CN110423110B - 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法 - Google Patents

一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法 Download PDF

Info

Publication number
CN110423110B
CN110423110B CN201910820356.2A CN201910820356A CN110423110B CN 110423110 B CN110423110 B CN 110423110B CN 201910820356 A CN201910820356 A CN 201910820356A CN 110423110 B CN110423110 B CN 110423110B
Authority
CN
China
Prior art keywords
zno
sensitive ceramic
preparation
nonlinear
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910820356.2A
Other languages
English (en)
Other versions
CN110423110A (zh
Inventor
徐志军
崔方芳
初瑞清
贺笑春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN201910820356.2A priority Critical patent/CN110423110B/zh
Publication of CN110423110A publication Critical patent/CN110423110A/zh
Application granted granted Critical
Publication of CN110423110B publication Critical patent/CN110423110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/30Apparatus or processes specially adapted for manufacturing resistors adapted for baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明公开了一种超高非线性ZnO‑Bi2O3基压敏陶瓷及其制备方法。材料由ZnO、Bi2O3、MnO2、Co2O3、Sb2O3和Er2O3组成,配方为94mol%ZnO+3.0 mol%Bi2O3+1.0 mol%MnO2+1.0 mol%Co2O3+1.0 mol%Sb2O3+x wt%Er2O3,其中x=0~12。按照配方,称取相应的原材料后,利用固相烧结法分别在900oC至1000oC之间保温2‑5小时后得到相应的压敏陶瓷材料。当x=10、烧结温度为980oC时,本发明获得的ZnO‑Bi2O3基压敏电阻材料综合性能为:压敏场强为940V/mm,非线性系数α高达1032,漏电流IL=0.9μA。另外,本发明的制备方法具有工艺简单,能耗小,绿色环保等优点,具有实用性和应用前景。

Description

一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法
技术领域
本发明涉及压敏材料,具体是一种具有超高非线性ZnO基压敏陶瓷电阻及其制备方法。
背景技术
ZnO基压敏陶瓷电阻是以ZnO为主要原料,添加少量的Bi2O3,Co2O3,MnO2,Cr2O3等氧化物,采用传统的陶瓷制备工艺烧结而成。由于其具有非线性系数高、响应速度快、漏电流小和制造成本低等特点,已成为应用最广的压敏电阻材料之一。特别是在保障电子仪器、保护电力设备安全稳定正常工作方面起着非常重要作用,而且由于其制作方便、造价低廉的原因,压敏电阻器已被广泛应用于国防军事、航天航空、电力(交直流输配电)、电子、通讯交通、工业保护和家用电器等许多领域(吴维韩,何金良,高玉明,《金属氧化物非线性电阻特性和应用》,清华大学出版社,1998)。
压敏电阻用于过电压保护器件时,其性能指标主要是压敏电压V1mA、非线性系数α及漏电流(是指压敏电阻器在进入击穿区之前正常工作时所流过的电流值,一般用IL表示)三个。其中非线性系数α是压敏电阻的主要性能参数,提高α值可使压敏陶瓷电阻对过电压有更敏锐的响应(刘建科,王秀峰,陈永佳,Pr掺杂和Pr-Y共掺杂Zn-Bi系压敏电阻性能的研究,功能材料,2013,44(1):316-320;Yong H K, Kawamura H, Hawata M, the effect ofCr2O3 additive on the electrical properties of ZnO varistor, J Mater Sci,1997, 32(1):1665-1670)。通过实验建立起电流与电压的函数关系,利用方程式(1)可计算出非线性系数α的值。
α=1/log(V 1mA /V 0.1mA ) (1)
式中,V1mA和V0.1mA分别对应电流值I为1mA和0.1mA下的电压值,工业上应用的ZnO基压敏陶瓷电阻器的α值一般大于30。
目前,提高ZnO基压敏陶瓷电阻非线性系数α值的途径主要是添加各种添加物,例如仅添加Bi2O3,α值为3-5 左右;而添加Co 和Mn 的氧化物,则α值增加到25 左右;为了提高α值,这些成分的添加是必不可少的。再添加Sb 氧化物,可使α值变得非常大,增加到45 左右,并能改善作为压敏电阻实用上的其他各种性能。单加Bi、Sb,α值在10 以下,而在Bi、Sb、Co 和Mn 的氧化物组合添加的情况下,表现出显著的非线性。对该系数进一步添加Cr、Sn和Si 等氧化物控制其特性,即可获得实用的压敏电阻(孙丹峰,季幼章,ZnO压敏电阻的非线性系数,中国电子学会敏感技术分会第十六届电压敏学术年会论文集,2013-4-10:141-148)。Fayçal Kharchouche等人利用BaCO3掺杂ZnO基压敏陶瓷电阻,α值达到了121.03(Fayçal Kharchouche, Saâd Belkhiat, Djamel Eddine Chouaib Belkhiat,Non-linearcoefficient of BaTiO3-doped ZnO varistor,IET Sci. Meas. Technol., 2013, 7(6):326-333)。
综合以上,本工作以掺杂改性ZnO基压敏陶瓷电阻,通过配方的设计,力求获得具有超高非线性系数的ZnO-Bi2O3基压敏陶瓷电阻,使其能应用在航天航空、电力(交直流输配电)等领域中。
发明内容
为解决上述技术问题,本发明的目的是提供一种具有超高非线性系数的ZnO-Bi2O3基压敏陶瓷电阻,所述压敏陶瓷电阻器制备工艺简单,化学性质稳定。
本发明的ZnO-Bi2O3基压敏陶瓷初始粉料中含有Er2O3后,不仅可以提高ZnO-Bi2O3基压敏陶瓷电阻器的非线性系数,而且能在一定程度上增大压敏陶瓷的压敏电压,进而应用于交直流输配电领域。
本发明得到国家重点研发计划(2016YFB0402701)的资助。
本发明提供了一种具有超高非线性系数的ZnO-Bi2O3基压敏陶瓷电阻,其化学组成式为: 94mol % ZnO + 3.0 mol % Bi2O3 + 1.0 mol % MnO2 + 1.0 mol % Co2O3 + 1.0mol % Sb2O3 + x wt % Er2O3,式中x=2~12。
优选的,x=6~12。
更加优选的方案为:x=8、10。
优选的,所述二氧化锰前驱体也可由碳酸锰(MnCO3)替代,制备相应的ZnO-Bi2O3基压敏陶瓷。
本发明获得的ZnO-Bi2O3基压敏电阻材料的压敏场强为510V/mm~1035V/mm,非线性系数α最高可达1081,漏电流IL在0.1~2μA,且烧结温度低,综合性能良好;另外,本发明的制备方法具有工艺简单,能耗小,绿色环保等优点,具有广泛的应用前景。
本发明公开了一种非线性系数在39~1081之间可调的ZnO-Bi2O3系压敏电阻材料及其制备方法。材料由氧化锌、三氧化二铋、二氧化锰、三氧化二钴、三氧化二锑和三氧化二铒组成。按照配方,称取相应的原料后,利用固相烧结法在900-1000℃保温2-5小时后得到相应的压敏陶瓷。
所述的超高非线性ZnO-Bi2O3基压敏陶瓷电阻的制备方法,其步骤如下:
(1) 按化学组成摩尔比称取ZnO、Bi2O3、MnO2、Co2O3和Sb2O3原料;
(2) 按照(1)所称取的总质量比添加Er2O3,即(ZnO + Bi2O3 + MnO2 + Co2O3 +Sb2O3)的总质量×x%= Er2O3的质量,x=2~12;
(3) 以无水乙醇或去离子水为溶剂,将(1)、(2)所称取的原料放入球磨罐中球磨;
(4) 球磨后,将浆料放入烘箱中烘干;
(5) 将烘干的原料直接加入聚乙烯醇(PVA)粘结剂,造粒,压制成型。
(6) 将步骤(5)压制成型的ZnO- Bi2O3基压敏材料放入马弗炉中,烧结得到陶瓷材料。
所述的制备方法,优先的方案是,步骤(2)x=6、8、10或12。
所述的制备方法,优先的方案是,步骤(3)球磨4-8个小时。
所述的制备方法,优先的方案是,步骤(4)烘干温度为80-120℃。
所述的制备方法,优先的方案是,步骤(5) 聚乙烯醇的加入量为原料总质量的3-8%。
所述的制备方法,优先的方案是,步骤(6) 烧结温度在900-1000℃保温2-5小时。
前述ZnO-Bi2O3系压敏陶瓷材料的制备方法,所述的“球磨”使用的球磨机可以为行星球磨机、砂磨机或工业用陶瓷粉体混料装置均能达到预期效果,如使用南京千尚电子科技有限公司生产的QM-QX4型全方位行星式球磨机,上海儒特机电设备有限公司生产的RT001型卧式砂磨机,上海凯日机械制造有限公司生产的ZSH混料机等均可。
本发明还提供了由该类ZnO-Bi2O3基压敏陶瓷制成的压敏电阻元器件。
相比于现有技术通过减小晶粒尺寸提高电位梯度与非线性的湿化学法技术路线不同,本发明提供了一种新的提高电位梯度与非线性系数ZnO-Bi2O3基压敏陶瓷的技术路线,本发明的ZnO-Bi2O3基压敏陶瓷的关键在于Er2O3做为外加添加剂,Er2O3既起到了增大非线性的作用,又起到了提高电位梯度的作用。进一步分析,本发明的ZnO-Bi2O3基压敏陶瓷通过掺杂Er2O3致使晶胞体积收缩进而增大压敏场强,并使得Er2O3沉积到晶界上进而引起晶界势垒的升高,通过对晶界势垒的改变最终使得非线性系数提高(α=39~1081),而且,ZnO-Bi2O3基压敏电阻材料的压敏场强达到510V/mm~1035V/mm,漏电流IL仅为0.1~2μA,均优于现有ZnO-Bi2O3基压敏陶瓷的技术指标。
而且,当Er2O3掺杂量超过12wt%的界限值时,虽然聚集在晶界上的Er2O3依然能够抑制晶粒的生长(压敏场强仍然继续升高),但是载流子量也超过了界限值促使晶界势垒降低,导致非线性系数剧烈变化随之降低至131,即Er2O3掺杂量超过12wt%时非线性系数已经开始下降。
本发明具有以下优点:
(1) 未经粉体预合成过程,只经相对较低的煅烧温度(980℃)即可制备出性能较好的ZnO-Bi2O3基压敏陶瓷材料;
(2) 该类ZnO-Bi2O3基压敏陶瓷材料具有超高的非线性系数,α=39~1081;
(3)该类ZnO-Bi2O3基压敏陶瓷材料具有相对较大的电位梯度,E1mA=510V/mm~1035V/mm;
(4) 该类ZnO-Bi2O3基压敏陶瓷材料具有相对较低的漏电流,IL=0.1~2μA;
(5) 本方法能较大量的制备ZnO-Bi2O3基压敏陶瓷材料,适宜工业生产。
总之,本发明探索出一种具有高非线性与大电位梯度的ZnO-Bi2O3基压敏陶瓷配方及其制备工艺;本发明制备获得的具有超高非线性系数的ZnO-Bi2O3基压敏陶瓷电阻能够应用在航天航空、电力(交直流输配电)等领域中。
附图说明
图1为本发明技术方案具体实施方式工艺流程框图。
图2为利用本技术方案实施例1在980℃保温5小时后制备的ZnO-Bi2O3基压敏陶瓷的XRD分析图谱。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:一种高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法。
按照图1所示的工艺流程,制备x=0、2、4的ZnO-Bi2O3基压敏陶瓷,具体步骤如下:
(1) 按化学组成摩尔比称取ZnO、Bi2O3、MnO2、Co2O3和Sb2O3原料;
(2) 向(1)称取的ZnO-Bi2O3基压敏电阻陶瓷的初始原料中分别加入x=0、2、4的Er2O3原料;
(3) 使用无水乙醇作为溶剂,球磨混合8h;
(4) 将球磨后的浆料放入烘箱中80℃下干燥;
(5) 在干燥后的粉料中加入3wt%PVA粘结剂、压制成直径为12mm,厚度为0.8-1.5mm的薄圆片;
(6) 将压制好的薄圆片在550℃保温1-3小时,排掉PVA粘结剂;
(7) 将经(6)处理后的ZnO-Bi2O3基样品在980℃保温2小时烧结;
(8) 将经(7)烧结后的ZnO-Bi2O3基压敏陶瓷样品上下两面涂上银浆;
(9) 将经(8)处理后的样品在500℃保温20分钟,烧制成银电极;
(10) 将经(9)处理后的ZnO-Bi2O3基压敏陶瓷样品进行性能测试与分析。
按以上工艺过程制备出的ZnO-Bi2O3基压敏陶瓷样品电学性能参数见表一:
表一:实施例1样品的电学性能
Er<sub>2</sub>O<sub>3</sub>的含量 压敏场强 (V/mm) 非线性系数α 漏电流 (μA) 晶界势垒Φ<sub>b</sub>(eV)
0 wt% 514.29 39.7 0.1 3.19
2wt% 641.67 47.7 0.1 3.27
4wt% 814.71 52.0 1.1 3.34
由表一和图2可以看出,随Er2O3掺杂量的增大,晶胞体积收缩,致使压敏场强逐渐增大;晶界势垒也随之升高,引起非线性系数由39.7提高到52。
实施例2:一种ZnO压敏电阻低压化添加剂及其制备方法。
按照图1所示的工艺流程,制备x=6、8的ZnO-Bi2O3基压敏陶瓷,具体步骤如下:
(1) 按化学组成摩尔比称取ZnO、Bi2O3、MnO2、Co2O3和Sb2O3原料;
(2) 向(1)称取的ZnO-Bi2O3基压敏电阻陶瓷的初始原料中分别加入x=6、8的Er2O3原料;
(3) 使用去离子水作为溶剂,球磨混合8h;
(4) 将球磨后的浆料放入烘箱中90℃下干燥;
(5) 在干燥后的粉料中加入4wt%PVA粘结剂、压制成直径为12mm,厚度为0.8-1.5mm的薄圆片;
(6) 将压制好的薄圆片在550℃保温1-3小时,排掉PVA粘结剂;
(7) 将经(6)处理后的ZnO-Bi2O3基样品在980℃保温2小时烧结;
(8) 将经(7)烧结后的ZnO-Bi2O3基压敏陶瓷样品上下两面涂上银浆;
(9) 将经(8)处理后的样品在500℃保温20分钟,烧制成银电极;
(10) 将经(9)处理后的ZnO-Bi2O3基压敏陶瓷样品进行性能测试与分析。
按以上工艺过程制备出的ZnO-Bi2O3基压敏陶瓷样品电学性能参数见表二:
表二:实施例2样品的电学性能
Er<sub>2</sub>O<sub>3</sub>的含量 压敏场强 (V/mm) 非线性系数α 漏电流 (μA) 晶界势垒Φ<sub>b</sub>(eV)
6 wt% 836.67 66.8 1.1 3.68
8wt% 916.70 378.8 1.0 5.53
由表二可以看出,随Er2O3掺杂量增加到6wt%、8wt%后,压敏场强、非线性系数及晶界势垒都持续增加。由图2(a)、(b)可以看出,随Er2O3掺杂量的增大,晶胞体积继续收缩,致使压敏场强逐渐增大,特别是当x=8时,有多余的Er2O3沉积到晶界上,引起了晶界势垒大的升高,促使非线性系数由66.8迅速增大到378.8。
实施例3:一种ZnO压敏电阻低压化添加剂及其制备方法。
按照图1所示的工艺流程,制备x=10、12的ZnO-Bi2O3基压敏陶瓷,具体步骤如下:
(1) 按化学组成摩尔比称取ZnO、Bi2O3、MnO2、Co2O3和Sb2O3原料;
(2) 向(1)称取的ZnO-Bi2O3基压敏电阻陶瓷的初始原料中分别加入x=10、12的Er2O3原料;
(3) 使用去离子水作为溶剂,球磨混合8h;
(4) 将球磨后的浆料放入烘箱中90℃下干燥;
(5) 在干燥后的粉料中加入6wt%PVA粘结剂、压制成直径为12mm,厚度为0.8-1.5mm的薄圆片;
(6) 将压制好的薄圆片在550℃保温1-3小时,排掉PVA粘结剂;
(7) 将经(6)处理后的ZnO-Bi2O3基样品在980℃保温2小时烧结;
(8) 将经(7)烧结后的ZnO-Bi2O3基压敏陶瓷样品上下两面涂上银浆;
(9) 将经(8)处理后的样品在500℃保温20分钟,烧制成银电极;
(10) 将经(9)处理后的ZnO-Bi2O3基压敏陶瓷样品进行性能测试与分析。
按以上工艺过程制备出的ZnO-Bi2O3基压敏陶瓷样品电学性能参数见表三:
表三:实施例3样品的电学性能
Er<sub>2</sub>O<sub>3</sub>的含量 压敏场强 (V/mm) 非线性系数α 漏电流 (μA) 晶界势垒Φ<sub>b</sub>(eV)
10 wt% 940.00 1081.1 0.9 9.68
12 wt% 1032.86 131.0 2.0 4.96
由表三可以看出,当Er2O3掺杂量增加到10wt%时,非线性系数达到了1081.1的高值,这是由于晶界势垒随Er2O3掺杂量的增加而引起的。当Er2O3掺杂量继续增大到12wt%时,由于过多Er2O3聚集在晶界上,载流子数目也过多了,因此降低了晶界势垒,继而非线性系数也随之降低。但由图2 (b)可以看出,过多的Er2O3掺杂量仍然抑制晶粒的长大,致使压敏场强继续升高,达到了1032.86 V/mm。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (1)

1.一种超高非线性ZnO-Bi2O3基压敏陶瓷材料,其特征是,ZnO-Bi2O3基压敏陶瓷电阻材料配方为:
94mol % ZnO ,
3.0 mol % Bi2O3
1.0 mol % MnO2
1.0 mol % Co2O3
1.0 mol % Sb2O3
以及占所述ZnO-Bi2O3基压敏陶瓷电阻材料质量百分比为x的Er2O3,其中x为8或10。
CN201910820356.2A 2019-09-01 2019-09-01 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法 Active CN110423110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910820356.2A CN110423110B (zh) 2019-09-01 2019-09-01 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910820356.2A CN110423110B (zh) 2019-09-01 2019-09-01 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN110423110A CN110423110A (zh) 2019-11-08
CN110423110B true CN110423110B (zh) 2021-11-05

Family

ID=68418415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910820356.2A Active CN110423110B (zh) 2019-09-01 2019-09-01 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110423110B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225553A (zh) * 2020-10-08 2021-01-15 烟台大学 与纯银内电极共烧的ZnO基低压高非线性压敏陶瓷及其制备方法
CN112225554A (zh) * 2020-10-08 2021-01-15 烟台大学 一种可低温烧结的ZnO-Bi2O3基低压压敏陶瓷及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077915A (en) * 1975-09-18 1978-03-07 Tdk Electronics Co., Ltd. Non-linear resistor
JPS62282416A (ja) * 1986-05-30 1987-12-08 株式会社村田製作所 電圧非直線抵抗体
JPH09180910A (ja) * 1995-12-25 1997-07-11 Mitsubishi Electric Corp 電圧非直線抵抗体
CN1962539A (zh) * 2006-11-30 2007-05-16 华南理工大学 氧化锌基高电位梯度压敏陶瓷材料及其制备方法与应用
JP2008218592A (ja) * 2007-03-02 2008-09-18 Murata Mfg Co Ltd 薄膜バリスタおよびその製造方法
CN101279844A (zh) * 2008-05-20 2008-10-08 上海大学 复合稀土氧化物掺杂的氧化锌压敏陶瓷材料
CN102515742A (zh) * 2011-12-15 2012-06-27 中国科学院过程工程研究所 一种高电位梯度氧化锌压敏电阻材料及其制备方法
JP2013251385A (ja) * 2012-05-31 2013-12-12 Toshiba Corp 電流−電圧非直線抵抗体およびその製造方法
JP2015053313A (ja) * 2013-09-05 2015-03-19 三菱電機株式会社 焼成体、その製造方法、バリスタおよび過電圧保護装置
CN104478428A (zh) * 2014-11-21 2015-04-01 四川大学 一种高电位梯度氧化锌压敏电阻材料
CN104860671A (zh) * 2015-05-18 2015-08-26 聊城大学 一种低温烧结高性能高压氧化锌压敏电阻材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077915A (en) * 1975-09-18 1978-03-07 Tdk Electronics Co., Ltd. Non-linear resistor
JPS62282416A (ja) * 1986-05-30 1987-12-08 株式会社村田製作所 電圧非直線抵抗体
JPH09180910A (ja) * 1995-12-25 1997-07-11 Mitsubishi Electric Corp 電圧非直線抵抗体
CN1962539A (zh) * 2006-11-30 2007-05-16 华南理工大学 氧化锌基高电位梯度压敏陶瓷材料及其制备方法与应用
JP2008218592A (ja) * 2007-03-02 2008-09-18 Murata Mfg Co Ltd 薄膜バリスタおよびその製造方法
CN101279844A (zh) * 2008-05-20 2008-10-08 上海大学 复合稀土氧化物掺杂的氧化锌压敏陶瓷材料
CN102515742A (zh) * 2011-12-15 2012-06-27 中国科学院过程工程研究所 一种高电位梯度氧化锌压敏电阻材料及其制备方法
JP2013251385A (ja) * 2012-05-31 2013-12-12 Toshiba Corp 電流−電圧非直線抵抗体およびその製造方法
JP2015053313A (ja) * 2013-09-05 2015-03-19 三菱電機株式会社 焼成体、その製造方法、バリスタおよび過電圧保護装置
CN104478428A (zh) * 2014-11-21 2015-04-01 四川大学 一种高电位梯度氧化锌压敏电阻材料
CN104860671A (zh) * 2015-05-18 2015-08-26 聊城大学 一种低温烧结高性能高压氧化锌压敏电阻材料

Also Published As

Publication number Publication date
CN110423110A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN104671771B (zh) 一种高电压梯度氧化锌基压敏电阻材料及其制备方法
CN102390992B (zh) 一种直流避雷器用电阻片及其生产工艺
CN103396116B (zh) 氧化锌压敏电阻生料、其制备方法及压敏电阻器
CN101604566B (zh) 一种适合低浪涌电压电器使用的氧化锌压敏电阻材料及制备方法
CN104944935A (zh) 一种氧化锌压敏电阻陶瓷及其制备方法
CN101786874A (zh) 一种制备低残压ZnO压敏电阻陶瓷的工艺方法
CN110423110B (zh) 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法
CN102515741A (zh) 一种氧化锌压敏电阻材料及其制备方法
CN102643086B (zh) 一种二氧化锡基压敏电阻材料及制备方法
CN105016721A (zh) 采用铝、镓和钇离子共同掺杂制备ZnO压敏电阻陶瓷的方法
CN105645948A (zh) 高电压梯度、低泄露电流压敏电阻陶瓷材料的制备方法
CN102167579A (zh) 一种低温烧结的ZnO-Bi2O3-B2O3系压敏电阻材料及其制备方法
CN109574653A (zh) 一种高非线性、低漏电流压敏电阻片及其制备方法
CN101284730A (zh) 非Bi系低压ZnO压敏陶瓷材料的制造方法
CN104557016A (zh) 一种高非线性玻璃料掺杂的氧化锌压敏陶瓷材料
CN100361238C (zh) 防雷用多元掺杂改性氧化锌压敏材料
CN102745985A (zh) 高居里点无铅ptc陶瓷材料及其制备方法
CN110922182A (zh) 高梯度、低泄漏电流陶瓷的制备方法
CN101265083A (zh) 稀土硝酸盐掺杂的氧化锌压敏陶瓷材料及其制备方法
KR100441863B1 (ko) 프라세오디뮴계 산화아연 바리스터 및 그 제조방법
CN102745984B (zh) 一种高居里点无铅ptc陶瓷材料及其制备方法
CN103011799B (zh) 一种压敏电阻陶瓷的生产方法
CN101792316A (zh) 高居里点的无铅ptcr热敏陶瓷材料
CN104860671A (zh) 一种低温烧结高性能高压氧化锌压敏电阻材料
WO2020019274A1 (zh) 氧化锌压敏电阻的优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant