道的径向尺寸相对于排放通道通常从上游端向下游端逐渐增加。
13.如权利要求8所述的压缩机,其特征在于分离器包括设置在内部通道内的一个凸片。
14.如权利要求8所述的压缩机,其特征在于分离器位于润滑腔内,且一个凸片从分离器的外侧伸出。
15.如权利要求1-7中任一项所述的压缩机,其特征在于分离器与驱动轴相连并与其一起旋转,且分离器靠在壳体上,以便使驱动轴进一步轴向运动停止。
16.如权利要求1-7中任一项所述的压缩机,其特征在于一曲柄机构位于控制腔内且使驱动轴旋转,以便压缩压缩腔内的制冷气体。
17.如权利要求1-7中的任一项所述的压缩机,其特征在于分离器是一个第一分离器,且该压缩机还包括一个从制冷气体中分离润滑油与驱动轴的旋转无关的第二分离器。
18.如权利要求17所述的压缩机,其特征在于一个与排放腔相连的排放线路用于从排放腔中排放制冷气体,且第二分离器位于该排放线路内。
19.如权利要求18所述的压缩机,其特征在于供给通道通过第二分离器连接到排放腔上,第二分离器从制冷气体中分离润滑油后润滑油通过供给通道流到控制腔中。
20.如权利要求17所述的压缩机,其特征在于第二分离器包括一个使制冷气体限制的旋转腔,以便从制冷气体中离心地分离出润滑油。
CNB011431830A 2000-11-17 2001-11-17 可变容压缩机 Expired - Fee Related CN1172087C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000351182 2000-11-17
JP351182/2000 2000-11-17
JP351182/00 2000-11-17
JP66857/2001 2001-03-09
JP66857/01 2001-03-09
JP2001066857A JP4399994B2 (ja) 2000-11-17 2001-03-09 容量可変型圧縮機

Publications (2)

Publication Number Publication Date
CN1354325A true CN1354325A (zh) 2002-06-19
CN1172087C CN1172087C (zh) 2004-10-20

Family

ID=26604181

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011431830A Expired - Fee Related CN1172087C (zh) 2000-11-17 2001-11-17 可变容压缩机

Country Status (7)

Country Link
US (1) US6558133B2 (zh)
EP (1) EP1207301B1 (zh)
JP (1) JP4399994B2 (zh)
KR (1) KR100485424B1 (zh)
CN (1) CN1172087C (zh)
BR (1) BR0106758A (zh)
DE (1) DE60118864D1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306164C (zh) * 2003-02-04 2007-03-21 株式会社丰田自动织机 带有润滑结构的压缩机
CN101351644B (zh) * 2006-06-02 2010-11-03 株式会社丰田自动织机 压缩机
CN101479476B (zh) * 2006-06-30 2013-04-03 (学)斗源学院 可变排量压缩机的油分离结构
CN105531477A (zh) * 2013-09-11 2016-04-27 株式会社丰田自动织机 容量可变型斜板式压缩机
CN113272554A (zh) * 2019-01-29 2021-08-17 三电汽车部件株式会社 压缩机
CN113272555A (zh) * 2019-02-06 2021-08-17 三电汽车部件株式会社 压缩机

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385516B2 (ja) * 2000-11-07 2009-12-16 株式会社豊田自動織機 ピストン式圧縮機
JP4078229B2 (ja) * 2002-03-20 2008-04-23 カルソニックカンセイ株式会社 圧縮機
US6732541B2 (en) * 2002-05-03 2004-05-11 Delphi Technologies, Inc. Electrically operated compressor capacity control system with integral pressure sensors
JP2004137980A (ja) * 2002-10-18 2004-05-13 Tgk Co Ltd 可変容量圧縮機用容量制御弁
US7014428B2 (en) * 2002-12-23 2006-03-21 Visteon Global Technologies, Inc. Controls for variable displacement compressor
JP3855949B2 (ja) * 2003-03-18 2006-12-13 株式会社豊田自動織機 両頭ピストン式圧縮機
JP4211477B2 (ja) * 2003-05-08 2009-01-21 株式会社豊田自動織機 冷媒圧縮機のオイル分離構造
JP2005016454A (ja) * 2003-06-27 2005-01-20 Toyota Industries Corp ガス流路を備えた機器における脈動低減構造
JP2005194932A (ja) * 2004-01-07 2005-07-21 Zexel Valeo Climate Control Corp 可変容量型圧縮機
JP2006022785A (ja) * 2004-07-09 2006-01-26 Toyota Industries Corp 容量可変型圧縮機
JP2006132423A (ja) * 2004-11-05 2006-05-25 Calsonic Kansei Corp 圧縮機
JP4493480B2 (ja) * 2004-11-26 2010-06-30 サンデン株式会社 可変容量斜板式圧縮機の容量制御弁
JP2006291751A (ja) * 2005-04-06 2006-10-26 Toyota Industries Corp ピストン式圧縮機
JP2007023900A (ja) * 2005-07-15 2007-02-01 Toyota Industries Corp 可変容量型圧縮機
JP4826948B2 (ja) * 2005-10-06 2011-11-30 株式会社ヴァレオジャパン ピストン型圧縮機
JP2007162561A (ja) * 2005-12-13 2007-06-28 Toyota Industries Corp 冷媒圧縮機
DE102006014641A1 (de) * 2006-03-29 2007-11-08 Valeo Compressor Europe Gmbh Verdichter
JP2008038856A (ja) * 2006-08-10 2008-02-21 Toyota Industries Corp 可変容量型圧縮機用制御弁
US7520210B2 (en) * 2006-09-27 2009-04-21 Visteon Global Technologies, Inc. Oil separator for a fluid displacement apparatus
KR101069064B1 (ko) 2007-06-07 2011-09-29 한라공조주식회사 압축기
KR101037176B1 (ko) * 2007-06-07 2011-05-26 한라공조주식회사 압축기
US7708537B2 (en) * 2008-01-07 2010-05-04 Visteon Global Technologies, Inc. Fluid separator for a compressor
EP2088318A1 (en) * 2008-02-05 2009-08-12 Kabushiki Kaisha Toyota Jidoshokki Swash plate compressor
JP4924464B2 (ja) 2008-02-05 2012-04-25 株式会社豊田自動織機 斜板式圧縮機
CN101503994A (zh) * 2008-02-05 2009-08-12 株式会社丰田自动织机 旋转斜盘式压缩机
JP2009209910A (ja) * 2008-03-06 2009-09-17 Toyota Industries Corp 斜板式圧縮機
US8348632B2 (en) * 2009-11-23 2013-01-08 Denso International America, Inc. Variable displacement compressor shaft oil separator
DE102009056518A1 (de) * 2009-12-02 2011-06-09 Bock Kältemaschinen GmbH Verdichter
KR101654371B1 (ko) * 2009-12-22 2016-09-05 한온시스템 주식회사 가변용량형 사판식 압축기
JP5341827B2 (ja) * 2010-06-21 2013-11-13 サンデン株式会社 可変容量圧縮機
US9163620B2 (en) 2011-02-04 2015-10-20 Halla Visteon Climate Control Corporation Oil management system for a compressor
JP5741554B2 (ja) 2012-11-02 2015-07-01 株式会社豊田自動織機 ピストン型圧縮機
JP6097051B2 (ja) * 2012-11-07 2017-03-15 サンデンホールディングス株式会社 圧縮機
JP6005483B2 (ja) * 2012-11-08 2016-10-12 サンデンホールディングス株式会社 可変容量圧縮機
JP2014095320A (ja) * 2012-11-08 2014-05-22 Sanden Corp 圧縮機
JP6201575B2 (ja) 2013-09-27 2017-09-27 株式会社豊田自動織機 容量可変型斜板式圧縮機
JP6136906B2 (ja) * 2013-12-11 2017-05-31 株式会社豊田自動織機 容量可変型斜板式圧縮機
WO2016031985A1 (ja) * 2014-08-29 2016-03-03 ナブテスコオートモーティブ 株式会社 オイルセパレータ及び圧縮空気乾燥システム
BE1025569B1 (nl) * 2017-09-21 2019-04-17 Atlas Copco Airpower Naamloze Vennootschap Cilindrisch symmetrische volumetrische machine
KR102138565B1 (ko) * 2017-09-22 2020-07-28 한온시스템 주식회사 사판식 압축기
JP2021032210A (ja) * 2019-08-29 2021-03-01 サンデン・オートモーティブコンポーネント株式会社 圧縮機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123280A (ja) * 1992-10-08 1994-05-06 Toyota Autom Loom Works Ltd 往復動型圧縮機
JP3085514B2 (ja) * 1995-06-08 2000-09-11 株式会社豊田自動織機製作所 圧縮機
JPH09242667A (ja) * 1996-03-06 1997-09-16 Toyota Autom Loom Works Ltd 往復動型圧縮機
JPH1054347A (ja) * 1996-08-09 1998-02-24 Toyota Autom Loom Works Ltd ピストン及びそれを使用した圧縮機
JPH10281060A (ja) 1996-12-10 1998-10-20 Toyota Autom Loom Works Ltd 可変容量圧縮機
JPH11182431A (ja) * 1997-12-24 1999-07-06 Toyota Autom Loom Works Ltd 圧縮機
JPH11241681A (ja) * 1997-12-26 1999-09-07 Toyota Autom Loom Works Ltd 圧縮機におけるシール機構の保護装置
JPH11257217A (ja) * 1998-03-16 1999-09-21 Toyota Autom Loom Works Ltd 片側可変容量型圧縮機
JP3509560B2 (ja) * 1998-06-15 2004-03-22 株式会社豊田自動織機 圧縮機のオイル分離構造
JP2000045940A (ja) * 1998-07-27 2000-02-15 Toyota Autom Loom Works Ltd 可変容量型圧縮機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306164C (zh) * 2003-02-04 2007-03-21 株式会社丰田自动织机 带有润滑结构的压缩机
US7458785B2 (en) 2003-02-04 2008-12-02 Kabushiki Kaisha Toyota Jidoshokki Compressor with lubrication structure
CN101351644B (zh) * 2006-06-02 2010-11-03 株式会社丰田自动织机 压缩机
CN101479476B (zh) * 2006-06-30 2013-04-03 (学)斗源学院 可变排量压缩机的油分离结构
CN105531477A (zh) * 2013-09-11 2016-04-27 株式会社丰田自动织机 容量可变型斜板式压缩机
CN105531477B (zh) * 2013-09-11 2017-06-23 株式会社丰田自动织机 容量可变型斜板式压缩机
CN113272554A (zh) * 2019-01-29 2021-08-17 三电汽车部件株式会社 压缩机
CN113272554B (zh) * 2019-01-29 2023-02-10 三电有限公司 压缩机
CN113272555A (zh) * 2019-02-06 2021-08-17 三电汽车部件株式会社 压缩机
CN113272555B (zh) * 2019-02-06 2022-12-20 三电有限公司 压缩机

Also Published As

Publication number Publication date
CN1172087C (zh) 2004-10-20
US20020172602A1 (en) 2002-11-21
US6558133B2 (en) 2003-05-06
EP1207301B1 (en) 2006-04-19
EP1207301A3 (en) 2003-09-17
EP1207301A2 (en) 2002-05-22
BR0106758A (pt) 2002-06-25
JP4399994B2 (ja) 2010-01-20
JP2002213350A (ja) 2002-07-31
KR20020038464A (ko) 2002-05-23
DE60118864D1 (de) 2006-05-24
KR100485424B1 (ko) 2005-04-27

Similar Documents

Publication Publication Date Title
CN1172087C (zh) 可变容压缩机
CN1100943C (zh) 压力波动消减式压缩机
CN1137097A (zh) 改进了内部润滑***的旋转斜盘型制冷压缩机
CN1104560C (zh) 可变容量压缩机
CN1118625C (zh) 压缩机的活塞及活塞式压缩机
CN1078676C (zh) 可变容量压缩机及其组装方法
CN1090716C (zh) 压缩机的冷却结构
CN101074660A (zh) 斜盘式压缩机
CN1504645A (zh) 控制变容式压缩机排量的方法
CN1306164C (zh) 带有润滑结构的压缩机
CN1266945A (zh) 液体机械
CN1332321A (zh) 可变排量压缩机
CN1273732C (zh) 旋转斜盘型可变容积压缩机
CN1078675C (zh) 可变容量压缩机
CN1441165A (zh) 用于可变排量型的压缩机的控制装置
CN1517547A (zh) 往复泵和真空泵
CN1207493C (zh) 具备多级排气***的旋转倾斜轴式气体压缩机
CN1291156C (zh) 双头活塞式压缩机
CN1201111A (zh) 致冷压缩机
CN1912388A (zh) 压缩机和等速万向节
CN1317511C (zh) 卧式压缩机
CN1268627A (zh) 变容量压缩机中的控制阀所用的安装机构
CN1823229A (zh) 涡旋式压缩机
CN1080386C (zh) 压缩机中的阀结构
CN1882780A (zh) 汽车的制冷剂压缩机

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee