CN114956830A - 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法 - Google Patents

氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法 Download PDF

Info

Publication number
CN114956830A
CN114956830A CN202210553765.2A CN202210553765A CN114956830A CN 114956830 A CN114956830 A CN 114956830A CN 202210553765 A CN202210553765 A CN 202210553765A CN 114956830 A CN114956830 A CN 114956830A
Authority
CN
China
Prior art keywords
cnts
sic
temperature
pdc
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210553765.2A
Other languages
English (en)
Other versions
CN114956830B (zh
Inventor
李贺军
任斌
贾瑜军
武霄鹏
邓雨萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210553765.2A priority Critical patent/CN114956830B/zh
Publication of CN114956830A publication Critical patent/CN114956830A/zh
Application granted granted Critical
Publication of CN114956830B publication Critical patent/CN114956830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法,将预处理的碳纳米管(CNTs)加入由硼酸和尿素配制的氮化硼(BN)前驱体溶液中超声分散处理,然后通过多次真空抽滤‑干燥‑热处理的方式,获得BN包覆CNTs纳米粉体(BN‑CNTs);将上述纳米粉体均匀分散到液态聚碳硅烷(PCS)中,通过低温交联、高温裂解热处理制得BN‑CNTs增强的聚合物转化碳化硅(PDC‑SiC)陶瓷复合材料。引入BN‑CNTs改善了目前PDC‑SiC陶瓷作为吸波材料应用时阻抗失配、损耗能力不足的现状,优化了PDC‑SiC的介电常数,提高了其吸波性能。

Description

氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制 备方法
技术领域
本发明属于吸波材料技术领域,涉及一种氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法。
背景技术
随着世界各国防御体系的探测、追踪能力越来越强,军事目标的生存能力和武器***的突防能力日益受到严重的威胁,因而发展高性能吸波隐身材料已经成为了现代国防体系中十分重要和关键的方向。聚合物转化碳化硅(PDC-SiC)陶瓷具有优异的耐高温蠕变性和化学稳定性,制备工艺简便且可调控,由于它特殊的介电和电性能(随着裂解温度的变化而变化),使其成为了一种很有前景的吸波材料。但是,纯的PDC-SiC陶瓷作为吸波材料应用时,其介电损耗能力较弱且相对介电常数的实部过高,与空气的阻抗匹配性差,这也极大的降低了它的吸波能力。所以如何改善PDC-SiC陶瓷的阻抗匹配性以及提高它的吸波性能是迫切需要的。
文献1“Li Q,Yin X,Duan W,et al.Electrical,dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band[J].Journal ofalloys and compounds,2013,565:66-72.”公开了聚合物转化碳化硅陶瓷在X波段介电、电学和微波特性的研究,该陶瓷在不同的裂解温度(1100-1600℃)下制备,研究发现在8.2~12.4GHz(X波段)范围内,随着裂解温度的升高,PDC-SiC陶瓷中的碳化硅纳米晶和游离碳含量逐渐增多,生成的晶界在电磁波的作用下产生了空间电荷极化和界面弛豫现象,从而消耗了电磁波的能量,但是由于该材料阻抗匹配性较差,损耗能力不足,在1400℃裂解的样品的平均反射率仅为-9.97dB,达不到有效损耗下反射率为-10dB的标准,如何改善这一问题是值得去思考并解决的。
文献2“Hong W,Dong S,Hu P,et al.In situ growth of one-dimensionalnanowires on porous PDC-SiC/Si3N4 ceramics with excellent microwave absorptionproperties[J].Ceramics International,2017,43(16):14301-14308.”公开了一种原位生长Si3N4纳米线修饰的多孔PDC-SiC/Si3N4陶瓷的制备方法,其中Si3N4NWs通过气固(VS)机制原位形成于孔道中,随着Si3N4NWs的含量的提高,PDC-SiC/Si3N4多孔陶瓷的微观结构和力学性能也有所改变,整个复合材料的最小反射系数也随着PDC-SiC含量的增加而得到了改善,这主要得益于原位形成的PDC-SiC纳米颗粒、纳米碳和Si3N4NWs之间的不同界面增强了电子偶极极化和界面散射。尽管该技术在一定程度上提高了PDC-SiC的吸波性能,但是对于单层厚度的该材料而言,其吸波频段较窄,实际应用能力较弱。
碳纳米管(CNTs)密度低、稳定性好、比表面积大、导电性高,是一种高性能的吸波材料,常常被选为纳米填充相来提高基体的介电损耗能力。
文献3“Zhang Y,Yin X,Ye F,et al.Effects of multi-walled carbonnanotubes on the crystallization behavior of PDCs-SiBCN and their improveddielectric and EM absorbing properties[J].Journal of the European CeramicSociety,2014,34(5):1053-1061.”公开了一种含有多壁碳纳米管的聚合物转化衍生硅硼碳氮化物陶瓷(PDC-SiBCN)的制备方法,其中多壁碳纳米管作为成核剂促进了异相成核,降低了SiBCN中SiC的结晶温度,而且,在MWCNTs-SiBCN中形成的A(SiBCN基体)+B(SiC)+C(MWCNTs)结构有利于提高整个复合材料的介电性能和电磁吸收性能。然而,MWCNTs的电导率过高,加剧了整个复合材料与自由空间的阻抗匹配,这也使得该材料在X波段的有效带宽仅有3GHz,限制了其应用前景。因此,CNTs与聚合物转化陶瓷之间的阻抗匹配程度还有待提高。
六方氮化硼(h-BN)作为一种传统的二维材料,具有良好的抗氧化性和低的相对介电常数,是改善聚合物转化陶瓷极好的候选材料,引入BN相可以降低复合材料的相对介电常数的实部,从而满足阻抗匹配的要求,提高材料的吸波性能。鉴于此,
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法,解决PDC-SiC介电损耗能力较弱,阻抗匹配性差的问题。
发明提供了一种氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料的制备方法。首先以硼酸、尿素为反应原料,配制BN前驱体溶液,然后通过超声分散-多次真空抽滤-烘干-热处理的步骤制得BN包覆的CNTs纳米相(BN-CNTs),最后采用低温交联、高温裂解热处理得到均匀分布BN-CNTs的PDC-SiC陶瓷复合材料。本发明得到的BN-CNTs增强的PDC-SiC能够有效改善目前PDC-SiC陶瓷作为吸波材料应用时的阻抗失配、损耗能力不足的现状。
技术方案
一种氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料,其特征在于以聚合物转化碳化硅陶瓷为基体,与BN-CNTs纳米粉体复合,形成了一种包含SiC、游离碳、BN和CNTs的多相复合材料;其中BN-CNTs纳米粉体的质量百分比为1%~5%;BN-CNTs均匀的分布在SiC陶瓷基体中。
一种所述氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料的制备方法,其特征在于步骤如下:
步骤1:在Ar气氛中,对CNTs进行200~600℃热处理2~5h,然后将热处理的CNTs加入到浓硝酸溶液中超声0.5~2h,后将CNTs洗涤至中性;
步骤2:将硼酸、尿素混合分散于去离子水中,磁力搅拌10~15h至溶液呈透明状;将步骤1预处理的CNTs加入溶液超声分散处理30~90min,使用真空抽滤装置收集CNTs并烘干;
步骤3:烘干的CNTs在流动的N2气氛中,以3~10℃/min升温速率将炉温从室温升至800~1200℃保温3~7h;关闭电源自然冷却至室温,得到热处理后的CNTs;
将热处理的CNTs重复上述步骤2、3操作2~6次,得到BN-CNTs;
步骤4:将质量分数为0%~20%的BN-CNTs与液相聚碳硅烷PCS超声分散混合1~4h;在流动的Ar气氛中,以3~10℃/min升温速率将炉温从室温升至100~300℃,保温1~3h;关闭电源自然冷却至室温,得到交联完成的试样;
交联后的试样充分研磨筛分,得到前驱体粉末,将粉末压制成固体块状;
步骤5:将固体块状放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以3~10℃/min升温速率将炉温从室温升至800~1500℃,保温1~4h;关闭电源自然冷却至室温,得到BN-CNTs增强的PDC-SiC陶瓷。
所述步骤1、步骤3和步骤4加热是采用电阻丝为发热体的热处理炉中进行加热。
所述浓硝酸溶液浓度为12mol/L。
所述步骤2硼酸、尿素的摩尔比为1:1~10。
所述步骤4前驱体粉末过100~400目筛;压片机压力为5~20KN。
有益效果
本发明提出的一种氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法,将预处理的碳纳米管(CNTs)加入由硼酸和尿素配制的氮化硼(BN)前驱体溶液中超声分散处理,然后通过多次真空抽滤-干燥-热处理的方式,获得BN包覆CNTs纳米粉体(BN-CNTs);将上述纳米粉体均匀分散到液态聚碳硅烷(PCS)中,通过低温交联、高温裂解热处理制得BN-CNTs增强的聚合物转化碳化硅(PDC-SiC)陶瓷复合材料。引入BN-CNTs改善了目前PDC-SiC陶瓷作为吸波材料应用时阻抗失配、损耗能力不足的现状,优化了PDC-SiC的介电常数,提高了其吸波性能。
本发明将CNTs加入以硼酸和尿素配制的BN前驱体溶液超声分散,抽滤后将所得产物干燥、高温热处理得到BN-CNTs粉体;均匀分散BN-CNTs粉体至液相聚碳硅烷中,通过低温交联、高温热处理制备BN-CNTs增强的陶瓷基复合材料。该材料以PDC-SiC陶瓷为基体,与BN-CNTs纳米粉体复合,形成了一种包含SiC、游离碳、BN-CNTs的多相复合材料。引入BN-CNTs,不仅提高了整个PDC-SiC陶瓷结构的电子转移能力,增强了PDC-SiC的介电损耗能力,而且BN相的存在,增加了复合材料内部的界面层,改善了PDC-SiC与电磁波自由空间的匹配阻抗,提供了材料的微波吸收能力。在相同的裂解温度下,BN-CNTs增强的PDC-SiC的最小反射系数相较于PDC-SiC的-40.32dB降至-49.47dB,最大有效吸收带宽(<-10dB)由1.9GHz提升到4.0GHz。此外,本发明制备的PDC-SiC具备原料投入和设备成本低、产量高的特点,适用于大规模生产,有良好的应用前景。
附图说明
图1分别为制备的BN-CNTs(b)和原始CNTs(a)的扫描电子显微镜照片。可以清晰的看到原始碳纳米管的管径在40~50nm之间,长度达到微米级别,BN包覆后在CNTs表面形成了一层均匀包覆层。
图2分别为制备的BN-CNTs(a)(b)和原始CNTs(c)的透射电子显微镜照片。可见包覆的BN相厚度大约在10nm左右。
图3分别为PDC-SiC(a)和本发明制备的BN-CNTs增强的PDC-SiC(b)陶瓷材料的SEM图。可以看到SiC陶瓷颗粒的粒径大约为10μm,BN-CNTs均匀分布在陶瓷表面。
图4为制备的纯PDC-SiC陶瓷(a)与本发明制备的BN-CNTs增强的PDC-SiC陶瓷(b)的吸波性能图。以-10dB作为材料达到有效吸收的标准,可见纯PDC-SiC陶瓷的最小反射率为-40.32dB,有效吸收带宽为1.9GHz,而BN-CNTs增强的PDC-SiC陶瓷的最小反射率降低到-49.47dB,有效吸收带宽提升至4.0GHz。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
(1)先将CNTs放入以电阻丝为发热体的热处理炉中,在Ar气氛中,对CNTs进行400℃热处理3.5h,然后将热处理的CNTs加入到12mol/L浓硝酸溶液中超声处理0.5h,后将CNTs洗涤至中性;
(2)将硼酸、尿素按摩尔比1:1~10混合分散于溶于200ml的去离子水中,磁力搅拌12h至溶液呈透明状;将预处理的CNTs加入溶液超声分散处理60min,使用真空抽滤装置收集CNTs并烘干备用;
(3)将烘干的CNTs放入以电阻丝为发热体的热处理炉中,在流动的N2气氛中,以5℃/min升温速率将炉温从室温升至800~1200℃,保温5h;关闭电源自然冷却至室温,得到热处理后的CNTs。
将热处理的CNTs重复上述步骤2、3操作4次,得到BN-CNTs;
(4)将质量分数为3%的BN-CNTs与液相聚碳硅烷(PCS)超声分散混合2h;混合均匀的试样放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以5℃/min升温速率将炉温从室温升至100~400℃,保温2h;关闭电源自然冷却至室温,得到交联完成的试样;
将固化后的试样充分研磨筛分,得到100~400目的前驱体粉末,使用5~20KN的压力,将粉末压制成尺寸为22.86mm×10.16mm×2.00mm的方形试样;
(5)将方形试样放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以5℃/min升温速率将炉温从室温升至800~1500℃,保温2h;关闭电源自然冷却至室温,得到BN-CNTs增强的PDC-SiC陶瓷。
实施例2
(1)先将CNTs放入以电阻丝为发热体的热处理炉中,在Ar气氛中,对CNTs进行400℃热处理3.5h,然后将热处理的CNTs加入到12mol/L浓硝酸溶液中超声处理0.5h,后将CNTs洗涤至中性;
(2)将硼酸、尿素按摩尔比1:1~10混合分散于溶于200ml的去离子水中,磁力搅拌12h至溶液呈透明状;将预处理的CNTs加入溶液超声分散处理60min,使用真空抽滤装置收集CNTs并烘干备用;
(3)将烘干的CNTs放入以电阻丝为发热体的热处理炉中,在流动的N2气氛中,以5℃/min升温速率将炉温从室温升至800~1200℃,保温5h;关闭电源自然冷却至室温,得到热处理后的CNTs。
将热处理的CNTs重复上述步骤2、3操作4次,得到BN-CNTs;
(4)将质量分数为5%的BN-CNTs与液相聚碳硅烷(PCS)超声分散混合2h;混合均匀的试样放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以5℃/min升温速率将炉温从室温升至100~400℃,保温2h;关闭电源自然冷却至室温,得到交联完成的试样;
将固化后的试样充分研磨筛分,得到100~400目的前驱体粉末,使用5~20KN的压力,将粉末压制成尺寸为22.86mm×10.16mm×2.00mm的方形试样;
(5)将方形试样放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以5℃/min升温速率将炉温从室温升至800~1500℃,保温2h;关闭电源自然冷却至室温,得到BN-CNTs增强的PDC-SiC陶瓷。
实施例3
(1)先将CNTs放入以电阻丝为发热体的热处理炉中,在Ar气氛中,对CNTs进行400℃热处理3.5h,然后将热处理的CNTs加入到12mol/L浓硝酸溶液中超声处理0.5h,后将CNTs洗涤至中性;
(2)将硼酸、尿素按摩尔比1:1~10混合分散于溶于200ml的去离子水中,磁力搅拌12h至溶液呈透明状;将预处理的CNTs加入溶液超声分散处理60min,使用真空抽滤装置收集CNTs并烘干备用;
(3)将烘干的CNTs放入以电阻丝为发热体的热处理炉中,在流动的N2气氛中,以5℃/min升温速率将炉温从室温升至800~1200℃,保温5h;关闭电源自然冷却至室温,得到热处理后的CNTs。
将热处理的CNTs重复上述步骤2、3操作4次,得到BN-CNTs;
(4)将质量分数为10%的BN-CNTs与液相聚碳硅烷(PCS)超声分散混合2h;混合均匀的试样放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以5℃/min升温速率将炉温从室温升至100~400℃,保温2h;关闭电源自然冷却至室温,得到交联完成的试样;
将固化后的试样充分研磨筛分,得到100~400目的前驱体粉末,使用5~20KN的压力,将粉末压制成尺寸为22.86mm×10.16mm×2.00mm的方形试样;
(5)将方形试样放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以5℃/min升温速率将炉温从室温升至800~1500℃,保温2h;关闭电源自然冷却至室温,得到BN-CNTs增强的PDC-SiC陶瓷。

Claims (6)

1.一种氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料,其特征在于以聚合物转化碳化硅陶瓷为基体,与BN-CNTs纳米粉体复合,形成了一种包含SiC、游离碳、BN和CNTs的多相复合材料;其中BN-CNTs纳米粉体的质量百分比为1%~5%;BN-CNTs均匀的分布在SiC陶瓷基体中。
2.一种权利要求1所述氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料的制备方法,其特征在于步骤如下:
步骤1:在Ar气氛中,对CNTs进行200~600℃热处理2~5h,然后将热处理的CNTs加入到浓硝酸溶液中超声0.5~2h,后将CNTs洗涤至中性;
步骤2:将硼酸、尿素混合分散于去离子水中,磁力搅拌10~15h至溶液呈透明状;将步骤1预处理的CNTs加入溶液超声分散处理30~90min,使用真空抽滤装置收集CNTs并烘干;
步骤3:烘干的CNTs在流动的N2气氛中,以3~10℃/min升温速率将炉温从室温升至800~1200℃保温3~7h;关闭电源自然冷却至室温,得到热处理后的CNTs;
将热处理的CNTs重复上述步骤2、3操作2~6次,得到BN-CNTs;
步骤4:将质量分数为0%~20%的BN-CNTs与液相聚碳硅烷PCS超声分散混合1~4h;在流动的Ar气氛中,以3~10℃/min升温速率将炉温从室温升至100~300℃,保温1~3h;关闭电源自然冷却至室温,得到交联完成的试样;
交联后的试样充分研磨筛分,得到前驱体粉末,将粉末压制成固体块状;
步骤5:将固体块状放入以电阻丝为发热体的热处理炉中,在流动的Ar气氛中,以3~10℃/min升温速率将炉温从室温升至800~1500℃,保温1~4h;关闭电源自然冷却至室温,得到BN-CNTs增强的PDC-SiC陶瓷。
3.根据权利要求2所述的方法,其特征在于:所述步骤1、步骤3和步骤4加热是采用电阻丝为发热体的热处理炉中进行加热。
4.根据权利要求2所述的方法,其特征在于:所述浓硝酸溶液浓度为12mol/L。
5.根据权利要求2所述的方法,其特征在于:所述步骤2硼酸、尿素的摩尔比为1:1~10。
6.根据权利要求2所述的方法,其特征在于:所述步骤4前驱体粉末过100~400目筛;压片机压力为5~20KN。
CN202210553765.2A 2022-05-20 2022-05-20 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法 Active CN114956830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210553765.2A CN114956830B (zh) 2022-05-20 2022-05-20 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210553765.2A CN114956830B (zh) 2022-05-20 2022-05-20 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法

Publications (2)

Publication Number Publication Date
CN114956830A true CN114956830A (zh) 2022-08-30
CN114956830B CN114956830B (zh) 2023-08-29

Family

ID=82984810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210553765.2A Active CN114956830B (zh) 2022-05-20 2022-05-20 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法

Country Status (1)

Country Link
CN (1) CN114956830B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264741A (ja) * 1999-03-16 2000-09-26 Japan Science & Technology Corp 炭化珪素系セラミック複合材料とその製造方法
WO2005014475A2 (en) * 2003-07-08 2005-02-17 Seldon Technologies, Inc. Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation
US20060154800A1 (en) * 2005-01-07 2006-07-13 Xin Chen Ceramic composite body of silicon carbide/boron nitride/carbon
KR20120009641A (ko) * 2010-07-20 2012-02-02 (주)비에이치세미콘 방열시트용 조성물 및 그 제조방법
WO2012015472A1 (en) * 2010-07-26 2012-02-02 National Institute Of Aerospace Associates High kinetic energy penetrator shielding materials fabricated with boron nitride nanotubes
CN103172050A (zh) * 2013-04-16 2013-06-26 中山大学 一种氮化硼包覆碳纳米管的制备方法
WO2016007612A1 (en) * 2014-07-08 2016-01-14 Kansas State University Research Foundation Silicon-based polymer-derived ceramic composites comprising h-bn nanosheets
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法
CN109020588A (zh) * 2018-07-30 2018-12-18 西北工业大学 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN111646813A (zh) * 2020-06-11 2020-09-11 西北工业大学 一种吸波型聚合物转化硅碳氮陶瓷的低温制备方法
CN113896543A (zh) * 2021-10-11 2022-01-07 西北工业大学 一种具有层状结构吸波硅碳氮陶瓷及制备方法
US20220095498A1 (en) * 2021-02-23 2022-03-24 North University Of China Gradient electrically conductive-uniform thermally conductive dual network structure-based electromagnetic shielding polymer composite with low reflection and high absorption

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264741A (ja) * 1999-03-16 2000-09-26 Japan Science & Technology Corp 炭化珪素系セラミック複合材料とその製造方法
WO2005014475A2 (en) * 2003-07-08 2005-02-17 Seldon Technologies, Inc. Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation
US20060154800A1 (en) * 2005-01-07 2006-07-13 Xin Chen Ceramic composite body of silicon carbide/boron nitride/carbon
KR20120009641A (ko) * 2010-07-20 2012-02-02 (주)비에이치세미콘 방열시트용 조성물 및 그 제조방법
WO2012015472A1 (en) * 2010-07-26 2012-02-02 National Institute Of Aerospace Associates High kinetic energy penetrator shielding materials fabricated with boron nitride nanotubes
CN103172050A (zh) * 2013-04-16 2013-06-26 中山大学 一种氮化硼包覆碳纳米管的制备方法
WO2016007612A1 (en) * 2014-07-08 2016-01-14 Kansas State University Research Foundation Silicon-based polymer-derived ceramic composites comprising h-bn nanosheets
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法
CN109020588A (zh) * 2018-07-30 2018-12-18 西北工业大学 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN111646813A (zh) * 2020-06-11 2020-09-11 西北工业大学 一种吸波型聚合物转化硅碳氮陶瓷的低温制备方法
US20220095498A1 (en) * 2021-02-23 2022-03-24 North University Of China Gradient electrically conductive-uniform thermally conductive dual network structure-based electromagnetic shielding polymer composite with low reflection and high absorption
CN113896543A (zh) * 2021-10-11 2022-01-07 西北工业大学 一种具有层状结构吸波硅碳氮陶瓷及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张磊: "碳纳米管/纳米碳化硅复合材料的制备及其微波电磁特性", pages 639 - 641 *
徐久皎: "氮化硼复合材料的制备及相关性能研究", pages 020 - 40 *
王闯;李克智;李贺军;郭领军;: "碳纤维增强水泥基复合材料的电磁屏蔽性能", 精细化工, no. 06 *

Also Published As

Publication number Publication date
CN114956830B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN1315362C (zh) 具有微波吸收功能的碳纳米管/陶瓷复合材料及制备方法
CN113185193B (zh) 一种MXene复合纤维增强石墨烯气凝胶吸波材料及其制备方法
CN108128768B (zh) 仿生叠层结构的石墨烯-碳量子点复合导热薄膜及其制备
Zhang et al. Graphene-layer-coated boron carbide nanosheets with efficient electromagnetic wave absorption
CN111454691B (zh) 一种石墨烯/非晶二氧化钛纳米棒复合材料、制备方法及其应用
Ye et al. Microwave absorption properties of Ni/C@ SiC composites prepared by precursor impregnation and pyrolysis processes
CN114149786B (zh) 界面极化增强型TiO2/RGO吸波材料的制备方法
CN113735597B (zh) 原位负载氮掺杂石墨烯的聚合物转化陶瓷基吸波材料的制备方法
CN112093801A (zh) 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法
CN114501966A (zh) 具有零维/一维/二维复合纳米结构型吸波材料及其制备方法和应用
CN110572997A (zh) 一种新型泡沫炭电磁屏蔽复合材料的制备方法
CN114956830B (zh) 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法
CN115074086B (zh) 一种Zn-MOFs衍生的ZnO/C/Ti3C2复合吸波材料及其制备方法
CN108439410B (zh) 一种B4C/SiC纳米线复合微波吸收材料
CN114346250B (zh) 一种金属-碳复合颗粒及其制备方法和应用
Ren et al. Achieving broadband electromagnetic absorption at a wide temperature range up to 1273 K by metamaterial design on polymer-derived SiC-BN@ CNT ceramic composites
CN113277567B (zh) 一种介观有序排布且被碳包覆的四氧化三铁纳米复合材料的制备方法及应用
CN114073919B (zh) 碳-磁性金属弥散型中空复合微球及其制备方法和应用
CN111943254B (zh) 均匀分散的氧化锌-多层石墨烯复合材料及其制备方法
Liu et al. A bead–string Co/C@ BNNT nanocomposite: preparation and tunable electromagnetic wave absorption performance
CN113336219A (zh) 一种封装镍的硼、氮共掺杂碳纳米管吸波材料及其制备方法
CN114621612A (zh) 一种原位生长碳纳米管修饰的CNT/SiCNWs复合吸波材料的制备方法
CN117229756B (zh) 一种层间距可调控的MXene基纳米复合吸波材料的制备方法
CN115318210B (zh) 一种电磁屏蔽用二硫化钴/多孔碳/碳化硅气凝胶复合材料的制备方法和应用
Liang et al. Preparation and properties of lightweight, conformal, and load‐bearing TiC/Si3N4 absorbing composites by gel casting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant