CN1118625C - 压缩机的活塞及活塞式压缩机 - Google Patents

压缩机的活塞及活塞式压缩机 Download PDF

Info

Publication number
CN1118625C
CN1118625C CN96190823A CN96190823A CN1118625C CN 1118625 C CN1118625 C CN 1118625C CN 96190823 A CN96190823 A CN 96190823A CN 96190823 A CN96190823 A CN 96190823A CN 1118625 C CN1118625 C CN 1118625C
Authority
CN
China
Prior art keywords
piston
bore
cylinder
groove
outer circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96190823A
Other languages
English (en)
Other versions
CN1163655A (zh
Inventor
竹中健二
粥川浩明
滨冈贵裕
道行隆
桥本满
川口真广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Publication of CN1163655A publication Critical patent/CN1163655A/zh
Application granted granted Critical
Publication of CN1118625C publication Critical patent/CN1118625C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/109Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

压缩机的活塞(11),随着旋转轴(6)的旋转,通过安装于曲轴室(5)内的旋转轴(6)上的驱动体(9),在气缸孔(2a)内从上死点到下死点之间往复移动。活塞(11)带有与气缸孔(2a)内周面滑动接触的外周面,在该外周面上设置有沿活塞(11)轴线(S)方向延伸的槽(17;44;46)。随着活塞(11)的往复运动,附着在气缸孔(2a)内的润滑油积存在槽(17;44;46)中。并且随着活塞(11)的往复运动,槽(17;44;46)从气缸孔(2a)内暴露在曲轴室(5)内时,将槽(17;44;46)中的润滑油供给曲轴室(5)。用该润滑油对曲轴室(5)内的驱动体(9)进行润滑。

Description

压缩机的活塞及活塞式压缩机
技术领域
本发明涉及一种借助于斜盘等驱动体将旋转轴的旋转运动转换成活塞的往复直线运动的活塞式压缩机,特别是关于用于这种压缩机的活塞。
背景技术
一般地,活塞式压缩机作为对车辆室内进行空气调节的压缩机已是公知技术。在这种活塞式压缩机中,用于带动活塞往复运动的斜盘等驱动体被支撑在曲轴室内的旋转轴上。驱动体将旋转轴的旋转运动转换成活塞在气缸孔内的往复直线运动。随着活塞的往复运动将制冷剂气体从吸入室吸入气缸孔内,在气缸孔内压缩之后排到排出室。
作为上述的活塞式压缩机,是将来自外部制冷回路的制冷剂气体通过曲轴室导入吸入室的压缩机。在这种曲轴室构成制冷剂气体通路的一部分的压缩机中,由于来自外部制冷回路的制冷剂气体通过曲轴室内部,所以可以利用包含在该制冷气体中的润滑油对曲轴室内的活塞及驱动体等各个部件进行充分的润滑。
与此相对,也有将来自外部制冷回路的制冷剂气体不通过曲轴室而导入吸入室的压缩机。例如日本专利特开昭60-175789号公报就揭示了这种压缩机。在这种曲轴室不构成制冷剂气体通路一部分的压缩机中,曲轴室内的各部件主要是利用泄漏气体和供给曲轴室的润滑油润滑。而这种泄漏气体是当活塞压缩气缸孔内的制冷剂气体时经过活塞外周面与气缸孔内周面之间从气缸孔内向曲轴室泄漏的制冷剂气体。
这种泄漏气体的量,换言之也就是从供给曲轴室的气体所得到的润滑油量取决于活塞外周面与气缸孔内周面之间的间隙大小。因此为了使曲轴室各部件得到良好的润滑而向曲轴室内供给足够量的润滑油,就需要将该间隙做得比较大。但是当活塞外周面与气缸孔内周面之间的间隙变大时,会降低压缩机的压缩效率。
现有技术是利用具有例如图22或图23所示结构的压缩机来解决上述问题的。在图22所示的压缩机中,作为驱动体的斜盘124可一体旋转地安装在旋转轴(图中未示)上。滑靴125设置在斜盘124和单头活塞122的尾部之间。滑靴125具有可滑动地与活塞122的保持凹部122a配合的球面和与斜盘124的前后面滑动接触的平面。当随着旋转轴的旋转斜盘124转动时,利用斜盘124的作用经过滑靴125带动活塞122在气缸孔123内往复运动。
另一方面,在图23所示的压缩机中,作为驱动体的摇摆盘128可相对转动地安装在旋转轴(图中未示)上。随着旋转轴的旋转,摇摆盘128作摆动运动。连杆129的两端带有球体129a,各球体129a分别可滑动地保持在摇摆盘128的保持凹部128a及活塞126的保持凹部126a中。当随着旋转轴的旋转摇摆盘128摇动时,通过连杆129将摇摆盘的这种摇动传递给活塞126,使活塞126在气缸孔127内作往复运动。
在上述各压缩机中,分别在活塞122、活塞126的外周面上形成有圆环状的槽121。随着活塞122、活塞126的往复运动,附着在气缸孔123、气缸孔127内周面上的润滑油汇集在槽121内。当活塞122、活塞126移动到下死点时,槽121从气缸孔123、127内暴露在曲轴室中。因此,汇集在槽121内的润滑油在槽121从气缸孔123、127内露出时,向斜盘124一侧及摇摆盘128一侧(即曲轴室内)排出。借助于该润滑油对斜盘124、摇摆盘128分别与活塞122、126的连接部位等进行润滑。在具有这种结构的压缩机中,活塞122、126与气缸孔123、127之间的间隙没有增大,换句话说,并没有降低压缩机的压缩效率,而且能够使曲轴室内的各部件得到良好的润滑。
但是,上述图22及图23所示的压缩机存在有下述缺陷。
活塞122、126越来越接近下死点时,容纳在气缸孔123、127内的部分逐渐变少。但是,活塞122、126是在支撑于气缸孔123、127的内周面的状态下在这些气缸孔123、127内往复运动的。因此,活塞122、126容纳在孔123、127内的部分,即由孔123、127支撑的部分变少时,会带来由孔123、127支撑的不稳定现象。结果,象图22及图23以夸张的手法所表示的那样,活塞122、126的槽121的开口边缘会与气缸孔123、127的开口边缘发生干涉。结果是活塞122、126不能平滑地往复运动,而且,使活塞122、126的槽121的开口边缘以及气缸孔123、127的开口边缘产生磨损。
特别是,在图22所示的压缩机中,斜盘124的旋转运动通过滑靴125转换成活塞122的往复运动。在这种压缩机中,例如活塞122为了压缩制冷剂气体而从下死点向上死点移动时,压缩反力及活塞122的惯性力经过活塞122作用在斜盘124上。由于斜盘124相对垂直于旋转轴线的平面倾斜,作用在斜盘124上的力又作为反力作用于活塞122,这样,作用在活塞122上的一部分反力,朝着将活塞122压向气缸孔123内周面的方向作用。因此,图22所示的压缩机与图23所示的压缩机相比较,可以看出,活塞122的槽121会与气缸孔123的开口边缘发生强烈的冲击,出现了磨耗及损伤更为显著的问题。
因此,本发明的目的是提供一种既能使活塞平滑地移动、又能对驱动活塞的部件供给足够的润滑油的压缩机活塞及活塞式压缩机。
发明的公开
为了完成上述目的,在本发明的压缩机中,随着旋转轴的旋转,通过曲轴室内的安装在旋转轴上的驱动体,带动活塞在气缸孔内的上死点和下死点之间往复运动。活塞带有与气缸孔的内周面滑动接触的外周面。在活塞的外周面上设置有沿活塞轴线方向延伸的槽。
因此,根据本发明,随着活塞的往复运动,附着在气缸孔内周面上的润滑油积留在上述槽内。并且,例如,如果随着活塞往复运动的槽从气缸孔内变化到暴露在曲轴室内时,槽内的润滑油就会供给曲轴室,利用该润滑油便可对曲轴室内的驱动体等进行润滑。又因上述的槽是沿活塞的轴线方向延伸设置的,不会与气缸孔的开口边缘发生干涉,因此活塞可以平滑地往复运动。此外,该槽还能够减少活塞与气缸孔之间的滑动阻力。
附图的简单说明
图1是将本发明具体化的第一实施例的压缩机纵断面图。
图2是活塞处于上死点时的透视图。
图3是活塞处于上死点和下死点之间时的透视图。
图4是活塞处于下死点时的透视图。
图5是活塞的局部放大断面图。
图6(a)是表示旋转轴的旋转角度(活塞的移动位置)与作用在活塞上的侧向力的大小关系的曲线图。
图6(b)是用于说明第二槽形成的合适位置的简图。
图7是用夸张的手法表示处于上死点的活塞在倾斜状态下的主要部分的放大断面图。
图8是第一变形例的活塞的透视图。
图9是第二变形例的活塞的透视图。
图10是第三变形例的活塞的透视图。
图11(a)是第四变形例的活塞的透视图。
图11(b)是第五变形例的活塞的局部透视图。
图11(c)是第六变形例的活塞的局部透视图。
图12是第七变形例的活塞的透视图。
图13是将本发明具体化的第二实施例的压缩机的纵断面图。
图14是沿图13的14-14线的断面图。
图15是沿图13的15-15线的断面图。
图16是沿图14的16-16线的断面图。
图17是沿图13的17-17线的断面图。
图18是活塞的透视图。
图19是第一变形例的活塞的透视图。
图20是第二变形例的活塞的透视图。
图21是第三变形例的活塞的透视图。
图22是公知的压缩机主要部分的断面图。
图23是另一种公知的压缩机主要部分的断面图。
实施发明的最佳形式
下文参照图1~图7叙述将本发明具体化的活塞式可变容量压缩机的第一实施例。
如图1所示,前壳体1与气缸体2的前端面接合。后壳体3通过阀板4与气缸体2的后端面接合。前壳体1、气缸体2及后壳体3构成压缩机壳体。吸入室3a及排出室3b在后壳体3与阀板4之间形成。来自于外部制冷回路(图中未示)的制冷剂气体通过导入口3c直接导入吸入室3a。
阀板4具有吸入口4a、吸入阀4b、排出口4c及排出阀4d。曲轴室5在前壳体1和气缸体2之间形成。旋转轴6由一对轴承7可转动地支撑在前壳体1和气缸体2上,并从曲轴室5中穿过。支撑孔2b在气缸体2的中心部位形成。旋转轴6的后端***支撑孔2b内,该后端由轴承7支撑在支撑孔2b的内周面上。
凸盘8固定在旋转轴6上。作为驱动体的斜盘9可沿旋转轴6的轴线L方向滑动并可倾斜地支撑在曲轴室5内的旋转轴6上。斜盘9通过铰接机构10与凸盘8相连。铰接机构10由在凸盘8上形成的支撑臂19和在斜盘9上形成的一对导向销20构成。导向销20可滑动地嵌入形成于支撑臂19上的一对导向孔19a中。铰接机构10使斜盘9与旋转轴6一体旋转。铰接机构10还对斜盘9沿轴线L方向的移动及斜盘9的倾斜运动进行导向。
数个气缸孔2a围绕在旋转轴6的周围形成于气缸体2上,并沿着旋转轴6的轴线L方向延伸。中空状的单头活塞11安装在气缸孔2a内。在活塞11的尾部形成槽11a。在槽11a的相互对置的内周面上,可滑动地嵌装着一对滑靴12的半球部。斜盘9由两个滑靴12的平面部分可滑动地夹持着。斜盘9的旋转运动通过滑靴12变换成活塞11的往复直线运动,使活塞11在气缸孔2a内沿前后方向往复运动。当活塞11从上死点向下死点移动而进入吸入冲程时,吸入室3a内的制冷剂气体挤压吸入阀4b,使该阀打开,从吸入口4a流入气缸孔2a内。当活塞11从下死点向上死点移动而进入压缩冲程时,气缸孔2a内的制冷剂气体被压缩,挤压排出阀4d,使该阀打开,从排出口4c排到排出室3b中。
止推轴承21设置在凸盘8和前壳体1之间。随着制冷剂气体的压缩,压缩反力作用在活塞11上。该压缩反力经过活塞11、斜盘9、凸盘8及止推轴承21由前壳体1承受。
如图1~图4所示,在活塞11的尾部一体形成有止转部件22。该止转部件22具有直径与前壳体1内周面相同的周面。为了防止活塞11以中心轴线S为中心转动,止转部件22的周面与前壳体1的内周面接触。
如图1所示,供给通路13与排出室3b及曲轴室5相连通。电磁阀14安装在后壳体3中,并设置在供给通路13的途中,电磁阀14的电磁线圈14a激磁时,阀体14b将阀孔14c闭合。电磁线圈14a退磁时,阀体14b打开阀孔14c。
在旋转轴6内形成泄压通路6a。泄压通路6a具有开口于曲轴室5的入口及开口于支撑孔2b内部的出口。泄压孔2c将支撑孔2b的内部及吸入室3a相连通。
通过电磁线圈14a激磁使供给通路13闭锁时,排出室3b内的高压制冷剂气体不供给曲轴室5。在这种状态下,曲轴室5内的制冷剂气体就要经过泄压通路6a及泄压孔2c流向吸入室3a,而且,使曲轴室5内的压力接近吸入室3a的较低的压力。因此,曲轴室5内的压力与气缸孔2a内的压力之间的压差变小,如图1所示,斜盘9的倾角变为最大,这时压缩机的排出容量最大。
通过电磁线圈14a退磁使供给通路13打开时,排出室3b内的高压制冷剂气体供给曲轴室5,使曲轴室5内的压力上升。因此,曲轴室5内的压力与气缸孔2a内的压力之间的压差变大,斜盘9的倾角变为最小,这时压缩机的排出容量最小。
通过形成于斜盘9前面的限程器9a与凸盘8的接触,限制了斜盘9的倾斜不得超过预定的最大倾角。另外,通过斜盘9与安装于旋转轴6上的环15的接触,限制了斜盘9的最小倾角。
如上文所述,根据电磁阀14的电磁线圈14a的激磁和退磁使供给通路13闭合和打开,由此,便可以调整曲轴室5内的压力。当曲轴室5内的压力变化时,引起作用在活塞11前面(图1的左侧面)的曲轴室5内的压力与作用在活塞11后面(图1的右侧面)的气缸孔2a内的压力之间的压差变化,使斜盘9的倾角发生变化。在随着斜盘9的倾角变化引起活塞11的移动冲程变化时,便对压缩机的排出容量进行了调整。电磁阀14的电磁线圈14a借助控制器(图中未示)的控制并根据制冷负载等信息有选择地激磁和退磁。换句话说,根据制冷负载来调整压缩机的排出容量。
如图1~图5所示,作为回收装置的环状第一槽16在活塞11的头部外周面上形成,并沿着该外周面的周向延伸。如图4所示,第一槽16形成于活塞11移动到下死点时不从气缸孔2a内露出到曲轴室5内的位置。另外,图1-图4所示的斜盘9处在最大倾角的状态下。
作为连通装置的第二槽17在活塞11的外周面上形成,并沿着该活塞11的中心轴线S延伸。第二槽17的基端位于第一槽16的近旁。第二槽17设置在活塞11周面上的下文将要叙述的位置处。如图6(b)所示,该图示出了从假设旋转轴6的旋转方向R为顺时针转动方向的一侧看见的活塞11所处的状态(即,该图是从活塞11尾部一侧看到的活塞11的视图),在这种状态下,假想的直线M是通过旋转轴6的中心轴线L和活塞11的中心轴线S的直线。该直线M与活塞11周面的交点P1、P2中远离旋转轴6中心线L的一个点P1为12点钟的位置。在这种场合,第二槽17则设置在活塞11周面上的9点至10点半的范围E中。
进一步,如图2所示,第二槽17位于当活塞11移动到接近上死点时也不从气缸孔2a暴露在曲轴室5内的位置,并做成长型槽。第二槽17与第一槽16不连接。如图5所示,第二槽17端部的内底面18做成在活塞11的周面上平缓连接的斜面。
活塞11的表面可以利用例如无心磨削的方式来磨削。特别是,虽然在图中未示,但是,利用这种无心磨削的方式不能采用卡盘来保持作为被加工物的活塞11,只能将活塞11在载置于承受台的状态下一边转动磨轮一边进行磨削。因此,在例如沿活塞11圆周方向设置数个第二槽17的场合,由于载置在承受台上的活塞11的回转中心不稳定,就不能得到高的磨削精度。由此可以看出,要想利用无心磨削方式磨削出精度高的活塞11,最好是尽可能地将第二槽17的数目设置的少一些。在本实施例中,仅仅形成了一条具有将润滑油供给曲轴室5内所必要的最小限度的宽度及深度的第二槽17。
此外,在上述压缩机中,当活塞11处于从上死点移向下死点移动的吸入冲程时,吸入室3a内的制冷剂气体被吸入到气缸孔2a内。这时,包含在制冷剂气体中的一部分润滑油附着在气缸孔2a的内周面上。另一方面,当活塞11处于从下死点移向上死点的压缩冲程时,气缸孔2a内的制冷剂气体被压缩并排到排出室3b内。这时,气缸孔2a内的一部分制冷剂气体作为泄漏气体,经过活塞11外周面与气缸孔2a内周面之间的狭窄间隙K泄漏到曲轴室5中。此时包含在泄漏气体中的一部分润滑油附着在气缸孔2a的内周面上。
附着在气缸孔2a的内周面上的润滑油,随着活塞11的往复运动由活塞11的第一槽16的开口边缘16a刮取并积存在第一槽16内。
活塞11处于压缩冲程时,由气缸孔2a漏出的制冷剂气体(泄漏气体)使第一槽16内的压力升高。而第二槽17仅仅在活塞11移动到接近上死点附近时由气缸孔2a内周面将该槽整体堵塞住,除此之外的场合,第二槽17至少有一部分是暴露在曲轴室5内的。因此,第二槽17的压力与曲轴室内的压力相比较,或是相同或是稍高一些。第一槽16通过狭窄的间隙K与第二槽17相连通。结果,活塞11处在压缩冲程时,第一槽16内的润滑油根据第一槽16内的压力与第二槽17内的压力之间的压差,经过间隙K流入第二槽17内。流入第二槽17内的润滑油通过暴露在曲轴室5内的那一部分第二槽17再流入曲轴室5内。使该润滑油供给到斜盘9与活塞11的连接部位,换句话说,供给斜盘9与滑靴12之间以及滑靴12与活塞11之间等,从而使这些部分得到良好的润滑。
当斜盘9的倾角变小时,即使活塞11移动到下死点,第二槽17也不会从气缸孔2a内露出。但是在本实施例中,由于第二槽17的前端到活塞11尾部侧的周缘之间的长度比较短,因此,第二槽17内的润滑油很容易从第二槽17的前端经过间隙K排到曲轴室5一侧,从而使斜盘9与活塞11的连接部位得到良好的润滑。
这样,利用作为回收装置的第一槽16来汇集的润滑油,经过作为连通装置的第二槽17供给曲轴室5。
但是,活塞11在往复运动的途中,因压缩反力及自身惯性力的原因,受到来自于气缸孔2a内周面的反力(以下简称侧向力)的作用。因此,最好是将第二槽17尽量形成于活塞11周面上的不受该侧向力影响的位置(相当于图6(b)所示的范围E的位置)。
更详细地说,如图2及图7所示,当活塞11处于上死点附近时,作用在活塞11上的压缩反力最大。该压缩反力及活塞11的惯性力作用于斜盘9上。这样,由于斜盘9相对垂直于旋转轴6的中心轴线L的平面倾斜,活塞11就会受到大小相当于压缩反力与惯性力的合力Fo的反力Fs的作用。该反力Fs根据斜盘9的倾斜角度可分解为沿着活塞11移动方向的分力f1和指向旋转轴6中心轴线L的分力f2。该分力f2为使活塞11尾部一侧朝着该分力f2的方向偏斜的力。因此,活塞11尾部一侧的周面由相当于该分力f2的力被气缸孔2a的开口部附近的内周面挤压。换句话说,活塞11尾部一侧的周面受到由气缸孔2a的开口部附近的内周面作用的大小相当于分力f2的反力(侧向力)Fa的作用。
侧向力Fa对活塞11的作用位置随活塞11的移动而变化。例如,在斜盘9从图2所示的状态沿箭头R所示方向转过90°成为图3所示的状态这期间,残留在气缸孔2a内的压缩制冷剂气体随着活塞11从上死点向下死点的移动而再膨胀。并且当斜盘9接近图3所示的状态时,气缸孔2a内的压缩制冷剂气体的再膨胀结束,并开始向气缸孔2a内吸入制冷剂气体。在这种状态下,斜盘9上没有压缩反力的作用,作用在斜盘9上的力Fo基本是活塞11的惯性力。因此,活塞11主要受来自斜盘11惯性力的反力Fs的作用。该反力Fs根据斜盘9的倾斜分解为沿着活塞11移动方向的分力f1和大致沿着斜盘9旋转方向R的分力f2。该分力f2为使活塞11尾部一侧朝着该分力f2的方向偏斜的力。因此,活塞11受来自气缸孔2a的开口部近旁的内周面的相当于该分力f2的侧向力Fa的作用。并且,如下文所述,实际上当斜盘9处于图3所示的状态时,由于作用在斜盘9上的力Fo基本上为零,因此,活塞11上基本上没有侧向力Fa的作用。
当斜盘9从图3所示的状态沿箭头R所示方向再转过90°成为图4所示的状态时,活塞11处于下死点。在这种状态下,作用在活塞11上的分力f2的方向与图2所示情况(活塞11处于上死点的场合)相反。因此,活塞11受来自于气缸孔2a开口部近旁内周面的与图2所示情况的方向相反的侧向Fa作用。这时,侧向力Fa的大小较图2所示的场合小一些。
如图2及图7所示,活塞11的头部受来自于气缸孔2a内部一侧内周面的相当于分力f2的侧向力Fb的作用。但是,第一槽16在活塞11头部一侧形成,第二槽17设置在至少较第一槽16更靠近活塞11尾部一侧的位置。因此,在活塞11的周面上,对于从第二槽17的基端至其前端的范围来说,不直接受侧向力Fb的作用。由此,在决定活塞11周向的第二槽17的合适配置位置时,不需要考虑作用在活塞11头部一侧的侧向力Fb。
图6(a)示出了旋转轴6的旋转角度(即活塞11的移动位置)与作用在活塞11上的侧向力Fa大小的关系曲线图。在该曲线图中,活塞1 1处于上死点时的旋转轴6的旋转角度定为0°。该曲线图的横轴下方描述的简图,表示了对应于横轴所示旋转轴6的旋转角度的作用在活塞11上的侧向力Fa的方向。该简图为从尾部看活塞11的视图。在这些简图中示出了作用有侧向力Fa的活塞11周面的部位,随着旋转轴6及斜盘9的转动而在与斜盘旋转方向R相同的方向上的变化。换句话说,这些简图表示了在活塞11为进行吸入及压缩冲程而在上死点与下死点之间往复运动一次的过程中,侧向力Fa顺次对于活塞11全周的作用情况。
如图6(a)所示,在旋转轴6从活塞11处于上死点的状态转过90°的过程中,换句话说,在斜盘9从图2的状态变成图3的状态这期间,侧向力Fa为负值。这意味着斜盘9成为图3之前的状态时,与图3所示的各个力的方向相反。
图6(a)的曲线示出了在旋转轴6的旋转角度为0°(=360°)时,即活塞11处于上死点时,作用在活塞11上的侧向力Fa为最大。活塞11的周面上受该最大侧向力Fa的作用的位置如图6(b)所示,是位于6点钟的位置。当大侧向力Fa作用在活塞11周面上6点钟的位置时,以该6点钟的位置为中心的从3点到9点的范围E1,对气缸孔2a的内周面产生强大的推压。因此,如果在范围E1内设置第二槽17时,就会将第二槽17的开口边缘强有力地压接在气缸孔2a的内周面上。这可能会引起活塞11与气缸孔2a的磨耗及损伤。由此得出,除了活塞11周面上的3点到9点的范围E1之外,其它范围即从9点到3点的范围E2上均可以设置第二槽17。
为了更进一步避免侧向力Fa的影响,可以将第二槽17设置在活塞11的从9点到3点的范围E2中的受最小侧向力Fa作用的范围。图6(a)的曲线还表示了与活塞11为压缩冲程时(旋转轴6的旋转角度为180°~360°时)的情况相比较,活塞11处于吸入冲程(旋转轴6的旋转角度为0°~180°时)时作用在活塞11上的侧向力Fa相对小一些的情况。
吸入冲程中,在气缸孔2a内的残留制冷剂气体再膨胀结束时,斜盘9不受压缩反力的作用,作用在斜盘9上的力大致为活塞11的惯性力。特别是如图6(a)所示,当旋转轴6的旋转角度为90°时(斜盘9处于图3所示状态时),在活塞11周面上9点钟的位置基本上没有侧向力Fa的作用。因此,作用在活塞11上的侧向力Fa在吸入冲程时,与产生压缩反力的压缩冲程时的情况相比较相对小一些。换言之,活塞11周面上的从9点到3点的范围E2中,作用在9点到12点的范围中的侧向力Fa与作用在12到3点范围的侧向力Fa相比较相对小一些。
另外,如图6(a)所示,当活塞11处于下死点位置时,在活塞11周面上的12点的位置也作用着比较大的侧向力Fa。在活塞11移动到下死点附近时,由气缸孔2a支撑的活塞长度变短,很容易出现不稳定。因此,第二槽17最好不设置在活塞11周面上的12点钟的位置附近。
考虑上述结果,在本实施例中,如图6(b)所示,将第二槽17设置在活塞11周面上的9点至10点半的范围E中。
利用上述结构的第一实施例,可以得到下述效果。
①由第一槽16汇集的润滑油,能经过沿活塞11中心轴线S延伸而形成的第二槽17可靠地供给曲轴室5。因此,即使来自外部制冷回路的制冷剂气体不经过曲轴室5而导入吸入室3a,也能保证斜盘9与活塞11的连接部位等的在曲轴室5内的各个部位得到良好地润滑。
②即使活塞11移动到下死点时,由于沿活塞11周向形成的圆环状第一槽16不会从气缸孔2a内露出。因此。第一槽16不与气缸孔2a的开口边缘发生干涉。此外,沿活塞11轴线S方向延伸的第二槽17不与气缸孔2a的开口边缘发生干涉。这样,既能保证活塞11平滑地往复运动,同时又可避免活塞11与气缸孔2a的磨耗及损伤等。
③圆环状的第一槽16将附着在气缸孔2a内周面的润滑油从整个内周面上吸取。因此,能够将更多的润滑油供给曲轴室5。
④在本实施例的压缩机中,斜盘9的旋转运动通过滑靴12变换为活塞11的往复运动。在这样的压缩机中,由于作用在斜盘9上的压缩反力及活塞11的惯性力的原因,会将活塞11压向气缸孔2a的内周面。因此,在这种压缩机中将本发明的结构具体化是特别有效的。
⑤第一槽16及第二槽17在活塞11的周面上不直接相连,两槽16、17通过活塞11与气缸孔2a之间的狭窄间隙K相连通。因此,第一槽16内的制冷剂气体在由狭窄间隙K节流的状态下流向第二槽17内,这使得该流动为缓慢的流动。结果,可以避免当活塞11移动到上死点附近时,气缸孔2a内的高压制冷剂气体经过两槽16、17突然涌到曲轴室5一侧。这样能尽力地避免压缩机压缩效率的降低。
⑥第二槽17的前端侧的内底面18做成与活塞11周面平缓连接的斜面。这样,可以避免当活塞11从下死点移向上死点时,第二槽17前端侧的开口边缘与气缸孔2a的开口边缘之间的干涉。结果是既能使活塞11平滑地移动又能防止活塞与气缸孔2a的磨耗及损伤。
⑦第二槽17在活塞11周面上的尽量不受压缩反力及活塞11惯性力引起的侧向力Fa的影响的位置(相当于图6(b)所示的范围E的位置)形成。因此,可以避免活塞11的第二槽17这部分对气缸孔2a产生强大的压接,从而更可靠地避免了活塞11及气缸孔2a的磨耗及损伤。
⑧由于活塞11做成中空状,其重量轻、惯性力小。惯性力变小时能更有效地防止活塞11及气缸孔2a的磨耗及损伤。
⑨随着压缩机的运转,温度会升高,活塞11热膨胀。而中空物体较实心物体热膨胀的程度会稍小一些。本实施例的活塞11是中空的,因此可避免活塞11外周面与气缸孔2a内周面之间的间隙K受活塞11热膨胀的影响而变小。从而阻止活塞11及气缸孔2a之间的滑动阻力的增大。
⑩本实施例的压缩机是排出容量可以控制的可变容量压缩机。这种压缩机外部驱动源与压缩机的回转轴之间不设动力传递及隔断的离合器,而是外部驱动源与压缩机直接相连。因此,本实施例的压缩机只要外部驱动源工作就运转。所以,在这种压缩机中,对各部位进行良好地润滑是十分重要的。换句话说,可变容量压缩机采用带有第一槽16及第二槽17的本实施例的活塞,对于实现上述效果是非常有效的。
上述第一实施例可以变更为下述的结构。
首先,叙述第一变更例。活塞11处于上死点附近时,如图7夸张所表示的那样,活塞11在气缸孔2a内沿图示反时针方向倾斜。这时该图中第一槽16的下侧部分朝气缸孔2a里侧敞开。结果是,使气缸孔2a内压缩的制冷剂气体朝第一槽16泄漏,降低了压缩效率。
因此,该第一变形例如图8所示的那样,仅将第一槽16设置在活塞11上半部分的周面上。换言之,第一槽16仅设置在活塞11周面上的图6(b)所示的9点至3点的范围E2中。根据这种结构,即使处于上死点附近的活塞11象图7所示那样倾斜,第一槽16也不会朝气缸孔2a里侧敞开。结果,气缸孔2a内压缩的高压制冷剂气体不会泄漏到第一槽16内,从而避免了压缩机效率的降低。
接着,叙述第二变形例。该第二变形例如图9所示的那样,第二槽17与第一槽16相连。根据这种结构,第一槽16内的润滑油可以顺利地流入第二槽17内。
其次,叙述第三变形例。该第三变形例如图10所示的那样,第二槽17的前端延伸到活塞11的尾部侧的周缘部,使第二槽17始终与曲轴室5直接相连。根据这种结构,当活塞11从下死点移向上死点时,第二槽17的前端不会与气缸孔2a的开口边缘发生干涉。结果,使活塞11更平滑地往复运动,并进一步可靠地避免了活塞11与气缸孔2a的磨耗及损伤。另外,第二槽17内的润滑油可以更顺利地向曲轴室5内流动。而且在该第三变形例中,如图10的双点划线所表示的那样,还可以采用象上述第二变形例那样将第二槽17与第一槽16连接、使第一槽16始终与曲轴室5相连通的结构。
下文叙述第四变形例。该第四变形例如图11(a)所示的那样,第一槽16由沿活塞11圆周方向设置的数个(图中为3个)长孔状槽16a、16b、16c构成。另外,第二槽17由分别与构成第一槽16的3个槽16a、16b、16c相对应的数个槽17a、17b、17b构成。并且,也可以象图11(a)双点划所表示的那样,采用将构成第二槽17的3个槽17a、17b、17b中的至少一个延伸到活塞11的尾部侧周缘部分,使该槽始终与曲轴室5相连接的结构。
第五变形例如图11(b)所示的那样,是将上述第四变形例中的各个槽17a、17b、17c分别和与之对应的各个槽16a、16b、16c相连接。并且,也可以象图11(b)双点划所表示的那样,将构成第二槽17的3个槽17a、17b、17c中的至少一个延伸到活塞11的尾部侧周缘部,使该槽始终与曲轴室5相连。
第六变形例如图11(c)所示的那样,与上述第四变形例的第二槽17有关,两侧的槽17a、17c连接到中央槽17b的中部。也可以象图11(c)双点划所表示的那样,将中央槽17b延伸到活塞11的尾部侧周缘部,使该槽始终与曲轴室5相连。
第七变形例如图12所示的那样,数个第二槽17在活塞11周面上形成,并螺旋状地延伸。图中,虽然第二槽17与第一槽16相连,但是,也可以采用不与第一槽16相连的结构。随着活塞11的往复运动,螺旋状的第二槽17与第一槽16同时吸取附着在气缸孔2a内周面上的润滑油。因此,可以在槽内汇集更多的润滑油,向曲轴室5内供给更多的润滑油。数个螺旋状的第二槽17由于是沿活塞11圆周方向均等配置的,结果,将活塞11用无心磨削方式磨削时,活塞11的回转中心稳定,因此,可以提高活塞11的磨削精度。
第八变形例如图5中双点划线所示的那样,第二槽17在气缸孔2a的内周面上形成。该第二槽17延伸到气缸孔2a的开口边缘,始终与曲轴室5相连。在这种场合,活塞11的周面上可以设置第二槽17。也可以不设置该槽。
第九变形例如图6(b)中双点划线所示的那样,第二槽17设置在活塞11的周面上7点半至9点的范围E3中。如前述,当活塞11周面上的6点钟的位置作用有大的侧向力Fa时,以该6点钟的位置为中心的3点到9点的范围E1对气缸孔2a的内周面产生强大的挤压。但是,最强挤压的位置是6点钟的位置,挤压力在离开6点钟的位置会变弱。因此,实际上在离开6点钟位置的7点半至9点的范围E3,不会对气缸孔2a内周面施加强大的挤压作用。另外,如图6(a)所示,在旋转轴6的旋转角度变为90°之前的状态时,侧向力Fa为负值。这意味着活塞11周面上的7点半至9点的范围E3不会有侧向力Fa的直接作用。
从以上说明可以看出,即使第二槽17设置在活塞11周面上的7点半至9点的范围E3中,也不会产生任何障碍。
下文参照图13~图18叙述本发明的第二实施例。在该第二实施例中,与上述第一实施例相同的部件用同一符号表示,其说明省略。并且,下文以与第一实施例的不同点为中心展开说明。
如图13所示,该第二实施例的压缩机,具有基本上与第一实施例相同的结构。即是说,随着旋转轴6的旋转斜盘9转动,并通过滑靴12将斜盘9的旋转运动变换为活塞11在气缸孔2a内的往复运动。
旋转轴6的前端固定有皮带轮26。皮带轮26通过向心止推滚珠轴承27可转动地支撑在前壳体1的前端。皮带轮26通过皮带28可驱动地连接在作为外部驱动源的车辆发动机(图中未示)上。向心止推滚珠轴承27承受轴向及径向载荷。
安装孔29在气缸体1的中心部位形成,沿旋转轴6的轴线L延伸。后端封闭的筒状滑阀30可滑动地安装于该安装孔29中。在滑阀30和安装孔29的内周面之间装有螺旋弹簧31。螺旋弹簧31对滑阀30施加朝斜盘9方向推压的力。
旋转轴6的后端***滑阀30中。径向轴承32设置在旋转轴6的后端与滑阀30的内周面之间。旋转轴6的后端通过径向轴承32及滑阀30支撑在安装孔29的内周面上。轴承32可随滑阀30一起沿旋转轴6的轴线L移动。止推轴承33设置在旋转轴6上,位于滑阀30与斜盘9之间。止推轴承33可沿旋转轴6的轴线L移动。
吸入通路34在后壳体3的中心部位形成,并与安装孔29相连通。定位面35位于安装孔29与吸入通路34之间,并在阀板4上形成。滑阀30的后端面可与该定位面35接触。通过滑阀30后端面与该定位面35的这种接触,限制了滑阀30朝远离斜盘9的方向的移动,同时,隔断了吸入通路34与安装孔29的连通。
随着斜盘9倾角的减小和斜盘9向滑阀30一侧的移动,该斜盘9通过止推轴承33挤压滑阀30。由此,使滑阀30克服螺旋弹簧31的弹力而移向定位面35一侧,并与该定位面35接触。这时,限制了斜盘9的最小倾角。斜盘9的最小倾角比0°稍大一些。这里,斜盘9处在垂直于旋转轴6的平面上时,该倾角为0°。
吸入室3a通过连通口36与安装孔29相连。当滑阀30与定位面35接触时,隔断了连通口36与吸入通路34的连通。在旋转轴6内形成的泄压通路6a具有开口于曲轴室5的入口及开口于滑阀30内部的出口。泄压口37在滑阀30的后端侧周面上形成。该泄压口37将滑阀30的内部与安装孔29连通。
外部制冷回路37与将制冷剂气体导入吸入室3a的吸入通路34和从排出室3b将制冷剂气体排出的排出口38相连。外部制冷回路37上设有冷凝器39、膨胀阀40及蒸发器41。蒸发器41的旁边配置有温度传感器42。温度传感器42检测蒸发器41的温度,并将根据该检测的温度得出的信号输送给控制器C。
控制器C根据来自温度传感器42的信号控制电磁阀14的电磁线圈14a。在用于驱动空调装置的驱动开关43为ON的状态,并且当由温度传感器42检测出的温度在预定值以下时,为了防止蒸发器41上发生结霜,该控制器C使电磁线圈14a退磁。另外,控制器C根据驱动开关43的OFF状态,使电磁线圈14a退磁。
在电磁线圈14a退磁使供给通路13敞开的状态下,排出室3b内的高压制冷剂气体供给曲轴室5,使曲轴室5内的压力上升。因此,与第一实施例相同,斜盘9朝最小倾角方向移动。当滑阀30与定位面35接触时,斜盘9的倾角为最小,同时,将吸入通路34与吸入室3a之间隔断。结果,制冷剂气体不会从外部制冷回路37流入吸入室3a,阻止了在外部制冷回路37与压缩机循环的制冷气体的循环。
由于斜盘9的最小倾角不会为0°,因此,即使斜盘9的倾角为最小,也会将制冷剂气体从吸入室3a吸到气缸孔2a内,并且,从气缸孔2a内排到排出室3b。结果,在斜盘9的倾角为最小的状态下,制冷剂气体循环经过排出室3a、供给通路13、曲轴室5、泄压通路6a、泄压口30a、吸入室3a及气缸孔2a,在压缩机内的循环通路中循环。因此,与制冷剂气体同时流动的润滑油可以对压缩机内的各部位进行润滑。在排出室3b、曲轴室5及吸入室3a之间产生压力差。该压力差及泄压口30a的断面面积对于稳定地保持斜盘9的最小倾角会产生很大的影响。
在电磁线圈14a激磁使供给通路13闭锁的状态下,曲轴室5内的制冷剂气体通过泄压通路6a及泄压口30a流向吸入室3a,使曲轴室5内的压力接近于吸入室3a内的较低压力。因此,与上述第一实施例相同,斜盘9朝最大倾角方向移动。
图14是沿图13中14-14线的断面图。该图14主要示出了斜盘9与凸盘8连接的铰接机构10及防止活塞11转动用的在该活塞11上形成的止转部件22。图15是沿图13中15-15线的断面图。该图15主要表示了后壳体3内形成的吸入室3a、排出室3b与气缸孔2a之间的关系。
如图13及图16~图18所示,数个(本实施例为4个)槽44在活塞11的外周面上形成,并沿该活塞11的中心轴线S延伸。换句话说,在该第二实施例中,不设上述第一实施例中的第一槽16,而仅设置相当于第二槽17的槽44。而槽44设置于活塞11圆周上的下文要叙述的位置处。如图17所示,与上述第一实施例相同,该图是在从假设旋转轴6的旋转方向R为顺时针转动方向的一侧看到的活塞11的状态(即该图是从活塞头部一侧看见的活塞视图),这时,假想的直线M是经过旋转轴6中心轴线L与活塞11中心轴线S的直线。该直线M与活塞11周面的交点P1、P2中远离旋转轴6中心轴线L的一点P1为12点钟的位置。在这种场合,槽44设置在活塞11周面上的除了12点钟位置及3点至9点的范围E1之外的位置处。
图13下侧所示的活塞11处于下死点。当活塞11处于下死点附近位置时,槽44的一部分从气缸孔2a内暴露在曲轴室5内部。
如图17所示,在活塞11的周面上,在3点至9点的范围E1内形成一对凹部45。通过设置该凹部45使活塞11中空化,结果,与第一实施例相同,可使活塞11轻量化。此外,凹部45开口于活塞11的外周面,并沿活塞11的中心轴线S延伸。因此,该凹部45与槽44相同,具有与上述第一实施例中的第二槽17同样的功能。
如上述第一实施例所描述的那样,当活塞11周面上的6点钟的位置作用有大的侧向力Fa时,以该6点钟的位置为中心的3点至9点的范围E1,会被气缸孔2a的内周面强力挤压。另外,当活塞11处于下死点时,在该活塞11周面上的12点钟的位置也作用着比较大的侧向力Fa。
更进一步,如图16所示,当压缩冲程中的活塞11处于下死点与上死点的中间处时,活塞11受来自斜盘11而与压缩反力及惯性力的合力Fo对应的反力Fs的作用。该反力Fs分解为沿活塞移动方向的分力f1及与斜盘9的旋转方向R方向基本相同的分力f2。该分力f2成为使活塞11尾部一侧朝该分力f2的方向偏斜的力。并且,由于斜盘9与滑靴12之间产生滑动阻力,随着斜盘9的转动,在活塞11上作用着使活塞11尾部侧朝分力f2方向偏斜的力。斜盘9的旋转速度越快,该力越大。因此,斜盘9的旋转速度为高速时,在活塞11周面上的3点钟的位置,作用着大的侧向力Fa。
考虑以上因素的结果是,在本实施例中,如图17所示,将槽44设置在活塞11周面上的除12点钟的位置及3点到9点的范围E1之外的位置上。换句话说,槽44是在活塞11周面上的没有侧向力Fa影响的位置形成的。因此,可防止活塞11的槽44的部分被气缸孔2a强力挤压,使活塞11在气缸孔2a内平滑地滑动。
即使在第二实施例中,随着活塞11的往复运动,附着在气缸孔2a内周面上的润滑油也会积存在槽44中。于是,当活塞11移动到下死点附近时,槽44从气缸孔2a内露出并暴露在曲轴室5中,从而将存留在槽44中的润滑油供给曲轴室5内。因此即使仅在活塞11的周面上设置沿活塞11中心轴线S延伸的槽44,与第一实施例一样,也能够使斜盘9与活塞11的连接部位等得到有效的润滑。
由于该第二实施例没有设置相当于第一实施例的第一槽16,因此,不会产生沿活塞11周向延伸的槽与气缸孔2a的开口边缘发生干涉的问题。此外,由于槽44在不受侧向力的影响的位置形成,当然可达到与上述第一实施例相同的效果。进一步,由于活塞11做成中空状的,也仍然可取得与第一实施例这方面同样的效果。
活塞11外周面与气缸孔2a内周面之间的间隙K越小,活塞11外周面与气缸孔2a内周面之间的滑动阻力越大。这是由于包含在制冷剂气体中的润滑油分子间的作用力引起活塞11与气缸孔2a之间产生粘着力的原因。该粘着力在间隙K变大时降低。而积存于活塞11外周面与气缸孔2a内周面之间的润滑油能够抑制气缸孔2a内的制冷剂气体随着压缩而经过该间隙K向曲轴室5的泄漏。而抑制该制冷剂气体的泄漏对于提高压缩机的压缩效率是十分重要的。因此,槽44的深度应设定在能极力降低由润滑油分子间的作用力产生粘着力可抑制制冷剂气体泄漏的不损伤润滑油机能的范围中。这种结构的槽44能够降低活塞11外周面与气缸孔2a内周面之间的滑动阻力。
本实施例的压缩机与第一实施例的压缩机相同,是可变容量压缩机,只要外部驱动源工作就运转。因此,在这种压缩机中,如果降低活塞11外周面与气缸孔2a内周面之间的滑动阻力,将会大幅度地抑制动力损失。换句话说,在与外部驱动源直接连接的状态下使用的可变容量压缩机通过采用带有槽44的本实施例的活塞11,对于达到上述效果是非常有效的。
上述的第二实施例还可以变更为以下的结构。
首先,叙述第一变形例。在上述第二实施例中,在活塞11周面上形成宽度比较宽的槽44。针对这种结构,第一变形例如图19所示的那样,代替第二实施例的槽44,而在活塞11周面上形成沿该活塞中心轴线S延伸的多个线状槽46。该槽46在活塞11周面上与第二实施例的槽44大致相同的位置形成。另外,槽46的深度采用与第二实施例的槽44相同的方式设定在能尽量降低润滑油分子间作用力所产生的粘着力而可抑制制冷剂气体泄漏的不损伤润滑油机能的范围。因此,采用该第一变形例,也能得到与上述第二实施例同样的效果。
第二变形例如图20所示,将槽44设置在活塞11周面上除了6点钟及9点至3点的范围E2中的位置之外的任何位置。该槽44与上述第二实施例叙述的槽44相同。因此,采用该第二变形例,可得到与上述第二实施例同样的效果。
第三变形例如图21所示,将槽44设置在活塞11周面上除12点钟位置、3点钟位置、6点钟位置及9点钟位置之外的任何位置。该槽44与上述第二实施例叙述的槽44相同。活塞11采用例如在有底圆筒状体的敞开端焊接固定别的部件的方法做成中空状的。该第三变形例也可得到与上述第二变形例同样的效果。
另外,本发明并不限于上述实施例,还可以变更为以下具体的结构。
(1)上述实施例中,第二槽17及槽44、46设置在活塞11周面上的任何位置。在这种场合,第二槽17及槽44、46一般来说最好设置在活塞11周面上的除了有最大侧向力Fa作用的6点钟位置之外的任何位置。最好是将第二槽17及槽44、46设置在活塞11周面上的除12点钟位置、3点钟位置及6点钟位置之外的位置。因为在活塞11周面上的12点钟位置及3点钟位置上也作用着比较大的侧向力Fa。
(2)与上述第二实施例的第二槽17及槽44、46有关的数目、长度、深度及宽度也可作适当变更。
(3)在上述第一实施例及其各变形例中,第一槽16及第二槽17的深度与第二实施例相同,将该深度设定在能极力降低由润滑油分子间作用力引起的粘着力而可抑制制冷剂气体泄漏的不损伤润滑油机能的范围内。根据这种结构,可以减少活塞11外周面与气缸孔2a内周面间的滑动阻力。
(4)在上述第二实施例及其各变形例中,槽44、46的前端延伸到活塞11底部侧的周缘部,使槽44、46始终与曲轴室5直接相连。
(5)在上述第二实施例及其各变形例中,槽44、46的前端内底面与第一实施例相同,做成相对于活塞11周面平缓连接的斜面。根据这种结构,可防止当活塞11从下死点移向上死点时,槽44、46的前端侧开口边缘与气缸孔2a的开口边缘之间发生干涉。
(6)在上述第一及第二实施例中,将本发明具体化的例子列举了带单头活塞的可变容量压缩机,但可以采用例如,斜盘有固定倾角的压缩机、两头活塞型压缩机、前述图23所示的通过连杆将活塞与摇摆盘连接的压缩机或波形凸轮压缩机等具体结构。波形凸轮压缩机是采用具有代替斜盘的波状凸轮面的波形凸轮的压缩机。

Claims (33)

1、一种压缩机的活塞,随着旋转轴(6)的旋转,通过安装于曲轴室(5)内的旋转轴(6)上的驱动体(9),在气缸孔(2a)内从上死点到下死点之间往复移动,前述活塞(11)带有与气缸孔(2a)内周面滑动接触的外周面,在该外周面上设置有沿活塞(11)轴线(S)方向延伸的、可以将活塞(11)的外周面和气缸孔(2a)的内周面之间存在的润滑油导入曲轴室(5)内的槽(17;44;46)。
2、根据权利要求1所述压缩机的活塞,其特征是,前述槽(17;44;46)为了将积存在活塞(11)外周面与气缸孔(2a)内周面的润滑油导入曲轴室(5)内,在活塞(11)至少移动到下死点时,从气缸孔(2a)内暴露在曲轴室(5)内。
3、根据权利要求1所述压缩机的活塞,其特征是,前述槽(17;44;46)为了将积存在活塞(11)外周面与气缸孔(2a)内周面的润滑油导入曲轴室(5)内,始终与曲轴室(5)直接相连。
4、根据权利要求1所述压缩机的活塞,其特征是,前述槽(17;44;46)设置在活塞(11)周面上的除了被气缸孔(2a)内周面强力挤压的位置之外的位置。
5、根据权利要求4所述压缩机的活塞,其特征是,假设在从旋转轴(6)的旋转方向(R)为顺时针转动方向一侧看活塞(11)的状态下,以通过旋转轴(6)的中心轴线(L)与活塞(11)的中心轴线(S)的直线(M)为假想的直线,并且,该直线(M)与活塞(11)外周面的交点(P1)、(P2)中远离旋转轴(6)的中心轴线(L)的一个点(P1)为12点钟的位置时,槽(17;44;46)设置在活塞(11)周面上的除12点钟的位置、3点钟的位置及6点钟的位置之外的位置上。
6、根据权利要求5所述压缩机的活塞,其特征是,前述槽(17;44;46)设置在活塞(11)周面上的9点至10点半的范围(E)中。
7、根据权利要求5所述压缩机的活塞,其特征是,前述槽(17;44;46)设置在活塞(11)周面上的7点半至9点的范围(E3)中。
 8、根据权利要求1所述压缩机的活塞,其特征是,积存在前述活塞(11)外周面与气缸孔(2a)内周面之间的润滑油能抑制气缸孔(2a)内的压缩制冷剂气体经过活塞(11)外周面与气缸孔(2a)内周面之间朝曲轴室(5)内的泄漏,并且使活塞(11)外周面与气缸孔(2a)内周面之间产生粘着力,前述槽(17;44;46)的深度设定在能尽量降低前述粘着力而可抑制制冷剂气体泄漏的不损伤润滑油机能的范围中。
9、根据权利要求1所述压缩机的活塞,其特征是,前述活塞(11)是中空状的。
10、根据权利要求2所述压缩机的活塞,其特征是,前述槽(17;44;46)的活塞(11)的尾部侧端部的内底面做成相对活塞(11)外周面平缓连接的斜面。
11、根据权利要求1所述压缩机的活塞,其特征是,在前述活塞(11)外周面上还设置有用于将附着在气缸孔(2a)内周面上的润滑油汇集在一起的回收装置(16),该回收装置位于始终不从气缸孔(2a)内露出的位置,回收装置(16)内的润滑油通过沿活塞(11)的轴线(S)方向延伸的槽(17)导入曲轴室(5)内。
12、根据权利要求11所述压缩机的活塞,其特征是,前述回收装置是在活塞(11)外周面上形成的回收槽(16)。
13、根据权利要求12所述压缩机的活塞,其特征是,前述的回收槽(16)沿活塞(11)周向延伸。
14、根据权利要求13所述压缩机的活塞,其特征是,前述的回收槽(16)做成环状。
15、根据权利要求12所述压缩机的活塞,其特征是,沿活塞(11)的轴线(S)方向延伸的槽(17)与回收槽(16)隔开,两槽(16)、(17)通过活塞(11)外周面与气缸孔(2a)内周面之间的狭窄间隙(K)连通。
16、根据权利要求12所述压缩机的活塞,其特征是,沿活塞(11)的轴线(S)方向延伸的槽(17)与回收槽(16)连通。
17、根据权利要求12所述压缩机的活塞,其特征是,沿活塞(11)的轴线(S)方向延伸的槽(17)设置在活塞(11)周面上的除了被气缸孔(2a)内周面强力挤压的位置之外的位置。
18、根据权利要求17所述压缩机的活塞,其特征是,假设在从旋转轴(6)的旋转方向(R)为顺时针转动方向一侧看活塞(11)的状态下,以通过旋转轴(6)的中心轴线(L)与活塞(11)的中心轴线(S)的直线(M)为假想的直线,并且,该直线(M)与活塞(11)外周面的交点(P1)、(P2)中远离旋转轴(6)的中心轴线(L)的一个点(P1)为12点钟的位置时,槽(17)设置在活塞(11)周面上的除12点钟的位置、3点钟的位置及6点钟的位置之外的位置上。
19、一种活塞式压缩机,包括具有气缸孔(2a)和曲轴室(5)的壳体(1、2、3)、可转动地支撑于壳体(1、2、3)上的旋转轴(6)、安装在曲轴室(5)内的旋转轴(6)上的驱动体(9)及容纳于气缸孔(2a)内的活塞(11),随着旋转轴(6)的旋转,通过驱动体(9)带动活塞(11)在气缸孔(2a)内从上死点到下死点之间往复移动,
前述活塞(11)带有与气缸孔(2a)内周面滑动接触的外周面,在该外周面上设置有沿活塞(11)轴线(S)方向延伸的槽(17;44;46)。
20、根据权利要求19所述的活塞式压缩机,其特征是,前述槽(17;44;46)为了将积存在活塞(11)外周面与气缸孔(2a)内周面的润滑油导入曲轴室(5)内,在活塞(11)至少移动到下死点时,从气缸孔(2a)内暴露在曲轴室(5)内。
21、根据权利要求20所述的活塞式压缩机,其特征是,前述槽(17;44;46)设置在活塞(11)周面上的除了被气缸孔(2a)内周面强力挤压的位置之外的位置。
22、根据权利要求21的所述活塞式压缩机,其特征是,假设在从旋转轴(6)的旋转方向(R)为顺时针转动方向一侧看活塞(11)的状态下,以通过旋转轴(6)的中心轴线(L)与活塞(11)的中心轴线(S)的直线(M)为假想的直线,并且,该直线(M)与活塞(11)外周面的交点(P1)、(P2)中远离旋转轴(6)的中心轴线(L)的一个点(P1)为12点钟的位置时,槽(17;44;46)设置在活塞(11)周面上的除12点钟的位置、3点钟的位置及6点钟的位置之外的位置上。
23、根据权利要求22所述的活塞式压缩机,其特征是,前述槽(17;44;46)设置在活塞(11)周面上的9点至10点半的范围(E)中。
24、根据权利要求22所述的活塞式压缩机,其特征是,前述槽(17;44;46)设置在活塞(11)周面上的7点半至9点的范围(E3)中。
25、根据权利要求22所述的活塞式压缩机,其特征是,积存在前述活塞(11)外周面与气缸孔(2a)内周面之间的润滑油能抑制气缸孔(2a)内的压缩制冷剂气体经过活塞(11)外周面与气缸孔(2a)内周面之间朝曲轴室(5)内的泄漏,并且使活塞(11)外周面与气缸孔(2a)内周面之间产生粘着力,前述槽(17;44;46)的深度设定在能尽量降低前述粘着力而可抑制制冷剂气体泄漏的不损伤润滑油机能的范围中。
26、根据权利要求22所述的活塞式压缩机,其特征是,前述槽(17;44;46)的活塞(11)的尾部侧端部的内底面做成相对活塞(11)外周面平缓连接的斜面。
27、根据权利要求22所述的活塞式压缩机,其特征是,在前述活塞(11)外周面上还设置有用于将附着在气缸孔(2a)内周面上的润滑油汇集在一起的回收槽(16),该回收槽位于始终不从气缸孔(2a)内露出的位置,回收槽(16)内的润滑油通过沿活塞(11)的轴线(S)方向延伸的槽(17)导入曲轴室(5)内。
28、根据权利要求27所述的活塞式压缩机,其特征是,前述的回收槽(16)沿活塞(11)周向延伸并做成环状。
29、根据权利要求27所述的活塞式压缩机,其特征是,沿活塞(11)的轴线(S)方向延伸的槽(17)与回收槽(16)隔开,两槽(16)、(17)通过活塞(11)外周面与气缸孔(2a)内周面之间的狭窄间隙(K)连通。
30、根据权利要求27所述的活塞式压缩机,其特征是,沿活塞(11)的轴线(S)方向延伸的槽(17),代替在活塞(11)外周面上的形成,而形成在气缸孔(2a)的内周面上,或者除在活塞(11)外周面上的形成之外,还在气缸孔(2a)的内周面上形成。
31、根据权利要求27所述的活塞式压缩机,其特征是,前述活塞(11)是中空状的。
32、根据权利要求27所述的活塞式压缩机,其特征是,前述活塞是一端带有头部的单头活塞(11),前述驱动体包括可一体旋转地安装在旋转轴(6)上的斜盘(9),在该斜盘(9)与活塞(11)尾部之间安装有滑靴(12),斜盘(9)的旋转运动通过滑靴(12)转换成活塞(11)的往复运动。
33、根据权利要求27所述的活塞式压缩机,其特征是,前述活塞是一端带有头部的单头活塞(11),前述驱动体包括可倾斜运动支撑于旋转轴(6)上的斜盘(9),斜盘(9)根据曲轴室(5)内的压力与吸入室(3a)内的压力之间的压差改变相对于旋转轴(6)的倾角,根据斜盘(9)的倾角改变活塞(11)的移动冲程,从而对排出容量进行调整。
CN96190823A 1995-06-05 1996-06-05 压缩机的活塞及活塞式压缩机 Expired - Fee Related CN1118625C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP138241/96 1995-06-05
JP13824195 1995-06-05
JP138241/1996 1995-06-05

Publications (2)

Publication Number Publication Date
CN1163655A CN1163655A (zh) 1997-10-29
CN1118625C true CN1118625C (zh) 2003-08-20

Family

ID=15217380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96190823A Expired - Fee Related CN1118625C (zh) 1995-06-05 1996-06-05 压缩机的活塞及活塞式压缩机

Country Status (8)

Country Link
US (1) US5816134A (zh)
EP (1) EP0789145B1 (zh)
KR (1) KR100191098B1 (zh)
CN (1) CN1118625C (zh)
CA (1) CA2196786C (zh)
DE (1) DE69618557T2 (zh)
TW (1) TW353705B (zh)
WO (1) WO1996039581A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19621174A1 (de) * 1996-05-24 1997-11-27 Danfoss As Kompressor, insbesondere für Fahrzeug-Klimaanlagen
JPH1054347A (ja) * 1996-08-09 1998-02-24 Toyota Autom Loom Works Ltd ピストン及びそれを使用した圧縮機
JPH11107912A (ja) * 1997-10-08 1999-04-20 Sanden Corp 斜板式圧縮機
US6032875A (en) * 1998-04-21 2000-03-07 Caterpillar Inc. Lubricated heavy diesel fuel pump with precipitate build-up inhibiting features
KR100282041B1 (ko) * 1998-11-10 2001-02-15 토마스 데주어 편두피스톤및이것을사용하는가변용량사판식압축기
KR100282043B1 (ko) * 1998-11-10 2001-02-15 신영주 가변용량 사판식 압축기
JP2000356185A (ja) 1999-06-15 2000-12-26 Toyota Autom Loom Works Ltd 斜板式圧縮機用ピストン
JP2001165049A (ja) 1999-12-08 2001-06-19 Toyota Autom Loom Works Ltd 往復式圧縮機
JP4431912B2 (ja) * 1999-09-09 2010-03-17 株式会社ヴァレオサーマルシステムズ 斜板式圧縮機
JP2001107850A (ja) * 1999-10-12 2001-04-17 Zexel Valeo Climate Control Corp 斜板式冷媒圧縮機
US6481240B2 (en) 2001-02-01 2002-11-19 Visteon Global Technologies, Inc. Oil separator
US6591735B2 (en) 2001-02-13 2003-07-15 Visteon Global Technologies, Inc. Swashplate compressor piston having an extra support surface
US6431053B1 (en) 2001-03-08 2002-08-13 Visteon Global Technologies, Inc. Piston for a swashplate reciprocating compressor
US6494930B2 (en) 2001-03-26 2002-12-17 Visteon Global Technologies, Inc. Oil separator having a tortuous path disposed between an inlet and first outlet
DE10124033B4 (de) * 2001-05-16 2009-08-20 Daimler Ag Hubkolbenmaschine mit einer Schiebehülse
DE10124034A1 (de) * 2001-05-16 2002-11-21 Obrist Engineering Gmbh Lusten Hubkolbenmaschine mit einer Gelenkanordnung
US6497114B1 (en) 2001-09-18 2002-12-24 Visteon Global Technologies, Inc. Oil separator
DE10214045B4 (de) * 2002-03-28 2015-07-16 Volkswagen Ag R 744-Kompressor für eine Fahrzeug-Klimaanlage
DE10224428B4 (de) * 2002-06-01 2004-04-08 Danfoss Compressors Gmbh Kolbenverdichter, insbesondere hermetisch gekapselter Kältemittelverdichter
JP4258282B2 (ja) 2002-08-30 2009-04-30 株式会社豊田自動織機 容量可変型斜板式圧縮機
JP2004190507A (ja) * 2002-12-09 2004-07-08 Sanden Corp 斜板式圧縮機
JP4143841B2 (ja) * 2003-09-18 2008-09-03 株式会社アドヴィックス ピストンポンプ
WO2005047699A1 (en) * 2003-11-12 2005-05-26 Matsushita Electric Industrial Co., Ltd. Compressor
DE10360352B4 (de) * 2003-12-22 2016-03-24 Volkswagen Ag Taumelscheibenkompressor für eine CO2 - Klimaanlage mit einer Spaltdicke von 5 bis 20 µm zwischen Hubkolben und Kompressionszylinder
JP4429769B2 (ja) * 2004-03-16 2010-03-10 パナソニック株式会社 密閉型圧縮機
JP4760003B2 (ja) * 2004-12-14 2011-08-31 パナソニック株式会社 密閉型圧縮機
US7753660B2 (en) * 2005-10-18 2010-07-13 Medtronic Minimed, Inc. Infusion device and actuator for same
DE102006052398B4 (de) * 2006-10-31 2012-01-19 Secop Gmbh Kolben, insbesondere für einen Verdichter
US8141689B2 (en) * 2007-10-09 2012-03-27 Bwi Company Limited S.A. Magnetorheological (MR) piston ring with lubricating grooves
KR101343584B1 (ko) * 2007-10-19 2013-12-19 엘지전자 주식회사 왕복동식 압축기
US8814539B2 (en) 2008-05-12 2014-08-26 Panasonic Corporation Hermetic compressor
US8555635B2 (en) * 2009-01-15 2013-10-15 Hallite Seals Americas, Inc. Hydraulic system for synchronizing a plurality of pistons and an associated method
DE102012223334A1 (de) * 2012-12-17 2014-06-18 Robert Bosch Gmbh Kolbenzylindereinheit
JP6016112B2 (ja) * 2012-12-27 2016-10-26 株式会社豊田自動織機 斜板式圧縮機
JP6015433B2 (ja) * 2012-12-27 2016-10-26 株式会社豊田自動織機 斜板式圧縮機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS377540B1 (zh) * 1960-08-27 1962-07-07
JPS4318930Y1 (zh) * 1965-08-30 1968-08-06
JPS5338014U (zh) * 1976-09-08 1978-04-03
US4522112A (en) * 1982-04-26 1985-06-11 Diesel Kiki Co., Ltd. Swash-plate type compressor having improved lubrication of swash plate and shoes
JPH0111985Y2 (zh) * 1985-03-19 1989-04-07
JPH04109481U (ja) * 1991-03-08 1992-09-22 株式会社豊田自動織機製作所 容量可変型斜板式圧縮機
US5382139A (en) * 1992-08-21 1995-01-17 Kabushiki Kaisha Toyoda Jodoshokki Seisakusho Guiding mechanism for reciprocating piston of piston type compressor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274942A (en) * 1940-03-30 1942-03-03 Touborg Jens Lubricated refrigerant compressor
US3061175A (en) * 1959-08-27 1962-10-30 Danfoss Company Compressor
US3106138A (en) * 1960-06-27 1963-10-08 Hans Toma Piston type hydrostatic power units
US3153987A (en) * 1960-06-29 1964-10-27 Thoma Hans Piston type hydrostatic power units
JPS4845209U (zh) * 1971-09-30 1973-06-13
JPS5132962B2 (zh) * 1971-10-09 1976-09-16
US3866519A (en) * 1972-01-27 1975-02-18 Aisin Seiki Piston of piston type fluid pump motor
JPS5522631B2 (zh) * 1973-02-16 1980-06-18
DE2548730C2 (de) * 1975-10-31 1977-11-17 Brueninghaus Hydraulik Gmbh, 7240 Horb Axialkolbenmaschine
JPS5338014A (en) * 1976-09-17 1978-04-07 Hideo Hama Track and direction changing mechanism for track vehicle
DE2724332A1 (de) * 1977-05-28 1978-11-30 Danfoss As Kolben-zylinder-anordnung fuer einen verdichter
JPS6411985A (en) * 1987-07-04 1989-01-17 Nisshin Steel Co Ltd Method for removing oxide film from galvanized steel sheet
US5118263A (en) * 1990-04-27 1992-06-02 Fritchman Jack F Hermetic refrigeration compressor
JP2917466B2 (ja) * 1990-08-29 1999-07-12 松下電器産業株式会社 磁気記録再生装置
US5461967A (en) * 1995-03-03 1995-10-31 General Motors Corporation Swash plate compressor with improved piston alignment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS377540B1 (zh) * 1960-08-27 1962-07-07
JPS4318930Y1 (zh) * 1965-08-30 1968-08-06
JPS5338014U (zh) * 1976-09-08 1978-04-03
US4522112A (en) * 1982-04-26 1985-06-11 Diesel Kiki Co., Ltd. Swash-plate type compressor having improved lubrication of swash plate and shoes
JPH0111985Y2 (zh) * 1985-03-19 1989-04-07
JPH04109481U (ja) * 1991-03-08 1992-09-22 株式会社豊田自動織機製作所 容量可変型斜板式圧縮機
US5174728A (en) * 1991-03-08 1992-12-29 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity swash plate type compressor
US5382139A (en) * 1992-08-21 1995-01-17 Kabushiki Kaisha Toyoda Jodoshokki Seisakusho Guiding mechanism for reciprocating piston of piston type compressor

Also Published As

Publication number Publication date
DE69618557D1 (en) 2002-02-21
CA2196786A1 (en) 1996-12-12
WO1996039581A1 (fr) 1996-12-12
CN1163655A (zh) 1997-10-29
EP0789145B1 (en) 2002-01-16
TW353705B (en) 1999-03-01
KR100191098B1 (ko) 1999-06-15
DE69618557T2 (de) 2002-09-05
EP0789145A4 (en) 1998-12-23
CA2196786C (en) 2000-05-23
KR970001950A (ko) 1997-01-24
EP0789145A1 (en) 1997-08-13
US5816134A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
CN1118625C (zh) 压缩机的活塞及活塞式压缩机
CN1172087C (zh) 可变容压缩机
CN1255630C (zh) 双容量压缩机中的曲轴
CN1137097A (zh) 改进了内部润滑***的旋转斜盘型制冷压缩机
CN1104561C (zh) 可变容量压缩机用控制阀及其组装方法
CN1143718A (zh) 可变容量旋转斜盘型压缩机
CN1102699C (zh) 可变容量压缩机
CN1174938A (zh) 可变容量压缩机及其组装方法
CN1078675C (zh) 可变容量压缩机
CN1273732C (zh) 旋转斜盘型可变容积压缩机
CN1144949C (zh) 变容量压缩机中的控制阀所用的安装机构
CN1277327A (zh) 旋转式压缩机
CN1230618C (zh) 具有带斜向润滑导引表面的活塞旋转限制结构的压缩机
CN1912388A (zh) 压缩机和等速万向节
CN1250873C (zh) 压缩机
CN1032384C (zh) 带可变容量控制装置的斜盘式压缩机
JP2755193B2 (ja) 圧縮機におけるピストン
CN1878955A (zh) 容量可变型斜盘式压缩机
CN1171492A (zh) 压缩机中的阀结构
US6378417B1 (en) Swash plate compressor in which an opening edge of each cylinder bore has a plurality of chamferred portions
CN1576581A (zh) 活塞式压缩机
CN1071844C (zh) 具有改进的旋转斜板支承装置的容量可变型旋转斜板式压缩机
CN1854513A (zh) 用于无离合器式的可变排量压缩机的排量控制阀
KR20120072818A (ko) 사판식 압축기
JP2941432B2 (ja) 圧縮機のピストン及びピストン式圧縮機

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030820

Termination date: 20120605