CN108821767A - 一种复合氧化锆陶瓷背板的制备方法 - Google Patents

一种复合氧化锆陶瓷背板的制备方法 Download PDF

Info

Publication number
CN108821767A
CN108821767A CN201810635869.1A CN201810635869A CN108821767A CN 108821767 A CN108821767 A CN 108821767A CN 201810635869 A CN201810635869 A CN 201810635869A CN 108821767 A CN108821767 A CN 108821767A
Authority
CN
China
Prior art keywords
backboard
preparation
compound zirconia
zirconia pottery
gained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810635869.1A
Other languages
English (en)
Other versions
CN108821767B (zh
Inventor
贾建平
周晖雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU SHANREN NANO TECHNOLOGY Co.,Ltd.
Original Assignee
Suzhou Mountain Man Nano Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Mountain Man Nano Technology Co Ltd filed Critical Suzhou Mountain Man Nano Technology Co Ltd
Priority to CN201810635869.1A priority Critical patent/CN108821767B/zh
Publication of CN108821767A publication Critical patent/CN108821767A/zh
Application granted granted Critical
Publication of CN108821767B publication Critical patent/CN108821767B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种复合氧化锆陶瓷背板的制备方法,该方法将复合氧化锆造粒粉倒进背板模具中干压成型,将所得模型经脱脂、高温焙烧及闪烧技术后可制备得到背板烧结体。本专利所涉及的一种复合氧化锆陶瓷背板的制备方法,结合了热压烧结和闪烧技术,其高温焙烧的温度比热压烧结技术低500‑700℃,且高温焙烧的总时间不超过两分钟,所得背板烧结体不仅与热压烧结技术所得产品的力学性能相当,还具有结构致密且无微观空洞缺陷特点;此外,该方法还具有过程简单可控、制备高效且较为节能的优点,适合工业化生产。

Description

一种复合氧化锆陶瓷背板的制备方法
技术领域
本发明属于陶瓷背板技术领域,具体涉及一种复合氧化锆陶瓷背板的制备方法。
背景技术
随着通讯技术及手机科技的发展,5G和无线充电时代即将到来,但两者对手机背板的材质的要求较高,需其对电磁信号的屏蔽效应尽可能小,因此非金属背板材料将成为未来手机的必然选择。
复合氧化锆陶瓷拥有良好的硬度、抗折强度、韧性和热导率等性能,相较塑料和玻璃背板等非金属材料的优势明显;此外,复合氧化锆陶瓷具备美观、亲肤的特性,使其有望应用于高端手机产品。复合氧化锆陶瓷背板的制作加工流程可分为材料配料、成型、烧结、精加工四大环节;其中,烧结工艺一般采用高温烧结技术,其不仅用时较长、能耗较大,而且产品质量的控制较为困难以及所得产品良率较低,从而导致目前陶瓷背板的成本较高且产能有限,尤其是三维手机背板,由于其设计形状复杂,其机械加工难度会更大,如果能在烧结过程中减少加工余量,实现近净成形,将会大幅降低手机背板的生产成本。因此,快速高效的复合氧化锆陶瓷三维手机背板烧结工艺是加速其应用的关键所在。
发明内容
为解决上述技术问题,本发明提出一种复合氧化锆陶瓷背板的制备方法,不仅提高了复合氧化锆陶瓷背板的生产效率及性能,还降低了生产成本。
为了达到上述目的,本发明的技术方案如下:一种复合氧化锆陶瓷背板的制备方法,包括以下步骤:
(1)将复合氧化锆造粒粉倒进背板模具中干压成型;
(2)将步骤(1)中所得模型置于空气中脱脂制得素坯;
(3)将步骤(2)中所得素坯置于空气中焙烧;
(4)将电极置于步骤(3)中所得素坯两侧并通以直流电,线性增加电压直至发生闪光现象,再恒定电流并烧结一定时间,降温至室温可得背板烧结体。
作为优选,所述的背板为三维手机背板。
作为优选,所述步骤(1)中复合氧化锆造粒粉由以下组分组成:氧化钇3-12mol%,氧化锆22-88mol%,三氧化二铝0-66mol%。
作为优选,所述步骤(1)中干压成型的压强为200-250MPa,保压时间为20-40s。
作为优选,所述步骤(2)中模型的脱脂温度为400-500℃,脱脂时间为2-4h。
作为优选,所述步骤(3)中素坯的焙烧温度为900-1000℃,焙烧时间为30-60s。
作为优选,所述步骤(4)中的电极为铂电极。
作为优选,所述步骤(4)中的电压增加速率为20-100V/s。
作为优选,所述步骤(4)中的恒定电流为800-1000A。
作为优选,所述步骤(4)中恒定电流下的烧结时间为20-50s。
作为优选,所述步骤(4)中发生闪光现象时的电压为60-100V。
本发明的有益效果:本发明涉及一种复合氧化锆陶瓷背板的制备方法,该方法结合了热压烧结和闪烧技术,其高温焙烧的温度比热压烧结技术低500-700℃,且高温焙烧的总时间不超过两分钟,所得背板烧结体不仅与热压烧结技术所得产品的力学性能相当,还具有结构致密、无微观空洞缺陷的特点,其密度可达理论密度的99.5%以上,抗弯强度高于850MPa,断裂韧性超过7MPa·m1/2,且平均晶粒尺寸小于1微米;此外,该方法还具有过程简单可控、制备高效且较为节能的优点,适合工业化生产。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所用附图作简单的介绍。
图1为实施例一制备所得背板烧结体的SEM图;
图2为实施例二制备所得背板烧结体的SEM图;
图3为实施例三制备所得背板烧结体的SEM图;
图4为实施例四制备所得背板烧结体的SEM图。
具体实施方式
为了使本领域技术人员更好地理解本申请中的技术方案,下面将结合实施例对本申请中的技术方案进行清楚、完整的描述。
实施例一
一种复合氧化锆陶瓷背板的制备方法,包括以下步骤:
(1)将复合氧化锆造粒粉倒进三维手机背板模具中,并于200Mpa下保压30s即可干压成型,其中,复合氧化锆造粒粉的成分见表1;
(2)将步骤(1)中所得模型置于空气中于470℃下脱脂2.0h制得素坯;
(3)将步骤(2)中所得素坯置于空气中于930℃下焙烧50s;
(4)将铂电极置于步骤(3)中所得素坯两侧并通以直流电,以60V/s的速度线性增加电压直至发生闪光现象,将电流恒定在950A并维持20s,再降温至室温即可得背板烧结体。
对所得背板烧结体进行场发射电子显微镜(SEM)表征,结果如图1所示,从图中可知,本实施例制备所得背板烧结体的结构致密,无微观孔洞缺陷,其晶粒尺寸均匀,平均晶粒尺寸小于1微米。
实施例二
一种复合氧化锆陶瓷背板的制备方法,包括以下步骤:
(1)将复合氧化锆造粒粉倒进三维手机背板模具中,并于220Mpa下保压20s即可干压成型,其中,复合氧化锆造粒粉的成分见表1;
(2)将步骤(1)中所得模型置于空气中于400℃脱脂2.5h制得素坯;
(3)将步骤(2)中所得素坯置于空气中于1000℃下焙烧40s;
(4)将铂电极置于步骤(3)中所得素坯两侧并通以直流电,以20V/s的速度线性增加电压直至发生闪光现象,将电流恒定在1000A并维持30s,再降温至室温即可得背板烧结体。
对所得背板烧结体进行场发射电子显微镜(SEM)表征,结果如图2所示,从图中可知,本实施例制备所得背板烧结体的结构致密,无微观孔洞缺陷,其晶粒尺寸均匀,平均晶粒尺寸小于1微米。
实施例三
一种复合氧化锆陶瓷背板的制备方法,包括以下步骤:
(1)将复合氧化锆造粒粉倒进三维手机背板模具中,并于230Mpa下保压40s即可干压成型,其中,复合氧化锆造粒粉的成分见表1;
(2)将步骤(1)中所得模型置于空气中于500℃脱脂3.0h制得素坯;
(3)将步骤(2)中所得素坯置于空气中于900℃下焙烧30s;
(4)将铂电极置于步骤(3)中所得素坯两侧并通以直流电,以100V/s的速度线性增加电压直至发生闪光现象,再将电流恒定在800A并维持40s,降温至室温可得背板烧结体。
对所得背板烧结体进行场发射电子显微镜(SEM)表征,结果如图3所示,从图中可知,本实施例制备所得背板烧结体的结构致密,无微观孔洞缺陷,其晶粒尺寸均匀,平均晶粒尺寸小于1微米。
实施例四
一种复合氧化锆陶瓷背板的制备方法,包括以下步骤:
(1)将复合氧化锆造粒粉倒进三维手机背板模具中,并于250Mpa下保压35s即可干压成型,其中,复合氧化锆造粒粉的成分见表1;
(2)将步骤(1)中所得模型置于空气中于450℃脱脂4.0h制得素坯;
(3)将步骤(2)中所得素坯置于空气中于970℃下焙烧60s;
(4)将铂电极置于步骤(3)中所得素坯两侧并通以直流电,以80V/s的速度线性增加电压直至发生闪光现象,再将电流恒定在900A并维持50s,降温至室温可得背板烧结体。
对所得背板烧结体进行场发射电子显微镜(SEM)表征,结果如图4所示,从图中可知,本实施例制备所得背板烧结体的结构致密,无微观孔洞缺陷,其晶粒尺寸均匀,平均晶粒尺寸小于1微米。
表1
对比例一
采用实施例一的原料配比并通过传统的热压烧结技术制得背板烧结体。
对实施例一至四以及对比例一所制备的背板烧结体进行密度、抗弯强度、断裂韧性及力学性能测试,测试结果如表2所示。
其中,密度的测试方法为阿基米德法,测试温度:25℃;抗弯强度采用抗弯强度测试仪,测试方法为三点弯曲法;断裂韧性的测试方法为压痕法;
表2
从表2中可看出,掺杂三氧化二铝的背板烧结体的力学性能明显提高,且本发明方法可得结构致密的背板烧结体,其密度可达理论密度(6.11g/cm3)的99.5%以上,抗弯强度高于850MPa,断裂韧性超过7MPa·m1/2;此外,对比实施例一和对比例一可知,本发明方法所得产品的力学性能与热压烧结技术所得产品相当,但本发明进行高温焙烧的温度较低、时间较短,因而制备成本更低,生产工艺简单、绿色且可控。
以上所述实施例仅为本发明的较佳实施例,而并非对实施方式的限制。应当指出,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以作出若干变形及改进,这些都属于本发明的保护范围。

Claims (10)

1.一种复合氧化锆陶瓷背板的制备方法,其特征在于,包括以下步骤:
(1)将复合氧化锆造粒粉倒进背板模具中干压成型;
(2)将步骤(1)中所得模型置于空气中脱脂制得素坯;
(3)将步骤(2)中所得素坯置于空气中焙烧;
(4)将电极置于步骤(3)中所得素坯两侧并通以直流电,线性增加电压直至发生闪光现象,再恒定电流并烧结一定时间,降温至室温可得背板烧结体。
2.根据权利要求1所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述的背板为三维手机背板。
3.根据权利要求1所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(1)中复合氧化锆造粒粉由以下组分组成:氧化钇3-12mol%,氧化锆22-88mol%,三氧化二铝0-66mol%。
4.根据权利要求1所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(1)中干压成型的压强为200-250MPa,保压时间为20-40s。
5.根据权利要求1所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(2)中模型的脱脂温度为400-500℃,脱脂时间为2-4h。
6.根据权利要求1所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(3)中素坯的焙烧温度为900-1000℃,焙烧时间为30-60s。
7.根据权利要求1所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(4)中的电极为铂电极。
8.根据权利要求1或者7所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(4)中的电压增加速率为20-100V/s。
9.根据权利要求1所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(4)中的恒定电流为800-1000A。
10.根据权利要求1或者9所述的一种复合氧化锆陶瓷背板的制备方法,其特征在于,所述步骤(4)中恒定电流下的烧结时间为20-50s。
CN201810635869.1A 2018-06-20 2018-06-20 一种复合氧化锆陶瓷背板的制备方法 Active CN108821767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810635869.1A CN108821767B (zh) 2018-06-20 2018-06-20 一种复合氧化锆陶瓷背板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810635869.1A CN108821767B (zh) 2018-06-20 2018-06-20 一种复合氧化锆陶瓷背板的制备方法

Publications (2)

Publication Number Publication Date
CN108821767A true CN108821767A (zh) 2018-11-16
CN108821767B CN108821767B (zh) 2022-01-18

Family

ID=64142761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810635869.1A Active CN108821767B (zh) 2018-06-20 2018-06-20 一种复合氧化锆陶瓷背板的制备方法

Country Status (1)

Country Link
CN (1) CN108821767B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734445A (zh) * 2019-03-06 2019-05-10 武汉理工大学 一种超细晶二氧化铪陶瓷的电场辅助快速烧结方法
CN113307624A (zh) * 2021-05-13 2021-08-27 佛山华骏特瓷科技有限公司 一种陶瓷室温烧结方法
CN113754435A (zh) * 2021-09-08 2021-12-07 郑州航空工业管理学院 一种Y2O3-MgO红外透明陶瓷的制备方法
CN114222724A (zh) * 2019-07-29 2022-03-22 国立大学法人东海国立大学机构 烧结体的制造方法和烧结体的制造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077521A2 (en) * 2003-02-26 2004-09-10 The Regents Of The University Of California Ceramic materials reinforced with single-wall carbon nanotubes as electrical conductors
CN1951870A (zh) * 2006-11-16 2007-04-25 武汉理工大学 一种显著提高Y2O3稳定ZrO2陶瓷材料中低温电导率的方法
CN106630974A (zh) * 2016-11-25 2017-05-10 中国工程物理研究院材料研究所 一种低温快速烧结陶瓷的闪光烧结方法和制得的陶瓷及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077521A2 (en) * 2003-02-26 2004-09-10 The Regents Of The University Of California Ceramic materials reinforced with single-wall carbon nanotubes as electrical conductors
CN1951870A (zh) * 2006-11-16 2007-04-25 武汉理工大学 一种显著提高Y2O3稳定ZrO2陶瓷材料中低温电导率的方法
CN106630974A (zh) * 2016-11-25 2017-05-10 中国工程物理研究院材料研究所 一种低温快速烧结陶瓷的闪光烧结方法和制得的陶瓷及其装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DIANGUANG LIU: "Effect of the applied electric field on the microstructure and electrical properties of flash-sintered 3YSZ ceramics", 《CERAMICS INTERNATIONAL》 *
E. BICHAUD: "Flash sintering incubation in Al2O3/TZP composites", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
JOHN A. DOWNS: "Field Assisted Sintering of Nanostructured Zirconia- Alumina Ceramics for Demanding Applications", 《TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY》 *
JOHN S. C. FRANCIS: "Influence of the Field and the Current Limit on Flash Sintering at Isothermal", 《THE AMERICAN CERAMIC SOCIETY》 *
MARCO COLOGNA: "Flash-Sintering of Cubic Yttria-Stabilized Zirconia at 750℃ for Possible Use in SOFC Manufacturing", 《JOURNAL OF AMERICAN CERAMIC SOCIETY》 *
傅正义: "陶瓷材料闪烧技术研究进展", 《硅酸盐学报》 *
骆莉: "《机械制造工艺基础》", 28 February 2006, 华中科技大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734445A (zh) * 2019-03-06 2019-05-10 武汉理工大学 一种超细晶二氧化铪陶瓷的电场辅助快速烧结方法
CN114222724A (zh) * 2019-07-29 2022-03-22 国立大学法人东海国立大学机构 烧结体的制造方法和烧结体的制造装置
CN114222724B (zh) * 2019-07-29 2024-02-06 国立大学法人东海国立大学机构 烧结体的制造方法和烧结体的制造装置
CN113307624A (zh) * 2021-05-13 2021-08-27 佛山华骏特瓷科技有限公司 一种陶瓷室温烧结方法
CN113754435A (zh) * 2021-09-08 2021-12-07 郑州航空工业管理学院 一种Y2O3-MgO红外透明陶瓷的制备方法
CN113754435B (zh) * 2021-09-08 2023-12-22 郑州航空工业管理学院 一种Y2O3-MgO红外透明陶瓷的制备方法

Also Published As

Publication number Publication date
CN108821767B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN108821767A (zh) 一种复合氧化锆陶瓷背板的制备方法
CN101643360B (zh) 一种注射成型制造齿状异形陶瓷部件的方法
CN110128115A (zh) 一种闪烧制备氧化物共晶陶瓷的方法
CN105541324A (zh) 手机外壳的制备方法
CN108516820B (zh) 一种氧化铟锡靶材的短流程烧结工艺
CN102060539A (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN101691086A (zh) 打印头陶瓷基板的粉末微注射成型方法
CN101425352A (zh) 提高ntc热敏电阻器稳定性的工艺方法
CN107746275B (zh) 黑色氧化锆陶瓷及其制备方法、手机背板和手机
CN113860889A (zh) 一种氧化铝陶瓷素坯的低温快速脱脂烧结方法
CN106045505A (zh) 一种氧化镁掺杂的钇稳定氧化锆(5y‑psz)陶瓷的制备方法
CN105948726A (zh) 一种纳米晶氧化铝陶瓷的制备方法
CN108149042A (zh) 一种高致密度钼材料的低温活化烧结制备方法
CN116497293B (zh) 一种耐高温抗氧化钨镧合金丝及其制备方法
CN109608191A (zh) 一种高强度灰色氧化锆陶瓷及其制备方法
KR20120064523A (ko) 구형 기공 전구체를 이용한 고체산화물 연료전지용 연료극 지지체와 고체산화물 연료전지 및 그 제조방법
CN109516780A (zh) 一种高稳定性负温度系数热敏电阻材料及其制备方法
CN109192945A (zh) 三元锂电池正极材料的闪烧制备方法
CN104628376B (zh) 一种制备透明陶瓷激光棒的离心成型方法
CN114213131A (zh) 一种辊道窑用碳化硅辊棒材料及其制备方法
CN113372101A (zh) 一种氧化铝陶瓷的制备方法
CN113582694A (zh) 一种采用Isobam体系凝胶注模成型钇铝石榴石型微波介质陶瓷的方法
CN112341188A (zh) 一种Li4Ti5O12陶瓷靶材的快速烧结制备方法
CN110218088A (zh) 一种基于氧化锆陶瓷的手机背板及其制备方法
CN103171027B (zh) 一种圆型陶瓷浇口杯机轮成型的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210209

Address after: Room 601, crystal building, shuangchuang base, 7888 jingshidong, Shuangshan street, Zhangqiu District, Jinan City, Shandong Province, 250204

Applicant after: Shandong jingdun New Material Technology Co.,Ltd.

Address before: Room 501-1, dantaihu building (Wuluo Science Park), 9 Taihu East Road, Wuzhong District, Suzhou City, Jiangsu Province, 215000

Applicant before: SUZHOU SHANREN NANO TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210618

Address after: Room 1707-1, No.9 Taihu East Road (Wuluo Science Park), Wuzhong District, Suzhou City, Jiangsu Province, 221000

Applicant after: SUZHOU SHANREN NANO TECHNOLOGY Co.,Ltd.

Address before: Room 601, crystal building, shuangchuang base, 7888 jingshidong, Shuangshan street, Zhangqiu District, Jinan City, Shandong Province, 250204

Applicant before: Shandong jingdun New Material Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant