CN115622413B - 一种clclc型谐振变换器及调制方法 - Google Patents

一种clclc型谐振变换器及调制方法 Download PDF

Info

Publication number
CN115622413B
CN115622413B CN202211609593.2A CN202211609593A CN115622413B CN 115622413 B CN115622413 B CN 115622413B CN 202211609593 A CN202211609593 A CN 202211609593A CN 115622413 B CN115622413 B CN 115622413B
Authority
CN
China
Prior art keywords
pulse width
phase
resonant
secondary side
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211609593.2A
Other languages
English (en)
Other versions
CN115622413A (zh
Inventor
胡松
汪锐
李晓东
钟黎萍
毛丽民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202211609593.2A priority Critical patent/CN115622413B/zh
Publication of CN115622413A publication Critical patent/CN115622413A/zh
Application granted granted Critical
Publication of CN115622413B publication Critical patent/CN115622413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种CLCLC型谐振变换器及调制方法,CLCLC型谐振变换器在LCL型谐振变换器基础上仅添加两个额外的电容,具有固有的直流阻断能力,可以防止变压器饱和,并且能更好地衰减谐振槽电流中的高次谐波。基于此谐振变换器,提出一种非对称调制策略,一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π。此外,二次侧电压滞后一次侧电压相位
Figure 461646DEST_PATH_IMAGE001
。调整谐振电流的相位与电压相位同相,即一次侧谐振电流相位为0,二次侧谐振电流相位为
Figure 385475DEST_PATH_IMAGE001
。可以实现零循环电流、零回流功率、全部开关管的软开关运行,获得最小化的导通损耗和开关损耗,极大地提高了变换器的效率。

Description

一种CLCLC型谐振变换器及调制方法
技术领域
本发明涉及谐振双有源桥变换器的调制技术领域,具体的涉及一种CLCLC型谐振变换器及调制方法。
背景技术
高频隔离DC-DC变换器被广泛运用在储能***、车到电网(V2G)***和固态变压器之中。其中,双有源桥(DAB)变换器是研究和应用最广泛的双向功率转换器拓扑结构之一。在其发展的早期阶段,由于功率器件的性能限制,DAB变换器受到高功率损耗的影响,导致较低的效率。随着新的功率器件和磁性材料的发展,DAB转换器的效率和功率密度已得到显著改善,使其在许多工业应用中具有吸引力。
目前,为了提高DAB变换器效率,学者们提出了不同调制策略。传统的单移相(single-phase-shift,SPS)控制会使得变换器运行过程中存在回流功率的问题,且开关管难以实现软开关;拓展移相控制(extended-phase-shift,EPS)可以减少无功环流和电流应力,增加开关的软开关范围;双移相控制(dual-phase-shift,DPS)也可以降低了变换器的无功环流和损耗;三移相控制(triple-phase-shift,TPS)使变换器在轻载条件下也可以实现软开关,有效减少了无功环流和电流应力,但是控制的复杂度也提高了。然而,不管是哪一种移相方法,都很难对回流功率和开关损耗同时进行优化,这极大地限制了DAB变换器性能的提升。
公开号CN110445392A公开了一种新型交错并联双管正激变换器及其调制策略,变换器包括第一双管正激变换器、第二双管正激变换器、无源辅助回路、滤波电路、负载电路和直流电源。本发明采用移相PWM调制策略,第一双管正激变换器与第二双管正激变换器相位互差180°电角度互补运行。该变换器可以消除整流二极管中的寄生振荡以及瞬时过电压,但是无法防止变压器饱和,无法衰减谐振槽电流中的高次谐波,影响了变换器的效率。
发明内容
本发明的目的在于提供一种CLCLC型谐振变换器及其非对称调制方法,当变换器运行在额定输出功率的25%到100%之间时,能够实现零循环电流、零回流功率和所有开关管的软开关运行,实现最小化的导通损耗和开关损耗,极大地提高了变换器的效率。
实现本发明目的的技术解决方案为:
一种CLCLC型谐振变换器,包括依次相连的一次侧全桥、谐振槽、高频变压器和二次侧全桥,所述一次侧全桥包括开关管S 1 ~S 4 ,所述开关管S 1 ~S 4 构成一次侧有源全桥电路;所述谐振槽包括设置在一次侧的依次连接的一次侧谐振电容C p 、谐振电感L p 和谐振电容C x ,及设置在二次侧的二次侧谐振电容C s 和谐振电感L s ,所述谐振电容C x 设置在高频变压器的原边的两端;所述高频变压器的匝数比为1:n;所述二次侧全桥包括开关管Q 1 ~Q 4 ,所述开关管Q 1 ~Q 4 构成二次侧有源全桥电路。
本发明还公开了一种CLCLC型谐振变换器的调制方法,采用上述的CLCLC型谐振变换器,调制方法包括以下步骤:
步骤S01:一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
步骤S02:调节二次侧电压滞后一次侧电压相位
Figure 144718DEST_PATH_IMAGE001
;通过调整谐振电流的相位与电 压相位同相,即一次侧谐振电流相位为0,二次侧谐振电流相位为
Figure 507173DEST_PATH_IMAGE001
优选的技术方案中,所述步骤S01中,调节开关管S 1 ~S 4 的脉冲宽度,使开关管S 1 S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π。
优选的技术方案中,调节开关管Q 1 ~Q 4 的脉冲宽度,使开关管Q 3 Q 4 保持50%占空 比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与其互补,且开关管Q 4 滞后开关管S 1 角度
Figure 479195DEST_PATH_IMAGE001
,产生一个具有三电平的非对称电压波形,其负脉宽固定为π,正脉宽调整到δ。
优选的技术方案中,所述步骤S02之后还包括:
对谐振电流的相位进行调整;将一次侧谐振电流i p 过零点调整在0处,二次侧谐振 电流i s 过零点调整在
Figure 923647DEST_PATH_IMAGE001
处,从而使得谐振电流与电压同相位,即满足以下条件:
Figure 927375DEST_PATH_IMAGE002
时,实现零循环电流、零回流功率。
优选的技术方案中,一次侧谐振电流i p ,二次侧谐振电流i s 的计算方法包括:
得到变换器在相量域下的等效电路,根据KCL和KVL定律,得到:
Figure 886497DEST_PATH_IMAGE003
Figure 750677DEST_PATH_IMAGE004
其中,
Figure 446756DEST_PATH_IMAGE005
是一次侧中点交流电压v p 的相量表达形式,
Figure 14311DEST_PATH_IMAGE006
是二次侧中点交流电压v s 转换到一次侧的相量表达形式,
Figure 656252DEST_PATH_IMAGE007
L s 转换到一次侧的变量,
Figure 369911DEST_PATH_IMAGE008
C s 转换到一次侧的变 量;
Figure 225607DEST_PATH_IMAGE009
为一次侧谐振电流的相量形式,
Figure 561517DEST_PATH_IMAGE010
为二次侧谐振电流的相量形式,
Figure 475159DEST_PATH_IMAGE011
为开关角频率,L p 为一次侧谐振电感,L s 为二次侧谐振电感,C s 为二次侧谐振电容;
当电路谐振运行时,开关角频率等于谐振角频率,谐振角频率
Figure 946286DEST_PATH_IMAGE012
,上述表 达式化简为:
Figure 573050DEST_PATH_IMAGE013
Figure 192162DEST_PATH_IMAGE014
采用基波近似法进行稳态分析,v p 和二次侧基波电压
Figure 972643DEST_PATH_IMAGE015
的相量表达形式表示为:
Figure 413290DEST_PATH_IMAGE016
Figure 146540DEST_PATH_IMAGE017
进一步得到:
Figure 676617DEST_PATH_IMAGE018
Vin和Vout分别是输入电压和输出电压。
优选的技术方案中,还包括:
得到输出功率
Figure 349038DEST_PATH_IMAGE019
Figure 457675DEST_PATH_IMAGE020
其中,
Figure 395282DEST_PATH_IMAGE021
表示最大输出功率,
Figure 520145DEST_PATH_IMAGE022
,输出功率的标幺值
Figure 769992DEST_PATH_IMAGE023
, 由于δ的范围在0到π之间,得到标幺值输出功率在25%到100%之间。
本发明又公开了一种CLCLC型谐振变换器的调制***,采用上述的CLCLC型谐振变换器,调制***包括:
一次侧波形调节模块,一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
二次侧波形调节模块,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固 定为π;调节二次侧电压滞后一次侧电压相位
Figure 941822DEST_PATH_IMAGE001
;通过调整谐振电流的相位与电压相位同 相,即一次侧谐振电流相位为0,二次侧谐振电流相位为
Figure 349365DEST_PATH_IMAGE001
优选的技术方案中,所述二次侧波形调节模块,调节开关管Q 1 ~Q 4 的脉冲宽度,使开 关管Q 3 Q 4 保持50%占空比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与其互补, 且开关管Q 4 滞后开关管S 1 角度
Figure 385191DEST_PATH_IMAGE001
,产生一个具有三电平的非对称电压波形,其负脉宽固定为 π,正脉宽调整到δ。
优选的技术方案中,还包括相位调整模块,对谐振电流的相位进行调整;将一次侧 谐振电流i p 过零点调整在0处,二次侧谐振电流i s 过零点调整在
Figure 621919DEST_PATH_IMAGE001
处,从而使得谐振电流与 电压同相位,即满足以下条件:
Figure 487238DEST_PATH_IMAGE002
时,实现零循环电流、零回流功率。
本发明与现有技术相比,其显著优点为:
(1) 本发明拓扑结构具有固有的直流阻断能力,可以防止变压器饱和,并且能很好地衰减谐振槽电流中的高次谐波。
(2) 本发明可以实现零循环电流和零回流功率,即实现了最小的导通损耗。
(3) 本发明可以实现全部开关管的软开关运行,即实现了最小的开关损耗。从而极大地提高了变换器的效率。
附图说明
图1是CLCLC型谐振变换器原理图;
图2是在CLCLC型谐振变换器下采用非对称调制策略的稳态波形图;
图3是CLCLC型谐振变换器在相量域下的等效电路图;
图4是CLCLC型谐振变换器谐振电流和电压的相位图;
图5是Vin=150V,Vout=75V,M=1,P o =200W,v p v s i p i s 波形和各开关管电流图;
图6是Vin=150V,Vout=75V,M=1,P o =50W,v p v s i p i s 波形和各开关管电流图;
图7是Vin=212V,Vout=53V,M=0.5,P o =200W,v p v s i p i s 波形和各开关管电流图;
图8是Vin=212V,Vout=53V,M=0.5,P o =50W,v p v s i p i s 波形和各开关管电流图。
具体实施方式
本发明的原理是:CLCLC型谐振变换器在LCL型谐振变换器基础上仅添加两个额外 的电容,与其相比,该变换器拓扑具有固有的直流阻断能力,可以防止变压器饱和,并且能 更好地衰减谐振槽电流中的高次谐波。基于此谐振变换器,提出了一种非对称调制策略。所 述调制策略在一个周期内,一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,二 次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π。此外,二次侧电压滞后一次侧电 压相位
Figure 642013DEST_PATH_IMAGE001
。通过调整谐振电流的相位与电压相位同相,即一次侧谐振电流相位为0,二次侧 谐振电流相位为
Figure 189405DEST_PATH_IMAGE001
实施例1:
如图1所示,一种CLCLC型谐振变换器,在LCL型谐振变换器基础上仅添加两个额外的电容,与其相比,该变换器拓扑具有固有的直流阻断能力,可以防止变压器饱和,并且能更好地衰减谐振槽电流中的高次谐波。
具体的,该一种CLCLC型谐振变换器,如图1所示,包括依次相连的一次侧全桥、谐振槽、高频变压器和二次侧全桥,一次侧全桥包括开关管S 1 ~S 4 ,开关管S 1 ~S 4 构成一次侧有源全桥电路;谐振槽包括设置在一次侧的依次连接的一次侧谐振电容C p 、谐振电感L p 和谐振电容C x ,及设置在二次侧的二次侧谐振电容C s 和谐振电感L s ,谐振电容C x 设置在高频变压器的原边的两端;高频变压器的匝数比为1:n;二次侧全桥包括开关管Q 1 ~Q 4 ,开关管Q 1 ~Q 4 构成二次侧有源全桥电路。
另一实施例,一种CLCLC型谐振变换器的调制方法,采用上述的CLCLC型谐振变换器,调制方法包括以下步骤:
步骤S01:一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
步骤S02:调节二次侧电压滞后一次侧电压相位
Figure 640109DEST_PATH_IMAGE001
;通过调整谐振电流的相位与电 压相位同相,即一次侧谐振电流相位为0,二次侧谐振电流相位为
Figure 491259DEST_PATH_IMAGE001
具体的实现中,如图2所示,调节开关管S 1 ~S 4 的脉冲宽度,由此产生一次侧中点交流电压v p 的波形。使开关管S 1 S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π。其中,0<δ<π。
调节开关管Q 1 ~Q 4 的脉冲宽度,由此产生二次侧中点交流电压v s 的波形。具体方法 为:使开关管Q 3 Q 4 保持50%占空比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与 其互补,且开关管Q 4 滞后开关管S 1 角度
Figure 157383DEST_PATH_IMAGE001
,产生一个具有三电平的非对称电压波形,其负脉 宽固定为π,正脉宽调整到δ。
一实施例中,对谐振电流的相位进行调整;将一次侧谐振电流i p 过零点调整在0 处,二次侧谐振电流i s 过零点调整在
Figure 167802DEST_PATH_IMAGE001
处,从而使得谐振电流与电压同相位,即满足以下条 件:
Figure 930353DEST_PATH_IMAGE024
时,实现零循环电流、零回流功率。
具体的实现,CLCLC型谐振变换器在相量域下的等效电路如图3所示:根据KCL和KVL定律,可得如下表达式:
Figure 886108DEST_PATH_IMAGE025
Figure 851528DEST_PATH_IMAGE026
其中,
Figure 155602DEST_PATH_IMAGE027
v p 的相量表达形式,
Figure 514820DEST_PATH_IMAGE028
v s 转移到一次侧的相量表达形式,
Figure 934038DEST_PATH_IMAGE029
L s 转 换到一次侧的变量,
Figure 31761DEST_PATH_IMAGE030
C s 转换到一次侧的变量。
Figure 128025DEST_PATH_IMAGE031
为开关角频率:
Figure 652285DEST_PATH_IMAGE032
L p 为一次侧谐振电感,C x C p 为一次侧谐振电容,L s 为二次侧谐振电感,C s 为二次侧谐振电容,Q为归一化质量因数:
Figure 204138DEST_PATH_IMAGE033
R L 为负载电阻:
Figure 573678DEST_PATH_IMAGE034
,其中
Figure 852343DEST_PATH_IMAGE035
为额定功率,Z c 为基值阻抗:
Figure 417011DEST_PATH_IMAGE036
,其中
Figure 247040DEST_PATH_IMAGE037
Figure 424466DEST_PATH_IMAGE038
, 则谐振角频率
Figure 826147DEST_PATH_IMAGE039
当电路谐振运行时,令开关角频率等于谐振角频率,上述表达式可以化简为:
Figure 537882DEST_PATH_IMAGE040
Figure 684568DEST_PATH_IMAGE041
谐振电流和电压的相位图如图4所示:一次侧谐振电流i p 超前二次侧电压
Figure 858891DEST_PATH_IMAGE015
角度 90°,二次侧谐振电流i s 滞后一次侧电压v p 角度90°。一次侧基波电压v p 可分解成v p0 v p1 ,其 中v p0 表示电压相位为0。同理,二次侧基波电压
Figure 532056DEST_PATH_IMAGE015
可分解成
Figure 371617DEST_PATH_IMAGE042
Figure 707396DEST_PATH_IMAGE043
,其中
Figure 443269DEST_PATH_IMAGE044
表示电压相 位为
Figure 174202DEST_PATH_IMAGE001
由于变换器谐振运行,基波能量占很大比重,可采用基波近似(FHA)法进行稳态分 析。因此,v p
Figure 617953DEST_PATH_IMAGE015
的相量表达形式可表示为:
Figure 682773DEST_PATH_IMAGE045
Figure 968874DEST_PATH_IMAGE046
由上述表达式可得一次侧谐振电流的相量形式
Figure 423820DEST_PATH_IMAGE047
、二次侧谐振电流的相量形式
Figure 913839DEST_PATH_IMAGE048
Figure 991254DEST_PATH_IMAGE049
为了实现零循环电流、零回流功率,需要对谐振电流的相位进行调整。将一次侧谐 振电流i p 过零点调整在0处,而二次侧谐振电流i s 过零点调整在
Figure 149221DEST_PATH_IMAGE001
处,如图4所示。即需要满 足以下条件:
Figure 136638DEST_PATH_IMAGE050
因此,只需要满足
Figure 656612DEST_PATH_IMAGE002
就可以保证零循环电流、零回流功率。
根据电流和电压表达式可以得到输出功率
Figure 878382DEST_PATH_IMAGE051
Figure 476591DEST_PATH_IMAGE052
这里,
Figure 210192DEST_PATH_IMAGE053
表示最大输出功率,
Figure 497472DEST_PATH_IMAGE054
。那么输出功率的标幺值
Figure 847682DEST_PATH_IMAGE055
Figure 774882DEST_PATH_IMAGE056
,由于δ的范围在0到π之间,根据表达式可以知道标幺值输出功率在25%到100%之 间。
定义电压增益M的表达式如下:
Figure 563322DEST_PATH_IMAGE057
则输出功率表达式可以化简为:
Figure 726231DEST_PATH_IMAGE058
下一步将进行关键参数设计:
选择
Figure 642365DEST_PATH_IMAGE059
Figure 113535DEST_PATH_IMAGE060
。设计输入电压Vin为150V~212V,输出电压Vout为53V~ 75V,额定功率P o 为200W。当电压增益M=1时,变换器为150V转75V,当M=0.5时,变换器为212V 转53V。
因此关键参数可以得到:
Figure 711743DEST_PATH_IMAGE061
Figure 508536DEST_PATH_IMAGE062
Figure 36600DEST_PATH_IMAGE063
Figure 520583DEST_PATH_IMAGE064
Figure 549194DEST_PATH_IMAGE065
为了验证理论分析,将采用以上参数在PSIM软件里进行仿真。
接下来,将在额定功率下进行仿真验证本发明的实际效果,如图5~图8所示。可以看出在额定输出功率的25%到100%之间实现零循环电流、零回流功率、全部开关管的软开关运行,从而获得最小化的导通损耗和开关损耗,极大地提高了变换器的效率。
另一实施例中,一种CLCLC型谐振变换器的调制***,采用上述的CLCLC型谐振变换器,调制***包括:
一次侧波形调节模块,一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;
二次侧波形调节模块,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固 定为π;调节二次侧电压滞后一次侧电压相位
Figure 370083DEST_PATH_IMAGE001
;通过调整谐振电流的相位与电压相位同 相,即一次侧谐振电流相位为0,二次侧谐振电流相位为
Figure 618400DEST_PATH_IMAGE001
一实施例中,还包括相位调整模块,对谐振电流的相位进行调整;将一次侧谐振电 流i p 过零点调整在0处,二次侧谐振电流i s 过零点调整在
Figure 437232DEST_PATH_IMAGE001
处,从而使得谐振电流与电压同 相位,即满足以下条件:
Figure 854438DEST_PATH_IMAGE066
时,实现零循环电流、零回流功率。
具体的实现同上,这里不再赘述。
上述实施例为本发明优选地实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种CLCLC型谐振变换器的调制方法,其特征在于,所述CLCLC型谐振变换器包括依次相连的一次侧全桥、谐振槽、高频变压器和二次侧全桥,所述一次侧全桥包括开关管S 1 ~ S 4 ,所述开关管S 1 ~S 4 构成一次侧有源全桥电路;所述谐振槽包括设置在一次侧的依次连接的一次侧谐振电容C p 、谐振电感L p 和谐振电容C x ,及设置在二次侧的二次侧谐振电容C s 和谐振电感L s ,所述谐振电容C x 设置在高频变压器的原边的两端;所述高频变压器的匝数比为1:n;所述二次侧全桥包括开关管Q 1 ~Q 4 ,所述开关管Q 1 ~Q 4 构成二次侧有源全桥电路,调制方法包括以下步骤:
步骤S01:一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;具体包括,调节开关管S 1 ~S 4 的脉冲宽度,使开关管S 1 S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π;
步骤S02:调节二次侧电压滞后一次侧电压相位
Figure QLYQS_1
;通过调整谐振电流的相位与电压相位同相,即一次侧谐振电流相位为0,二次侧谐振电流相位为/>
Figure QLYQS_2
2.根据权利要求1所述的CLCLC型谐振变换器的调制方法,其特征在于,调节开关管Q 1 ~ Q 4 的脉冲宽度,使开关管Q 3 Q 4 保持50%占空比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与其互补,且开关管Q 4 滞后开关管S 1 角度
Figure QLYQS_3
,产生一个具有三电平的非对称电压波形,其负脉宽固定为π,正脉宽调整到δ。
3.根据权利要求1所述的CLCLC型谐振变换器的调制方法,其特征在于,所述步骤S02之后还包括:
对谐振电流的相位进行调整;将一次侧谐振电流i p 过零点调整在0处,二次侧谐振电流i s 过零点调整在
Figure QLYQS_4
处,从而使得谐振电流与电压同相位,即满足以下条件:/>
Figure QLYQS_5
时,实现零循环电流、零回流功率。
4.根据权利要求3所述的CLCLC型谐振变换器的调制方法,其特征在于,一次侧谐振电流i p ,二次侧谐振电流i s 的计算方法包括:
得到变换器在相量域下的等效电路,根据KCL和KVL定律,得到:
Figure QLYQS_6
Figure QLYQS_7
其中,
Figure QLYQS_8
是一次侧中点交流电压v p 的相量表达形式,/>
Figure QLYQS_9
是二次侧中点交流电压v s 转换到一次侧的相量表达形式,/>
Figure QLYQS_10
L s 转换到一次侧的变量,/>
Figure QLYQS_11
C s 转换到一次侧的变量;/>
Figure QLYQS_12
为一次侧谐振电流的相量形式,/>
Figure QLYQS_13
为二次侧谐振电流的相量形式,/>
Figure QLYQS_14
为开关角频率,L p 为一次侧谐振电感,L s 为二次侧谐振电感,C s 为二次侧谐振电容;
当电路谐振运行时,开关角频率等于谐振角频率,谐振角频率
Figure QLYQS_15
,上述表达式化简为:/>
Figure QLYQS_16
Figure QLYQS_17
采用基波近似法进行稳态分析,v p 和二次侧基波电压
Figure QLYQS_18
的相量表达形式表示为:
Figure QLYQS_19
Figure QLYQS_20
进一步得到:
Figure QLYQS_21
Vin和Vout分别是输入电压和输出电压。
5.根据权利要求3所述的CLCLC型谐振变换器的调制方法,其特征在于,还包括:
得到输出功率
Figure QLYQS_22
Figure QLYQS_23
其中,
Figure QLYQS_24
表示最大输出功率,/>
Figure QLYQS_25
,输出功率的标幺值/>
Figure QLYQS_26
,由于δ的范围在0到π之间,得到标幺值输出功率在25%到100%之间。
6.一种CLCLC型谐振变换器的调制***,其特征在于,采用权利要求1所述的CLCLC型谐振变换器,调制***包括:
一次侧波形调节模块,一个周期内,使得一次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;具体包括,调节开关管S 1 ~S 4 的脉冲宽度,使开关管S 1 S 2 保持50%占空比,将开关管S 4 的脉冲宽度调整到δ,开关管S 3 的脉冲宽度与S 4 互补,产生一个具有三电平的非对称电压波形,其正脉宽调整到δ,负脉宽固定为π;
二次侧波形调节模块,使得二次侧电压正半周脉冲宽度可调,负半周脉冲宽度固定为π;调节二次侧电压滞后一次侧电压相位
Figure QLYQS_27
;通过调整谐振电流的相位与电压相位同相,即一次侧谐振电流相位为0,二次侧谐振电流相位为/>
Figure QLYQS_28
7.根据权利要求6所述的CLCLC型谐振变换器的调制***,其特征在于,所述二次侧波形调节模块,调节开关管Q 1 ~Q 4 的脉冲宽度,使开关管Q 3 Q 4 保持50%占空比,开关管Q 1 的脉冲宽度调整到δ,开关管Q 2 的脉冲宽度与其互补,且开关管Q 4 滞后开关管S 1 角度
Figure QLYQS_29
,产生一个具有三电平的非对称电压波形,其负脉宽固定为π,正脉宽调整到δ。
8.根据权利要求6所述的CLCLC型谐振变换器的调制***,其特征在于,还包括相位调整模块,对谐振电流的相位进行调整;将一次侧谐振电流i p 过零点调整在0处,二次侧谐振电流i s 过零点调整在
Figure QLYQS_30
处,从而使得谐振电流与电压同相位,即满足以下条件:
Figure QLYQS_31
时,实现零循环电流、零回流功率。/>
CN202211609593.2A 2022-12-15 2022-12-15 一种clclc型谐振变换器及调制方法 Active CN115622413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211609593.2A CN115622413B (zh) 2022-12-15 2022-12-15 一种clclc型谐振变换器及调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211609593.2A CN115622413B (zh) 2022-12-15 2022-12-15 一种clclc型谐振变换器及调制方法

Publications (2)

Publication Number Publication Date
CN115622413A CN115622413A (zh) 2023-01-17
CN115622413B true CN115622413B (zh) 2023-03-28

Family

ID=84880117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211609593.2A Active CN115622413B (zh) 2022-12-15 2022-12-15 一种clclc型谐振变换器及调制方法

Country Status (1)

Country Link
CN (1) CN115622413B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021127995A1 (en) * 2019-12-24 2021-07-01 Cree, Inc. Circuits and methods for controlling bidirectional cllc converters
CN117713563B (zh) * 2024-02-06 2024-05-10 常熟理工学院 Lcl型谐振变换器的扩展三自由度调制控制方法及***
CN117792030B (zh) * 2024-02-27 2024-05-14 常熟理工学院 Clc型谐振变换器的增强型双重同相调制方法及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258778A (zh) * 2021-02-03 2021-08-13 中国电力科学研究院有限公司 一种中高压直流配电***的dc-dc变换器模型
CN113595087A (zh) * 2021-07-08 2021-11-02 国网西藏电力有限公司 一种应用于高原地区具有潮流控制的末端电压治理装置
CN114465481A (zh) * 2021-12-29 2022-05-10 宁波均胜新能源研究院有限公司 双向clllc谐振变换器控制方法、电子设备及变换器

Also Published As

Publication number Publication date
CN115622413A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN111490683B (zh) 双变压器串联谐振双有源桥dc-dc变换器拓扑的轨迹控制方法
CN110401350B (zh) 双有源全桥双向dc-dc变换器的全负载范围zvs的移相控制方法
CN115622413B (zh) 一种clclc型谐振变换器及调制方法
Huang et al. Comprehensive coordinated frequency control of symmetrical CLLC-DC transformer in hybrid AC/DC microgrids
Liu et al. Hybrid frequency pacing for high-order transformed wireless power transfer
CN116470774B (zh) 一种t型lcl谐振变换器及其全范围软开关调制方法
CN109004836B (zh) 适用于模块化多电平直流变压器的变频优化控制方法
CN114649954A (zh) 一种三相三电平anpc串联谐振型双有源桥dc/dc变换器
CN112953245A (zh) 双有源桥式变换器全负载范围软开关控制方法
Reddy P et al. Modular‐structured resonant converter for multilevel converters in micro grids
CN115833602B (zh) 一种双变压器式谐振变换器及其调制方法
CN116094329B (zh) 一种混合桥谐振变换器、调制方法及***
Gao et al. Single-stage LLC AC/DC converter with wide input range and low bus voltage
Yuan et al. A Linear-Resonant Hybrid Bridge DC–DC Converter
Li et al. Optimized Bidirectional DC-DC Converter Adapted to High Voltage Gain and Wide ZVS Range
Ma et al. Secondary periodic energy control for LCC-S compensated wireless power transfer systems
Jin et al. Hybrid Control for Three-Level LLC Resonant Converter of Dual-Bridge for Wide Output Range
Wen et al. The Hybrid Control Strategy for The Wide Input of The LLC Converter
Cao et al. Efficiency Optimization of the active auxiliary network in the phase-shifted full-bridge DC/DC converter
Chen et al. Predictive charge control for LLC resonant converters
CN115955122B (zh) 一种双桥串联谐振变换器的无回流调制方法及***
CN113630014B (zh) 一种双有源桥钳位变换器及其控制方法
Shao et al. A High-Efficiency Wireless Power Transfer Converter with Integrated Power Stages
CN117812769B (zh) Cclc感应加热电源、对称式cclcc感应加热电源及其控制方法
CN109039082B (zh) 适用于模块化多电平直流变压器的回流功率优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant