CN112093801A - 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法 - Google Patents

一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法 Download PDF

Info

Publication number
CN112093801A
CN112093801A CN202010393046.XA CN202010393046A CN112093801A CN 112093801 A CN112093801 A CN 112093801A CN 202010393046 A CN202010393046 A CN 202010393046A CN 112093801 A CN112093801 A CN 112093801A
Authority
CN
China
Prior art keywords
nano silicon
silicon carbide
putting
rice hulls
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010393046.XA
Other languages
English (en)
Other versions
CN112093801B (zh
Inventor
霍开富
陈振东
高标
付继江
李忠红
刘凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Bai Smythe New Material Co ltd
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan Bai Smythe New Material Co ltd
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Bai Smythe New Material Co ltd, Wuhan University of Science and Engineering WUSE filed Critical Wuhan Bai Smythe New Material Co ltd
Priority to CN202010393046.XA priority Critical patent/CN112093801B/zh
Publication of CN112093801A publication Critical patent/CN112093801A/zh
Application granted granted Critical
Publication of CN112093801B publication Critical patent/CN112093801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/977Preparation from organic compounds containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Abstract

本发明公开了一种以稻壳为原料制备纳米碳化硅/碳复合吸波材料的方法,合成步骤如下:将用蒸馏水洗净烘干后的稻壳放入坩埚中后置于管式炉或马弗炉中进行热处理,分别得到碳化稻壳与纳米二氧化硅。然后将碳化稻壳、纳米二氧化硅和金属镁粉按一定质量比例进行配比并用球磨机进行混料。将混合好的物料放入反应釜中,置于管式炉中加热进行反应。将反应后得到的产物放入盐酸溶液中搅拌,然后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后干燥得到碳含量可调的纳米碳化硅/碳复合吸波材料。本发明以农业废弃物稻壳为原料,制备过程简单、高效和无污染,易于实现工业化生产,符合可持续发展的理念。

Description

一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法
技术领域
本发明属于电磁波吸收领域,尤其涉及一种纳米碳化硅/碳复合吸波材料及其制备方法。
背景技术
随着信息技术的飞速发展和电器装置的广泛使用,电磁污染已成为至关重要的问题。为了解决这一问题,高性能的吸波材料在民用、商用、军用和航空航天等领域中引起了越来越多的关注。理想的电磁波吸收材料应具有较强的吸收能力,较宽的吸收频带,较轻的重量,良好的耐腐蚀性和高温稳定性。吸波材料通常由吸收相和透射相组成,其中前者称为吸收剂。传统的电磁吸收材料,例如铁氧体和金属材料,由于其良好的导电性和磁损耗而具有很强的吸收性,因此已得到广泛应用。但是,它们在广泛应用的同时又受到诸如密度过高,耐腐蚀性弱和热稳定差等缺点的限制。
碳化硅(SiC)具有良好的吸收性能,宽的吸收频带,可调节的介电性能和较低的密度,已被证明是电磁吸收剂的良好选择。此外,碳化硅在苛刻的工作条件下仍具有较高的机械强度,惰性化学性质和良好的高温稳定性。然而,纯碳化硅材料由于其电磁损耗能力弱、有限的极化弛豫损耗方式和低电导率而限制了其实际应用。纯碳化硅纳米颗粒的极化损耗和电导损耗不足,因此与实际要求相去甚远。为了提高纯碳化硅的电磁波吸收性能,与其他材料进行复合、表面装饰和掺杂是三种有效的策略。碳基材料由于其低密度,良好的导电性和较大的介电损耗而成为与碳化硅复合的理想材料。不同类型的碳材料,例如碳纳米管,炭黑和石墨烯均被引入已开发的碳化硅/碳复合材料中,与纯碳化硅相比这些复合材料表现出了明显增强的电磁波吸收效率,并具有较宽的有效吸收带宽。在大多数情况下,碳化硅/碳复合材料是由纳米尺寸的碳化硅外部引入纳米碳结构而制成的,这通常会导致界面有限且不稳定。而且,上述方法涉及复杂的合成过程或需要高成本的前驱体。这些缺点极大地阻碍了碳化硅基复合材料在电磁波吸收领域的广泛应用。
因此,通过经济可行的方法来制备具有丰富且稳定的碳/碳化硅界面的理想碳化硅/碳复合电磁波吸收材料仍然是一个巨大的挑战。
本发明所要解决的问题是:提供一种纳米碳化硅/碳复合材料及其制备方法,所制备的纳米碳化硅/碳复合材料用作电磁波吸收剂,具有丰富且稳定的碳/碳化硅界面,电磁波吸收效率高且有较宽的有效吸收带宽。
发明内容
本发明为解决上述问题所提供的技术方案为:提供一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法。
其中,所述复合吸波材料是以稻壳转化的碳化稻壳与纳米二氧化硅为原料,金属镁粉为催化剂反应制备而成。
进一步,所述的碳化稻壳是将洗净后的稻壳放入带气氛保护(氮气或氩气)的热处理炉中,以1-20℃/min的升温速率升至500-1000℃热处理2h,随炉冷却制备而得。
进一步,所述的纳米二氧化硅是将洗净后的稻壳放入马弗炉中,以1-20℃/min的升温速率升至500-1000℃热处理2h,随炉冷却制备而得。
进一步,反应原料碳化稻壳、纳米二氧化硅和金属镁粉的质量比例为1:0.1-3:0.1-10,调整该比例可制备不同碳含量的纳米碳化硅/碳复合吸波材料。
一种以稻壳为原料制备纳米碳化硅/碳复合吸波材料的方法,合成步骤如下:
一、以稻壳为原料制备得到碳化稻壳与纳米二氧化硅;
二、将碳化稻壳、纳米二氧化硅和金属镁粉按一定质量比例进行配比,并用球磨机进行混料;
三、将步骤二中用球磨机混合好的物料放入反应釜中,置于热处理炉中进行反应;
四、将步骤三中反应后得到的产物放入盐酸溶液中搅拌,然后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,然后置于烘箱中烘干即可得到纳米碳化硅/碳复合吸波材料。
进一步,所述步骤三中反应釜为金属材质并且可密封。
进一步,所述步骤三热处理炉中的反应方式为先通入氮气或氩气作保护,然后以1-20℃/min的升温速率升至500-1000℃反应0.5-10h,随炉冷却。
本发明的主要优点是:
(1)本发明提出的以农业废弃物稻壳为原料通过镁热反应制备纳米碳化硅/碳复合材料,纳米碳化硅颗粒均匀在碳基质中生成,赋予了其具有丰富碳化硅-碳界面且十分稳定的特性。
(2)本发明碳化硅/碳纳米复合材料中的组成可通过调整反应原料碳化稻壳和纳米二氧化硅的比例来调控,制得不同碳含量的碳化硅/碳纳米复合材料,碳含量在电磁波吸收性能中起着重要作用,调节其含量优化了阻抗匹配并增强了电磁损耗能力,使得该复合材料表现出优异的电磁波吸收性能。
(3)本发明碳化硅/碳纳米复合材料是以农业废弃物稻壳为原料,制备过程简单、高效和无污染,易于实现工业化生产,符合可持续发展的理念,为纳米碳化硅/碳复合吸波材料的推广提供了技术保障。
附图说明
图1为本发明实施例1制备的纳米碳化硅/碳复合材料的扫描电镜图;
图2为本发明实施例1制备的纳米碳化硅/碳复合材料的透射电镜图;
图3为本发明实施例1、2、3和对比例1制备的纳米碳化硅/碳复合材料的XRD图;
图4为本发明实施例1、2、3和对比例1制备的纳米碳化硅/碳复合材料的热重图;
图5为本发明实施例1、2、3和对比例1、2制备的纳米碳化硅/碳复合材料在不同频率下的电磁反射损耗图(样品均按1:1的质量比与石蜡均匀混合后进行测试);
图6为本发明实施例2制备的纳米碳化硅/碳复合材料的扫描电镜图;
图7为本发明实施例2制备的纳米碳化硅/碳复合材料的透射电镜图;
图8为本发明实施例3制备的纳米碳化硅/碳复合材料的扫描电镜图;
图9为本发明实施例3制备的纳米碳化硅/碳复合材料的透射电镜图。
具体实施方式
下面通过具体的实施例对本发明作进一步的说明,并非是对其保护范围的限定。
实施例1
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:1.5:2的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以3℃/min的升温速率升至650℃反应3h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
由图6的扫描电镜图可知,本实施例制备得到的纳米碳化硅/碳复合材料中有少量碳块存在,且纳米碳化硅颗粒与碳紧密结合。
由图7的透射电镜图可知,本实施例制备得到的纳米碳化硅/碳复合材料中纳米碳化硅颗粒与碳紧密结合,碳化硅的颗粒尺寸约为30-100nm。
由图3的XRD衍射图谱证明了本实施例制备得到的纳米碳化硅/碳复合材料中无定型碳与立方相纳米碳化硅的存在。
由图4的热重图可知,本实施例制备得到的纳米碳化硅/碳复合材料中碳的含量约为3.5%。
对比例1
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到碳化稻壳。将碳化稻壳和金属镁粉的质量按1:0.5的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以3℃/min的升温速率升至650℃反应3h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
由图3的XRD衍射图谱证明了本实施例制备得到的纳米碳化硅/碳复合材料中无定型碳与立方相纳米碳化硅的存在。
由图4的热重图可知,本实施例制备得到的纳米碳化硅/碳复合材料中碳的含量约为49.6%。
对比例2
将实施例1中制备得的纳米碳化硅/碳复合材料放入马弗炉中,加热到600℃除去其中的碳得到纯纳米碳化硅;将实施例1中制备得到的碳化稻壳放入氢氧化钠溶液中除去其中的二氧化硅得到纯碳。将上述碳化硅与碳按96.5:3.5的质量比进行配比,然后使用球磨机混合均匀即得到碳含量为3.5%的纳米碳化硅/碳复合吸波材料。
比较结果:由图5的不同频率下的反射损耗图可知,实施例1制备得到的纳米碳化硅/碳复合材料在频率为10.1GHz时反射损耗值最小为-27.78dB,明显优于对比例1在频率为10.1GHz时的反射损耗值最小值-2.50dB和对比例2在频率为10.1GHz时的反射损耗值最小值-14.87dB。
由实施例1与对比例1的电磁波吸收性能对比结果可知,实施例1的纳米碳化硅/碳复合吸波材料中碳含量更为合适。实施例1与对比例2拥有相同碳含量,但实施例1的电磁波吸收性能较为优异,说明由反应制备得到的纳米碳化硅/碳中存在的碳化硅-碳界面对电磁波吸收有明显的作用。
实施例2
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:1:1.5的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以3℃/min的升温速率升至650℃反应3h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
由图1的扫描电镜图可知,本实施例制备得到的纳米碳化硅/碳复合材料中有明显的碳块存在,且纳米碳化硅颗粒与碳紧密结合。
由图2的透射电镜图可知,本实施例制备得到的纳米碳化硅/碳复合材料中纳米碳化硅颗粒与碳紧密结合,碳化硅的颗粒尺寸约为30-100nm。
由图3的XRD衍射图谱证明了本实施例制备得到的纳米碳化硅/碳复合材料中无定型碳与立方相纳米碳化硅的存在。
由图4的热重图可知,本实施例制备得到的纳米碳化硅/碳复合材料中碳的含量约为13.4%。
由图5的不同频率下的反射损耗图可知,本实施例制备得到的纳米碳化硅/碳复合材料在频率为5.1GHz时反射损耗值最小为-6.69dB。
实施例3
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:2:2.5的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以3℃/min的升温速率升至650℃反应3h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
由图8的扫描电镜图可知,本实施例制备得到的纳米碳化硅/碳复合材料中无明显的碳块存在,纳米碳化硅颗粒尺寸较为均匀。
由图9的透射电镜图可知,本实施例制备得到的纳米碳化硅/碳复合材料中碳化硅的颗粒尺寸约为30-100nm。
由图3的XRD衍射图谱证明了本实施例制备得到的纳米碳化硅/碳复合材料中立方相纳米碳化硅的存在。
由图4的热重图可知,本实施例制备得到的纳米碳化硅/碳复合材料中碳的含量约为0.8%。
由图5的不同频率下的反射损耗图可知,本实施例制备得到的纳米碳化硅/碳复合材料在频率为14.9GHz时反射损耗值最小为-10.28dB。
实施例4
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以3℃/min的升温速率升至700℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以5℃/min的升温速率升至700℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:2.5:3.5的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以3℃/min的升温速率升至650℃反应3h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
实施例5
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以10℃/min的升温速率升至600℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以5℃/min的升温速率升至800℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:1:2的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以10℃/min的升温速率升至750℃反应2.5h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
实施例6
将用蒸馏水洗净烘干后的稻壳放入热处理式炉中,首先通入氮气作保护,然后以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以10℃/min的升温速率升至700℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:0.5:1.8的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以15℃/min的升温速率升至700℃反应3h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
实施例7
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以1℃/min的升温速率升至650℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以1℃/min的升温速率升至650℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:1:1.5的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氩气作保护,然后以1℃/min的升温速率升至650℃反应5h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
实施例8
将用蒸馏水洗净烘干后的稻壳放入热处理炉中,首先通入氮气作保护,然后以5℃/min的升温速率升至800℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以5℃/min的升温速率升至800℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:1:2.5的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以3℃/min的升温速率升至850℃反应1h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
实施例9
将用蒸馏水洗净烘干后的稻壳放入管式炉中,首先通入氮气作保护,然后以5℃/min的升温速率升至500℃热处理2h,随炉冷却得到碳化稻壳;将用蒸馏水洗净烘干后的稻壳放入马弗炉中,以5℃/min的升温速率升至600℃热处理2h,随炉冷却得到纳米二氧化硅。将碳化稻壳、纳米二氧化硅和金属镁粉的质量按1:2:3的比例进行配比,然后使用球磨机混料至均匀。将混合好的物料放入不锈钢反应釜中置于热处理炉中,先通入氮气作保护,然后以5℃/min的升温速率升至750℃反应2h,随炉冷却。将反应后的产物放入盐酸溶液中并充分搅拌,随后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,最后置于烘箱中烘干即得到一种纳米碳化硅/碳复合吸波材料。
最后有必要说明的是,以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (8)

1.一种以稻壳为原料制备的纳米碳化硅/碳复合吸波材料,其特征在于:
所述复合吸波材料是以稻壳转化的碳化稻壳与纳米二氧化硅为原料,使用金属镁粉为催化剂反应制备而成。
2.根据权利要求1所述的纳米碳化硅/碳复合吸波材料,其特征在于:将洗净后的稻壳放入带气氛保护(氮气或氩气)的热处理炉中,以1-20℃/min的升温速率升至500-1000℃热处理2h,随炉冷却得到碳化稻壳。
3.根据权利要求1所述的纳米碳化硅/碳复合吸波材料,其特征在于:将洗净后的稻壳放入马弗炉中,以1-20℃/min的升温速率升至500-1000℃热处理2h,随炉冷却得到纳米二氧化硅。
4.根据权利要求1所述纳米碳化硅/碳复合吸波材料的制备方法,其特征在于:反应原料碳化稻壳、纳米二氧化硅和金属镁粉的质量比例为1:0.1-3:0.1-10,调整该比例可制备不同碳含量的纳米碳化硅/碳复合吸波材料。
5.根据权利要求1所述纳米碳化硅/碳复合吸波材料的制备方法,其特征在于具体制备步骤为:
步骤一、以稻壳为原料制备得到碳化稻壳与纳米二氧化硅;
步骤二、将碳化稻壳、纳米二氧化硅和金属镁粉按一定质量比例进行配比,并用球磨机进行混料;
步骤三、将步骤二中用球磨机混合好的物料放入反应釜中,置于热处理炉中进行反应;
步骤四、将步骤三中反应后得到的产物放入盐酸溶液中搅拌,然后用过滤设备分离出盐酸溶液中的残留物并用蒸馏水清洗至中性,然后置于烘箱中烘干即可得到纳米碳化硅/碳复合吸波材料。
6.根据权利要求5所述纳米碳化硅/碳复合吸波材料的制备方法,其特征在于:所述步骤三中反应釜为金属材质并且可密封。
7.根据权利要求5所述纳米碳化硅/碳复合吸波材料的制备方法,其特征在于:所述步骤三热处理炉中的反应方式为先通入氮气或氩气作保护,然后以1-20℃/min的升温速率升至500-1000℃反应0.5-10h,随炉冷却。
8.一种权利要求1所述的纳米碳化硅/碳复合材料在制备电磁波吸收吸收剂中的应用。
CN202010393046.XA 2020-05-11 2020-05-11 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法 Active CN112093801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010393046.XA CN112093801B (zh) 2020-05-11 2020-05-11 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010393046.XA CN112093801B (zh) 2020-05-11 2020-05-11 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112093801A true CN112093801A (zh) 2020-12-18
CN112093801B CN112093801B (zh) 2022-05-03

Family

ID=73750071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010393046.XA Active CN112093801B (zh) 2020-05-11 2020-05-11 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112093801B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132928A (zh) * 2021-12-24 2022-03-04 江苏理工学院 一种利用废弃二氧化硅制备碳化硅纳米材料的方法
CN114394844A (zh) * 2021-12-28 2022-04-26 华中科技大学 一种废料3d打印制备碳化硅陶瓷的方法及碳化硅陶瓷
CN114804112A (zh) * 2022-05-05 2022-07-29 兰州理工大学 一种宏量粒度可控纳米级SiC粉体的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891195A (zh) * 2010-07-23 2010-11-24 浙江大学 一种从农业废弃物低温合成碳化硅的方法
CN102275922A (zh) * 2011-06-08 2011-12-14 浙江大学 从农业废弃物制备SiC/氮化铁纳米复合材料及其方法
CN104692387A (zh) * 2015-02-11 2015-06-10 武汉科技大学 一种以含硅生物质为原料低温制备纳米碳化硅的方法及所制备得到的纳米碳化硅
CN105502403A (zh) * 2016-01-14 2016-04-20 太原理工大学 一种有序介孔碳化硅的制备方法
JP2019137935A (ja) * 2018-02-08 2019-08-22 株式会社Ihiエアロスペース 炭化ケイ素繊維の製造方法及び炭化ケイ素繊維

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891195A (zh) * 2010-07-23 2010-11-24 浙江大学 一种从农业废弃物低温合成碳化硅的方法
CN102275922A (zh) * 2011-06-08 2011-12-14 浙江大学 从农业废弃物制备SiC/氮化铁纳米复合材料及其方法
CN104692387A (zh) * 2015-02-11 2015-06-10 武汉科技大学 一种以含硅生物质为原料低温制备纳米碳化硅的方法及所制备得到的纳米碳化硅
CN105502403A (zh) * 2016-01-14 2016-04-20 太原理工大学 一种有序介孔碳化硅的制备方法
JP2019137935A (ja) * 2018-02-08 2019-08-22 株式会社Ihiエアロスペース 炭化ケイ素繊維の製造方法及び炭化ケイ素繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU JIANJUN ET AL: ""Large-Scale Synthesis and Mechanism of β‑SiC Nanoparticles from Rice Husks by Low-Temperature Magnesiothermic Reduction"", 《ACS SUSTAINABLE CHEMISTRY&ENGINEERING》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132928A (zh) * 2021-12-24 2022-03-04 江苏理工学院 一种利用废弃二氧化硅制备碳化硅纳米材料的方法
CN114394844A (zh) * 2021-12-28 2022-04-26 华中科技大学 一种废料3d打印制备碳化硅陶瓷的方法及碳化硅陶瓷
CN114804112A (zh) * 2022-05-05 2022-07-29 兰州理工大学 一种宏量粒度可控纳米级SiC粉体的制备方法

Also Published As

Publication number Publication date
CN112093801B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN112093801B (zh) 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法
CN104891479B (zh) 植物基类石墨烯及其制备方法
Liu et al. Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding
CN110577820B (zh) 一种多孔结构Ni/NiO-C复合材料及其制备方法和应用
CN107325787B (zh) 一种中空碳纳米颗粒及由其制备得到的吸波材料
CN109762518B (zh) 一种三维多孔石墨烯/氮化硼复合材料及其制备方法
CN109748282B (zh) 一种低温制备纳米碳化硅的方法
CN110548528B (zh) 一种核壳结构SiO2/SiC材料及其制备方法与用途
CN103951916A (zh) 一种rgo/氧化铁填充的聚偏氟乙烯复合吸波材料及其制备方法
Chen et al. From high-yield Ti3AlCN ceramics to high-quality Ti3CNTx MXenes through eliminating Al segregation
CN113347863A (zh) 一种磁性金属mof衍生的磁电共损吸波剂及制备方法
CN111171787B (zh) 一种BiFeO3/RGO复合吸波材料及制备方法
CN107311177B (zh) 一种碳化硅-石墨烯复合粉体及其制备方法
CN111204741B (zh) 一种三维石墨烯/碳纳米管交联复合材料的制备方法
CN114988716B (zh) 一种碳化钨/石墨烯复合材料及其制备方法
Zhou et al. Lightweight N-doped C/ZnO composites prepared from zinc-based acrylate resin precursors for electromagnetic wave absorption at 2–18 GHz
CN111115617A (zh) 一种高纯中空碳纳米洋葱的规模化制备方法
CN113423255B (zh) 核壳结构Ti4O7/磁性金属复合吸收剂及其制备方法
CN114180560A (zh) 一种熔盐体系中煤基石墨烯的制备方法
CN114621612A (zh) 一种原位生长碳纳米管修饰的CNT/SiCNWs复合吸波材料的制备方法
CN110213954B (zh) 一种埃洛石/硼氮共掺杂碳/钴复合材料及其制备方法和应用
CN106542521A (zh) 一种高效低成本制备多层石墨烯的方法
CN110105919B (zh) 一种超小Fe3O4/RGO复合物的低温超快速制备方法
CN111994897B (zh) 一种高比表面积蜂窝状多孔碳的简单制备方法
CN114956830B (zh) 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant