CN1183550C - 压电陶瓷组合物 - Google Patents

压电陶瓷组合物 Download PDF

Info

Publication number
CN1183550C
CN1183550C CN00131699.0A CN00131699A CN1183550C CN 1183550 C CN1183550 C CN 1183550C CN 00131699 A CN00131699 A CN 00131699A CN 1183550 C CN1183550 C CN 1183550C
Authority
CN
China
Prior art keywords
weight
piezoelectric ceramic
dynamo
composition
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN00131699.0A
Other languages
English (en)
Other versions
CN1289130A (zh
Inventor
佐佐木诚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN1289130A publication Critical patent/CN1289130A/zh
Application granted granted Critical
Publication of CN1183550C publication Critical patent/CN1183550C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种压电陶瓷组合物,其组成为主组分是x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1),以及每1mol重量的主组分,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%W,Sb,Nb,Ta中的至少一种作为副组分以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。

Description

压电陶瓷组合物
(一)技术领域
本发明涉及用于检测振动的陶瓷压电传感器的压电陶瓷组合物,以及特别是适于检测汽车发动机振动的压电陶瓷组合物。
(二)背景技术
当用于检测振动的压电陶瓷传感器使用压电陶瓷组合物时,要求该组合物在厚度方面纵向振动的机电偶合因数kt高(例如,50%或更高)和比介电常数大(例如,1000或更大)的特性。
由于要稳定传感器对环境温度变化的灵敏度,诸如机电偶合因数,电容等压电特性的变化是一种小到与温度变化无关的变化是可取的(例如,就机电偶合因数来说,当温度在-40℃-85℃之间变化时机电偶合因数是-100ppm/℃-100ppm/℃)。
而且,根据使用情况,传感器本身经常受压力作用,因为发动机及其周围设备必须在大的振动下运行,因此要求强度尽可能地高。
已知钛锆酸铅基组合物通常用作陶瓷振荡器或陶瓷滤波器的压电陶瓷组合物,并随使用情况而有各种改进。
例如已知一种材料,其中将Nb,Sb,W,Mn等氧化物加入钛锆酸铅基组合物中以增进陶瓷特性,另一种材料中,复合钙钛矿化合物如Pb(Nb1/2Sb1/2)O3和Pb(Mg1/3Nb2/3)O3作为第三组分在钛锆酸铅基基底组合物中制成固溶体以增进陶瓷特性并进一步加入Nb,Sb,W,Mn的氧化物,或者再一种材料,其中上述组合物中的部分铅用Ba,Sr或Ca取代以改良共振频率的温度特性。
本申请人曾提出将烧绿石类型的Pb2Sb2O7,Ba2Sb2O7或其它复合氧化物制成固溶体在钛锆酸铅基基底陶瓷组合物中作为第三组分,由此获得高的机电偶合因数kt和比介电常数ε,以及电容随温度变化仅产生小的变化(JP-B-54-26716和JP-B-54-26717)。
而且,申请人曾提出将烧绿石类型的Ba2Sb2O7复合氧化物制成固溶体在钛锆酸铅基陶瓷组合物中作为第三组分,加入Nb2O5作为副组分,由此使之获得高的机电偶合因数kt和比介电常数ε,以及机电偶合因数kt的温度特性小(JP-A-50-156700)。
已知常规的压电陶瓷组合物制造要求是使比介电常数和机电偶合因数如用于传动装置的压电陶瓷那样大,尽管在厚度方面纵向机电偶合因数kt和比介电常数ε是大的,但问题是压电特性随温度变化的改变也是大的。
JP-B-54-267116和JP-B-54-26717提出一种方法即加入MnO2以提高机械强度,但问题是该方法使机械质量因数Qm增大,从而不能将产品使用到此类传感器上。
此外,JP-A-50-156700公开了具有良好压电特性和温度特性的压电传感器,但存在机械强度问题,因此该产品不能应用于剧烈振动条件下使用的压电传感器。
(三)发明内容
因此,本发明的目的之一是提供一种具有高的比介电常数和机电偶合因数,同时随温度和机械质量因数变化的压电特性变化小,以及机械强度高的压电陶瓷组合物。
为解决这些问题,本发明公开了以下构成。
(1):压电陶瓷组合物的组成是包括主组分x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1),和以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb和Ta中的至少一种作为副组分,以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。
(2):压电陶瓷组合物的组成是包括主组分x(Me2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,Me是选自Ba和Sr中的至少一种),和以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb和Ta中的至少一种作为副组分,以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。
通过该结构可以获得用于压电传感器的具有极佳的灵敏度和温度特性以及高压电陶瓷强度的压电陶瓷组合物。
将烧绿石类型的Pb2Sn2O7或Me2Sb2O7复合氧化物(Me是选自Ba和Sr中的至少一种)制成固溶体在钛锆酸铅基陶瓷组合物中作为第三组分,从而增进了压电陶瓷特性。由此获得可用于检测振动的压电传感器的压电陶瓷组合物,其中Ti/Zr的比例可在相当宽的范围内。
在1mol重量的主组分中加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb和Ta中的至少一种作为副组分,因为减小陶瓷晶粒直径而可以增进压电陶瓷稳定性以及减小由于温度变化而引起的压电特性变化。因此可以获得用于压电传感器的温度特性变化下的压电陶瓷。
每1mol重量主组分加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分,由此使粘合力增大并提高了压电陶瓷强度而并未使压电陶瓷特性劣化。
如果将Pb组合物的比例变成0.98-0.999,元件强度可以获得更大地提高。
(四)附图说明
图1表示3-点弯曲强度试验结果,此时a数值是变化的。
图2是观测实施例中15号试样元件的粒径的电子显微镜照片;
图3是观测实施例中15号试样元件断面的电子显微镜照片;
图4是实施例中样品号15的副组分Sb2O3加入量为0而作为对比实施例生产的元件的观测其粒径的电子显微镜照片;
图5是实施例中样品号15的SiO2加入量为0而作为对比实施例生产的元件观测其断面的电子显微镜照片。
(五)具体实施方式
以下叙述本发明实施例。
使用化学纯的PbO,TiO2,ZrO2,Sb2O5,Nb2O5,Ta2O5,WO3,BaCO3,和SrCO3作为起始原料,称重的各组分列于表1和2,并用球磨机湿磨。然后,将混合颗粒在空气中850℃-950℃下短暂焙烧,随后使用球磨机湿磨成粉状。
此后,在这样获得的粉末中加入有机粘合剂并造粒,在2000kg/cm2压力下形成直径15mm和厚度1.5mm的盘状结构。形成的产品在大气压下1100℃-1240℃焙烧。
将上述获得的烧结产品表面研磨直至厚度为1.0mm并加工成直径为10mm。然后,在形成银-焙烧电极之后,将烧结产品在80℃-120℃的绝缘油中在2kV/mm-3kV/mm的供电电压下于厚度方向上进行极化处理30分钟以获得待评估元件。
使用阻抗分析仪测定评估元件的元件电容(C),共振频率(fr),以及抗-共振频率(fa)。根据测定结果,计算获得比介电常数(ε),厚度纵向振动的机电偶合因数(kt),以及机械质量因数(Qm)。
针对温度变化产生的压电特性改变,将元件置于常温测试容器中测定在-40℃-85℃的温度变化条件下机电偶合因数kt的变化,同时以20℃为基础,计算-40℃-85℃下的机电偶合因数kt的温度系数。
通过3-点弯曲方法,使用精密负荷测量装置测定并计算压电陶瓷强度。
将上述方法获得的结果列于表1和2。表1和2中的*号表示本发明范围外的对比实施例。
[表1]
样品号                                       组合物 机电偶合因数(kt) 单位介电常数(ε) 机械质量因数(Qm) kt温度系数(kt·TC)
    a   x   y   z      副组分1  SiO2
  mol  mol  mol  mol   Kinds  wt%  wt%  %  -     - ppm/℃
   *1   0.97  0.025  0.52  0.48   WO3  0.5  0.05  40.7  750     120     -70
    2   0.98  0.025  0.52  0.48   WO3  0.5  0.05  50.0  1080     100     -60
    3   0.999  0.025  0.52  0.48   WO3  0.5  0.05  53.5  1860     90     -60
   *4   1  0.025  0.52  0.48   WO3  0.5  0.05  54.2  2010     80     -40
  *5   0.99  0  0.51  0.49   WO3  0.5  0.05  46.4  930     350     -250
    6   0.99  0.005  0.51  0.49   WO3  0.5  0.05  51.3  1220     100     -30
    7   0.99  0.05  0.52  0.48   WO2  0.5  0.05  56.8  1870     80     100
   *8   0.99  0.06  0.52  0.48   WO3  0.5  0.05  55.5  1940     80     550
   *9   0.99  0.025  0.52  0.48   WO3  0  0.05  50.0  1480     90     -210
    10   0.99  0.025  0.52  0.48   WO3  0.1  0.05  51.2  1520     90     -70
    11   0.99  0.025  0.52  0.48   WO3  1.0  0.05  50.6  1510     90     90
   *12   0.99  0.025  0.52  0.48   WO3  1.3  0.05  41.8  1270     100     460
    13   0.99  0.025  0.52  0.48   WO3  0.5  0.1  53.3  1570     90     -80
   *14   0.99  0.025  0.52  0.48   WO3  0.5  0.13  42.9  1330     100     -150
    15   0.99  0.025  0.52  0.48   Nb2O3  0.5  0.05  54.3  1610     90     -40
    16   0.99  0.025  0.52  0.48   Sb2O3  0.5  0.05  55.7  1630     90     -60
    17   0.99  0.025  0.52  0.48   TA2O3  0.5  0.05  54.4  1620     90     -50
18 0.99 0.025 0.52 0.48   Nb2O3Sb2O3  0.30.2 0.05 54.8 1650 90 -50
19 0.99 0.025 0.52 0.48   Ta2O3Nb2O3  0.30.2 0.05 54.6 1640 90 -50
20 0.99 0.025 0.52 0.48   WO3Ta2O3  0.30.2 0.05 55.3 1690 90 -60
21 0.99 0.025 0.52 0.48   Sb2O3Nb2O3Ta2O3  0.20.20.2 0.05 54.5 1710 90 -70
22 0.99 0.025 0.52 0.48   Sb2O3Ta2O3Nb2O3WO3  0.10.10.10.1 0.05 55.5 1600 90 -30
   *23   0.99  0.05  0.55  0.45   WO3  0.5  0.05  50.6  1100     100     300
    24   0.99  0.05  0.54  0.46   WO3  0.5  0.05  51.2  1660     90     100
    25   0.99  0.01  0.50  0.50   WO3  0.5  0.05  51.3  1120     100     -40
    26   0.99  0.01  0.49  0.51   WO3  0.5  0.05  48.8  970     120     100
*:表示超出本发明范围的比较例。
[表2]
样品号     组合物 机电偶合因数(kt) 单位介电常数(ε) 机械质量因数(Qm)   kt温度系数(kt·TC)
    Ma     a     x     y     z        副组分1   SiO2
  Kinds   mol  mol   mol   mol  Kinds   wt%   wt%     %   -     -   ppm/℃
    *27     Sr  0.97  0.025  0.52  0.48   WO3  0.5  0.05   41.1   760     120     -80
    28     Sr  0.98  0.025  0.52  0.48   WO3  0.5  0.05   50.3   1080     100     -80
    29     Sr  0.999  0.025  0.52  0.48   WO3  0.5  0.05   53.8   1840     80     -70
   *30     Sr  1  0.025  0.52  0.48   WO3  0.5  0.05   54.9   2030     70     -50
   *31     Sr  0.99  0  0.51  0.49   Sb2O3  0.5  0.05   46.3   920     340     -240
    32     Sr  0.99  0.005  0.51  0.49   Sb2O3  0.5  0.05   51.5   1210     100     -20
    33     Sr  0.99  0.05  0.52  0.48   Sb2O3  0.5  0.05   56.1   1880     80     100
   *34     Sr  0.99  0.06  0.52  0.48   Sb2O3  0.5  0.05   57.0   1960     70     580
   *35     Sr  0.99  0.025  0.52  0.48   WO3  0  0.05   50.2   1490     90     -220
    36     Sr  0.99  0.025  0.52  0.48   WO3  0.1  0.1   51.9   1540     90     -70
    37     Sr  0.99  0.025  0.52  0.48   WO3  1.0  0.05   50.8   1530     90     90
   *38     Sr  0.99  0.025  0.52  0.48   WO3  1.3  0.05   41.7   1270     100     450
    39     Sr  0.99  0.025  0.52  0.46   WO3  0.5  0.1   53.5   1580     90     -90
   *40     Sr  0.99  0.025  0.52  0.48   WO3  0.5  0.13   42.8   1350     90     -160
    41     Sr  0.99  0.025  0.52  0.48   Nb2O3  0.5  0.05   54.9   1630     90     -40
    42     Sr  0.99  0.025  0.52  0.48   Sb2O3  0.5  0.05   56.4   1650     90     -50
    43     Sr  0.99  0.025  0.52  0.48   Ta2O3  0.5  0.05   54.6   1640     90     -60
    44     Ba  0.99  0.025  0.52  0.48   WO3  0.5  0.05   53.7   1600     90     -60
    45     Ba  0.99  0.025  0.52  0.48   Nb2O3  0.5  0.05   54.5   1620     90     -50
    46     Ba  0.99  0.025  0.52  0.48   Sb2O3  0.5  0.05   55.9   1640     90     -60
    47     Ba  0.99  0.025  0.52  0.48   TA2O3  0.5  0.05   54.6   1630     90     -70
48     SrBa 0.99  0.010.01 0.52 0.48 WO3 0.5 0.05 53.8 1600 90 -60
49     SrBa 0.99  0.010.01 0.52 0.48 Nb2O3 0.5 0.05 53.2 1570 90 -40
50     SrBa 0.99  0.010.01 0.52 0.48 Sb2O3 0.5 0.05 53.7 1600 90 -50
51     SrBa 0.99  0.010.01 0.52 0.48 TA2O3 0.5 0.05 53.5 1590 90 -70
    52     Sr  0.99  0.025  0.52  0.48   Sb2O3Nb2O3  0.20.3 0.05 55.1 1680 90 -50
53 Ba 0.99 0.025 0.52 0.48   Sb2O3Nb2O3  0.30.2 0.05 55.0 1660 90 -60
54     BaSr 0.99  0.010.01 0.52 0.48   Ta2O3Nb2O3  0.30.2 0.05 53.0 1590 90 -60
    55     Sr  0.99  0.025  0.52  0.48   WO3Ta2O3  0.30.2  0.05   55.5   1720     80     -70
56 Sr 0.99 0.025 0.52 0.48   Sb2O3Nb2O3Ta2O3  0.20.20.2 0.05 55.1 1750 80 -80
57 Sr 0.99 0.025 0.52 0.48   Sb2O3Nb2O3Ta2O3WO3  0.10.10.10.1 0.05 55.8 1610 90 -50
   *58     Sr  0.99  0.05  0.55  0.45   Sb2O3  0.5  0.05   50.8   1120     100     310
    59     Sr  0.99  0.05  0.54  0.46   Sb2O3  0.5  0.05   51.3   1690     90     100
    60     Sr  0.99  0.01  0.50  0.50   Sb2O3  0.5  0.05   51.5   1140     100     -50
   *61     Sr  0.99  0.01  0.49  0.51   Sb2O3  0.5  0.05   48.9   980     110     110
*:表示超出本发明范围的比较例。
本发明组合物如下所述。
(1)第一种压电陶瓷组合物的组成如下:
主组分是x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1)。作为副组分,加入W,Sb,Nb和Ta中的至少一种。以每1mol重量的主组分计,W,Sb,Nb,Ta的加入量是换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%。另外,加入Si作为副组分,以及每1mol重量的主组分计,加入Si的量是换算成SiO2的0.01-0.1重量%。
(2)第二种压电陶瓷组合物的组成如下:
主组分是x(Me2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,Me是选自Ba和Sr的至少一种)。作为副组分,加入W,Sb,Nb和Ta中的至少一种。以每1mol重量的主组分计,W,Sb,Nb,Ta的加入量是换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%。另外,加入Si作为副组分,以及每1mol重量的主组分计,加入Si的量是换算成SiO2的0.01-0.1重量%。
对上述本发明组合物的限定条件的理由如下所述。
(1):如果x小于0.005,由于机电偶合因数(kt)和比介电常(ε)小,同时机械质量因数(Qm)高,因此这种产品不适用于本发明(参见样品号5和31)。相反,如果x大于0.05,机电偶合因数(kt)的温度系数的绝对值是大的(参见样品号8和34)。
(2):如果z小于0.46或y大于0.54,由于机电偶合因数(kt)的温度系数绝对值高,因此这种产品不适用于本发明(参见样品号23和58)。如果z大于0.50或y小于0.50,则不能获得理想的机电偶合因数(kt)和比介电常数(ε)(参见样品号26和61)。
(3):图2是作为本发明实施例的样品15号的研磨面进行蚀刻处理后的电子显微镜照片,而图4是样品15号中副组分Sb2O3加入量为0获得对比样品的电子显微镜照片,并测定对比样品。
可见图2实施例中,粒径小于图4的对比实施例,以及颗粒大小比图4的对比实施例更加均匀。上述对比清楚表明,加入副组分Sb2O3对粒径的细度和均匀性有效果。
就副组分的含量而言,针对每1mol重量的主组分,换算成WO3,Sb2O3,Nb2O5和Ta2O5的W,Sb,Nb和Ta中的至少一种的含量如果小于0.1重量%,不可能获得上述效果,而且机电偶合因数(kt)的温度系数绝对值高(参见样品号9和35)。相反,如果该含量大于1.0重量%,机电偶合因数(kt)的温度系数绝对值也是高的而机电偶合因数(kt)小,因此这种产品不适用于本发明(参见样品号12和38)。
(4):图3是本发明实施例样品号15的元件断面的电子显微镜照片,以及图5是样品号15中SiO2加入量为0的以本发明实施例同样方法获得的断面电子显微镜照片。
可见当SiO2作为图3实施例中的副组分存在时,在断面上几乎看不到颗粒阴影,以及断面发生在颗粒内。这意味着颗粒之间的粘合力强。相反,可见当图5的对比实施例没有加入副组分SiO2时,颗粒阴影是清楚的同时断面发生在颗粒界面。这意味着颗粒之间的粘合力弱。通过比较,加入副组分SiO2的效果是显而易见的。
当副组分SiO2的加入量大于0.1重量%时,机电耦合因数(kt)是小的,同时机电偶合因数的温度系数绝对值大,因此这种产品不适用于本发明(参见样品号14和40)。
(5):如果a小于0.98,则不能获得理想的机电偶合因数(kt)和比介电常(ε)(参见样品号1和27)。
图1表示3-点弯曲强度试验结果,此时a数值是变化的。图1中,表示的是样品(1)和样品(2)的3-点弯曲强度试验结果,此时压电陶瓷组合物中a数值是变化的。样品(1)和样品(2)组合物表达如下:样品(1):0.025(Pb2Sb2O7)1/2·0.975[Pba(Zr0.52Ti0.48)O3]+Nb2O50.5重量%+SiO20.05重量%,以及样品(2):0.025(Sr2Sb2O7)1/2·0.975[Pba(Zr0.52Ti0.48)O3]+Nb2O50.5重量%+SiO20.05重量%。
从图1可以明显看出,当a数值超出0.98-0.999范围时3-点弯曲强度显著降低(参见样品号4和30)。
如上所述,本发明提供了一种压电陶瓷组合物,其组成为主组分是x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1)。以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%W,Sb,Nb,Ta中的至少一种作为副组分以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。根据本发明压电陶瓷组合物,获得的该组合物具有高比介电常数和机电耦合因数,和小的机械质量因数,同时压电陶瓷随温度变化的改变小,以及强度高。另一种压电陶瓷组合物的组成为主组分是x(Me2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3]条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,Me是选自Ba和Sr中的至少一种),以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%W,Sb,Nb,Ta中的至少一种作为副组分以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。
形成的用于压电传感器的压电陶瓷组合物,其传感器具有良好的灵敏度和温度特性和高可靠性的压电陶瓷强度。

Claims (2)

1.一种压电陶瓷组合物,其包含;
主组分为x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3],条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,以及y+z=1;
每1mol重量的主组分加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb,Ta中的至少一种;和
每1mol重量的主组分加入换算成SiO2的0.01-0.1重量%的Si。
2.一种压电陶瓷组合物,其包含:
主组分为x(Me2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3],条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,以及Me是Ba和Sr中的至少一种,
每1mol重量的主组分加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb,Ta中的至少一种;
每1mol重量的主组分加入换算成SiO2的0.01-0.1重量%的Si。
CN00131699.0A 1999-09-20 2000-09-20 压电陶瓷组合物 Expired - Fee Related CN1183550C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26474199A JP2001089237A (ja) 1999-09-20 1999-09-20 圧電磁器組成物
JP264741/1999 1999-09-20

Publications (2)

Publication Number Publication Date
CN1289130A CN1289130A (zh) 2001-03-28
CN1183550C true CN1183550C (zh) 2005-01-05

Family

ID=17407541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00131699.0A Expired - Fee Related CN1183550C (zh) 1999-09-20 2000-09-20 压电陶瓷组合物

Country Status (4)

Country Link
US (1) US6402981B1 (zh)
EP (1) EP1085585A3 (zh)
JP (1) JP2001089237A (zh)
CN (1) CN1183550C (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310031B2 (en) * 2002-09-17 2007-12-18 M/A-Com, Inc. Dielectric resonators and circuits made therefrom
US7057480B2 (en) * 2002-09-17 2006-06-06 M/A-Com, Inc. Cross-coupled dielectric resonator circuit
US7067965B2 (en) * 2002-09-18 2006-06-27 Tdk Corporation Piezoelectric porcelain composition, piezoelectric device, and methods of making thereof
US20040257176A1 (en) * 2003-05-07 2004-12-23 Pance Kristi Dhimiter Mounting mechanism for high performance dielectric resonator circuits
US20050200437A1 (en) * 2004-03-12 2005-09-15 M/A-Com, Inc. Method and mechanism for tuning dielectric resonator circuits
US7088203B2 (en) * 2004-04-27 2006-08-08 M/A-Com, Inc. Slotted dielectric resonators and circuits with slotted dielectric resonators
US7388457B2 (en) 2005-01-20 2008-06-17 M/A-Com, Inc. Dielectric resonator with variable diameter through hole and filter with such dielectric resonators
US7583164B2 (en) * 2005-09-27 2009-09-01 Kristi Dhimiter Pance Dielectric resonators with axial gaps and circuits with such dielectric resonators
US7352264B2 (en) * 2005-10-24 2008-04-01 M/A-Com, Inc. Electronically tunable dielectric resonator circuits
EP1959510A4 (en) 2005-12-08 2012-07-11 Murata Manufacturing Co LAMINATED PIEZOELECTRIC ELEMENT AND MANUFACTURING PROCESS
US7705694B2 (en) * 2006-01-12 2010-04-27 Cobham Defense Electronic Systems Corporation Rotatable elliptical dielectric resonators and circuits with such dielectric resonators
US7719391B2 (en) * 2006-06-21 2010-05-18 Cobham Defense Electronic Systems Corporation Dielectric resonator circuits
US20080272860A1 (en) * 2007-05-01 2008-11-06 M/A-Com, Inc. Tunable Dielectric Resonator Circuit
US7456712B1 (en) * 2007-05-02 2008-11-25 Cobham Defense Electronics Corporation Cross coupling tuning apparatus for dielectric resonator circuit
CN113293320B (zh) * 2021-06-21 2022-03-18 福州大学 一种Te元素掺杂四方相Sr2Sb材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087366A (en) * 1973-11-30 1978-05-02 Tdk Electronic Company Method of preparing a piezoelectric ceramic composition
JPS50156700A (zh) 1974-06-07 1975-12-18
GB1469239A (en) * 1974-09-06 1977-04-06 Secr Defence Piezoelectric ceramics
US4184971A (en) * 1976-07-29 1980-01-22 Tdk Electronic Co. Ferromagneticpiezoelectric ceramic composition
JPS5426717A (en) 1977-08-01 1979-02-28 Clarion Co Ltd Magnetic tape device
JPS5426716A (en) 1977-08-01 1979-02-28 Clarion Co Ltd Magnetic tape device
JPS5453296A (en) * 1978-06-26 1979-04-26 Tdk Corp Ferrodielectric piezo-electric porcelain material
JPH04224168A (ja) 1990-12-21 1992-08-13 Toyota Motor Corp 圧電磁器組成物
JP3221049B2 (ja) 1991-07-23 2001-10-22 株式会社村田製作所 圧電磁器組成物
JP3384043B2 (ja) * 1993-07-19 2003-03-10 株式会社村田製作所 圧電磁器
JPH10120463A (ja) * 1996-10-11 1998-05-12 Tdk Corp 圧電磁器組成物
JP3588542B2 (ja) * 1997-12-09 2004-11-10 Tdk株式会社 圧電磁器組成物

Also Published As

Publication number Publication date
EP1085585A3 (en) 2004-02-04
EP1085585A2 (en) 2001-03-21
JP2001089237A (ja) 2001-04-03
CN1289130A (zh) 2001-03-28
US6402981B1 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
CN1183550C (zh) 压电陶瓷组合物
EP2119685B1 (en) Piezoelectric ceramic and piezoelectric element
US7056443B2 (en) Piezoelectric ceramic production method and piezoelectric element production method
EP2431343B1 (en) Piezoelectric ceramic, method for producing same, and piezoelectric device
KR100601068B1 (ko) 압전자기 및 그 제조방법, 및 압전소자
CN1267274A (zh) 可与银在降低的烧结温度下共烧结的低损耗pzt陶瓷组合物和其制备方法
CN1219297C (zh) 压电陶瓷组合物和使用该组合物的压电器件
KR20110038600A (ko) 압전 세라믹 조성물 및 이것을 이용한 압전 소자
EP0722918B1 (en) Piezoelectric ceramic composition
CN1269773A (zh) 高效压电陶瓷
CN1016504B (zh) 高压电应变常数的铁电陶瓷
US6322718B1 (en) Piezoelectric ceramic compositions and methods for production thereof
JP3468461B2 (ja) 圧電セラミック組成物
JP3830315B2 (ja) 圧電磁器組成物
JP3761355B2 (ja) 圧電磁器組成物
JP3481832B2 (ja) 圧電磁器
JPH11240759A (ja) アクチュエータ用圧電磁器
CN1161314A (zh) 压电陶瓷
JP3981221B2 (ja) 圧電磁器
CN1215486C (zh) 压电陶瓷组合物及采用压电陶瓷组合物的压电陶瓷元件
JP3771776B2 (ja) 圧電磁器組成物
CN1167083C (zh) 压电陶瓷材料以及使用该材料的整体式压电转换器
JPH0438710B2 (zh)
JP3761970B2 (ja) 圧電磁器組成物
JP3318480B2 (ja) 圧電磁器組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050105

Termination date: 20150920

EXPY Termination of patent right or utility model