CN117457865A - 一种利用ald技术制备复合碳负极的方法和复合碳负极 - Google Patents

一种利用ald技术制备复合碳负极的方法和复合碳负极 Download PDF

Info

Publication number
CN117457865A
CN117457865A CN202311376223.3A CN202311376223A CN117457865A CN 117457865 A CN117457865 A CN 117457865A CN 202311376223 A CN202311376223 A CN 202311376223A CN 117457865 A CN117457865 A CN 117457865A
Authority
CN
China
Prior art keywords
layer
silicon
porous carbon
metal
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311376223.3A
Other languages
English (en)
Other versions
CN117457865B (zh
Inventor
解明
张宣宣
李煜宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Rouchuang Nanometer Technology Co ltd
Roudian Wuhan Technology Co ltd
Original Assignee
Ningbo Rouchuang Nanometer Technology Co ltd
Roudian Wuhan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Rouchuang Nanometer Technology Co ltd, Roudian Wuhan Technology Co ltd filed Critical Ningbo Rouchuang Nanometer Technology Co ltd
Priority to CN202311376223.3A priority Critical patent/CN117457865B/zh
Publication of CN117457865A publication Critical patent/CN117457865A/zh
Application granted granted Critical
Publication of CN117457865B publication Critical patent/CN117457865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/12Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • C23C16/20Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及锂离子电池负极材料的制备方法技术领域,尤其涉及一种利用ALD技术制备复合碳负极的方法和复合碳负极。包括多孔碳基体和位于多孔碳基体孔道内部的复合纳米包覆层,所述复合纳米包覆层是由纳米硅层及金属氧化物层交替组成,纳米硅层和金属氧化物层是二氧化硅层与金属层通过金属热还原反应转化获得,所述二氧化硅层和金属层均为利用ALD原子沉积法在多孔碳基体孔道内部交替沉积所得的薄膜。能够实现硅和碳的化学接触,有效提高硅碳负极材料的循环寿命和克容量发挥,并避免了传统CVD技术固有的危险。

Description

一种利用ALD技术制备复合碳负极的方法和复合碳负极
技术领域
本发明涉及锂离子电池负极材料的制备方法技术领域,尤其涉及利用ALD技术制备复合碳负极的方法和复合碳负极。
背景技术
随着锂电池在电动汽车、可穿戴设备和储能***等领域的广泛应用,对于高容量负极材料的需求不断增加。目前更多的研究都在追求高理论容量的电极材料来取代目前已经发展的石墨负极材料。其中,硅基负极材料是最具有吸引力的替代品,因其具有非常高的理论容量4200mAh g-1(形成全锂化状态Li4 .4Si)和低放电电压 (Si的平均脱嵌锂电压为0.4V)。然而,由于其在充放电过程中的大体积变化(高达311%)所引起的开裂和粉碎,使得电极循环寿命受到限制。
一个限制硅基电极循环寿命长的关键因素,是使硅纳米粒子具有自由膨胀空间。另一个限制硅基电极循环寿命长的关键因素,是不稳定的固体电解质界面(SEI)在电极的表面形成。如果SEI层变形或断裂,在下一个充电过程需要在电极表面形成新的SEI,这将导致电池库仑效率差,同时堆积的固体电解质界面(SEI)也会阻碍锂离子的传输。许多研究都集中在提高电极的稳定性使得锂离子电池在几十甚至到几百次循环仍具有相对高的容量。
传统的硅碳负极制备中(CN106848268A和CN110311125A),常采用CVD(化学气相沉积)方法在石墨的孔隙裂解硅烷气体,从而在石墨的孔隙内部沉积纳米硅颗粒。然而,由于硅烷气体的危险性,使用起来存在一定的安全隐患。此外,现有技术CN102456876A和CN116730322A也采用了通过人造多孔碳材料,在多孔碳材料表面裂解硅烷气体,从而在多孔碳的孔洞内部沉积纳米硅颗粒,但多孔碳孔洞一般在纳米级别,且孔径分布不均,导致沉积的硅纳米颗粒很难进入孔道内部,或者容易将孔洞堵塞。这些问题限制了硅碳负极材料的性能发挥。目前以上方法制备的硅碳负极材料的可逆比容量不超过1900mAh/g,循环100圈容量保持率不超过88%,循环500周容量保持率不超过76%。
现有技术仍然是远远无法满足其在实际应用中所需的循环寿命。因此,现有应用于锂离子电池负极材料的制备方法的纳米硅基材料制备技术还有待改进。
发明内容
本发明旨在解决目前仅硅碳负极可逆比容量低,循环容量保持率低,且制备方法不安全,制备方法中硅的沉积不可控的问题。以及还原硅的温度较高的问题。
本发明第一方面提供一种利用ALD技术制备的复合碳负极,所述复合碳负极包括多孔碳基体和位于多孔碳基体孔道内部的复合纳米包覆层,所述复合纳米包覆层包括纳米硅及金属氧化物,纳米硅及金属氧化物是二氧化硅层与金属层通过金属热还原反应转化获得,所述二氧化硅层和金属层均为利用ALD原子沉积法在多孔碳基体孔道内部交替沉积所得的薄膜。
所述多孔碳基体的平均介孔孔径为 50nm ,连接孔孔径为10nm,多孔碳基体的孔径分布于30~100纳米,所述多孔碳基体的内壁沉积复合纳米包覆层后,还保留孔结构,孔结构的体积为多孔碳基体介孔的至少2/3的空间。
所述复合碳负极的平均介孔孔径为33nm,比表面积为27.2m2/g,所述纳米硅的质量为所述复合碳负极的33wt%。
优选地,本发明第二方面提供一种利用ALD技术制备所述复合碳负极的方法,包括以下步骤:
S1、将多孔碳基体放入ALD反应室中,反应室内通入强氧化气体,用于在多孔碳基体表面形成含有含氧的活性官能团的活性层,再重复多次交替通入气相硅源和强氧化气体,在多孔碳基体表面和孔洞内部包覆二氧化硅层;
S2、完成S1后,向反应室内重复多次交替通入气相金属源和反应前驱体,以此获得覆盖在二氧化硅层上的金属层;
S3、多次重复S1和S2步骤,获得多层交替排布的二氧化硅层和金属层;
S4、将沉积有S3所得产物放置在高温炉中,利用金属热还原反应将二氧化硅还原成纳米硅层。
优选地,所述气相硅源为SiCl4,所述气相金属源为Al(CH3),反应前驱体为H2
优选地,所述气相硅源为SiCl4,所述气相金属源为AlCl3,反应前驱体为AlH2(tBuN)CH2CH2(NMe2)。
优选地,所述气相硅源为SiCl4,所述气相金属源为Al(CH3),反应前驱体为TiCl4,以及所得金属层为Al/Ti层。
优选地,所述气相硅源为SiCl4,所述气相金属源为二乙基锌(diethyl zinc(DEZ) ),反应前驱体为FeCl3,以及所得金属层为Zn/Fe层。
优选地,所述气相硅源为SiCl4,所述气相金属源为Al(CH3),反应前驱体为二乙基锌(diethyl zinc (DEZ) ),以及所得金属层为Al/Zn层。
优选地,所述气相硅源可替换为Si(OMe)4
优选地,一种锂离子电池,包括所述的复合碳负极或任一项所述的复合碳负极的制备方法制备得到的复合碳负极。
与现有技术相比,本技术方案的有益效果如下:
1、通过采用ALD技术在多孔碳表面和孔洞里面沉积二氧化硅纳米和强还原性金属纳米颗粒,再利用金属热反应将二氧化硅还原成纳米硅颗粒,形成硅碳负极材料和金属氧化物的混合物。相较于传统的物理混合方法,本发明能够实现硅和碳的化学接触,有效提高硅碳负极材料的循环寿命和克容量发挥。
2、ALD具有自限制性和可控性的特点,适合在高长径比的孔洞中沉积,能够将二氧化硅沉积在多孔碳的孔道内部的墙壁上,并根据孔径大小来调节二氧化硅的大小,避免堵塞孔洞。这与传统CVD方法难以实现在纳米级别孔洞内的沉积相比具有明显优势。
3、本发明避免了使用危险的硅烷气体,减少了操作的风险和安全隐患。采用金属热反应还原二氧化硅形成纳米硅颗粒,可以使纳米硅颗粒与多孔碳形成化学接触,并能够沉积在多孔碳的孔道内部。同时,金属氧化物能有效限制硅的体积膨胀,避免与有机电解液发生不必要的副反应。
4、本发明相对于传统的硅碳负极材料制备方法具有更好的循环寿命和克容量发挥,并且在操作安全性和硅的体积膨胀控制方面也具有明显的优越性。
附图说明
图1为利用ALD在碳基体内形成的6纳米SiO2/2.5纳米Al金属纳米叠层;
图2为硅碳复合负极在200mA/g电流密度下的循环保持率;
图3为商用硅碳复合负极在200mA/g电流密度下的循环保持率。
具体实施方式
以下描述提供了本申请的特定应用场景和要求,目的是使本领域技术人员能够制造和使用本申请中的内容。对于本领域技术人员来说,对所公开的实施例的各种局部修改是显而易见的,并且在不脱离本公开的精神和范围的情况下,可以将这里定义的一般原理应用于其他实施例和应用。因此,本公开不限于所示的实施例,而是与权利要求一致的最宽范围。
下面结合实施例和附图对本发明技术方案进行详细说明。
在本申请整个说明书中,符号Me表示甲基、tBu表示叔丁基、tBuN代表叔丁基氮、NMe2代表二甲胺基。
实施例1:硅碳复合负极材料的制备方法
本实施例涉及一种制备硅碳复合负极材料的方法,该方法利用ALD技术在多孔碳表面和孔洞里面沉积纳米二氧化硅和纳米强还原性金属的交替层,再利用金属热反应将二氧化硅还原成纳米硅层,形成硅碳负极材料和金属氧化物的混合物。
步骤1:准备多孔碳基体
多孔碳基体孔径主要分布于10~100纳米,优选多孔碳基体的孔径主要分布于30~50纳米。本实施例所用的多孔碳基体平均介孔孔径为50nm,连接孔孔径为10nm ,比表面积60m2/g。
步骤2:ALD沉积二氧化硅
将多孔碳基体放置在ALD反应室中,然后通过ALD反应器中供应的硅源和金属源,分别进行连续的ALD沉积过程。在ALD沉积过程中,硅源和金属源交替供应到多孔碳表面和孔洞内部,以形成二氧化硅纳米和强还原性金属铝或镁或锌纳米颗粒。ALD具有自限制性和生长可控性,因此可以在多孔碳的孔洞内部沉积二氧化硅和金属,且可以根据孔径大小来调节二氧化硅和金属的大小,避免将孔洞堵塞。多孔碳基体的孔径主要分布于30~100纳米时,在孔壁内形成沉积层,还保留孔结构,孔结构的体积为多孔碳基体介孔的至少2/3的空间。该孔结构供电解液传输。
(1)将多孔碳基体粉末放入一个具有微孔大小的多孔容器;
(2)将多孔容器放入ALD反应室中,抽真空、置换氮气三次,反应室升温至50~150℃,反应室维持在10torr的压力;
(3)采用氮气流化方式,使得粉末在多孔腔体内悬浮并充分混合,流化压力10torr,氮气流速50sccm;
(4)强氧化气体在50sccm流速的N2的携带下脉冲进入ALD反应腔,温度范围在50-150℃,保持10torr气压半小时,然后N2吹洗时间为90s。强氧化气体包括O3、H2O2、NO2、氧原子中的任意一种。强氧化气体在多孔碳基体表面形成含有含氧的活性官能团的活性层。
(5)反应室升温至250~400℃,反应室维持在100torr的压力,前驱体SiCl4在50sccm流速的N2的携带下脉冲进入反应室,吸附在多孔碳基体粉末上,脉冲时间为120s,然后用50sccmN2吹洗并带走剩余的SiCl4,N2吹洗时间为90s,同样氧源蒸汽在50sccm N2的携带下脉冲进入反应室,并与已化学吸附在多孔碳基体粉末上的SiCl4反应,生成SiO2,时间为45s,随后过量的水及副产物由50sccm N2吹洗带出反应室,吹洗时间为90s,这样就完成了一个ALD沉积循环;
(6)重复步骤(5)10次,得到包覆层厚度为1.2nm的SiO2层。即使多孔碳基体的表面和孔内包覆1.2nm厚的SiO2层,在多孔碳基体的孔内保留孔洞供电解液传输。
(7)前驱体A:Al(CH3)在50sccm流速的N2的携带下脉冲进入反应室,吸附在包覆SiO2的多孔碳基体粉末上,脉冲时间为120s,然后用50sccm N2吹洗并带走剩余的Al(CH3),N2吹洗时间为90s,同样前驱体B:H2的等离子体在50sccm N2的携带下脉冲进入反应室,并与已化学吸附在包覆SiO2的多孔碳基体粉末上的Al(CH3)反应,生成Al,时间为45s,随后过量的H2及副产物由50sccm N2吹洗带出反应室,吹洗时间为90s,这样就完成了一个ALD沉积循环;
(8)重复步骤(7)3次,得到包覆层厚度为0.5nm的Al层。即使包覆SiO2的多孔碳基体粉末的表面和孔内包覆0.5nm厚的Al层。
(9)重复步骤(5)~步骤(8)5次在多孔碳基体的孔内包覆交替的SiO2层和Al层共8.5nm,保留至少33nm的孔洞供电解液传输。
步骤3:高温热还原
在600℃下利用铝热将二氧化硅还原成纳米硅颗粒。具体操作为,将经过ALD沉积的多孔碳材料放置在高温反应器中,然后通过加热反应器,使铝与二氧化硅发生热反应。在高温下(例如600℃),将二氧化硅会被还原成纳米硅颗粒,与多孔碳形成硅碳负极材料和氧化铝的混合物,如图1在碳基体内形成的6纳米SiO2/2.5纳米Al金属纳米叠层。这些纳米硅颗粒可以进入多孔碳的孔道内部,提高硅碳负极材料的克容量发挥。本实施例中一方面通过金属还原二氧化硅,降低了反应温度,另一方面保留的金属氧化物层能束缚管状的硅材料使硅沿介孔的长度方向延伸限制径向体积膨胀。第三方面未使用碳热还原方式还保护了碳基体,避免碳热反应中碳原子转化为CO2时,消弱限制多孔硅体积膨胀的载体的强度,从而提高硅碳负极材料的性能和循环寿命。
实施例2
在实施例1的基础上,将实施例1中步骤(7)~(8)中的前驱体A和前驱体B分别替换为AlCl3和AlH2(tBuN)CH2CH2(NMe2),反应室温度设置为100℃,重复步骤(8)1次得到包覆层厚度为0.4nm的Al层。重复步骤(5)~步骤(8)5次在多孔碳基体的孔内包覆交替的SiO2层和Al层共8nm,保留至少34nm的孔洞供电解液传输。
实施例3
在实施例1的基础上,将实施例1中步骤(7)~(8)中的前驱体B替换为TiCl4,反应室温度设置为250℃,重复步骤(8)2次得到包覆层厚度为0.5nm的Al层。重复步骤(5)~步骤(8)5次在多孔碳基体的孔内包覆交替的SiO2层和Al/Ti层共8.5nm,在多孔碳基体的孔内保留至少33nm的孔洞供电解液传输。
实施例4
在实施例1的基础上,将实施例1中步骤(6)中重复包覆次数改为20次,将实施例1中步骤(7)~(8)中的前驱体A和前驱体B分别替换为二乙基锌(diethyl zinc (DEZ) )和FeCl3,反应室温度设置为260℃,重复步骤(8)1次得到包覆层厚度为0.9nm的Zn/Fe层。重复步骤(5)~步骤(8)3次在多孔碳基体的孔内包覆交替的SiO2层和Zn/Fe层共8.5nm,在多孔碳基体的孔内保留至少33nm的孔洞供电解液传输。
实施例5
在实施例1的基础上,将实施例1中步骤(7)~(8)中的前驱体B替换为二乙基锌(diethyl zinc (DEZ) ),反应室温度设置为150℃,重复步骤(8)3次得到包覆层厚度为0.45nm的Al/Zn层。重复步骤(5)~步骤(8)5次在多孔碳基体的孔内包覆交替的SiO2层和Al/Zn层共8.5nm,在多孔碳基体的孔内保留至少33nm的孔洞供电解液传输。
实施例6
实施例1中,步骤(5)中的前驱体SiCl4还可以替换为Si(OMe)4
分别采用实施例1~6制得的硅碳复合负极材料和商用硅碳复合负极(贝特瑞牌硅碳复合负极,BSO-2)组装扣式电池,对其进行电化学性能测试。
其中,扣式电池的制备方法如下:
将复合硅碳负极材料、炭黑和聚丙烯酸(PAA)以8:1:1的重量比混合,分散在去离子水中形成均匀的浆料。随后将浆料通过刮刀法浇铸在铜箔上,并在60℃下真空干燥12h,得到负极极片。
在充满惰性气体的手套箱中组装2016型扣式电池,其中H2O和O2的含量均低于0.1ppm。采用1M的LiPF6(EC:EMC:DMC=1:1:1,vol%)和3%的FEC作为电解液和PP隔膜。
使用LAND CT2001A电池测试***在室温下进行恒电流充电/放电测试,充放电电压窗口为0.01~1V,电流密度为200 mA/g。
实施例1制得的硅碳复合负极材料中的多孔硅含量为35wt%,多孔硅的平均介孔孔径为33nm,比表面积为27.2m2/g, 多孔硅的首次放电比容量为3540mAh/g,如图2所示,以1C倍率循环充放电500次后,比容量保持率为99%。而如图3所示商用硅碳复合负极在200mA/g电流密度下的循环保持率为80.8%。
通过以上实施例,可以实现在多孔碳负极材料中沉积二氧化硅和强还原性金属铝或镁或锌纳米颗粒,并利用铝热或镁热或锌热反应将其将二氧化硅还原成纳米硅颗粒,形成高比表面的多孔硅或氧化铝或氧化锌的混合物,多孔碳基体的孔结构对多孔硅在充放电过程中的体积膨胀期起到了缓冲作用,减轻了多孔硅的体积膨胀,多孔碳基体还提高了材料自身的电子电导和离子电导。本发明的ALD原子沉积技术能精确控制二氧化硅在多孔碳基体的孔结构中的沉积厚度,使二氧化硅的在孔结构中的沉积体积精确控制在孔结构体积的1/3以下,避免了硅在充放电过程中的大体积变化引起的多孔碳基体的开裂和粉碎,同时ALD原子沉积技术沉积二氧化硅后还保留了硅材料的介孔结构,避免堵塞多孔碳的孔洞,供电解液传输,提高硅碳负极材料的性能和循环寿命。此外金属层一方面通过金属还原二氧化硅,降低了反应温度,另一方面保留的金属氧化物层能束缚管状的硅材料使硅沿介孔的长度方向延伸限制径向体积膨胀,第三方面未使用碳热还原方式还保护了碳基体,避免碳热反应中碳原子转化为CO2时消弱限制多孔硅体积膨胀的载体的强度,从而提高硅碳负极材料的性能和循环寿命。该方法使用了ALD技术,避免了使用危险的硅烷气体,并且可以控制二氧化硅的沉积位置和大小,避免堵塞多孔碳的孔洞。

Claims (9)

1. 一种复合碳负极,其特征在于,所述复合碳负极包括多孔碳基体和位于多孔碳基体孔道内部的复合纳米包覆层,所述复合纳米包覆层包括纳米硅及金属氧化物,纳米硅及金属氧化物是二氧化硅层与金属层通过金属热还原反应转化获得,所述二氧化硅层和金属层均为利用ALD原子沉积法在多孔碳基体孔道内部交替沉积所得的薄膜,所述多孔碳基体的平均介孔孔径为 50nm ,连接孔孔径为10nm,多孔碳基体的孔径分布于30~100纳米,所述多孔碳基体的内壁沉积复合纳米包覆层后,还保留孔结构,孔结构的体积为多孔碳基体介孔的至少2/3的空间。
2.如权利要求1所述的复合碳负极,其特征在于,所述复合碳负极的平均介孔孔径为33nm,比表面积为27.2m2/g,所述纳米硅的质量为所述复合碳负极的33wt%。
3.一种利用ALD技术制备如权利要求1~2任一项所述的复合碳负极的方法,其特征在于,包括以下步骤:
S1、将多孔碳基体放入ALD反应室中,反应室内通入强氧化气体,用于在多孔碳基体表面形成含有含氧的活性官能团的活性层,再重复多次交替通入气相硅源和强氧化气体,在多孔碳基体表面和孔洞内部包覆二氧化硅层;
S2、完成S1后,向反应室内重复多次交替通入气相金属源和反应前驱体,以此获得覆盖在二氧化硅层上的金属层;
S3、多次重复S1和S2步骤,获得多层交替排布的二氧化硅层和金属层;
S4、将沉积有S3所得产物放置在高温炉中,利用金属热还原反应将二氧化硅还原成纳米硅层;
所述气相硅源为SiCl4或Si(OMe)4
4.如权利要求3所述的方法,其特征在于,所述气相硅源为SiCl4,所述气相金属源为Al(CH3),反应前驱体为H2
5.如权利要求3所述的方法,其特征在于,所述气相硅源为SiCl4,所述气相金属源为AlCl3,反应前驱体为AlH2(tBuN)CH2CH2(NMe2)。
6.如权利要求3所述的方法,其特征在于,所述气相硅源为SiCl4,所述气相金属源为Al(CH3),反应前驱体为TiCl4,以及所得金属层为Al/Ti层。
7.如权利要求3所述的方法,其特征在于,所述气相硅源为SiCl4,所述气相金属源为二乙基锌(diethyl zinc (DEZ) ),反应前驱体为FeCl3,以及所得金属层为Zn/Fe层。
8.如权利要求3所述的方法,其特征在于,所述气相硅源为SiCl4,所述气相金属源为Al(CH3),反应前驱体为二乙基锌(diethyl zinc (DEZ) ),以及所得金属层为Al/Zn层。
9.一种锂离子电池,其特征在于,所述锂离子电池包括如权利要求1~2任一项所述的复合碳负极或如权利要求3-8任一项所述的复合碳负极的制备方法制备得到的复合碳负极。
CN202311376223.3A 2023-10-23 2023-10-23 一种利用ald技术制备复合碳负极的方法和复合碳负极 Active CN117457865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311376223.3A CN117457865B (zh) 2023-10-23 2023-10-23 一种利用ald技术制备复合碳负极的方法和复合碳负极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311376223.3A CN117457865B (zh) 2023-10-23 2023-10-23 一种利用ald技术制备复合碳负极的方法和复合碳负极

Publications (2)

Publication Number Publication Date
CN117457865A true CN117457865A (zh) 2024-01-26
CN117457865B CN117457865B (zh) 2024-04-30

Family

ID=89588465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311376223.3A Active CN117457865B (zh) 2023-10-23 2023-10-23 一种利用ald技术制备复合碳负极的方法和复合碳负极

Country Status (1)

Country Link
CN (1) CN117457865B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346303A (zh) * 2013-06-19 2013-10-09 奇瑞汽车股份有限公司 一种硅碳复合材料及其制备方法、锂离子电池
CN104701487A (zh) * 2013-12-10 2015-06-10 通用汽车环球科技运作有限责任公司 用于获得高性能硅阳极的纳米复合涂层
CN105247638A (zh) * 2013-06-28 2016-01-13 英特尔公司 用于能量储存装置的稳健多孔电极
CN107240677A (zh) * 2016-03-28 2017-10-10 国家纳米科学中心 一种微纳结构化碳硅复合微球及其制备方法和用途
CN108431994A (zh) * 2015-08-11 2018-08-21 工业研究与发展基金会有限公司 金属氟化物涂覆的嵌锂材料和其制备方法及其用途
CN110817839A (zh) * 2019-12-06 2020-02-21 华南师范大学 一种将二氧化碳还原为多孔碳材料的方法及多孔碳材料和应用
CN111755669A (zh) * 2019-03-27 2020-10-09 贝特瑞新材料集团股份有限公司 一种复合材料、其制备方法及用途
CN113675392A (zh) * 2021-07-28 2021-11-19 四川九源芯材料科技有限公司 一种多孔硅碳复合材料及其制备方法和应用
CN115911326A (zh) * 2022-11-28 2023-04-04 胜华新材料科技(眉山)有限公司 一种低膨胀、长寿命硅碳复合材料及其制备方法
CN115911292A (zh) * 2021-09-30 2023-04-04 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池
CN115986085A (zh) * 2023-01-06 2023-04-18 四川物科金硅新材料科技有限责任公司 一种三维碳骨架硅基负极材料及其制备方法
CN116598452A (zh) * 2023-05-15 2023-08-15 江门市和创新能源材料有限公司 一种硅碳负极材料及其制备方法和应用
CN116799178A (zh) * 2023-06-19 2023-09-22 浙江锂宸新材料科技有限公司 一种硅碳负极材料及其制备方法、锂离子电池
CN116826010A (zh) * 2023-07-26 2023-09-29 浙江锂宸新材料科技有限公司 一种锂离子电池负极材料及其制备方法和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346303A (zh) * 2013-06-19 2013-10-09 奇瑞汽车股份有限公司 一种硅碳复合材料及其制备方法、锂离子电池
CN105247638A (zh) * 2013-06-28 2016-01-13 英特尔公司 用于能量储存装置的稳健多孔电极
CN104701487A (zh) * 2013-12-10 2015-06-10 通用汽车环球科技运作有限责任公司 用于获得高性能硅阳极的纳米复合涂层
CN108431994A (zh) * 2015-08-11 2018-08-21 工业研究与发展基金会有限公司 金属氟化物涂覆的嵌锂材料和其制备方法及其用途
CN107240677A (zh) * 2016-03-28 2017-10-10 国家纳米科学中心 一种微纳结构化碳硅复合微球及其制备方法和用途
CN111755669A (zh) * 2019-03-27 2020-10-09 贝特瑞新材料集团股份有限公司 一种复合材料、其制备方法及用途
CN110817839A (zh) * 2019-12-06 2020-02-21 华南师范大学 一种将二氧化碳还原为多孔碳材料的方法及多孔碳材料和应用
CN113675392A (zh) * 2021-07-28 2021-11-19 四川九源芯材料科技有限公司 一种多孔硅碳复合材料及其制备方法和应用
CN115911292A (zh) * 2021-09-30 2023-04-04 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池
CN115911326A (zh) * 2022-11-28 2023-04-04 胜华新材料科技(眉山)有限公司 一种低膨胀、长寿命硅碳复合材料及其制备方法
CN115986085A (zh) * 2023-01-06 2023-04-18 四川物科金硅新材料科技有限责任公司 一种三维碳骨架硅基负极材料及其制备方法
CN116598452A (zh) * 2023-05-15 2023-08-15 江门市和创新能源材料有限公司 一种硅碳负极材料及其制备方法和应用
CN116799178A (zh) * 2023-06-19 2023-09-22 浙江锂宸新材料科技有限公司 一种硅碳负极材料及其制备方法、锂离子电池
CN116826010A (zh) * 2023-07-26 2023-09-29 浙江锂宸新材料科技有限公司 一种锂离子电池负极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN117457865B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
Nie et al. Graphene caging silicon particles for high‐performance lithium‐ion batteries
JP6306767B1 (ja) リチウム二次電池陰極材用シリコン複合酸化物及びその製造方法
JP6328107B2 (ja) 膨張特性を有する電池活物質用のマルチシェル構造体
JP4266509B2 (ja) リチウム二次電池用負極活物質及びその製造方法
US9196901B2 (en) Lithium battery electrodes with ultra-thin alumina coatings
KR20180028511A (ko) 금속 및 금속-이온 배터리들을 위한 안정적인 리튬 불화물계 캐소드들
EP3345235B1 (en) Cathode and cathode materials for lithium sulfur batteries
JP2022533857A (ja) 複合負極材料、その調製方法及びリチウムイオン電池
CN106537659A (zh) 用于非水电解质可充电电池的负极活性材料及其制备方法和包含该负极活性材料的非水电解质可充电电池
KR20190116011A (ko) 규소-산화규소-탄소 복합체 및 규소-산화규소-탄소 복합체의 제조 방법
Karimzadeh et al. Emerging atomic layer deposition for the development of high-performance lithium-ion batteries
WO2015010230A1 (en) Method for preparing hollow silicon spheres as well as hollow silicon spheres prepared therefrom
KR20180072112A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN107509388A (zh) 电池电极和方法
Du et al. In situ sulfur loading in graphene-like nano-cell by template-free method for Li–S batteries
KR20210021932A (ko) 규소·산화규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
CN113948692A (zh) 一种用于锂离子二次电池的含有惰性涂层包覆的硅氧化物复合材料及其制备
JP2023553708A (ja) 金属イオンバッテリ用電気活性材料
CN108923037A (zh) 一种富硅SiOx-C材料及其制备方法和应用
TWI551545B (zh) 氧化矽-碳複合材料及其製法
Lee et al. Atomic layer deposition-based synthesis of TiO2 and Al2O3 thin-film coatings on nanoparticle powders for sodium-ion batteries with enhanced cyclic stability
KR101773129B1 (ko) 메조포러스 실리카 탄소나노섬유 복합체의 제조방법 및 이를 이용한 이차전지 제조방법
KR102299178B1 (ko) 규소산화물 제조장치 및 제조방법, 규소산화물 음극재
CN117457865B (zh) 一种利用ald技术制备复合碳负极的方法和复合碳负极
US11916227B2 (en) Multilayer body and method for producing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant