CN116470774B - 一种t型lcl谐振变换器及其全范围软开关调制方法 - Google Patents

一种t型lcl谐振变换器及其全范围软开关调制方法 Download PDF

Info

Publication number
CN116470774B
CN116470774B CN202310720544.4A CN202310720544A CN116470774B CN 116470774 B CN116470774 B CN 116470774B CN 202310720544 A CN202310720544 A CN 202310720544A CN 116470774 B CN116470774 B CN 116470774B
Authority
CN
China
Prior art keywords
full
primary
voltage
bridge
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310720544.4A
Other languages
English (en)
Other versions
CN116470774A (zh
Inventor
胡松
汪锐
徐惠钢
刘继承
杨勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202310720544.4A priority Critical patent/CN116470774B/zh
Publication of CN116470774A publication Critical patent/CN116470774A/zh
Application granted granted Critical
Publication of CN116470774B publication Critical patent/CN116470774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种T型LCL谐振变换器及其全范围软开关调制方法,T型LCL型谐振变换器原边为全桥逆变电路,由四个MOS管组成;副边为半桥整流电路,由两个MOS管和两个均压电容组成,原边和副边之间用T型LCL谐振槽和高频变压器连接。基于此谐振变换器,提出了一种全范围软开关调制策略,调制策略要求一个周期内所有开关以50%占空比运行,原边为三电平对称波形,副边为二电平方波,副边基波滞后原边基波相角。通过调整谐振电感电流的相位,本发明可以让变换器在全功率范围下实现所有开关管的软开关运行,从而获得最小化的开关损耗,极大地提高了变换器的效率。

Description

一种T型LCL谐振变换器及其全范围软开关调制方法
技术领域
本发明涉及高频隔离型DC-DC谐振变换器的调制技术领域,具体的涉及一种T型LCL谐振变换器及其全范围软开关调制方法。
背景技术
高频隔离型DC-DC变换器被广泛运用在DC微电网、固态变压器和电动汽车(EVs)之中。其中,双有源桥(DAB)变换器由于电气隔离、高开关频率、低EMI和容易实现软开关等优点被广泛研究。但是,DAB变换器在电压不匹配时容易失去软开关,导致变换器效率急剧降低。因此,学者们提出了高频隔离型DC-DC谐振式变换器,与DAB相比具有更容易的软开关,电流近似正弦。常见的高频隔离型DC-DC谐振式变换器有串联谐振变换器、并联谐振变换器和LLC谐振变换器,它们提高了变换器的效率,但仍然无法在全范围下实现软开关。
为了提高高频隔离型DC-DC变换器效率,学者们采用不同调制策略来减小开关损耗,改善效率。单移相(single-phase-shift,SPS)是最简单的调制策略,但当电压不匹配时开关管难以实现软开关;拓展移相控制(extended-phase-shift,EPS)和双移相控制(dual-phase-shift,DPS)可以减少无功环流和电流应力,增加了软开关范围,但轻载时失去软开关;三移相控制(triple-phase-shift,TPS)使变换器在轻载条件下进一步提升了软开关范围,有效减少了无功环流和电流应力,但是控制的复杂度急剧上升,且仍然无法实现所有开关的软开管。
申请号2022116095932公开了一种CLCLC型谐振变换器在LCL型谐振变换器基础上仅添加两个额外的电容。非对称调制策略,一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为,二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为/>。此外,二次侧电压滞后一次侧电压相位。该非对称调制策略只能适用CLCLC型谐振变换器,无法适用其他不同性质的谐振槽。
发明内容
本发明的目的在于提供一种T型LCL谐振变换器及其全范围软开关调制方法,可以适用于T型LCL谐振变换器,可以让变换器在全功率范围下实现所有开关管的软开关运行,实现最小化的开关损耗,极大地提高了变换器的效率。
实现本发明目的的技术解决方案为:
一种T型LCL谐振变换器,包括依次相连的原边全桥、谐振槽、高频变压器和副边半桥,所述原边全桥包括开关管,所述开关管S 1 ~S 4 构成全桥逆变电路;所述谐振槽包括设置在原边的第一谐振电感/>、第二谐振电感/>和谐振电容/>,所述第一谐振电感/>和第二谐振电感/>依次连接,所述第一谐振电感/>连接原边全桥的第一连接点,所述谐振电容/>一端连接于所述第一谐振电感/>和第二谐振电感/>的连接节点,另一端连接所述原边全桥的第二连接点;所述高频变压器的匝数比为/>;所述副边半桥包括开关管
,所述开关管/>、/>和均压电容/>、/>构成半桥整流电路。
本发明还公开了一种T型LCL谐振变换器的全范围软开关调制方法,采用上述的T型LCL谐振变换器,调制方法包括以下步骤:
步骤S01:一个周期内,调节原边高频交流电压为三电平对称波形且幅值为,正、负脉冲宽度可调;副边高频交流电压/>为二电平方波且幅值为/>,正、负脉冲宽度固定为/>,/>和/>分别是输入电压和输出电压;
步骤S02:调节副边基波滞后原边基波相角,通过调整谐振电感/>的电流/>相位,使得变换器在全功率范围下实现所有开关管的软开关运行。
优选的技术方案中,所述步骤S01中,调节开关管的脉冲宽度,产生原边高频交流电压/>的波形,具体方法为:使开关管/>保持50%占空比互补导通,开关管滞后开关管/>一定的角度,开关管/>和开关管/>同时开通的部分定义为/>,产生了一个具有三电平的对称电压波形且波形幅值为/>,通过调整/>大小控制原边电压波形的脉冲宽度。
优选的技术方案中,调节开关管S 5S 6的脉冲宽度,以50%占空比互补导通,副边基波滞后原边基波相角 由此产生一个波形幅值为/>的二电平方波。
优选的技术方案中,所述步骤S02中调整谐振电感的电流/>相位至/>处。
优选的技术方案中,谐振电感的电流/>和谐振电感/>的电流/>的计算方法包括:
得到变换器在相量域下的等效电路,根据KCL和KVL定律,得到:
其中,是/>的相量表达形式,/>是/>转换到原边的相量表达形式,/>和/>分别是谐振电感/>的电流/>和谐振电感/>的电流/>的相量表达形式,/>为开关角频率;
当电路谐振运行时,开关角频率等于谐振角频率,谐振角频率,这里/>,上述表达式化简为:
采用基波近似法进行稳态分析,和/>的傅里叶基波相量表达式为:
进一步得到:
和/>分别是输入电压和输出电压。
优选的技术方案中,还包括:
使谐振电感的电流/>的相位保持到/>,即需要满足以下条件:
计算得到输出功率
本发明还公开了一种T型LCL谐振变换器的全范围软开关调制***,采用上述的T型LCL谐振变换器,调制***包括:
原边高频电压波形调节模块,一个周期内,调节原边高频交流电压为三电平对称波形且幅值为/>,正、负脉冲宽度可调;/>是输入电压;
副边高频电压波形调节模块,一个周期内,调节副边高频交流电压为二电平方波且幅值为/>,正、负脉冲宽度固定为/>;调节副边基波滞后原边基波相角/>;/>是输出电压;
相位调节模块,调整谐振电感的电流/>相位,使得变换器在全功率范围下实现所有开关管的软开关运行。
优选的技术方案中,所述原边高频电压波形调节模块,调节开关管的脉冲宽度,产生原边高频交流电压/>的波形,具体方法为:使开关管/>保持50%占空比互补导通,开关管/>滞后开关管/>一定的角度,开关管/>和开关管/>同时开通的部分定义为/>,产生了一个具有三电平的对称电压波形且波形幅值为/>,通过调整/>大小控制原边电压波形的脉冲宽度。
本发明又公开了一种计算机存储介质,其上存储有计算机程序,所述计算机程序被执行时实现上述的T型LCL谐振变换器的全范围软开关调制方法。
本发明与现有技术相比,其显著优点为:
(1) 本发明拓扑结构具有导抗网络性质,输入电压与输出电流相位相差90°、输出电压与输入电流相位相差90°,可以使原边和副边保持单位功率因数运行,减小导通损耗。
(2) 本发明二次侧为半桥结构,减少了开关管的电压应力,降低了成本。
(3) 本发明调制策略要求一个周期内所有开关以50%占空比运行,原边为三电平对称波形,副边为二电平方波,副边基波滞后原边基波相角。通过调整谐振电感电流的相位,本发明可以让变换器在全功率范围下实现所有开关管的软开关运行,从而获得最小化的开关损耗,极大地提高了变换器的效率。
附图说明
图1是T型LCL谐振变换器原理图;
图2是在T型LCL谐振变换器下采用全范围软开关调制策略的稳态波形图;
图3是T型LCL谐振变换器在相量域下的等效电路图;
图4是T型LCL谐振变换器谐振电感电流和电压的相位图;
图5是,/>,/>,/>,/> /> /> /> /> 和各开关管电流波形;
图6是,/>,/>,/>,/> /> /> /> /> 和各开关管电流波形;
图7是,/>,/>,/>,/> /> /> /> /> 和各开关管电流波形;
图8是,/>,/>,/>,/> /> /> /> /> />和各开关管电流波形。
具体实施方式
本发明的原理是:LCL型谐振变换器原边为全桥逆变电路,由四个MOS管组成;副边为半桥整流电路,由两个MOS管和两个均压电容组成,减少了开关管的电压应力,降低了成本。原边和副边之间用T型LCL谐振槽和高频变压器连接,具有导抗网络性质,即输入电压与输出电流相位相差90°、输出电压与输入电流相位相差90°,可以使原边和副边保持单位功率因数运行,减小导通损耗,基于此谐振变换器,提出了一种全范围软开关调制策略。所述调制策略要求一个周期内所有开关以50%占空比运行,原边为三电平对称波形,副边为二电平方波,副边基波滞后原边基波相角。通过调整谐振电感电流的相位,本发明可以让变换器在全功率范围下实现所有开关管的软开关运行,从而获得最小化的开关损耗,极大地提高了变换器的效率。
实施例1:
如图1所示,一种T型LCL谐振变换器,包括依次相连的原边全桥、谐振槽、高频变压器和副边半桥,所述原边全桥包括开关管,所述开关管/>构成全桥逆变电路;所述谐振槽包括设置在原边的第一谐振电感/>、第二谐振电感/>和谐振电容/>,所述第一谐振电感/>和第二谐振电感/>依次连接,所述第一谐振电感/>连接原边全桥的第一连接点,所述谐振电容/>一端连接于所述第一谐振电感/>和第二谐振电感/>的连接节点,另一端连接所述原边全桥的第二连接点;所述高频变压器的匝数比为/>;所述副边半桥包括开关管/>和/>,所述开关管/>、/>和均压电容/>、/>构成半桥整流电路。
该T型LCL型谐振变换器具有导抗网络性质,输入电压与输出电流相位相差90°、输出电压与输入电流相位相差90°,可以使原边和副边保持单位功率因数运行,减小导通损耗,且此拓扑副边为半桥结构,减少了开关管的电压应力,降低了成本。
具体的,原边全桥包括开关管,体二极管/>,寄生电容/>,副边半桥包括开关管/>和/>,体二极管/>和/>,寄生电容/>和/>,/>是谐振电容的电流。
另一实施例中,一种T型LCL谐振变换器的全范围软开关调制方法,采用上述的T型LCL谐振变换器,调制方法包括以下步骤:
S01:一个周期内,调节原边高频交流电压为三电平对称波形且幅值为/>,正、负脉冲宽度可调;副边高频交流电压/>为二电平方波且幅值为/>,正、负脉冲宽度固定为/>,/>和/>分别是输入电压和输出电压;
S02:调节副边基波滞后原边基波相角,通过调整谐振电感/>的电流/>相位,使得变换器在全功率范围下实现所有开关管的软开关运行。
一实施例中,步骤S01中,如图2所示,调节开关管的脉冲宽度,产生原边高频交流电压/>的波形,具体方法为:使开关管/>保持50%占空比互补导通,开关管滞后开关管/>一定的角度,开关管/>和开关管/>同时开通的部分定义为,产生了一个具有三电平的对称电压波形且波形幅值为/>,通过调整/>大小控制原边电压波形的脉冲宽度。
一实施例中,调节开关管和/>的脉冲宽度,以50%占空比互补导通,副边基波滞后原边基波相角/> 由此产生一个波形幅值为/>的二电平方波。
一实施例中,步骤S02中调整谐振电感的电流/>相位至/>处,从而实现全范围软开关。
一实施例中,谐振电感的电流/>和谐振电感/>的电流/>的计算方法包括:
得到变换器在相量域下的等效电路,如图3所示,根据KCL和KVL定律,得到:
其中,是/>的相量表达形式,/>是/>转换到原边的相量表达形式,/>和/>分别是谐振电感/>的电流/>和谐振电感/>的电流/>的相量表达形式,/>为开关角频率;
当电路谐振运行时,开关角频率等于谐振角频率,谐振角频率,这里/>,上述表达式化简为:
这表示谐振电感电流和电压的相位关系,如图4所示:谐振电感的电流/>超前副边电压/>角度90°,谐振电感/>的电流/>滞后一次侧电压/>角度90°。
采用基波近似法进行稳态分析,和/>的傅里叶基波相量表达式为:
进一步得到:
和/>分别是输入电压和输出电压。
一实施例中,还包括:
为了实现全范围软开关,需要对谐振电感电流的相位进行调整。将谐振电感的电流/>过零点调整在/>处,即需要满足以下条件:
计算得到输出功率
定义电压增益的表达式如下:
则输出功率表达式可以化简为:
另一实施例,一种计算机存储介质,其上存储有计算机程序,所述计算机程序被执行时实现上述的T型LCL谐振变换器的全范围软开关调制方法。
另一实施例中,一种T型LCL谐振变换器的全范围软开关调制***,采用上述的T型LCL谐振变换器,调制***包括:
原边高频电压波形调节模块,一个周期内,调节原边高频交流电压为三电平对称波形且幅值为/>,正、负脉冲宽度可调;/>是输入电压;
副边高频电压波形调节模块,一个周期内,调节副边高频交流电压为二电平方波且幅值为/>,正、负脉冲宽度固定为/>;调节副边基波滞后原边基波相角/>是输出电压;
相位调节模块,调整谐振电感的电流/>相位,使得变换器在全功率范围下实现所有开关管的软开关运行。
通过三个模块的协作调节,实现了变换器全功率范围下所有开关管的软开关。
一实施例中,原边高频电压波形调节模块,调节开关管的脉冲宽度,产生原边高频交流电压/>的波形,具体方法为:使开关管/>保持50%占空比互补导通,开关管/>滞后开关管/>一定的角度,开关管/>和开关管/>同时开通的部分定义为/>,产生了一个具有三电平的对称电压波形且波形幅值为/>,通过调整/>大小控制原边电压波形的脉冲宽度。
具体的,进行关键参数设计:
选择。设计输入电压/>为150V,输出电压/>为75V,额定功率/>为200W。当电压增益/>时,变换器为150V转75V。
因此关键参数可以得到:,/>
为了验证理论分析,将采用以上参数在PSIM软件里进行仿真。
接下来,将在额定功率下进行仿真验证本发明的实际效果,如图5~8所示。
由此可知,可以让变换器在全功率范围下实现所有开关管的软开关运行,从而获得最小化的开关损耗,极大地提高了变换器的效率。
上述实施例为本发明优选地实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种T型LCL谐振变换器的全范围软开关调制方法,其特征在于,采用T型LCL谐振变换器,所述T型LCL谐振变换器,包括依次相连的原边全桥、谐振槽、高频变压器和副边半桥,所述原边全桥包括开关管,所述开关管/>构成全桥逆变电路;所述谐振槽包括设置在原边的第一谐振电感/>、第二谐振电感/>和谐振电容/>,所述第一谐振电感/>和第二谐振电感/>依次连接,所述第一谐振电感/>连接原边全桥的第一连接点,所述谐振电容/>一端连接于所述第一谐振电感/>和第二谐振电感/>的连接节点,另一端连接所述原边全桥的第二连接点;所述高频变压器的匝数比为/>;所述副边半桥包括开关管和/>,所述开关管/>、/>和均压电容/>、/>构成半桥整流电路;调制方法包括以下步骤:
步骤S01:一个周期内,调节原边高频交流电压为三电平对称波形且幅值为/>,正、负脉冲宽度可调;副边高频交流电压/>为二电平方波且幅值为/>,正、负脉冲宽度固定为/>,/>和/>分别是输入电压和输出电压;
步骤S02:调节副边基波滞后原边基波相角,通过调整谐振电感通过调整谐振电感/>的电流/>相位至/>处,/>为开关管/>和开关管/>同时开通的部分的角度,使得变换器在全功率范围下实现所有开关管的软开关运行。
2.根据权利要求1所述的T型LCL谐振变换器的全范围软开关调制方法,其特征在于,所述步骤S01中,调节开关管的脉冲宽度,产生原边高频交流电压/>的波形,具体方法为:使开关管/>保持50%占空比互补导通,开关管/>滞后开关管/>一定的角度,产生了一个具有三电平的对称电压波形且波形幅值为/>,通过调整/>大小控制原边电压波形的脉冲宽度。
3.根据权利要求1所述的T型LCL谐振变换器的全范围软开关调制方法,其特征在于,调节开关管和/>的脉冲宽度,以50%占空比互补导通,副边基波滞后原边基波相角/> 由此产生一个波形幅值为/>的二电平方波。
4.根据权利要求1所述的T型LCL谐振变换器的全范围软开关调制方法,其特征在于,谐振电感的电流/>和谐振电感/>的电流/>的计算方法包括:
得到变换器在相量域下的等效电路,根据KCL和KVL定律,得到:
其中,是/>的相量表达形式,/>是/>转换到原边的相量表达形式,/>和/>分别是谐振电感/>的电流和谐振电感/>的电流/>的相量表达形式,/>为开关角频率,C为谐振电容;
当电路谐振运行时,开关角频率等于谐振角频率,谐振角频率
,这里/>,上述表达式化简为:
采用基波近似法进行稳态分析,和/>的傅里叶基波相量表达式为:
进一步得到:
和/>分别是输入电压和输出电压。
5.根据权利要求4所述的T型LCL谐振变换器的全范围软开关调制方法,其特征在于,还包括:
使谐振电感的电流/>的相位保持到/>,即需要满足以下条件:
计算得到输出功率
6.一种T型LCL谐振变换器的全范围软开关调制***,其特征在于,采用T型LCL谐振变换器,所述T型LCL谐振变换器,包括依次相连的原边全桥、谐振槽、高频变压器和副边半桥,所述原边全桥包括开关管,所述开关管/>构成全桥逆变电路;所述谐振槽包括设置在原边的第一谐振电感/>、第二谐振电感/>和谐振电容/>,所述第一谐振电感/>和第二谐振电感/>依次连接,所述第一谐振电感/>连接原边全桥的第一连接点,所述谐振电容/>一端连接于所述第一谐振电感/>和第二谐振电感/>的连接节点,另一端连接所述原边全桥的第二连接点;所述高频变压器的匝数比为/>;所述副边半桥包括开关管和/>,所述开关管/>、/>和均压电容/>、/>构成半桥整流电路,调制***包括:原边高频电压波形调节模块,一个周期内,调节原边高频交流电压/>为三电平对称波形且幅值为/>,正、负脉冲宽度可调;/>是输入电压;副边高频电压波形调节模块,一个周期内,调节副边高频交流电压/>为二电平方波且幅值为/>,正、负脉冲宽度固定为/>;调节副边基波滞后原边基波相角/>;/>是输出电压;
相位调节模块,调整谐振电感的电流/>相位至/>处,/>为开关管/>和开关管/>同时开通的部分的角度,使得变换器在全功率范围下实现所有开关管的软开关运行。
7.根据权利要求6所述的T型LCL谐振变换器的全范围软开关调制***,其特征在于,所述原边高频电压波形调节模块,调节开关管的脉冲宽度,产生原边高频交流电压的波形,具体方法为:使开关管/>保持50%占空比互补导通,开关管/>滞后开关管/>一定的角度,产生了一个具有三电平的对称电压波形且波形幅值为/>,通过调整/>大小控制原边电压波形的脉冲宽度。
8.一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被执行时实现权利要求1-5任一项所述的T型LCL谐振变换器的全范围软开关调制方法。
CN202310720544.4A 2023-06-19 2023-06-19 一种t型lcl谐振变换器及其全范围软开关调制方法 Active CN116470774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310720544.4A CN116470774B (zh) 2023-06-19 2023-06-19 一种t型lcl谐振变换器及其全范围软开关调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310720544.4A CN116470774B (zh) 2023-06-19 2023-06-19 一种t型lcl谐振变换器及其全范围软开关调制方法

Publications (2)

Publication Number Publication Date
CN116470774A CN116470774A (zh) 2023-07-21
CN116470774B true CN116470774B (zh) 2023-11-07

Family

ID=87175707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310720544.4A Active CN116470774B (zh) 2023-06-19 2023-06-19 一种t型lcl谐振变换器及其全范围软开关调制方法

Country Status (1)

Country Link
CN (1) CN116470774B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116722747B (zh) * 2023-08-09 2023-12-08 常熟理工学院 一种电能转换***及其控制方法
CN117638804A (zh) * 2023-11-08 2024-03-01 广东工业大学 列车牵引变压器原边过流故障的差异化保护方法及***
CN117713563B (zh) * 2024-02-06 2024-05-10 常熟理工学院 Lcl型谐振变换器的扩展三自由度调制控制方法及***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209170230U (zh) * 2018-11-23 2019-07-26 三峡大学 基于同步整流模式的dc-dc开关电源
CN111969856A (zh) * 2020-08-17 2020-11-20 北京理工大学 双有源桥变换器基于lcl谐振的全局优化迭代控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515242B1 (de) * 2013-12-20 2020-04-15 Fronius Int Gmbh Verfahren zum Steuern eines Vollbrücken DC/DC-Wandlers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209170230U (zh) * 2018-11-23 2019-07-26 三峡大学 基于同步整流模式的dc-dc开关电源
CN111969856A (zh) * 2020-08-17 2020-11-20 北京理工大学 双有源桥变换器基于lcl谐振的全局优化迭代控制方法

Also Published As

Publication number Publication date
CN116470774A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN116470774B (zh) 一种t型lcl谐振变换器及其全范围软开关调制方法
CN115622413B (zh) 一种clclc型谐振变换器及调制方法
CN111509982B (zh) 三相双有源桥变换器双向功率无缝传输控制方法
Shakib et al. Dual bridge LLC resonant converter with frequency adaptive phase-shift modulation control for wide voltage gain range
CN114649954A (zh) 一种三相三电平anpc串联谐振型双有源桥dc/dc变换器
CN114598163A (zh) 一种三相lcl-dab直流变换器拓扑及其控制方法
CN114465489A (zh) 全半桥谐振变换器及其电压平衡控制方法
CN109004836B (zh) 适用于模块化多电平直流变压器的变频优化控制方法
CN114337308A (zh) 双半桥谐振变换器拓扑结构及其最小电流路径控制***
Narasimha et al. An improved closed loop hybrid phase shift controller for dual active bridge converter.
CN116094329B (zh) 一种混合桥谐振变换器、调制方法及***
CN115833602B (zh) 一种双变压器式谐振变换器及其调制方法
Reddy P et al. Modular‐structured resonant converter for multilevel converters in micro grids
Duan et al. Modular multilevel resonant DC transformer with inherent balancing capability
Chu et al. Auxiliary resonant commutated pole soft-switching inverter with simple topology
Zhao et al. A study on combined multi‐resonance converter for on‐board charging of electric vehicles
CN117578885B (zh) 一种导抗网络型谐振变换器的优化调控方法及***
Jin et al. Hybrid Control for Three-Level LLC Resonant Converter of Dual-Bridge for Wide Output Range
CN112953276A (zh) 一种模块化多电平谐振变换器输出电压调控方法
Ma et al. Secondary periodic energy control for LCC-S compensated wireless power transfer systems
Khan et al. A three-phase dual-active-bridge DC-DC immittance converter
CN116722747B (zh) 一种电能转换***及其控制方法
CN115955122B (zh) 一种双桥串联谐振变换器的无回流调制方法及***
CN117792030B (zh) Clc型谐振变换器的增强型双重同相调制方法及***
CN117458887B (zh) 一种用于三电平谐振变换器的全局最优控制方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant