CN112176772A - 亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法 - Google Patents

亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法 Download PDF

Info

Publication number
CN112176772A
CN112176772A CN202011023113.5A CN202011023113A CN112176772A CN 112176772 A CN112176772 A CN 112176772A CN 202011023113 A CN202011023113 A CN 202011023113A CN 112176772 A CN112176772 A CN 112176772A
Authority
CN
China
Prior art keywords
lithium
philic
nano
carbon nanotube
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011023113.5A
Other languages
English (en)
Inventor
解明
吴迪
李杨
丁飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roudian Wuhan Technology Co ltd
CETC 18 Research Institute
Original Assignee
Roudian Wuhan Technology Co ltd
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roudian Wuhan Technology Co ltd, CETC 18 Research Institute filed Critical Roudian Wuhan Technology Co ltd
Priority to CN202011023113.5A priority Critical patent/CN112176772A/zh
Publication of CN112176772A publication Critical patent/CN112176772A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J5/00Manufacture of hollow articles by transferring sheets, produced from fibres suspensions or papier-mâché by suction on wire-net moulds, to couch-moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种亲锂碳纳米管纸的制备方法,具体地,将碳纳米管粉与亲锂纳米材料粉末混合均匀,采用湿法造纸工艺抄造成膜。为了提升在低厚度下的膜强度,可以加入纳米纤维素,再于惰性气体环境中加热使亲锂纳米材料和碳纳米管紧密结合制成,并将纳米纤维素碳化形成表面亲锂的碳纳米纤维。本发明所制的亲锂碳纳米管纸,亲锂纳米材料和碳纳米管之间有更好的化学接触,碳纳米管内亲锂纳米材料分散广,沉积稳定;本发明所制的锂金属负极具有抑制锂枝晶生长、改性固态电解质界面膜成分的作用,同时还具有为锂金属沉积提供空间、降低锂沉积的成核势垒,显著提高了锂金属负极的循环稳定性、循环寿命。

Description

亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法
技术领域
本发明属于二次电池技术领域,具体涉及一种亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法。
背景技术
自21世纪以来,可移动类电子信息类产品发展迅猛,对储能电池的容量要求日趋严苛,传统的锂离子电池能量密度接近上限,难以满足3C产品需求。金属锂负极因其超高的比容量3860mAh/g和最低的还原电势-3.04V得到了广泛关注。然而,金属锂负极至今难以应用于实际,主要原因是其电池循环过程中有枝晶生长以及库伦效率低的问题:一方面锂离子沉积受电流密度大小影响巨大,电流越大,锂离子沉积过快,越利于枝晶生长,待其刺穿隔膜使电池发生内短路,有电池燃烧***的危险;另一方面,锂金属有较强的化学活性,会不断与电解液发生副反应,造成低的库伦效率。许多研究组围绕此问题提出了诸多解决方案,包括金属锂与其他金属合金化、原子层沉积、电解液改性等,但这些改性方法无法解决在大电流作用下长循环及实现锂离子均匀沉积的问题。
三维(3D)骨架由于其独特的表面化学特性和互联通结构,可以很好的通过限制金属锂的沉积位置限制金属锂负极的体积膨胀抑制枝晶的生长。因此,具有3D骨架的复合金属锂负极被认为是解决金属锂体积变化和锂枝晶问题的有效途径。近期,在金属锂3D骨架设计方面取得了巨大的进步,采用铜网、泡沫镍、碳布或者碳纸作为三维骨架,通过设计具有亲锂位点的3D骨架可以调节锂的成核和均匀沉积,例如空心碳纳米球,MXene,N掺杂石墨烯和富边缘结构的石墨烯等材料。但是这些三维骨架的厚度一般都超过100um或者克重大于2mg/cm2。因此,即便使用锂金属复合负极,电芯的能量密度提升并不明显。此外,金属泡沫或者碳纤维较硬,容易刺穿隔膜造成电池短路,带来潜在的安全风险。
发明内容
本发明的目的在于克服现有技术之缺陷,提供了一种亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法。
本发明是这样实现的:
本发明提供一种亲锂碳纳米管纸的制备方法,将碳纳米管粉与亲锂纳米材料粉末混合均匀,采用湿法造纸工艺抄造成膜,再于惰性气体环境中加热使亲锂纳米材料和碳纳米管紧密结合。
采用湿法造纸工艺抄造成膜,使得制备得到的碳纸轻、薄且具有高孔隙率,同时在惰性气体环境下高温退火,使得亲锂纳米材料和碳纳米管之间形成化学键,有助于锂金属沿着碳管长度方向和纸内孔洞的沉积。为了制备克重低于1mg/cm2且可以从滤膜方便剥离并经过辊压厚度低于30μm的碳纳米管纸,可以添加少量纳米纤维素,利用其本身较强的氢键,增强纸张强度。在惰性气体环境下,纳米纤维素可以被碳化成为导电且表面亲锂的纳米碳纤维,进一步增强碳纸对于锂的亲和性。
进一步地,亲锂纳米材料包括氧化铝、氧化锌、氧化铜、银、硅、金等任何可以和锂发生合金反应的材料。
进一步地,惰性气体环境的加热温度为300~1200℃。
本发明还提供一种采用上述方法制备的亲锂碳纳米管纸。
本发明还提供一种复合金属锂负极的制备方法,将固态锂加热到熔融状态,之后高温熔融状态的锂注入上述亲锂碳纳米管纸中。
一种锂金属二级电池,其内部包含上述复合金属锂负极。
本发明具有以下有益效果:
1、本发明所制的亲锂碳纳米管纸,亲锂纳米材料和碳纳米管之间有更好的化学接触,碳纳米管纸内亲锂纳米材料分散好,锂沉积稳定。
2、本发明所制的锂金属负极具有抑制锂枝晶生长、改性固态电解质界面膜成分的作用,同时还具有为锂金属沉积提供空间、降低锂沉积的成核势垒,显著提高了锂金属负极的循环稳定性、循环寿命。
3、为了制备低克重且薄的碳纳米管纸,可以添加少量纳米纤维素,利用其本身较强的氢键,增强纸张强度;在惰性气体环境下,纳米纤维素可以被碳化成为导电且表面亲锂的纳米碳纤维,进一步增强碳纸对于锂的亲和性。
4、由于本发明所制碳纸重量轻而厚度薄,采用该金属锂复合负极的电池能量密度可得到大幅的提升。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
碳纳米管在异丙醇中超声分散,碳纳米管质量与分散碳纳米管所用异丙醇的体积比0.5mg/ml,超声功率300W,时间30min,分散完成的碳纳米管溶液按照质量比例4:1加入氧化锌纳米颗粒;再进行高速搅拌形成均匀的浆料,经真空抽滤去除异丙醇成纸。成型的碳纸置于120°烤箱中烘烤以去除残余异丙醇。碳纳米管纸克重为2mg/cm2。干燥完成的自支撑碳纳米管纸可方便地从过滤膜剥离转移,经辊压的方式达到50微米的厚度,在氩气环境下,在300℃进行烧结,保温4小时。
熔锂和灌注锂的温度为200℃,将此复合锂金属负极与镍钴锰三元正极材料进行搭配组成锂电池,电解液成分为1mol/L的六氟磷酸锂、碳酸乙烯酯和碳酸二乙酯溶液。0.5C倍率下,电池能稳定循环130周,容量保持率为85%。
实施例2
碳纳米管在异丙醇中超声分散,碳纳米管质量与分散碳纳米管所用异丙醇的体积比1mg/ml,超声功率200W,时间30min,分散完成的碳纳米管溶液按照质量比例9:1加入银纳米线;再进行高速搅拌形成均匀的浆料,经真空抽滤去除异丙醇成纸。成型的碳纸置于120°烤箱中烘烤以去除残余异丙醇。碳纳米管纸克重为1.5mg/cm2。干燥完成的自支撑碳纳米管纸可方便地从过滤膜剥离转移,经辊压的方式达到40微米的厚度。在氩气环境下,在600℃进行烧结,保温4小时。
熔锂和灌注锂的温度为200℃,将此复合锂金属负极与磷酸铁锂正极材料进行搭配组成锂电池,电解液成分为1mol/L的六氟磷酸锂、碳酸乙烯酯和碳酸二乙酯溶液。0.5C倍率下,电池能稳定循环100周,容量保持率为90%。
实施例3
碳纳米管在纯净水中超声分散,碳纳米管质量与分散碳纳米管所用纯净水的体积比0.2mg/ml,超声功率500W,时间10min,分散完成的碳纳米管溶液按照质量比例1:4加入硅纳米颗粒;再进行高速搅拌形成均匀的浆料,经真空抽滤去除水成纸。成型的碳纸置于120°烤箱中烘烤以去除残余水分。碳纳米管纸克重为1.2mg/cm2。干燥完成的自支撑碳纳米管纸可方便地从过滤膜剥离转移,经辊压的方式达到30微米的厚度。在氩气环境下,在900℃进行烧结,保温4小时。
熔锂和灌注锂的温度为200℃,将此复合锂金属负极与磷酸铁锂正极材料进行搭配组成锂电池,电解液成分为1mol/L的六氟磷酸锂、碳酸乙烯酯和碳酸二乙酯溶液。0.5C倍率下,电池能稳定循环500周,容量保持率为75%。
实施例4
碳纳米管在纯净水中超声分散,碳纳米管质量与分散碳纳米管所用纯净水的体积比0.2mg/ml,超声功率500W,时间10min,分散完成的碳纳米管溶液按照质量比例1:1:8加入纳米纤维素、硅纳米颗粒;再进行高速搅拌形成均匀的浆料,经真空抽滤去除水成纸。成型的碳纸置于120°烤箱中烘烤以去除残余水分。碳纳米管纸克重为1mg/cm2。干燥完成的自支撑碳纳米管纸可方便地从过滤膜剥离转移,经辊压的方式达到20微米的厚度。在氩气环境下,在1200℃进行烧结,保温4小时。
熔锂和灌注锂的温度为200℃,将此复合锂金属负极与钴酸锂正极材料进行搭配组成锂电池,电解液成分为1mol/L的六氟磷酸锂、碳酸乙烯酯和碳酸二乙酯溶液。0.5C倍率下,电池能稳定循环300周,容量保持率为80%。
本发明所制的亲锂碳纳米管纸中亲锂材料在碳纳米管中分散好,不仅轻、薄而且强度高,灌注熔融锂后制得复合锂金属负极,为锂金属沉积提供空间、降低锂沉积的成核势垒,显著提高了锂金属负极的循环稳定性、循环寿命。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种亲锂碳纳米管纸的制备方法,其特征在于:将碳纳米管粉与亲锂纳米材料粉末混合均匀,采用湿法造纸工艺抄造成膜,再于惰性气体环境中加热使亲锂纳米材料和碳纳米管紧密结合制成。
2.如权利要求1所述亲锂碳纳米管纸的制备方法,其特征在于:惰性气体环境的加热温度为300~1200℃。
3.如权利要求1所述亲锂碳纳米管纸的制备方法,其特征在于:亲锂纳米材料包括氧化铝、氧化锌、氧化铜、银、硅、金等任何可以和锂发生合金反应的材料。
4.一种采用权利要求1-3任一所述方法制备的亲锂碳纳米管纸。
5.一种复合金属锂负极的制备方法,其特征在于:将固态锂加热到熔融状态,之后高温熔融状态的锂注入如权利要求4所述的亲锂碳纳米管纸中。
6.一种锂金属二级电池,其特征在于:其内部包含如权利要求5所述的复合金属锂负极。
CN202011023113.5A 2020-09-25 2020-09-25 亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法 Pending CN112176772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011023113.5A CN112176772A (zh) 2020-09-25 2020-09-25 亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011023113.5A CN112176772A (zh) 2020-09-25 2020-09-25 亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法

Publications (1)

Publication Number Publication Date
CN112176772A true CN112176772A (zh) 2021-01-05

Family

ID=73945334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011023113.5A Pending CN112176772A (zh) 2020-09-25 2020-09-25 亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法

Country Status (1)

Country Link
CN (1) CN112176772A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644267A (zh) * 2021-08-03 2021-11-12 西北工业大学 一种多元合金诱导柔性钠金属电池基底及制备方法
CN114203963A (zh) * 2021-12-06 2022-03-18 上海大学 一种碳材料锂金属复合负极及其制备方法、应用
CN114635200A (zh) * 2022-03-11 2022-06-17 宁德新能源科技有限公司 管状纳米纤维材料、负极极片及锂金属电池
CN114695858A (zh) * 2022-04-28 2022-07-01 北京郅航科技有限公司 一种高性能锂离子电池负极材料及制备方法
NL2030074B1 (en) 2021-12-08 2023-06-22 Lionvolt B V Electrode with embeded pillar structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172760A (zh) * 2017-12-25 2018-06-15 北京乐华锂能科技有限公司 一种纸复合电极及其制备方法
CN108385450A (zh) * 2018-01-23 2018-08-10 柔电(武汉)科技有限公司 一种碳纳米管纸及其制备方法
CN109546141A (zh) * 2018-12-14 2019-03-29 蜂巢能源科技有限公司 锂金属复合电极及其制备方法、锂离子电池
CN110854380A (zh) * 2019-11-27 2020-02-28 电子科技大学 一种锂碳复合材料、锂电池及其制备方法
CN111106310A (zh) * 2018-10-25 2020-05-05 中国科学院宁波材料技术与工程研究所 一种复合锂金属负极的制备方法及含复合锂金属负极的电池
US20200152965A1 (en) * 2018-11-12 2020-05-14 Zhejiang A & F University Nanosheet composite for cathode of lithium-sulfur battery, preparation method thereof and electrode and battery comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108172760A (zh) * 2017-12-25 2018-06-15 北京乐华锂能科技有限公司 一种纸复合电极及其制备方法
CN108385450A (zh) * 2018-01-23 2018-08-10 柔电(武汉)科技有限公司 一种碳纳米管纸及其制备方法
CN111106310A (zh) * 2018-10-25 2020-05-05 中国科学院宁波材料技术与工程研究所 一种复合锂金属负极的制备方法及含复合锂金属负极的电池
US20200152965A1 (en) * 2018-11-12 2020-05-14 Zhejiang A & F University Nanosheet composite for cathode of lithium-sulfur battery, preparation method thereof and electrode and battery comprising the same
CN109546141A (zh) * 2018-12-14 2019-03-29 蜂巢能源科技有限公司 锂金属复合电极及其制备方法、锂离子电池
CN110854380A (zh) * 2019-11-27 2020-02-28 电子科技大学 一种锂碳复合材料、锂电池及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644267A (zh) * 2021-08-03 2021-11-12 西北工业大学 一种多元合金诱导柔性钠金属电池基底及制备方法
CN113644267B (zh) * 2021-08-03 2023-09-29 西北工业大学 一种多元合金诱导柔性钠金属电池基底及制备方法
CN114203963A (zh) * 2021-12-06 2022-03-18 上海大学 一种碳材料锂金属复合负极及其制备方法、应用
NL2030074B1 (en) 2021-12-08 2023-06-22 Lionvolt B V Electrode with embeded pillar structure
CN114635200A (zh) * 2022-03-11 2022-06-17 宁德新能源科技有限公司 管状纳米纤维材料、负极极片及锂金属电池
CN114635200B (zh) * 2022-03-11 2023-12-22 宁德新能源科技有限公司 管状纳米纤维材料、负极极片及锂金属电池
CN114695858A (zh) * 2022-04-28 2022-07-01 北京郅航科技有限公司 一种高性能锂离子电池负极材料及制备方法

Similar Documents

Publication Publication Date Title
CN110061191B (zh) 一种三维金属锂负极及其制备方法与应用
CN112176772A (zh) 亲锂碳纳米管纸的制备方法及复合金属锂负极的制备方法
Chu et al. Recent advanced skeletons in sodium metal anodes
CN106848199B (zh) 一种锂离子电池纳米硅/多孔碳复合负极材料及其制备方法和应用
KR101621133B1 (ko) 리튬이온전지 3d다공성 실리카계 복합 음극재료 및 그 제조방법
CN112176771A (zh) 亲锂碳纳米管纸的制备方法和复合金属锂负极的制备方法
Liu et al. Recent development in lithium metal anodes of liquid-state rechargeable batteries
US11063264B2 (en) Porous structure Si Cu composite electrode of lithium ion battery and preparation method thereof
CN113073496B (zh) 一种制备具有亲疏锂梯度结构的导电纤维纸的方法及导电纤维纸
CN103515657A (zh) 电池
Cao et al. 3D TiO2/ZnO hybrid framework: Stable host for lithium metal anodes
Jin et al. Vertical nanoarrays with lithiophilic sites suppress the growth of lithium dendrites for ultrastable lithium metal batteries
CN112103485A (zh) 一种0d/2d量子点/石墨烯纳米卷异质结构电极材料的制备方法
Gao et al. Lithiophilic Zn-doped CuO/ZnO nanoarrays modified 3D scaffold inducing lithium lateral plating achieving highly stable lithium metal anode
Zhang et al. Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties
CN112713260B (zh) 一种柔性锂金属电池负极及其制备方法与锂金属电池
Wang et al. 3D CNTs networks enable core-shell structured Si@ Ni nanoparticle anodes with enhanced reversible capacity and cyclic performance for lithium ion batteries
Pu et al. Cobalt nitride nanocrystals coated separator as multifunctional interlayer for improving polysulfides regulation
Sun et al. Uniform lithium deposition enabled by a carbon nanotubes framework modified with nanosized ZIF-8 particles for dendrite-free lithium metal anode
CN113594625A (zh) 一种锂硫电池用3d自支撑膜的制备及其应用
CN113488656A (zh) 一种3d亲锂复合多孔金属合金集流体及其制备方法和应用
Yu et al. Lithiophilic ZnO confined in microscale carbon cubes as a stable host for lithium metal anodes
Liu et al. Synthesis of FeO-nanowires/NiCo2O4-nanosheets core/shell heterostructure as free-standing electrode with enhanced lithium storage properties
Huang et al. Three-dimensional porous composite framework assembled with CuO microspheres as anode current collector for lithium-ion batteries
CN106571458B (zh) 一种阳极复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210105

RJ01 Rejection of invention patent application after publication