CN113754435A - 一种Y2O3-MgO红外透明陶瓷的制备方法 - Google Patents

一种Y2O3-MgO红外透明陶瓷的制备方法 Download PDF

Info

Publication number
CN113754435A
CN113754435A CN202111047858.XA CN202111047858A CN113754435A CN 113754435 A CN113754435 A CN 113754435A CN 202111047858 A CN202111047858 A CN 202111047858A CN 113754435 A CN113754435 A CN 113754435A
Authority
CN
China
Prior art keywords
mgo
ceramic
powder
nano
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111047858.XA
Other languages
English (en)
Other versions
CN113754435B (zh
Inventor
张梦雯
何俊霖
杨守磊
杨陆通
樊磊
郭晓琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202111047858.XA priority Critical patent/CN113754435B/zh
Publication of CN113754435A publication Critical patent/CN113754435A/zh
Application granted granted Critical
Publication of CN113754435B publication Critical patent/CN113754435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Abstract

本发明公开了一种Y2O3‑MgO红外透明陶瓷的制备方法,属于透明陶瓷材料技术领域;包括以下步骤:按比例称量Y2O3和MgO纳米粉体,分别进行球磨、干燥和过筛,混合均匀后获得纳米复合粉末;将纳米复合粉末放入马弗炉中进行预烧排胶处理,去除粉体中的有机物;将排胶处理后的纳米复合粉末放入石墨模具中,进行热压烧结得到复相陶瓷坯体;将复相陶瓷坯体串联在电路中,施加电场强度进行闪烧,冷却后得到高致密度的Y2O3‑MgO陶瓷。本发明通过在石墨模具中进行热压烧结,在复相陶瓷坯体中引入大量氧空位,从而使闪烧可以在较低的温度场和电场的环境下发生,最终在达到高致密度的同时抑制晶粒尺寸的长大,有助于机械性能的提升和透过率的稳定,可用作红外窗口材料。

Description

一种Y2O3-MgO红外透明陶瓷的制备方法
技术领域
本发明涉及一种红外光学窗口材料的制备方法,具体涉及一种Y2O3-MgO红外透明陶瓷的制备方法,属于透明陶瓷材料技术领域。
背景技术
红外光学窗口材料是指在红外成像与制导技术中用于制造窗口、整流罩等的一类材料。这些材料具备良好的红外透明性、较宽的透射波段和一定的机械强度。近年来,红外制导飞行器向着更快的攻击速度和更高的打击精度方向发展,对红外窗口材料提出了更高的性能要求,如更高的机械性能和更低的发射率。
在常见的红外窗口材料中,Y2O3陶瓷的热稳定性和化学稳定性很高,但其力学性能较低。引入MgO作为第二相,可抑制Y2O3相的晶粒生长,从而获得比单相Y2O3陶瓷更好的力学性能、抗热冲击性、同时兼具良好的光学透过性的Y2O3-MgO纳米复相陶瓷。
为获得具有更高机械性能的高透过率红外窗口材料,研究者们提出了多种Y2O3-MgO陶瓷烧结技术。例如公开号为CN109369183A的发明专利公开了“一种红外透明陶瓷及其制备方法”,这种红外透明陶瓷是由Y2O3纳米粉末、MgO纳米粉末和Gd2O3纳米粉末组成的纳米复合粉末烧制而成的,其中Gd2O3纳米粉末占纳米复合粉末总摩尔量的百分数为0.1~18%,可采用真空烧结、热压烧结、放电等离子烧结或真空热压烧结等烧结工艺,烧结时间为0.1~15h,烧结温度为1100~1850℃。该发明通过Gd2O3的加入抑制晶界的扩散速度,降低晶粒长大速率,降低陶瓷材料的晶粒尺寸,达到细化晶粒的目的,使得透明陶瓷材料的机械性能得到进一步提高。
公开号为CN110922169A的发明专利公开了“一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法”,这种红外透明陶瓷的制备方法是采用Y2O3-MgO纳米复相粉体制成素坯,通过在马弗炉中进行两步烧结的工艺获得陶瓷坯体,烧结温度为1300~1600℃,保温时间为0.5~100h;然后再辅助以热等静压烧结,烧结温度为1200~1500℃,保温时间为0.5~5h,最终制得红外透明的Y2O3-MgO纳米复相陶瓷。
上述两个专利关于Y2O3-MgO纳米复相陶瓷材料及制备工艺,均存在需要添加助剂、烧结设备昂贵、烧结工艺复杂繁琐、烧结温度高、保温时间长的问题,从而造成Y2O3-MgO复相陶瓷中晶粒尺寸长大,最终影响其机械性能。因此改进烧结工艺,缩短烧结时间,阻止晶粒长大,从而获得高透过率和优异机械性能的高致密度Y2O3-MgO纳米复相陶瓷仍是一个有待攻克的难题。
发明内容
本发明的目的是:针对现有Y2O3-MgO纳米复相陶瓷烧结技术中存在的烧结工艺复杂,烧结温度高,保温时间长、需要烧结助剂的问题,提供一种Y2O3-MgO红外透明陶瓷的制备方法,通过在石墨模具中进行热压烧结,在复相陶瓷坯体中引入大量氧空位,从而使得闪烧可以在较低的温度场和电场的环境下发生,从而在几分钟甚至数十秒钟的时间内完成烧结过程,最终在达到高致密度的同时抑制晶粒尺寸的长大,有助于机械性能的提升和透过率的稳定。
为实现上述目的,本发明采用了以下技术方案:一种Y2O3-MgO红外透明陶瓷的制备方法,包括以下步骤:
S1:按比例称量Y2O3和MgO纳米粉体,分别进行球磨、干燥和过筛,混合均匀后获得纳米复合粉末;
S2:将S1中获得的纳米复合粉末放入马弗炉中进行预烧排胶处理,去除粉体中的有机物;
S3:将S2中排胶处理后的纳米复合粉末放入石墨模具中,进行热压烧结,烧结温度为900~1200℃,压力为20~40MPa,时间为10~30min,得到复相陶瓷坯体;
S4:将S3中得到的复相陶瓷坯体用铂丝串联在外接电源的正负极两端,在炉温为1150~1350℃条件下,施加600~1000V/cm的电场强度,待复相陶瓷坯体发生闪烧现象后,控制电流密度为20~100mA/mm2,并保持10s~5min,结束后在炉内冷却,得到高致密度的Y2O3-MgO陶瓷。
所述步骤S1中,Y2O3与MgO纳米粉体的体积比为1:1。
所述步骤S4中,电路中的电流为直流或交流。
所述步骤S4中,冷却方法采用炉内控制降温冷却,冷却速率为2~10℃/min。
所述步骤S4中,冷却方法也可采用随炉冷却。
本发明的有益效果是:
1)本发明方法通过在石墨模具中进行热压烧结,在复相陶瓷坯体中引入大量氧空位,从而使得闪烧可以在较低的温度场和电场的环境下发生,从而在几分钟甚至数十秒钟的时间内完成烧结过程,最终在达到高致密度的同时抑制晶粒尺寸的长大,获得小晶粒尺寸的高致密度Y2O3-MgO纳米复相陶瓷。
2)本发明方法与现有烧结Y2O3-MgO陶瓷的技术相比,烧结设备简单,烧结最高温度降低了300~550℃,烧结时间不超过5min,大大降低了烧结成本;并且烧结时间短、烧结温度低可以避免晶粒尺寸的长大,从而获得致密度高、晶粒尺寸小的Y2O3-MgO纳米复相陶瓷,有助于机械性能的提升和透过率的稳定。
附图说明
图1为本发明实施例1中制备的Y2O3-MgO纳米复相陶瓷断口的扫描电子显微镜照片;
图2为本发明实施例的参数对照表。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的解释说明。
如图1-2所示,本发明实施例中实施闪烧所采用的外接电源型号为EA PowerControl,显微组织照片扫描设备采用型号为JSM-7001F的SEM扫描电子显微镜。
实施例1:一种Y2O3-MgO红外透明陶瓷的制备方法,包括以下步骤:
S1:按体积比为1:1的比例称量Y2O3和MgO纳米粉体,分别进行球磨、干燥和过筛,混合均匀后获得纳米复合粉末;
S2:将S1中获得的纳米复合粉末放入马弗炉中进行预烧排胶处理,去除粉体中的有机物;
S3:将S2中排胶处理后的纳米复合粉末放入石墨模具中,进行热压烧结,烧结温度为1100℃,压力为30MPa,时间为20min,得到复相陶瓷坯体;
S4:将S3中得到的复相陶瓷坯体用铂丝串联在外接电源的正负极两端,在炉温为1250℃条件下,施加900V/cm的电场强度,待复相陶瓷坯体发生闪烧现象后,控制电流密度为60mA/mm2,并保持1min,结束后在炉内冷却,冷却速率为10℃/min,得到高致密度的Y2O3-MgO陶瓷,相对密度为98.8%。
如图1所示,为本发明实施例1中制备的Y2O3-MgO纳米复相陶瓷断口的扫描电子显微镜照片,可以看出复合材料中两相分布均匀,没有显著的晶粒长大现象,晶粒尺寸均小于1微米;复合材料的没有明显的裂纹、空洞等缺陷,说明该Y2O3-MgO复相陶瓷具有较高的致密度。
实施例2:一种Y2O3-MgO红外透明陶瓷的制备方法,包括以下步骤:
S1:按体积比为1:1的比例称量Y2O3和MgO纳米粉体,分别进行球磨、干燥和过筛,混合均匀后获得纳米复合粉末;
S2:将S1中获得的纳米复合粉末放入马弗炉中进行预烧排胶处理,去除粉体中的有机物;
S3:将S2中排胶处理后的纳米复合粉末放入石墨模具中,进行热压烧结,烧结温度为1200℃,压力为30MPa,时间为10min,得到复相陶瓷坯体;
S4:将S3中得到的复相陶瓷坯体用铂丝串联在外接电源的正负极两端,在炉温为1150℃条件下,施加1000V/cm的电场强度,待复相陶瓷坯体发生闪烧现象后,控制电流密度为20mA/mm2,并保持5min,结束后在炉内冷却,冷却速率为5℃/min,得到高致密度的Y2O3-MgO陶瓷,相对密度为97.6%。
实施例3:一种Y2O3-MgO红外透明陶瓷的制备方法,包括以下步骤:
S1:按体积比为1:1的比例称量Y2O3和MgO纳米粉体,分别进行球磨、干燥和过筛,混合均匀后获得纳米复合粉末;
S2:将S1中获得的纳米复合粉末放入马弗炉中进行预烧排胶处理,去除粉体中的有机物;
S3:将S2中排胶处理后的纳米复合粉末放入石墨模具中,进行热压烧结,烧结温度为900℃,压力为40MPa,时间为30min,得到复相陶瓷坯体;
S4:将S3中得到的复相陶瓷坯体用铂丝串联在外接电源的正负极两端,在炉温为1350℃条件下,施加600V/cm的电场强度,待复相陶瓷坯体发生闪烧现象后,控制电流密度为80mA/mm2,并保持2min,结束后在炉内随炉冷却,得到高致密度的Y2O3-MgO陶瓷,相对密度为98.2%。
实施例4:一种Y2O3-MgO红外透明陶瓷的制备方法,包括以下步骤:
S1:按体积比为1:1的比例称量Y2O3和MgO纳米粉体,分别进行球磨、干燥和过筛,混合均匀后获得纳米复合粉末;
S2:将S1中获得的纳米复合粉末放入马弗炉中进行预烧排胶处理,去除粉体中的有机物;
S3:将S2中排胶处理后的纳米复合粉末放入石墨模具中,进行热压烧结,烧结温度为1200℃,压力为20MPa,时间为20min,得到复相陶瓷坯体;
S4:将S3中得到的复相陶瓷坯体用铂丝串联在外接电源的正负极两端,在炉温为1280℃条件下,施加900V/cm的电场强度,待复相陶瓷坯体发生闪烧现象后,控制电流密度为100mA/mm2,并保持10s,结束后在炉内冷却,冷却速率为2℃/min,得到高致密度的Y2O3-MgO陶瓷,相对密度为96.4%。
如图2所示,从上述实施例可以看出,本方法可以在1150~1350℃的温度范围完成烧结,比现有烧结技术的最高烧结温度降低了300~550℃,并且可以在5min内完成烧结,具有烧结温度低、烧结时间短的特点;并且这种快速烧结技术获得的Y2O3-MgO复相陶瓷的相对密度均高于96%,晶粒尺寸没有显著长大,有助于机械性能的提升,可用作红外窗口材料。
本发明方法通过在石墨模具中进行热压烧结,在复相陶瓷坯体中引入大量氧空位,从而使得闪烧可以在较低的温度场和电场的环境下发生,从而在几分钟甚至数十秒钟的时间内完成烧结过程,最终在达到高致密度的同时抑制晶粒尺寸的长大,获得小晶粒尺寸的高致密度Y2O3-MgO纳米复相陶瓷。
以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种Y2O3-MgO红外透明陶瓷的制备方法,其特征在于:包括以下步骤:
S1:按比例称量Y2O3和MgO纳米粉体,分别进行球磨、干燥和过筛,混合均匀后获得纳米复合粉末;
S2:将S1中获得的纳米复合粉末放入马弗炉中进行预烧排胶处理,去除粉体中的有机物;
S3:将S2中排胶处理后的纳米复合粉末放入石墨模具中,进行热压烧结,烧结温度为900~1200℃,压力为20~40MPa,时间为10~30min,得到复相陶瓷坯体;
S4:将S3中得到的复相陶瓷坯体用铂丝串联在外接电源的正负极两端,在炉温为1150~1350℃条件下,施加600~1000V/cm的电场强度,待复相陶瓷坯体发生闪烧现象后,控制电流密度为20~100mA/mm2,并保持10s~5min,结束后在炉内冷却,得到高致密度的Y2O3-MgO陶瓷。
2.根据权利要求1所述的一种Y2O3-MgO红外透明陶瓷的制备方法,其特征在于:所述步骤S1中,Y2O3与MgO纳米粉体的体积比为1:1。
3.根据权利要求1所述的一种Y2O3-MgO红外透明陶瓷的制备方法,其特征在于:所述步骤S4中,电路中的电流为直流或交流。
4.根据权利要求1所述的一种Y2O3-MgO红外透明陶瓷的制备方法,其特征在于:所述步骤S4中,冷却方法采用炉内控制降温冷却,冷却速率为2~10℃/min。
5.根据权利要求4所述的一种Y2O3-MgO红外透明陶瓷的制备方法,其特征在于:所述步骤S4中,冷却方法采用随炉冷却。
CN202111047858.XA 2021-09-08 2021-09-08 一种Y2O3-MgO红外透明陶瓷的制备方法 Active CN113754435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111047858.XA CN113754435B (zh) 2021-09-08 2021-09-08 一种Y2O3-MgO红外透明陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111047858.XA CN113754435B (zh) 2021-09-08 2021-09-08 一种Y2O3-MgO红外透明陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN113754435A true CN113754435A (zh) 2021-12-07
CN113754435B CN113754435B (zh) 2023-12-22

Family

ID=78793711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111047858.XA Active CN113754435B (zh) 2021-09-08 2021-09-08 一种Y2O3-MgO红外透明陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN113754435B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105639A (zh) * 2021-12-20 2022-03-01 中国科学院上海光学精密机械研究所 一种红外透明陶瓷材料及其制备方法
CN114477966A (zh) * 2021-12-22 2022-05-13 北京理工大学 一种细晶氧化物陶瓷的制备方法
CN114907102A (zh) * 2022-04-18 2022-08-16 国网江西省电力有限公司电力科学研究院 一种陶瓷材料及其室温超快反应性烧结方法
CN115974560A (zh) * 2022-10-10 2023-04-18 国网江西省电力有限公司电力科学研究院 一种陶瓷室温烧结方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821767A (zh) * 2018-06-20 2018-11-16 苏州山人纳米科技有限公司 一种复合氧化锆陶瓷背板的制备方法
CN110128115A (zh) * 2019-05-23 2019-08-16 西南交通大学 一种闪烧制备氧化物共晶陶瓷的方法
CN110342907A (zh) * 2019-07-22 2019-10-18 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外陶瓷的制备方法
CN110922169A (zh) * 2019-11-25 2020-03-27 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法
CN113200746A (zh) * 2021-04-30 2021-08-03 中国科学院上海光学精密机械研究所 一种无压快速烧结制备红外透明陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821767A (zh) * 2018-06-20 2018-11-16 苏州山人纳米科技有限公司 一种复合氧化锆陶瓷背板的制备方法
CN110128115A (zh) * 2019-05-23 2019-08-16 西南交通大学 一种闪烧制备氧化物共晶陶瓷的方法
CN110342907A (zh) * 2019-07-22 2019-10-18 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外陶瓷的制备方法
CN110922169A (zh) * 2019-11-25 2020-03-27 中国科学院上海光学精密机械研究所 一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法
CN113200746A (zh) * 2021-04-30 2021-08-03 中国科学院上海光学精密机械研究所 一种无压快速烧结制备红外透明陶瓷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘孟寅等: "Y2O3-MgO纳米复相红外透明陶瓷制备及其性能研究", 《稀有金属材料与工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105639A (zh) * 2021-12-20 2022-03-01 中国科学院上海光学精密机械研究所 一种红外透明陶瓷材料及其制备方法
CN114477966A (zh) * 2021-12-22 2022-05-13 北京理工大学 一种细晶氧化物陶瓷的制备方法
CN114907102A (zh) * 2022-04-18 2022-08-16 国网江西省电力有限公司电力科学研究院 一种陶瓷材料及其室温超快反应性烧结方法
CN115974560A (zh) * 2022-10-10 2023-04-18 国网江西省电力有限公司电力科学研究院 一种陶瓷室温烧结方法
CN115974560B (zh) * 2022-10-10 2024-03-12 国网江西省电力有限公司电力科学研究院 一种陶瓷室温烧结方法

Also Published As

Publication number Publication date
CN113754435B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN113754435A (zh) 一种Y2O3-MgO红外透明陶瓷的制备方法
CN108516820B (zh) 一种氧化铟锡靶材的短流程烧结工艺
CN112341184B (zh) 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法
CN105732050A (zh) 一种净尺寸复杂形状透明陶瓷件的制备工艺
JPH07267790A (ja) ドーパント添加多結晶質材料から単結晶材料への転化
CN103820859A (zh) 掺杂钇铝石榴石陶瓷转变为单晶的制备方法
CN111302771A (zh) 一种3d打印陶瓷型芯素坯的两步脱脂方法
CN106536449A (zh) 透明金属氟化物陶瓷
CN113200746A (zh) 一种无压快速烧结制备红外透明陶瓷的方法
Chen et al. Fabrication of YAG transparent ceramics by two-step sintering
CN113860875B (zh) 一种原位自生碳化硅纳米线网络改性碳/碳复合材料的制备方法
CN111302772A (zh) 一种3d打印陶瓷型芯的氩气气氛烧结方法
CN113275599B (zh) 一种提高3d打印钛合金点阵结构强韧性的热处理方法
CN103482970A (zh) 一种激光透明陶瓷及其制备方法
CN109354497B (zh) Ho掺杂的透明氧化钪陶瓷及其制备方法
CN112195512A (zh) 一种氮化铝晶体生长用多孔原料的制备方法
JPH0585821A (ja) 希土類酸化物−アルミナ焼結体およびその製造方法
CN1317229C (zh) 一种半透明氮化物复相陶瓷及其制备方法
CN111704442A (zh) 一种口腔正畸用的牙齿托槽制备方法及制备得到的牙齿托槽
JP3007732B2 (ja) 窒化ケイ素−混合酸化物系焼結体およびその製造方法
CN111484319B (zh) 一种晶粒定向排列多晶半透明氧化铝陶瓷的制备方法
CN110144498B (zh) 一种激光直接沉积的稀土软磁合金及其磁性能调控方法
CN114085087B (zh) 一种陶瓷型芯烧结用组合填料及应用方法
CN114086132B (zh) 一种铜镓靶材及其制备方法与应用
JP2960591B2 (ja) 炭化ケイ素−窒化ケイ素−混合酸化物系焼結体およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant