CN115196631B - 一种超薄单层钒基MXene材料及其制备方法和应用 - Google Patents

一种超薄单层钒基MXene材料及其制备方法和应用 Download PDF

Info

Publication number
CN115196631B
CN115196631B CN202210892120.1A CN202210892120A CN115196631B CN 115196631 B CN115196631 B CN 115196631B CN 202210892120 A CN202210892120 A CN 202210892120A CN 115196631 B CN115196631 B CN 115196631B
Authority
CN
China
Prior art keywords
vanadium
mxene material
layer
layer vanadium
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210892120.1A
Other languages
English (en)
Other versions
CN115196631A (zh
Inventor
黄剑锋
李晓艺
曹丽云
何丹阳
牛梦凡
徐国婷
解雅洁
冯亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210892120.1A priority Critical patent/CN115196631B/zh
Publication of CN115196631A publication Critical patent/CN115196631A/zh
Application granted granted Critical
Publication of CN115196631B publication Critical patent/CN115196631B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于二维纳米材料技术领域,涉及一种超薄单层钒基MXene材料的制备方法,包括以下步骤:将钒基MAX相陶瓷材料、氯化钠、氯化钾及其他氯离子盐,按1:(1‑10):(1‑10):(3‑65)的质量比混合,研磨得到混合物A;将混合物A以(3‑5)℃/min的升温速率升温至300‑800℃,再以(8‑15)℃/min的升温速率升温至400‑1000℃,反应结束冷却得粉末产物B;将粉末产物B移入酸性溶液中,浸泡;将浸泡后产物洗涤,直至pH为6‑8,离心后得到沉淀物;将沉淀物冷冻干燥后,得到超薄单层钒基MXene材料。解决了化学刻蚀法安全性低以及环保性低、超声波剥离技术的功率时间等参数要求高等问题。

Description

一种超薄单层钒基MXene材料及其制备方法和应用
技术领域
本发明属于二维纳米材料技术领域,具体涉及一种超薄单层钒基MXene材料及其制备方法和应用。
背景技术
氢能是21世纪极具广阔前景的可再生能源,氢能有望成为传统化石燃料的替代品。制氢方法中电解水制氢是目前公认的最佳方法,开发高效的析氢电催化剂是该技术运用的关键。铂(Pt)等贵金属表现出目前最为优异的催化活性,但由于贵金属在地壳中的含量低、价格昂贵等缺点,大大地限制了其工业化的发展。
近年来,MXene作为新兴的一种类石墨烯二维材料,迅速进入了人们的视野。自2011年Gogotsi团队首次用氢氟酸合成Ti3C2 MXene以来,这种新型过渡金属碳/氮化物MXene由于其具有独特的结构和电子性能,便引起了越来越多研究者的广泛关注。MXene是在选择性刻蚀掉其前驱体MAX相的A层原子后产生的,通常具有多层结构,且具有良好的导热性、导电性、高热稳定性和抗氧化性,在光(电)催化、能源存储等领域显示出巨大的潜能。
现有的制备单层/多层MXene的技术中,通常先采用化学刻蚀法(HF或LiF+HCl)制备出多层MXene材料,再将多层MXene材料分散成单层或更少层的薄片是生产MXene时最重要的步骤之一,通常需要借助超声波处理——分层、分离和剥离MXene片材的主要工具。例如,Massoud Malaki等人[Massoud Malaki,et al.MXenes and ultrasonication[J].J.Mater.Chem.A,2019,7,10843-10857]对MXene材料的超声化学合成的最新进展进行了综述讨论,包括超声处理的基础知识,不同的超声处理参数设置等,但显然超声合成过程中对缺陷,尺寸,形貌的控制是难点和关键,超声虽然可以剥离MXene,但过度超声会导致大面积片层遭到破坏,尺寸形貌不均一等。另外,Zhang等人[Shunlong Zhang,Pengfei Huang,Jianli Wang,et al.Fast and Universal Solution-Phase Flocculation Strategy forScalable Synthesis of Various Few-Layered MXene Powders[J].J.Phys.Chem.Lett.2020,11,4,1247–1254]在HF酸刻蚀后的多层MXene溶液中加入NH4+,通过液相絮凝方法(NH4+方法和改良的NH4+方法)来解决MXene纳米片的重新堆叠和聚集问题。虽然最终少层MXene产物尺寸大且均匀,但制备过程复杂,HF酸的使用污染不环保,安全系数低,阻碍了其在各领域大规模的工业化应用。
发明内容
本发明的目的在于提供一种超薄单层钒基MXene材料及其制备方法和应用,解决了化学刻蚀法安全性低以及环保性低、超声波剥离技术的功率、时间等参数要求高等问题。
本发明是通过以下技术方案来实现:
一种超薄单层钒基MXene材料的制备方法,包括以下步骤:
1)将钒基MAX相陶瓷材料、氯化钠、氯化钾及其他氯离子盐,按1:(1-10):(1-10):(3-65)的质量比混合,并充分研磨均匀,得到混合物A;
2)将混合物A在真空或惰性气体气氛下,先以(3-5)℃/min的升温速率自室温升温至300-800℃,再以(8-15)℃/min的升温速率升温至400-1000℃,保温2-6h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
3)将粉末产物B移入酸性溶液中,浸泡2-72h;
4)将浸泡后的产物洗涤,直至pH为6-8,离心后得到沉淀物;
5)将离心后得到的沉淀物以-45~-35℃的温度冷冻干燥6-12h后,得到超薄单层钒基MXene材料。
进一步,步骤1)中,钒基MAX相陶瓷材料为V2AlC、V3AlC2、V4AlC3或V2AlN。
进一步,步骤1)中,其他氯离子盐包括MgCl2、CaCl2、FeCl3、CoCl2、NiCl2、CuCl2、ZnCl2、AgCl2、CdCl2、MnCl2、NbCl5和CdCl2中的任意一种或两种以上的组合。
进一步,步骤3)中,酸性溶液采用浓度为0.3-5mol/L的稀硝酸、稀硫酸或稀盐酸。
进一步,步骤4)中,离心时间为3-5min,转速为3000-9000rpm。
本发明还公开了所述制备方法制备得到的一种超薄单层钒基MXene材料,所述的超薄单层钒基MXene材料呈现超薄片状二维结构,分子式为(Mn+1XnTy),其中M代表过渡金属V,X代表C、N或二者的组合,n=1、2或3,T代表表面官能团,表面官能团为-OH、-O或-Cl;y代表官能团T的数目。
进一步,所述超薄单层钒基MXene材料的薄片状厚度为3-10nm,比表面积尺寸为200nm-1μm。
本发明还公开了所述超薄单层钒基MXene材料作为电催化剂用于析氢电催化。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开了一种超薄单层钒基MXene材料的制备方法,相较于传统化学刻蚀法(HF或LiF+HCl)结合超声波剥离的方法制备单层/少层MXene,本发明采用氯离子盐直接固相法刻蚀的制备方法,先在300-800℃缓慢升温的熔融态下充分使得Na+、K+***MAX陶瓷材料层间,达到初步刻蚀以及提供熔融态的作用;便于其他氯离子盐的阳离子(如Mg2+、Cu2+、Zn2+等)在熔融态下引入层间,与MAX陶瓷材料的Al离子层发生置换,从而达到Al离子的刻蚀脱出。进而得到刻蚀后的单层/多层MXene材料。氯化钠和氯化钾是必须的,其作用是在熔融态K+和Na+离子半径大,可先***MAX相陶瓷材料的层间,便于其他氯离子盐阳离子的加入对Al离子层进行置换。所使用的氯离子盐成本低于HF酸、氟盐,且避免了对人体和环境都十分有害的F离子的使用;在制备工艺上也省去了HF酸这类刻蚀法需要反复离心洗涤后还要加入有机大分子插层剂进行插层等繁复步骤,操作和安全性上都得到了改善,原料成本和工艺成本更低,绿色无污染,安全性高,工艺过程简便。
本发明申请所制备的超薄单层钒基MXene材料,呈现超薄片状二维结构,厚度约为3-10nm,尺寸约200nm-1μm,形貌均匀,结构稳定,导电性好,具有一定的电催化活性,可用于析氢电催化领域。其较大的比表面积、均一性、高活性位点和良好的导电性,将其用作析氢电催化剂的效果明显,具有一定的应用前景。
附图说明
图1为本发明实施例1采用氯离子盐固相刻蚀制备V2C MXene的SEM图;
图2为本发明实施例2采用氯离子盐固相刻蚀制备V2C MXene的TEM图;
图3为本发明实施例2采用氯离子盐固相刻蚀制备的V2C MXene产物于低温下存储6个月后的SEM图;
图4为本发明实施例3制备的V2C MXene的XRD图;
图5为本发明实施例4制备的V2C MXene的LSV图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明了,以下结合附图及实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅为本发明一部分实施例,而不是全部实施例。
本发明附图及实施例描述和示出的组件可以以各种不同的配置来布置和设计,因此,以下附图中提供的本发明实施例的详细描述并非旨在限制要求保护的本发明的范围,而仅仅是表示本发明选定的一种实施例。基于本发明的附图及实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护范围。
本发明公开了一种超薄单层钒基MXene材料的制备方法,包括以下步骤:
1)将钒基MAX相陶瓷材料、氯化钠、氯化钾及其他氯离子盐,按1:(1-10):(1-10):(3-65)的质量比混合,并充分研磨均匀,得到混合物A;
2)将混合物A在真空或惰性气体气氛下,先以(3-5)℃/min的升温速率自室温升温至300-800℃,再以(8-15)℃/min的升温速率升温至400-1000℃,保温2-6h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
3)将粉末产物B全部移入酸性溶液中,浸泡2-72h;
4)将浸泡后的产物洗涤,直至pH为6-8,离心后得到沉淀物;
5)将离心后得到的沉淀物以-45~-35℃的温度冷冻干燥6-12h后,得到超薄单层钒基MXene材料。
具体地,钒基MAX相陶瓷材料为V2AlC、V3AlC2、V4AlC3或V2AlN。
具体地,其他氯离子盐包括MgCl2、CaCl2、FeCl3、CoCl2、NiCl2、CuCl2、ZnCl2、AgCl2、CdCl2、MnCl2、NbCl5和CdCl2中的任意一种或两种以上的组合。
以下结合实施例对本发明的特征和性能进一步详细说明。
实施例1
1)将V2AlC MAX相陶瓷材料、氯化钠、氯化钾及氯化镁,按1:2:2:3的质量比混合,并充分研磨均匀得到混合物A;
2)将混合物A倒入氧化铝瓷舟,在真空气氛下,先以5℃/min的升温速率自室温升温至500℃,再以10℃/min的升温速率升温至800℃,保温2h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
此升温速率有助于氯化钠和氯化钾缓慢达到二者的熔点附近,在反应过程中保证熔融态下K+和Na+与MAX相陶瓷材料充分接触,最大限度***层间。
3)将粉末产物B全部移入浓度为0.5mol/L的稀盐酸中,浸泡24h;
4)将浸泡后的产物用去离子水、乙醇反复交替地离心清洗3次,离心时间为3min,转速为3000rpm,直至pH约为6;
5)将步骤4离心后得到的沉淀物在真空冷冻干燥机中以-45℃的温度冷冻干燥8h后,即可得到超薄单层V2C MXene材料。
由图1可以看出,实施例1所制备的超薄单层MXene材料形貌均一,呈现独特的单层二维结构,薄片尺寸约为200nm,且薄片单层厚度约为3nm。
传统HF酸、HCl+氟盐的刻蚀方法得到的MXene一般为多层的手风琴形貌,再进一步结合插层剂才可将多层分散为单层材料。而本申请方法可以一步到位,使其产物直接得到纳米薄片或纳米片组装的纳米花状。
由图2的TEM图还可见微观结构上与SEM图一致,呈现中间厚边缘薄的片状特点。此领域在制备MXene材料方面,目的大多是追求单层的MXene,且越薄越好。因为越薄的MXene材料可以作为载体负载其他金属或化合物。另外,在电催化析氢领域,氢原子的吸附和脱附优先从材料边缘处发生。因此,本申请得到这种中间厚边缘薄的纳米片薄层结构更有利于氢的吸附脱附以及氢气气泡的脱出,从而提升电催化析氢性能。
实施例2
1)将V2AlC MAX相陶瓷材料、氯化钠、氯化钾及氯化钙,按1:3:3:5的质量比混合,并充分研磨均匀得到混合物A;
2)将混合物A倒入氧化铝瓷舟,在真空气氛下,先以3℃/min的升温速率自室温升温至600℃,再以8℃/min的升温速率升温至400℃,保温3h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
3)将产物B全部移入浓度为0.8mol/L的稀硫酸中,浸泡72h;
4)将浸泡后的产物用去离子水、乙醇反复交替地离心清洗6次,离心时间为5min,转速为9000rpm,直至pH约为6;
5)将步骤4离心后得到的沉淀物在真空冷冻干燥机中以-35℃的温度冷冻干燥6h后,即可得到超薄单层V2C MXene材料。
由图2可以看出,实施例2所制备的超薄单层MXene材料形貌均一,同样呈现独特的二维结构,薄片尺寸约为700nm,且薄片单层厚度约为8nm。
如图3所示,对实施例2制备的样品放置6个月后的样品进行过扫描测试,发现样品形貌完全一致,并未发生坍塌。
实施例3
1)将V2AlC MAX相陶瓷材料、氯化钠、氯化钾及氯化锌,按1:1:1:6的质量份之比混合,并充分研磨均匀得到混合物A;
2)将混合物A倒入氧化铝瓷舟,在真空气氛下,先以5℃/min的升温速率自室温升温至300℃,再以10℃/min的升温速率升温至1000℃,保温2h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
3)将产物B全部移入浓度为1mol/L的稀盐酸中,浸泡24h;
4)将浸泡后的产物用去离子水、乙醇反复交替地离心清洗5次,离心时间为4min,转速为6000rpm),直至pH约为6;
5)将步骤4离心后得到的沉淀物在真空冷冻干燥机中以-40℃的温度冷冻干燥6h后,即可得到超薄单层V2C MXene材料。
图4为本实施例所制备的V2C MXene材料的XRD图,广泛地,(002)晶面、(103)晶面对应的两个峰被用来确定MAX相陶瓷的刻蚀程度。图中显示的各个晶面均有所减弱,且(002)晶面发生了低角度偏移,说明MAX相陶瓷的特征三维结构遭到破坏,层间距增大,可知多层MXene材料的成功刻蚀制备。
本实施例3所制备的产物V2C MXene材料形貌与实施例1、实施例2所得产物形貌一致,根据实验结果,其薄片尺寸约为350nm,且单层厚度约为5nm。
实施例4
1)将V2AlC MAX相陶瓷材料、氯化钠、氯化钾及氯化铜,按1:3:3:4的质量份之比混合,并充分研磨均匀得到混合物A;
2)将混合物A倒入氧化铝瓷舟,在惰性气体气氛下,先以5℃/min的升温速率自室温升温至620℃,再以15℃/min的升温速率升温至800℃,保温6h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
3)将产物B全部移入浓度为3mol/L的稀硝酸中,浸泡24h;
4)将浸泡后的产物用去离子水、乙醇反复交替地离心清洗6次,离心时间为5min,转速为3000rpm,直至pH约为7;
5)将步骤4离心后得到的沉淀物在真空冷冻干燥机中以-45℃的温度冷冻干燥7h后,即可得到超薄单层V2C MXene材料。
图5是本实施例所制备的V2C MXene析氢电催化剂的LSV图,表示pH 14测试条件下,当电流密度为10mA/cm2,扫描速率为5mV/s时,该样品过电势为425mV,明显优于普遍报道的未刻蚀MAX相陶瓷的电催化活性,说明刻蚀后的超薄单层MXene材料具有一定的催化析氢活性。同样地,本实施例4所制备的产物V2C MXene材料形貌与上述实施例所得产物的形貌也保持一致,根据实验结果,其薄片尺寸约为500nm,且单层厚度约为9nm。
实施例5
1)将V2AlC MAX相陶瓷材料、氯化钠、氯化钾及氯化铁,按1:4:4:4的质量份之比混合,并充分研磨均匀得到混合物A;
2)将混合物A倒入氧化铝瓷舟,在惰性气体气氛下,先以5℃/min的升温速率自室温升温至800℃,再以10℃/min的升温速率升温至900℃,保温2h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
3)将产物B全部移入浓度为2mol/L的稀盐酸中,浸泡36h;
4)将浸泡后的产物用去离子水、乙醇反复交替地离心清洗6次,离心时间为5min,转速为8000rpm,直至pH约为8;
5)将步骤4离心后得到的沉淀物在真空冷冻干燥机中以-45℃的温度冷冻干燥9h后,即可得到超薄单层V2C MXene材料。
本实施例5所制备的产物V2C MXene材料形貌与上述实施例所得产物形貌几乎一致,根据实验结果,其薄片尺寸约为1μm,且单层厚度约为10nm。
本发明制备的超薄单层钒基MXene材料呈现超薄片状二维结构,分子式为(Mn+1XnTy),其中M代表过渡金属V,X代表C、N或二者的组合,n=1、2或3,T代表表面官能团,表面官能团为-OH、-O或-Cl;y代表官能团T的数目。
所述超薄单层钒基MXene材料的薄片状厚度为3-10nm,比表面积尺寸为200nm-1μm。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (7)

1.一种超薄单层钒基MXene材料的制备方法,其特征在于,包括以下步骤:
1)将钒基MAX相陶瓷材料、氯化钠、氯化钾及其他氯离子盐,按1:(1-10):(1-10):(3-65)的质量比混合,并充分研磨均匀,得到混合物A;
2)将混合物A在真空或惰性气体气氛下,先以(3-5)℃/min的升温速率自室温升温至300-800℃,再以(8-15)℃/min的升温速率升温至800-1000℃,保温2-6h,充分反应,待反应结束后自然冷却至室温,得到粉末产物B;
3)将粉末产物B移入酸性溶液中,浸泡2-72h;
4)将浸泡后的产物洗涤,直至pH为6-8,离心后得到沉淀物;
步骤4)中,离心时间为3-5min,转速为3000-9000rpm;
5)将离心后得到的沉淀物以-45~-35℃的温度冷冻干燥6-12h后,得到超薄单层钒基MXene材料。
2.根据权利要求1所述的一种超薄单层钒基MXene材料的制备方法,其特征在于,步骤1)中,钒基MAX相陶瓷材料为V2AlC、V3AlC2、V4AlC3或V2AlN。
3.根据权利要求1所述的一种超薄单层钒基MXene材料的制备方法,其特征在于,步骤1)中,其他氯离子盐包括MgCl2、CaCl2、FeCl3、CoCl2、NiCl2、CuCl2、ZnCl2、AgCl2、CdCl2、MnCl2、NbCl5和CdCl2中的任意一种或两种以上的组合。
4.根据权利要求1所述的一种超薄单层钒基MXene材料的制备方法,其特征在于,步骤3)中,酸性溶液采用浓度为0.3-5mol/L的稀硝酸、稀硫酸或稀盐酸。
5.权利要求1-4任意一项所述制备方法制备得到的一种超薄单层钒基MXene材料,其特征在于,所述的超薄单层钒基MXene材料呈现超薄片状二维结构,分子式为(Mn+1XnTy),其中M代表过渡金属V,X代表C、N或二者的组合,n=1、2或3,T代表表面官能团,表面官能团为-OH、-O或-Cl;y代表官能团T的数目。
6.根据权利要求5所述的一种超薄单层钒基MXene材料,其特征在于,所述超薄单层钒基MXene材料的薄片状厚度为3-10nm,比表面积尺寸为200nm-1μm。
7.一种如权利要求5或6所述超薄单层钒基MXene材料的用途,其特征在于,将所述超薄单层钒基MXene材料作为电催化剂用于析氢电催化。
CN202210892120.1A 2022-07-27 2022-07-27 一种超薄单层钒基MXene材料及其制备方法和应用 Active CN115196631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210892120.1A CN115196631B (zh) 2022-07-27 2022-07-27 一种超薄单层钒基MXene材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210892120.1A CN115196631B (zh) 2022-07-27 2022-07-27 一种超薄单层钒基MXene材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115196631A CN115196631A (zh) 2022-10-18
CN115196631B true CN115196631B (zh) 2023-12-08

Family

ID=83584675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210892120.1A Active CN115196631B (zh) 2022-07-27 2022-07-27 一种超薄单层钒基MXene材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115196631B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403186A (zh) * 2020-04-30 2020-07-10 苏州北科纳米科技有限公司 一种基于熔盐法制备Mxene材料的方法
CN112142101A (zh) * 2020-09-30 2020-12-29 湖北大学 一种单层二维纳米材料MXene的制备方法
CN112794328A (zh) * 2021-01-20 2021-05-14 四川大学 一种制备MXene材料的方法
CN112850710A (zh) * 2021-01-25 2021-05-28 江苏师范大学 一种利用蒸汽剥离技术制备单层Mxene纳米片的方法
CN113735125A (zh) * 2021-08-27 2021-12-03 西安交通大学 一种碳化物衍生碳材料及其制备方法和应用
CN114671434A (zh) * 2020-12-24 2022-06-28 苏州北科纳米科技有限公司 一种铝液浸泡MAX相制备抗氧化MXene的方法
CN114715891A (zh) * 2022-04-19 2022-07-08 陕西科技大学 一种片层状钒基MXene材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210139379A1 (en) * 2019-11-12 2021-05-13 Government Of The United States, As Represented By The Secretary Of The Air Force Preparation of Layered MXene via Elemental Halogen Etching of MAX Phase

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403186A (zh) * 2020-04-30 2020-07-10 苏州北科纳米科技有限公司 一种基于熔盐法制备Mxene材料的方法
CN112142101A (zh) * 2020-09-30 2020-12-29 湖北大学 一种单层二维纳米材料MXene的制备方法
CN114671434A (zh) * 2020-12-24 2022-06-28 苏州北科纳米科技有限公司 一种铝液浸泡MAX相制备抗氧化MXene的方法
CN112794328A (zh) * 2021-01-20 2021-05-14 四川大学 一种制备MXene材料的方法
CN112850710A (zh) * 2021-01-25 2021-05-28 江苏师范大学 一种利用蒸汽剥离技术制备单层Mxene纳米片的方法
CN113735125A (zh) * 2021-08-27 2021-12-03 西安交通大学 一种碳化物衍生碳材料及其制备方法和应用
CN114715891A (zh) * 2022-04-19 2022-07-08 陕西科技大学 一种片层状钒基MXene材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
二维材料V2C MXene的制备与应用;江松等;化学进展;第33卷(第5期);第740-751页 *
李垚等.新型功能材料制备原理与工艺.哈尔滨工业大学出版社,2017,第49页. *

Also Published As

Publication number Publication date
CN115196631A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Khan et al. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications
CN106549163B (zh) 一种钴、氮共掺杂超薄纳米碳片的制备方法及其应用
CN105293483B (zh) 一种原位制备过渡金属掺杂多孔石墨烯的方法
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN106783230A (zh) 一种碳化钛原位生长CNTs三维复合材料及其制备方法
CN106115802B (zh) 一种石墨烯复合材料的制备方法
Han et al. Research progresses in the preparation of Co-based catalyst derived from Co-MOFs and application in the catalytic oxidation reaction
Chang et al. A unique strategy for preparing single-phase unitary/binary oxides–graphene composites
WO2014032399A1 (zh) 一种石墨烯和石墨烯基复合材料的低温制备方法
KR101267317B1 (ko) 마이크로웨이브-폴리올 합성법을 이용한 전이금속 산화물/그래핀 복합체 및 이의 제조방법
KR101349912B1 (ko) Pt/GR(Graphene) 나노복합체 및 그 제조방법
KR20120103947A (ko) 전이금속 산화물/그래핀 복합체 및 이의 제조방법
KR101195869B1 (ko) 촉매 연소법을 이용한 다공성 플러렌의 합성방법
CN110148524A (zh) 一种嵌套式CeO2/GO/AAO纳米阵列超级电容器电极材料及其制备方法
CN112458495A (zh) 一种钌基过渡金属氧化物固溶体的电催化剂及其制备方法和应用
CN111792669A (zh) 一种TiO2纳米棒/多层石墨烯复合材料及制备方法
US20200102227A1 (en) Nanoporous copper supported copper oxide nanosheet array composites and method thereof
CN115196631B (zh) 一种超薄单层钒基MXene材料及其制备方法和应用
Chen et al. CoS2 nanoparticles grown on Mo2TiC2Tx as an efficient electrocatalyst for hydrogen evolution reaction
KR101705714B1 (ko) 이리듐 및 클로라이드가 결합된 그래핀 복합소재의 제조방법 및 이에 따라 제조되는 그래핀 복합소재
CN111229318A (zh) 一种超疏水性铜基原位复合催化剂及其制备方法与应用
CN108455573B (zh) 一种手撕面包状的疏松层状石墨烯气凝胶的制备方法
CN114855210A (zh) 一种熔融盐法原位合成碳基单原子纳米片及其制备方法和应用
CN114824319A (zh) 一种N掺杂TiO2-x负载的PtCu合金纳米催化剂的制备方法和应用
CN110492115B (zh) 石墨烯/碳纳米管框架包裹Fe3C催化剂、制备及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant