CN113078318B - 一种三维多孔硅碳复合材料、其制备方法及其应用 - Google Patents

一种三维多孔硅碳复合材料、其制备方法及其应用 Download PDF

Info

Publication number
CN113078318B
CN113078318B CN202110324659.2A CN202110324659A CN113078318B CN 113078318 B CN113078318 B CN 113078318B CN 202110324659 A CN202110324659 A CN 202110324659A CN 113078318 B CN113078318 B CN 113078318B
Authority
CN
China
Prior art keywords
carbon
silicon
dimensional porous
composite material
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110324659.2A
Other languages
English (en)
Other versions
CN113078318A (zh
Inventor
郑安华
余德馨
仰永军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Kaijin New Energy Technology Co Ltd
Original Assignee
Guangdong Kaijin New Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Kaijin New Energy Technology Co Ltd filed Critical Guangdong Kaijin New Energy Technology Co Ltd
Priority to CN202110324659.2A priority Critical patent/CN113078318B/zh
Priority to PCT/CN2021/099099 priority patent/WO2022198804A1/zh
Priority to JP2021563040A priority patent/JP2023522139A/ja
Priority to KR1020217034909A priority patent/KR20220134738A/ko
Publication of CN113078318A publication Critical patent/CN113078318A/zh
Priority to US17/483,828 priority patent/US11894549B2/en
Priority to DE102022102273.0A priority patent/DE102022102273A1/de
Application granted granted Critical
Publication of CN113078318B publication Critical patent/CN113078318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及锂电池负极材料领域,特别是涉及一种三维多孔硅碳复合材料,所述三维多孔硅碳复合材料包括三维多孔骨架、填充层及包覆层;所述三维多孔骨架为三维多孔碳骨架;所述填充层包括硅颗粒和导电碳;所述填充层由所述硅颗粒均匀弥散地分散在所述导电碳中形成;所述包覆层为碳包覆层。本发明提供一种长循环、低膨胀的三维多孔硅碳复合材料、其制备方法及其应用。

Description

一种三维多孔硅碳复合材料、其制备方法及其应用
技术领域
本发明涉及锂电池负极材料领域,特别是涉及一种三维多孔硅碳复合材料、其制备方法及其应用。
背景技术
二次电池已广泛应用于便携式电子产品中,随着便携式电子产品小型化发展及二次电池在航空、军事及汽车产业中的需求日益增大,电池的容量和能量密度均亟待大幅度提高。目前商业化负极材料主要为石墨类材料,但因其理论容量较低(372mAh/g),无法满足于市场的需求。近年来,人们的目光瞄准新型高比容量负极材料:储锂金属及其氧化物(如Sn,Si)和锂过渡金属磷化物,Si因具有高的理论比容量(4200mAh/g)而成为最具潜力的可替代石墨类材料之一,但是Si基在充放电过程中存在巨大的体积效应(~300%),易发生破裂和粉化,从而丧失与集流体的接触,造成循环性能急剧下降。
现有的硅碳负极材料采用纳米硅、石墨和碳造粒得到复合材料。由于纳米硅分散均匀困难,势必导致纳米硅局部团聚,纳米硅团聚地方的碳含量相对较低,相对较低的碳含量无法很好的吸收纳米硅循环过程中的体积膨胀,在纳米硅团聚的地方会引起局部的膨胀过大,导致局部结构破坏,影响材料整体性能。因此,如何提高硅碳复合材料中纳米硅均匀分散,降低体积膨胀效应和改善循环性能对硅基材料在锂离子电池中的应用有重大意义。
发明内容
为解决上述技术问题,本发明提供一种长循环、低膨胀的三维多孔硅碳复合材料、其制备方法及其应用。
本发明采用如下技术方案:
一种三维多孔硅碳复合材料,所述三维多孔硅碳复合材料包括三维多孔骨架、填充层及包覆层;所述三维多孔骨架为三维多孔碳骨架;所述填充层包括硅颗粒和导电碳;所述填充层由所述硅颗粒均匀弥散地分散在所述导电碳中形成;所述包覆层为碳包覆层。
对上述技术方案的进一步改进为,所述三维多孔硅碳复合材料的粒径D50为2~40μm;所述三维多孔硅碳复合材料的比表为0.5~10m2/g;所述三维多孔硅碳复合材料的孔隙率为1~30%;所述三维多孔硅碳复合材料的孔径为0~50nm。
对上述技术方案的进一步改进为,所述三维多孔骨架的孔隙率为10~90%,其孔径为10~500nm。
对上述技术方案的进一步改进为,所述硅颗粒包括纳米硅或纳米氧化硅中的一种或两种;所述纳米硅的粒度D50为1~100nm;所述纳米硅的晶粒大小为1~40nm;所述纳米硅为多晶纳米硅或非晶纳米硅中的一种或两种;所述纳米氧化硅SiOx中X为0~0.8。
对上述技术方案的进一步改进为,所述碳包覆层至少为一层,单层厚度为0.2~1.0μm;所述碳包覆层为高温裂解碳包覆或气相碳包覆或液相碳包覆中的一种。
一种三维多孔硅碳复合材料的制备方法,包括如下步骤:
制备三维多孔碳骨架M;
将三维多孔碳骨架M置于反应器中,在保护气氛以0.5~20L/min速率,同步气相沉积或交替气相沉积硅颗粒和导电碳,得到硅碳复合材料前驱体A;所述同步气相沉积或交替气相沉积的温度为400~1000℃,所述同步气相沉积或交替气相沉积的时间为0.5~20h;
将硅碳复合材料前驱体A进行碳包覆,得到硅碳复合材料前驱体B;
将硅碳复合材料前驱体B进行高温烧结,得到所述三维多孔硅碳复合材料。
对上述技术方案的进一步改进为,在所述制备三维多孔碳骨架M步骤中,所述三维多孔碳骨架M的制备方法为热解可产生多孔结构的有机碳源得到三维多孔碳骨架M或有机碳源经过热解碳和化学活化处理所得到三维多孔碳骨架M;所述化学活化处理为采用活化造孔剂对碳材料进行活化造孔。
对上述技术方案的进一步改进为,所述同步气相沉积的步骤为将有机碳源和硅源按比例A与保护气氛一起混合后通入反应器中进行气相沉积;所述比例A为有机碳源与硅源的流量比10:1~1:1。
对上述技术方案的进一步改进为,所述交替气相沉积的步骤为先按比例B将硅源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积超细纳米硅,再按比例C将有机碳源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积导电碳,通过电磁阀实现不间断交替通入;或先按比例C将有机碳源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积导电碳,再按比例B将硅源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积超细纳米硅,通过电磁阀实现不间断交替通入;所述比例B为硅颗粒与保护气氛的流量比1:1~1:20;所述比例C为有机碳源与保护气氛的流量比1:1~1:20。
一种三维多孔硅碳复合材料的应用,使用上述三维多孔硅碳复合材料的制备方法制得的三维多孔硅碳复合材料,其在锂离子电池的应用。
本发明的有益效果为:
本发明的三维多孔骨架形成的导电网络不仅能有效地提高硅基材料的导电性,同时三维多孔骨架中的多孔结构能有效地缓解硅颗粒在充放电过程中的体积膨胀,可有效的避免材料在循环过程中的粉化;填充层中的导电碳不仅能提高材料的导电性和缓解纳米硅材料的体积膨胀,而且能进一步避免循环过程中硅颗粒与电解液直接接触减少副反应;最外层的碳包覆层可避免硅颗粒与电解液直接接触减少副反应,同时能进一步有效的提高硅基材料的导电性和缓解充放电过程中的体积效应。
附图说明
图1为本发明的三维多孔硅碳复合材料的实施例2的FIB-SEM图;
图2为本发明的三维多孔硅碳复合材料的实施例2的首次充放电曲线图;
图3为本发明的三维多孔硅碳复合材料的实施例3的XRD图谱。
具体实施方式
下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
一种三维多孔硅碳复合材料,所述三维多孔硅碳复合材料包括三维多孔骨架、填充层及包覆层;所述三维多孔骨架为三维多孔碳骨架;所述填充层包括硅颗粒和导电碳;所述填充层由所述硅颗粒均匀弥散地分散在所述导电碳中形成;所述包覆层为碳包覆层;其中硅颗粒由硅源高温裂解形成,所述的导电碳由有机碳源高温裂解形成。
所述三维多孔硅碳复合材料的粒径D50为2~40μm,进一步优选为2~20μm,特别优选为2~10μm。
所述三维多孔硅碳复合材料的比表为0.5~10m2/g,进一步优选为0.5~5m2/g,特别优选为0.5~3m2/g。
所述三维多孔硅碳复合材料的孔隙率为1~30%,进一步优选为1~20%,特别优选为1~10%。
所述三维多孔硅碳复合材料的孔径为0~50nm,进一步优选为0~30nm,特别优选为0~20nm。
所述三维多孔硅碳复合材料中的氧含量为0~20%;进一步优选为0~10%,特别优选为0~5%。
所述三维多孔硅碳复合材料中的碳含量为20~90%;进一步优选为20~60%,特别优选为30~50%。
所述三维多孔硅碳复合材料中的硅含量为5~90%;进一步优选为20~70%,特别优选为30~60%。
所述三维多孔骨架的孔隙率为10~90%,进一步优选20~90%,特别优选40~90%;其孔径为10~500nm。
所述硅颗粒包括纳米硅或纳米氧化硅中的一种或两种;所述纳米硅的粒度D50为1~100nm;所述纳米硅的晶粒大小为1~40nm;所述纳米硅为多晶纳米硅或非晶纳米硅中的一种或两种;所述纳米氧化硅SiOx中X为0~0.8。
所述碳包覆层至少为一层,单层厚度为0.2~1.0μm;所述碳包覆层为高温裂解碳包覆或气相碳包覆或液相碳包覆中的一种。
气相碳包覆的过程包括:将待包覆物置于反应器中,通入保护性气体,以1~5℃/min升温至400~1000℃,以0.5~20.0L/min通入速率通入有机碳源气体,保温0.5~20h,自然冷却至室温,得到气相包覆产物。
液相碳包覆的过程包括:将有机物碳源、待包覆物与溶剂高速混合分散均匀后形成浆料,对浆料进行喷雾干燥,再进行热处理。
一种三维多孔硅碳复合材料的制备方法,包括如下步骤:
制备三维多孔碳骨架M;
将三维多孔碳骨架M置于反应器中,在保护气氛以0.5~20L/min速率,同步气相沉积或交替气相沉积硅颗粒和导电碳,得到硅碳复合材料前驱体A;所述同步气相沉积或交替气相沉积的温度为400~1000℃,所述同步气相沉积或交替气相沉积的时间为0.5~20h;
保护气氛为氮气、氩气、氦气、氢气、氩氢混合气中的一种或几种;反应器为回转炉、CVD炉、PECVD炉、流化床中的一种或多种;
将硅碳复合材料前驱体A进行碳包覆,得到硅碳复合材料前驱体B;
将硅碳复合材料前驱体B进行高温烧结,得到所述三维多孔硅碳复合材料;高温烧结升温速率为1~10℃/min,保温温度为700~1200℃,保温时间为1~10h。
在所述制备三维多孔碳骨架M步骤中,所述三维多孔碳骨架M的制备方法为热解可产生多孔结构的有机碳源得到三维多孔碳骨架M或有机碳源经过热解碳和化学活化处理所得到三维多孔碳骨架M;所述化学活化处理为采用活化造孔剂对碳材料进行活化造孔;制备三维多孔碳骨架M中的有机碳源为蔗糖、葡萄糖、柠檬酸、酚醛树脂、环氧树脂、沥青、聚乙烯醇、聚吡咯、聚吡咯烷酮、聚苯胺、聚丙烯腈、聚多巴胺、木质素、甲壳素中的一种或几种;活化造孔剂为氢氧化钠、氢氧化钾、氯化锌、磷酸一种或多种。
所述同步气相沉积的步骤为将有机碳源和硅源按比例A与保护气氛一起混合后通入反应器中进行气相沉积;所述比例A为有机碳源与硅源的流量比10:1~1:1。
所述交替气相沉积的步骤为先按比例B将硅源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积超细纳米硅,再按比例C将有机碳源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积导电碳,通过电磁阀实现不间断交替通入;或先按比例C将有机碳源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积导电碳,再按比例B将硅源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积超细纳米硅,通过电磁阀实现不间断交替通入;所述比例B为硅源与保护气氛的流量比1:1~1:20;所述比例C为有机碳源与保护气氛的流量比1:1~1:20。
同步气相沉积或交替气相沉积的步骤中的硅源为硅烷、三氯硅烷、四氯化硅、甲基三氯硅烷、甲基氯硅烷、氯乙基硅烷、二氯二甲基硅烷、二氯二乙基硅烷、甲基硅烷、二甲基硅烷、三甲基硅烷、四甲基硅烷、甲基二硅烷、二甲基二硅烷、三甲基二硅烷、四甲基二硅烷、六甲基硅烷中的一种或几种。
同步气相沉积或交替气相沉积步骤中的有机碳源为甲烷、乙烷、丙烷、异丙烷,丁烷、异丁烷、乙烯、丙烯、乙炔、丁烯、氯乙烯、氟乙烯,二氟乙烯、氯乙烷,氟乙烷、二氟乙烷、氯甲烷、氟甲烷、二氟甲烷、三氟甲烷、甲胺、甲醛、苯、甲苯、二甲苯、苯乙烯、苯酚中的一种或几种。
一种三维多孔硅碳复合材料的应用,使用上述三维多孔硅碳复合材料的制备方法制得的三维多孔硅碳复合材料,其在锂离子电池的应用。
实施例1
1、将1000g木质素与200gKOH混合均匀后,在氮气保护气氛条件下进行烧结处理,升温速率为1℃/min,热处理温度为1150℃,保温5h,冷却后水洗去除杂质,烘干得到三维多孔碳骨架;
2、取1000g得到的三维多孔碳骨架至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,0.5L/min速率通入甲烷气体,0.5L/min速率通入硅烷气体,通混合气体时间为8h,自然冷却至室温,得到前驱体2。
3、取1000g得到的硅碳前驱体2至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,0.5L/min速率通入甲烷气体,通甲烷气体时间为4h,自然冷却至室温,得到硅碳复合材料。
实施例2
1、将1000g木质素与200gKOH混合均匀后,在氮气保护气氛条件下进行烧结处理,升温速率为1℃/min,热处理温度为1150℃,保温5h,冷却后水洗去除杂质,烘干得到三维多孔碳骨架;
2、取1000g得到的三维多孔碳骨架至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,1.0L/min速率通入甲烷气体,0.2L/min速率通入硅烷气体,通混合气体时间为8h,自然冷却至室温,得到前驱体3。
3、取1000g得到的硅碳前驱体3至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,0.5L/min速率通入甲烷气体,通甲烷气体时间为4h,自然冷却至室温,得到硅碳复合材料。
实施例3
1、将1000g木质素与200gKOH混合均匀后,在氮气保护气氛条件下进行烧结处理,升温速率为1℃/min,热处理温度为1150℃,保温5h,冷却后水洗去除杂质,烘干得到三维多孔碳骨架;
2、取1000g得到的三维多孔碳骨架至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,2.0L/min速率通入甲烷气体,0.2L/min速率通入硅烷气体,通混合气体时间为8h,自然冷却至室温,得到前驱体3。
3、取1000g得到的硅碳前驱体3至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,0.5L/min速率通入甲烷气体,通甲烷气体时间为4h,自然冷却至室温,得到硅碳复合材料。
实施例4
1、将1000g木质素与200gKOH混合均匀后,在氮气保护气氛条件下进行烧结处理,升温速率为1℃/min,热处理温度为1150℃,保温5h,冷却后水洗去除杂质,烘干得到三维多孔碳骨架;
2、取1000g得到的三维多孔碳骨架至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,3.0L/min速率通入甲烷气体,0.5L/min速率通入硅烷气体,通混合气体时间为8h,自然冷却至室温,得到前驱体3。
3、取1000g得到的硅碳前驱体3至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,0.5L/min速率通入甲烷气体,通甲烷气体时间为4h,自然冷却至室温,得到硅碳复合材料。
实施例5
1、将1000g木质素与200gKOH混合均匀后,在氮气保护气氛条件下进行烧结处理,升温速率为1℃/min,热处理温度为1150℃,保温5h,冷却后水洗去除杂质,烘干得到三维多孔碳骨架;
2、取1000g得到的三维多孔碳骨架至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,4.0L/min速率通入甲烷气体,0.2L/min速率通入硅烷气体,通混合气体时间为8h,自然冷却至室温,得到前驱体3。
3、取1000g得到的硅碳前驱体3至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,0.5L/min速率通入甲烷气体,通甲烷气体时间为4h,自然冷却至室温,得到硅碳复合材料。
对比例
1、将粒度D50为3~10μm的微米硅与无水乙醇按质量比1:10混合均匀,利用球磨法得到的粒度D50=100nm纳米硅浆料;
2、将1000g木质素与200gKOH混合均匀后,在氮气保护气氛条件下进行烧结处理,升温速率为1℃/min,热处理温度为1150℃,保温5h,冷却后水洗去除杂质,烘干得到三维多孔碳骨架;
3、将纳米硅浆料与三维多孔碳骨架按质量比10:1混合均匀后,进行喷雾造粒得到硅碳前驱体1;
4、取1000g得到的硅碳前驱体1至于CVD炉中,以5℃/min升温至1000℃,分别以4.0L/min速率通入高纯氮,0.5L/min速率通入甲烷气体,通甲烷气体时间为4h,自然冷却至室温,得到硅碳复合材料。
下面将对上述实施例及对比例进行测试。
测试条件:取比较例及实施例制备的材料作为负极材料,与粘结剂聚偏二氟乙烯(PVDF)、导电剂(Super~P)按照70:15:15的质量比混合,加入适量的N~甲基吡咯烷酮(NMP)作为溶剂调成浆料,涂覆在铜箔上,并经真空干燥、辊压,制备成负极片;采用金属锂片作为对电极,使用1mol/L的LiPF6三组分混合溶剂按EC:DMC:EMC=1:1:1(v/v)混合的电解液,采用聚丙烯微孔膜为隔膜,在充满惰性气体手套箱中组装成CR2032型扣式电池。扣式电池的充放电测试在武汉市蓝电电子股份有限公司电池测试***上,在常温条件,0.1C恒流充放电,充放电电压限制在0.005~1.5V。
采用如下方法测试和计算材料体积膨胀率:将制备的硅碳复合材料与石墨复合制备容量500mAh/g的复合材料测试其循环性能,膨胀率=(50周循环后极片厚度~循环前极片厚度)/(循环前极片厚度~铜箔厚度)*100%。
表1为对比例与实施例的首周测试结果。
表1
表2为循环膨胀测试结果。
表2
图1为实施例2中样品的FIB~SEM,从图1可知,材料内部有微小的纳米孔洞,能缓解充放电过程中的体积膨胀,导电网络能改善材料的导电性,提高材料的循环和倍率性能。
图2为实施例2中样品的首次充放电曲线;从图2可知,样品的容量为1888.6mAh/g,效率为88.1%,从表1~2可知,本发明合成的复合材料的首次可逆容量不低于1600mAh/g,循环50周后膨胀率小于45%,容量保持率大于90%。
图3为实施例3中样品的XRD图谱;样品中的硅为无定型态,弥散分布在导电网络和导电碳中。
本发明的三维多孔骨架形成的导电网络不仅能有效地提高硅基材料的导电性,同时三维多孔骨架中的多孔结构能有效地缓解硅颗粒在充放电过程中的体积膨胀,可有效的避免材料在循环过程中的粉化;填充层中的导电碳不仅能提高材料的导电性和缓解纳米硅材料的体积膨胀,而且能进一步避免循环过程中硅颗粒与电解液直接接触减少副反应;最外层的碳包覆层可避免硅颗粒与电解液直接接触减少副反应,同时能进一步有效的提高硅基材料的导电性和缓解充放电过程中的体积效应。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种三维多孔硅碳复合材料,其特征在于,所述三维多孔硅碳复合材料包括三维多孔骨架、填充层及包覆层;所述三维多孔骨架为三维多孔碳骨架;所述填充层包括硅颗粒和导电碳;所述填充层由所述硅颗粒均匀弥散地分散在所述导电碳中形成;所述包覆层为碳包覆层;
所述三维多孔骨架的孔隙率为10~90%,其孔径为10~500nm;
所述三维多孔硅碳复合材料中的氧含量为0~20%;所述三维多孔硅碳复合材料中的碳含量为20~90%;所述三维多孔硅碳复合材料中的硅含量为5~90%;
所述三维多孔硅碳复合材料的粒径D50为2~40μm;所述三维多孔硅碳复合材料的比表为0.5~10m2/g;所述三维多孔硅碳复合材料的孔隙率为1~30%;所述三维多孔硅碳复合材料的孔径为0~50nm;
所述三维多孔硅碳复合材料的制备方法,包括如下步骤:
制备三维多孔碳骨架M;在所述制备三维多孔碳骨架M步骤中,所述三维多孔碳骨架M的制备方法为热解产生多孔结构的有机碳源得到三维多孔碳骨架M或有机碳源经过热解碳和化学活化处理所得到三维多孔碳骨架M;所述化学活化处理为采用活化造孔剂对碳材料进行活化造孔;制备三维多孔碳骨架M中的有机碳源为蔗糖、葡萄糖、柠檬酸、酚醛树脂、环氧树脂、沥青、聚乙烯醇、聚吡咯、聚吡咯烷酮、聚苯胺、聚丙烯腈、聚多巴胺、木质素、甲壳素中的一种或几种;活化造孔剂为氢氧化钠、氢氧化钾、氯化锌、磷酸中的一种或多种;
将三维多孔碳骨架M置于反应器中,在保护气氛以0.5~20L/min速率,同步气相沉积或交替气相沉积硅颗粒和导电碳,得到硅碳复合材料前驱体A;所述同步气相沉积或交替气相沉积的温度为400~1000℃,所述同步气相沉积或交替气相沉积的时间为0.5~20h;
将硅碳复合材料前驱体A进行碳包覆,得到硅碳复合材料前驱体B;
将硅碳复合材料前驱体B进行高温烧结,高温烧结的升温速率为1~10℃/min,保温温度为700~1200℃,保温时间为1~10h,得到所述三维多孔硅碳复合材料。
2.根据权利要求1所述的三维多孔硅碳复合材料,其特征在于,所述硅颗粒包括纳米硅或纳米氧化硅中的一种或两种;所述纳米硅的粒度D50为1~100nm;所述纳米硅的晶粒大小为1~40nm;所述纳米硅为多晶纳米硅或非晶纳米硅中的一种或两种;所述纳米氧化硅SiOx中X为0~0.8。
3.根据权利要求1所述的三维多孔硅碳复合材料,其特征在于,所述碳包覆层至少为一层,单层厚度为0.2~1.0μm;所述碳包覆层为高温裂解碳包覆或气相碳包覆或液相碳包覆中的一种。
4.根据权利要求1所述的三维多孔硅碳复合材料,其特征在于,所述同步气相沉积的步骤为将有机碳源和硅源按比例A与保护气氛一起混合后通入反应器中进行气相沉积;所述比例A为有机碳源与硅源的流量比10:1~1:1。
5.根据权利要求1所述的三维多孔硅碳复合材料,其特征在于,所述交替气相沉积的步骤为先按比例B将硅源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积超细纳米硅,再按比例C将有机碳源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积导电碳,通过电磁阀实现不间断交替通入;或先按比例C将有机碳源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积导电碳,再按比例B将硅源和保护气氛一起混合后通入反应器中通气5~600s进行气相沉积超细纳米硅,通过电磁阀实现不间断交替通入;所述比例B为硅颗粒与保护气氛的流量比1:1~1:20;所述比例C为有机碳源与保护气氛的流量比1:1~1:20。
6.一种三维多孔硅碳复合材料的应用,其特征在于,使用如权利要求1所述的三维多孔硅碳复合材料的制备方法制得的三维多孔硅碳复合材料,其在锂离子电池的应用。
CN202110324659.2A 2021-03-26 2021-03-26 一种三维多孔硅碳复合材料、其制备方法及其应用 Active CN113078318B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202110324659.2A CN113078318B (zh) 2021-03-26 2021-03-26 一种三维多孔硅碳复合材料、其制备方法及其应用
PCT/CN2021/099099 WO2022198804A1 (zh) 2021-03-26 2021-06-09 一种三维多孔硅碳复合材料、其制备方法及其应用
JP2021563040A JP2023522139A (ja) 2021-03-26 2021-06-09 三次元多孔質ケイ素-炭素複合材料、その調製方法及びその応用
KR1020217034909A KR20220134738A (ko) 2021-03-26 2021-06-09 3차원 다공성 실리콘-탄소 복합 재료, 그 제조 방법 및 응용
US17/483,828 US11894549B2 (en) 2021-03-26 2021-09-24 Three-dimensional porous silicon/carbon composite material, method for preparing same, and use thereof
DE102022102273.0A DE102022102273A1 (de) 2021-03-26 2022-02-01 Dreidimensionales poröses Silizium-Kohlenstoff-Verbundmaterial, Herstellungsverfahren dafür und Anwendung davon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110324659.2A CN113078318B (zh) 2021-03-26 2021-03-26 一种三维多孔硅碳复合材料、其制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113078318A CN113078318A (zh) 2021-07-06
CN113078318B true CN113078318B (zh) 2023-08-08

Family

ID=76610398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110324659.2A Active CN113078318B (zh) 2021-03-26 2021-03-26 一种三维多孔硅碳复合材料、其制备方法及其应用

Country Status (6)

Country Link
US (1) US11894549B2 (zh)
JP (1) JP2023522139A (zh)
KR (1) KR20220134738A (zh)
CN (1) CN113078318B (zh)
DE (1) DE102022102273A1 (zh)
WO (1) WO2022198804A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449423A (zh) * 2018-11-13 2019-03-08 东莞市凯金新能源科技股份有限公司 一种中空/多孔结构硅基复合材料及其制法
CN114122352B (zh) * 2021-10-29 2023-05-02 西安交通大学 一种多孔碳掺杂诱导硅沉积的硅碳负极材料及其制备方法
CN114068901A (zh) * 2021-11-15 2022-02-18 陕西煤业化工技术研究院有限责任公司 一种硅碳复合负极材料及制备方法及应用
CN114050251B (zh) * 2021-11-18 2024-01-19 兰州城市学院 一种硅碳复合微纳米结构材料的制备及应用
CN116259726A (zh) * 2021-12-10 2023-06-13 溧阳天目先导电池材料科技有限公司 用于二次锂离子电池的多层次复合材料及制备方法和应用
CN116344807A (zh) * 2021-12-22 2023-06-27 溧阳天目先导电池材料科技有限公司 二次锂离子电池用复合材料及制备方法和应用
WO2023245652A1 (zh) * 2022-06-24 2023-12-28 上海杉杉科技有限公司 球状硅基储锂材料及其制备方法
WO2024011405A1 (zh) * 2022-07-12 2024-01-18 宁德时代新能源科技股份有限公司 硅碳复合材料及包含其的负极极片
CN115132997A (zh) * 2022-07-13 2022-09-30 Oppo广东移动通信有限公司 负极材料及其制备方法、电池和电子设备
CN115117327B (zh) * 2022-08-25 2022-11-22 溧阳天目先导电池材料科技有限公司 一种低膨胀硅基复合材料及其制备方法和应用
CN117673333A (zh) * 2022-08-31 2024-03-08 比亚迪股份有限公司 硅碳电极材料及其制备方法和应用
CN115632105B (zh) * 2022-12-19 2023-03-21 四川新能源汽车创新中心有限公司 一种多孔负极极片及其制备方法和锂离子电池
CN115986085B (zh) * 2023-01-06 2024-01-26 四川物科金硅新材料科技有限责任公司 一种三维碳骨架硅基负极材料及其制备方法
CN116504986A (zh) * 2023-06-28 2023-07-28 北京壹金新能源科技有限公司 硅碳复合材料及其制备方法、锂离子电池、电子设备
CN116895747A (zh) * 2023-07-11 2023-10-17 广东凯金新能源科技股份有限公司 磷掺杂硅碳复合材料及其制备方法、及二次电池
CN116581282A (zh) * 2023-07-13 2023-08-11 北京壹金新能源科技有限公司 合金化负极材料及其制备方法和应用
CN117059765A (zh) * 2023-08-04 2023-11-14 江门市和创新能源材料有限公司 一种硅碳复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456876A (zh) * 2010-10-27 2012-05-16 李溪 一种锂离子电池石墨化中孔碳/硅复合负极材料及其制备方法
CN107134567A (zh) * 2017-04-24 2017-09-05 广东烛光新能源科技有限公司 硅碳负极材料及其制备方法
CN109802120A (zh) * 2019-01-24 2019-05-24 广东凯金新能源科技股份有限公司 一种硅碳复合材料及其制法
US10424786B1 (en) * 2018-12-19 2019-09-24 Nexeon Limited Electroactive materials for metal-ion batteries
CN110556519A (zh) * 2018-06-04 2019-12-10 广州汽车集团股份有限公司 一种硅负极材料、硅负极及硅负极的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101613518B1 (ko) * 2014-08-25 2016-04-19 서강대학교산학협력단 탄소-실리콘 복합 전극 물질 및 이의 제조 방법
EP3593369A4 (en) * 2017-03-09 2021-03-03 Group14 Technologies, Inc. DECOMPOSITION OF PRECURSORS CONTAINING SILICON ON POROUS SCAFFOLDING MATERIALS
GB201818232D0 (en) * 2018-11-08 2018-12-26 Nexeon Ltd Electroactive materials for metal-ion batteries
GB202003864D0 (en) * 2019-09-10 2020-04-29 Nexeon Ltd Electroactive materials for use in metal-ion batteries
CN112133915A (zh) * 2020-08-13 2020-12-25 利普同呈(江苏)新能源科技有限公司 一种硅碳复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456876A (zh) * 2010-10-27 2012-05-16 李溪 一种锂离子电池石墨化中孔碳/硅复合负极材料及其制备方法
CN107134567A (zh) * 2017-04-24 2017-09-05 广东烛光新能源科技有限公司 硅碳负极材料及其制备方法
CN110556519A (zh) * 2018-06-04 2019-12-10 广州汽车集团股份有限公司 一种硅负极材料、硅负极及硅负极的制备方法
US10424786B1 (en) * 2018-12-19 2019-09-24 Nexeon Limited Electroactive materials for metal-ion batteries
CN109802120A (zh) * 2019-01-24 2019-05-24 广东凯金新能源科技股份有限公司 一种硅碳复合材料及其制法

Also Published As

Publication number Publication date
DE102022102273A1 (de) 2022-09-29
KR20220134738A (ko) 2022-10-05
US11894549B2 (en) 2024-02-06
WO2022198804A1 (zh) 2022-09-29
JP2023522139A (ja) 2023-05-29
CN113078318A (zh) 2021-07-06
US20220310989A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CN113078318B (zh) 一种三维多孔硅碳复合材料、其制备方法及其应用
CN113097487B (zh) 一种高度致密结构硅碳复合材料、其制备方法及其应用
US11851332B2 (en) Silicon-carbon composite material and preparation method thereof
CN107611406B (zh) 一种硅/石墨烯/碳复合负极材料的制备方法
US9663860B2 (en) Silicon-carbon composite anode material for lithium ion batteries and a preparation method thereof
CN101510602B (zh) 一种锂离子电池用硅复合负极材料的制备方法
CN109817949B (zh) 硅或其氧化物@二氧化钛@碳核壳结构复合颗粒及制备
CN112467108B (zh) 一种多孔硅氧复合材料及其制备方法和应用
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN105226241A (zh) 一种锂离子电池硅碳复合负极材料及其制备方法
CN105244477B (zh) 一种硅碳复合负极材料及其制备方法
CN113193201A (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
CN112510185A (zh) 一种硅碳复合负极材料及其制作方法
CN105185961B (zh) 电池负电极、硅碳基锂离子电池及其应用
CN114142005B (zh) 一种长循环、低膨胀内孔结构硅碳复合材料、其制备方法及其应用
CN115188949A (zh) 一种中间相碳微球-硅碳复合负极材料的制备方法
Bian et al. Preparation and lithium storage performances of gC 3 N 4/Si nanocomposites as anode materials for lithium-ion battery
CN113241441A (zh) 一种类石榴结构硅基复合材料、其制备方法及其应用
CN114105133B (zh) 一种石墨-硅/硅氧化物-碳复合材料及其制备方法和应用
CN113548671A (zh) 负极材料及其制备方法、负极极片以及锂离子电池
CN112678806A (zh) 一种碳@SiOx/C@碳纳米管复合材料及其制备方法
CN116119645B (zh) 一种改性多孔硬碳材料的制备方法及其产品和应用
CN115332496B (zh) 一种锂离子电池所用硅氧复合材料的制备方法
CN115133004A (zh) 一种用于锂离子电池的碳包覆改性的碳/硅氧化物复合电极材料及其制备方法
CN115483385A (zh) 一种三维复合硅碳负极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant