CN116612973B - 一种高致密钕铁氮磁体的制备方法 - Google Patents

一种高致密钕铁氮磁体的制备方法 Download PDF

Info

Publication number
CN116612973B
CN116612973B CN202310329506.6A CN202310329506A CN116612973B CN 116612973 B CN116612973 B CN 116612973B CN 202310329506 A CN202310329506 A CN 202310329506A CN 116612973 B CN116612973 B CN 116612973B
Authority
CN
China
Prior art keywords
magnet
magnetic powder
neodymium iron
density
iron nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310329506.6A
Other languages
English (en)
Other versions
CN116612973A (zh
Inventor
廖雪峰
周庆
曾炜炜
卢赐福
唐仁衡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Shengyuan Permanent Magnet Material Co ltd
Original Assignee
Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences filed Critical Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences
Priority to CN202310329506.6A priority Critical patent/CN116612973B/zh
Publication of CN116612973A publication Critical patent/CN116612973A/zh
Application granted granted Critical
Publication of CN116612973B publication Critical patent/CN116612973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种高致密钕铁氮磁体的制备方法,引入低熔点金属Cu或Ga降低前驱体各向同性Ndx(Fe1‑yMoy)12Mz磁粉中富Nd晶界相的熔点,然后将氮化过程和热压烧结过程相结合,在氮化处理的同时控制工艺参数实现液相烧结,提供一种在氮化时烧结致密化制备钕铁氮磁体的工艺,在不影响永磁性能的情况下,获得具有高致密度的钕铁氮磁体,解决了常规工艺中钕铁氮磁粉由于存在高熔点(>2500℃)的NdN晶界相而无法在低于钕铁氮分解温度(>630℃)下液相烧结导致现有钕铁氮磁体致密度低,无法实现高磁性能的问题。

Description

一种高致密钕铁氮磁体的制备方法
技术领域:
本发明涉及钕铁氮稀土永磁材料制备技术领域,具体涉及一种高致密钕铁氮磁体的制备方法。
背景技术:
稀土永磁是国民经济中重要的功能材料之一。第三代稀土永磁钕铁硼系(Nd2Fe14B)自1983年被发现以来已被用于众多应用中。然而,2011年稀土原材料价格暴涨引起的全球稀土危机重燃了研究者对上世纪九十年代提出的低稀土永磁的研究兴趣。与Nd2Fe14B相比,具有ThMn12四方结构的NdFe12化合物中稀土含量降低了约1/3,但同样表现出优异的内禀磁性能,因此展现出广阔的应用前景。NdFe12相在室温下为热力学亚稳态,需要在Fe(8i)晶位引入稳定元素M(M=Ti、Mo、V等)使其稳定,因此NdFe12也通常写成Nd(Fe,M)12。Nd(Fe,M)12化合物室温下的单轴各向异性场HA较弱,一般低于1T,而通过气-固相反应将N原子引入到2b间隙位能显著提高其HA至~10T。目前,通过氮化处理制备得到的钕铁氮(Nd(Fe,M)12N)磁粉的矫顽力Hc已经突破1T。但是,钕铁氮磁粉高温下会发生分解,无法通过常规的液相烧结进行致密化。因此,如何将具有优异硬磁性能的钕铁氮磁粉制备成具有实用价值的高性能磁体是目前面临的难题。
对于稀土永磁材料,通过致密化提高剩磁Jr是实现高性能磁体的关键。永磁体的致密化工艺一般采用高温烧结,即在高于晶界相熔点的温度下利用晶界熔化成液相而进行液相烧结。钕铁氮在高温下(>630℃)不稳定,会发生分解而失去硬磁性能,因此限制了其热处理工艺温度。虽然前驱体Nd(Fe,M)12中的晶界相是低熔点的(>600℃)富Nd相,但是在经过氮化处理后,Nd(Fe,M)12N氮化物磁粉中的晶界相也会同步被氮化为高熔点的(<2500℃)NdN化合物。因此,钕铁氮磁粉无法在低于其分解温度的条件下进行烧结致密化。
目前,普遍采用低温粘结工艺制备半致密磁体,导致其剩磁Jr有限,最大磁能积(BH)max较低。比如,授权公告号CN109148068B的中国专利提供一种适合3D打印的磁粉、粘结磁体及其制备方法,其通过一定比例混合钕铁氮磁粉和粘结剂得到适合3D打印机的丝材或颗粒料,从而进行3D打印得到钕铁氮磁体;授权公告号CN102832002B的中国专利提供一种环保无卤性稀土复合磁性材料,该稀土复合磁性材料包含钕铁氮磁粉和无卤粘结剂;授权公告号CN106312077B的中国专利提供亚微米晶钐基或钕基氮化物磁粉制备粘结磁体的方法,同样也需要用到粘结剂。
总结目前的专利,可以发现制备钕铁氮磁体的工艺都是粘结,但粘结磁体中必须用到非磁性的粘接剂,粘接剂使用量5-30wt.%不等,这会造成磁粉在磁体中的占比降低,严重稀释磁性能。并且,粘接磁体中磁粉是通过粘接耦合在一起,其密度远低于常规的液相烧结磁体,因此无法实现高剩磁和高磁能积,未能将氮化物磁体外禀磁性能最大化。
发明内容:
本发明的目的是提供一种高致密钕铁氮磁体的制备方法,引入低熔点金属Cu或Ga降低前驱体各向同性Ndx(Fe1-yMoy)12Mz磁粉中富Nd晶界相的熔点,然后在氮化处理的同时控制工艺参数实现液相烧结,解决了现有技术钕铁氮磁粉无法在低于其分解温度(>630℃)的条件下进行烧结致密化导致现有钕铁氮磁体致密度低,无法实现高磁性能的问题。
本发明是通过以下技术方案予以实现的:
一种高致密钕铁氮磁体的制备方法,将以原子百分比所表示的组成成分为Ndx(Fe1-yMoy)12Mz母合金磁粉装在模具中,放入氮气气氛的热压烧结炉中,在500-600℃下进行氮化的同时烧结压制成型,得到高致密的钕铁氮磁体;其中,1≤x≤1.5,0.1≤y≤0.2,0.1≤z≤0.5,M是低熔点金属元素Cu或Ga中至少一种元素。
Ndx(Fe1-yMoy)12Mz母合金磁粉的制备包括以下步骤:以Nd、Fe、Mo、Cu和Ga为原料,按Ndx(Fe1-yMoy)12Mz合金磁粉化学式进行配料和感应熔炼,得到合金铸锭,接着,采用熔体快淬法制备得到纳米晶合金带材,随后,将合金带材在氩气保护下球磨破碎成粒径小于40μm的各向同性Ndx(Fe1-yMoy)12Mz母合金磁粉。
为保证母合金中形成一定量的富稀土晶界相,母合金要为富Nd成分,因此1≤x≤1.5。
Mo元素的作用是稳定NdFe12主相、抑制bcc-Fe相和无序相NdFe7。而非磁性Mo元素添加量太高会导致磁稀释作用,降低合金磁粉的饱和磁极化强度,但Mo添加量少又不能起到稳定主相的作用,导致杂相析出。因此,Mo需要控制添加量,0.1≤y≤0.2。
M是低熔点金属元素Cu或Ga中至少一种元素,其作用是与Nd形成低熔点共晶相分布于主相周围,进一步降低富稀土晶界相的熔点。同样的,非磁性Cu或Ga元素会造成磁稀释,因此需要控制含量,即0.1≤z≤0.5。
优选地,在Ndx(Fe1-yMoy)12Mz母合金磁粉放入模具后放入热压烧结炉,利用真空***和高纯氩气对炉腔清洗三次,随后通入高纯氮气至1.0bar-1.2bar正压。
优选地,在炉体升温前对模具中松装磁粉施加轴向预压力,预压力为10MPa-50MPa。升温速率为10℃/min,当温度达到500-600℃后,立即提高轴向压力至800MPa-1000MPa并保温30min-120min,随后炉冷至室温。
优选地,在冷却过程中仍然保持轴向压力,直至炉体冷却至室温。
本发明的显著特点在于,首先,在母合金成分选择上,本发明引入低熔点金属Cu或Ga,降低前驱体Ndx(Fe1-yMoy)12Mz母合金磁粉中富Nd晶界相的熔点。其次,本发明利用前驱体Ndx(Fe1-yMoy)12Mz母合金磁粉中熔点低于600℃的富Nd晶界相,在氮化处理的同时控制工艺参数实现液相烧结。第三,本发明在氮化-液相烧结过程中施加轴向压力,进一步强化磁体的致密过程。
本发明的有益效果:
与现有的钕铁氮磁体制备工艺相比,本发明具有如下优点:
1)在产品性能上,本发明制备的钕铁氮磁体具有比现有粘结磁体更高的致密度,实现了更高的剩磁和最大磁能积。并且,磁体全部由钕铁氮组成,不存在任何非磁性的粘结剂,解决了粘结磁体中磁稀释问题。
2)在工艺上,本发明缩短了钕铁氮磁体制备工艺流程,提高了生产效率。常规的制备工艺有三步:磁粉制备+氮化处理+(粘结)成型,而本发明合并氮化处理和成型工艺,在氮化时液相烧结,具有工艺成本低、流程简单、效率高的有益效果。
总之,本发明引入低熔点金属Cu或Ga降低前驱体各向同性Ndx(Fe1-yMoy)12Mz磁粉中富Nd晶界相的熔点,然后将氮化过程和热压烧结过程相结合,在氮化处理的同时控制工艺参数实现液相烧结,提供一种在氮化时烧结致密化制备钕铁氮磁体的工艺,在不影响永磁性能的情况下,获得具有高致密度的钕铁氮磁体,解决了常规工艺中钕铁氮磁粉由于存在高熔点(>2500℃)的NdN晶界相而无法在低于钕铁氮分解温度(>630℃)下液相烧结导致现有钕铁氮磁体致密度低,无法实现高磁性能的问题。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
磁粉制备:用纯度为99.9wt.%以上的Nd、Fe、Mo、Cu和Ga为原料,按Nd1.5(Fe0.8Mo0.2)12Cu0.3Ga0.2化学式进行配料和感应熔炼,得到合金铸锭。接着,采用熔体快淬法制备得到纳米晶合金带材,水冷铜锟表面线速度为15m/s。随后,将合金带材在氩气保护下球磨破碎成粒径小于40μm的Nd1.5(Fe0.8Mo0.2)12Cu0.3Ga0.2母合金磁粉粉末。
磁体制备:将Nd1.5(Fe0.8Mo0.2)12Cu0.3Ga0.2母合金磁粉松装至内径为8mm的硬质合金模具后放入热压烧结炉中,利用机械泵对炉腔进行抽真空,随后通入高纯氮气至常压,反复清洗炉腔三次,最后一次通入氮气至1.2bar正压。接着,对模具中松装磁粉施加轴向预压力50MPa,以10℃/min的升温速率使炉体到达600℃预设工艺温度,将轴向压力提高至1000MPa,随后保温120min。保温结束后随炉冷却至室温,在此期间,轴向压力保持不变。室温下脱模后得到钕铁氮磁体。
磁体测试:采用阿基米德排水法对钕铁氮磁体进行密度测试,测试三遍取平均密度,测得磁体密度为8.0g/cm3,致密度达到95%(钕铁氮磁体理论密度~8.4g/cm3)。采用永磁测量仪对磁体进行磁性能测试,磁体矫顽力为5.7kOe,最大磁能积为11.8MGOe。
对比例1:
参考实施例1,不同之处在于磁体制备过程。采用在温度为600℃的氮气气氛的热处理炉中氮化120min,得到钕铁氮磁粉。随后以3wt.%环氧树脂为粘结剂制备粘结钕铁氮磁体。粘结钕铁氮磁体密度为5.9g/cm3,致密度为73%,矫顽力为5.8kOe,最大磁能积为7.2MGOe。
对比例2:
参考实施例1,不同之处在于磁体制备过程,采用在温度为600℃的氮气气氛的热处理炉中氮化120min,得到钕铁氮磁粉。随后,松装至模具中放入热压烧结中,在600℃下以1000MPa轴向压力压制120min,得到钕铁氮磁体。经测量,磁体密度为5.2g/cm3,致密度为62%,矫顽力为5.2kOe,最大磁能积为4.7MGOe。
实施例2:
磁粉制备:用纯度为99.9wt.%以上的Nd、Fe、Mo、Cu为原料,按Nd1.3(Fe0.8Mo0.2)12Cu0.2化学式进行配料和感应熔炼,得到合金铸锭。接着,采用熔体快淬法制备得到纳米晶合金带材,水冷铜锟表面线速度为15m/s。随后,将合金带材在氩气保护下球磨破碎成粒径小于40μm的Nd1.3(Fe0.8Mo0.2)12Cu0.2母合金磁粉粉末。
磁体制备:将Nd1.3(Fe0.8Mo0.2)12Cu0.2母合金磁粉松装至内径为8mm的硬质合金模具后放入热压烧结炉中,利用机械泵对炉腔进行抽真空,随后通入高纯氮气至常压,反复清洗炉腔三次,最后一次通入氮气至1.1bar正压。接着,对模具中松装磁粉施加轴向预压力10MPa,以10℃/min的升温速率使炉体到达500℃预设工艺温度,将轴向压力提高至800MPa,随后保温30min。保温结束后随炉冷却至室温,在此期间,轴向压力保持不变。室温下脱模后得到钕铁氮磁体。
磁体测试:采用阿基米德排水法对钕铁氮磁体进行密度测试,测试三遍取平均密度,测得磁体密度为7.7g/cm3,致密度达到92%。采用永磁测量仪对磁体进行磁性能测试,磁体矫顽力为5.0kOe,最大磁能积为8.5MGOe。
实施例3:
磁粉制备:用纯度为99.9wt.%以上的Nd、Fe、Mo、Ga为原料,按Nd1.5(Fe0.8Mo0.2)12Ca0.5化学式进行配料和感应熔炼,得到合金铸锭。接着,采用熔体快淬法制备得到纳米晶合金带材,水冷铜锟表面线速度为15m/s。随后,将合金带材在氩气保护下球磨破碎成粒径小于40μm的Nd1.5(Fe0.8Mo0.2)12Ca0.5母合金磁粉粉末。
磁体制备:将Nd1.5(Fe0.8Mo0.2)12Ca0.5母合金磁粉松装至内径为8mm的硬质合金模具后放入热压烧结炉中,利用机械泵对炉腔进行抽真空,随后通入高纯氮气至常压,反复清洗炉腔三次,最后一次通入氮气至1.2bar正压。接着,对模具中松装磁粉施加轴向预压力50MPa,以10℃/min的升温速率使炉体到达550℃预设工艺温度,将轴向压力提高至800MPa,随后保温90min。保温结束后随炉冷却至室温,在此期间,轴向压力保持不变。室温下脱模后得到钕铁氮磁体。
磁体测试:采用阿基米德排水法对钕铁氮磁体进行密度测试,测试三遍取平均密度,测得磁体密度为8.0g/cm3,致密度达到95%。采用永磁测量仪对磁体进行磁性能测试,磁体矫顽力为5.6kOe,最大磁能积为10.8MGOe。
实施例4:
磁粉制备:用纯度为99.9wt.%以上的Nd、Fe、Mo、Ga为原料,按Nd1.1(Fe0.9Mo0.1)12Ca0.1Cu0.1化学式进行配料和感应熔炼,得到合金铸锭。接着,采用熔体快淬法制备得到纳米晶合金带材,水冷铜锟表面线速度为15m/s。随后,将合金带材在氩气保护下球磨破碎成粒径小于40μm的Nd1.1(Fe0.9Mo0.1)12Ca0.1Cu0.1母合金磁粉粉末。
磁体制备:将Nd1.1(Fe0.9Mo0.1)12Ca0.1Cu0.1母合金磁粉松装至内径为8mm的硬质合金模具后放入热压烧结炉中,利用机械泵对炉腔进行抽真空,随后通入高纯氮气至常压,反复清洗炉腔三次,最后一次通入氮气至1.2bar正压。接着,对模具中松装磁粉施加轴向预压力30MPa,以10℃/min的升温速率使炉体到达600℃预设工艺温度,将轴向压力提高至800MPa,随后保温60min。保温结束后随炉冷却至室温,在此期间,轴向压力保持不变。室温下脱模后得到钕铁氮磁体。
磁体测试:采用阿基米德排水法对钕铁氮磁体进行密度测试,测试三遍取平均密度,测得磁体密度为7.9g/cm3,致密度达到94%。采用永磁测量仪对磁体进行磁性能测试,磁体矫顽力为5.3kOe,最大磁能积为9.7MGOe。
以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想,应当指出,对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (3)

1.一种高致密钕铁氮磁体的制备方法,其特征在于,将以原子百分比所表示的组成成分为Ndx(Fe1-yMoy)12Mz母合金磁粉装在模具中,放入氮气气氛的热压烧结炉中,在500-600℃下进行氮化的同时烧结压制成型,得到高致密的钕铁氮磁体;在炉体升温前对模具中松装磁粉施加轴向预压力,预压力为10MPa-50 MPa,升温速率为10℃/min,当温度达到500-600℃后,立即提高轴向压力至800MPa-1000 MPa并保温30min-120min,随后炉冷至室温,在冷却过程中仍然保持轴向压力,直至炉体冷却至室温;其中,1≤x≤1.5,0.1≤y≤0.2,0.1≤z≤0.5,M是低熔点金属元素Cu或Ga中至少一种元素。
2.根据权利要求1所述的制备方法,其特征在于,Ndx(Fe1-yMoy)12Mz母合金磁粉的制备包括以下步骤:以Nd、Fe、Mo、Cu和Ga为原料,按Ndx(Fe1-yMoy)12Mz合金磁粉化学式进行配料和感应熔炼,得到合金铸锭,接着,采用熔体快淬法制备得到纳米晶合金带材,随后,将合金带材在氩气保护下球磨破碎成粒径小于40μm的各向同性Ndx(Fe1-yMoy)12Mz母合金磁粉。
3.根据权利要求1所述的制备方法,其特征在于,在Ndx(Fe1-yMoy)12Mz母合金磁粉放入模具后放入热压烧结炉,利用真空***和高纯氩气对炉腔清洗三次,随后通入高纯氮气至1.0bar-1.2bar正压。
CN202310329506.6A 2023-03-30 2023-03-30 一种高致密钕铁氮磁体的制备方法 Active CN116612973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310329506.6A CN116612973B (zh) 2023-03-30 2023-03-30 一种高致密钕铁氮磁体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310329506.6A CN116612973B (zh) 2023-03-30 2023-03-30 一种高致密钕铁氮磁体的制备方法

Publications (2)

Publication Number Publication Date
CN116612973A CN116612973A (zh) 2023-08-18
CN116612973B true CN116612973B (zh) 2023-12-05

Family

ID=87680689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310329506.6A Active CN116612973B (zh) 2023-03-30 2023-03-30 一种高致密钕铁氮磁体的制备方法

Country Status (1)

Country Link
CN (1) CN116612973B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355354A (zh) * 2015-12-15 2016-02-24 北京科技大学 一种钐铁氮基各向异性稀土永磁粉及其制备方法
CN105609224A (zh) * 2016-03-14 2016-05-25 北京科技大学 一种各向异性钐铁氮永磁粉的制备方法
JP2016201478A (ja) * 2015-04-10 2016-12-01 住友電気工業株式会社 希土類磁石素材、及び希土類磁石素材の製造方法
CN109982791A (zh) * 2016-11-28 2019-07-05 国立大学法人东北大学 稀土类铁氮系磁性粉末及其制造方法
JP2020132926A (ja) * 2019-02-15 2020-08-31 学校法人千葉工業大学 サマリウム−鉄系希土類永久磁石材料及びその製造方法
WO2022126949A1 (zh) * 2020-12-16 2022-06-23 横店集团东磁股份有限公司 一种稀土磁体的氮化方法及氮化稀土磁体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201478A (ja) * 2015-04-10 2016-12-01 住友電気工業株式会社 希土類磁石素材、及び希土類磁石素材の製造方法
CN105355354A (zh) * 2015-12-15 2016-02-24 北京科技大学 一种钐铁氮基各向异性稀土永磁粉及其制备方法
CN105609224A (zh) * 2016-03-14 2016-05-25 北京科技大学 一种各向异性钐铁氮永磁粉的制备方法
CN109982791A (zh) * 2016-11-28 2019-07-05 国立大学法人东北大学 稀土类铁氮系磁性粉末及其制造方法
JP2020132926A (ja) * 2019-02-15 2020-08-31 学校法人千葉工業大学 サマリウム−鉄系希土類永久磁石材料及びその製造方法
WO2022126949A1 (zh) * 2020-12-16 2022-06-23 横店集团东磁股份有限公司 一种稀土磁体的氮化方法及氮化稀土磁体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Nitrogenation studies of Nd2Fe17 alloys;V. V. Hong,et al;《Physica B: Condensed Matter》;第327卷(第2-4期);404-409 *
Sm2Fe17Nx稀土永磁体;韩瑞平等;《河北工业大学学报》;第32卷(第1期);82-85 *
卢赐福等.(Sm,Ce)-Fe-Cu合金中的相平衡与元素偏析.《中国会议》.2020,87. *

Also Published As

Publication number Publication date
CN116612973A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
KR960008185B1 (ko) 희토류-철계 영구자석 및 이의 제조방법
KR101687981B1 (ko) 희토류 영구자석 분말, 그것을 포함한 접착성 자성체 및 접착성 자성체를 응용한 소자
JPH01704A (ja) 希土類−鉄系永久磁石
CN103056370A (zh) 一种提高烧结钕铁硼磁材料矫顽力的方法
CN104841927A (zh) 高耐蚀性、高耐候性稀土永磁材料的制备方法
CN111378907A (zh) 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法
JPS62276803A (ja) 希土類−鉄系永久磁石
US5213631A (en) Rare earth-iron system permanent magnet and process for producing the same
JPH01219143A (ja) 焼結永久磁石材料とその製造方法
CN116612973B (zh) 一种高致密钕铁氮磁体的制备方法
CN1024968C (zh) 一种稀土-铁-硼永磁材料的制取方法
JPS62198103A (ja) 希土類−鉄系永久磁石
KR20240017949A (ko) 내식성, 고성능 NdFeB 소결 자석 및 이의 제조 방법과 용도
CN1186154C (zh) 一种还原扩散法制造稀土铁硼永磁合金粉末的方法
JPH023201A (ja) 永久磁石
JPH0617535B2 (ja) 永久磁石材料の製造方法
JPH0142338B2 (zh)
JP2609106B2 (ja) 永久磁石およびその製造方法
JP2631380B2 (ja) 希土類―鉄系永久磁石の製造方法
JPH04188805A (ja) 希土類ボンド磁石の製造方法
JP2573865B2 (ja) 永久磁石の製造方法
JP2730441B2 (ja) 永久磁石用合金粉末の製造方法
KR0169882B1 (ko) 수소화 및 열간변형에 의한 희토류계 영구자석과 합금 분말의 제조방법
JPH023203A (ja) 永久磁石およびその製造方法
JPH01175207A (ja) 永久磁石の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231229

Address after: In Dongyuan County New Materials Industrial Park, Xiantang Town, Dongyuan County, Heyuan City, Guangdong Province, 517000

Patentee after: Guangdong Shengyuan Permanent Magnet Material Co.,Ltd.

Address before: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Patentee before: Institute of resource utilization and rare earth development, Guangdong Academy of Sciences

TR01 Transfer of patent right