CN108250677A - 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法 - Google Patents

一种包含填料粒子三维网络的聚合物基复合材料及其制备方法 Download PDF

Info

Publication number
CN108250677A
CN108250677A CN201611246750.2A CN201611246750A CN108250677A CN 108250677 A CN108250677 A CN 108250677A CN 201611246750 A CN201611246750 A CN 201611246750A CN 108250677 A CN108250677 A CN 108250677A
Authority
CN
China
Prior art keywords
filler grain
dimensional network
polymer
mixture
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611246750.2A
Other languages
English (en)
Other versions
CN108250677B (zh
Inventor
于淑会
罗遂斌
孙蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201611246750.2A priority Critical patent/CN108250677B/zh
Priority to PCT/CN2017/082737 priority patent/WO2018120560A1/zh
Publication of CN108250677A publication Critical patent/CN108250677A/zh
Application granted granted Critical
Publication of CN108250677B publication Critical patent/CN108250677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种包含填料粒子三维网络的聚合物基复合材料及其制备方法。本发明的聚合物基复合材料包含由填料粒子构成的填料粒子三维网络以及填充在所述填料粒子三维网络的空隙中的聚合物,这种独特的结构能够非常好的保证发挥具有特定性能的填料粒子对聚合物基复合材料特定的增强作用,性能远远优于传统方法制备得到的离散型复合材料。本发明的方法为:首先利用支撑材料将填料粒子搭建成三维结构,然后将填料粒子在高温下烧结成填料的三维网络连续结构,支撑材料在高温下去除,或者经高温后继续酸处理去除,最后将聚合物材料填充到形成三维结构的填料中形成聚合物基复合材料。本发明的制备方法简单,适合工业化生产。

Description

一种包含填料粒子三维网络的聚合物基复合材料及其制备 方法
技术领域
本发明属于复合材料制备领域,涉及一种聚合物基复合材料及其制备方法,尤其涉及一种包含由填料粒子构成的填料粒子三维网络的聚合物基复合材料及其制备方法。
背景技术
聚合物材料是指由许多相同的、简单的结构单元通过共价键重复连接而形成的高分子量化合物。依据所选用的结构单元的组合,可以合成特性优异的聚合物材料,如高剪切强度、高柔韧性、高粘结性、耐化学性能、高耐热性、高绝缘性、高击穿强度等。但是,在某些特定的情况下需要对聚合物材料的某种性质进行增强。如聚合物具有较低的介电常数,如高密度聚乙烯(介电常数为2.3),聚四氟乙烯(介电常数为2),聚甲基丙烯酸甲酯(介电常数为4.5),聚氯乙烯(介电常数为3.4),环氧树脂(介电常数为4.5)等。在需要提高聚合物材料的介电常数的情况下,可以加入具有高介电常数的填料,如钛酸钡(介电常数为1235),钛酸锶钡(介电常数为5000)等。聚合物材料的导热性不高,一般在0.2W/m·K以下。通过加入高热导率的填料如氮化硼(60~125W/m·K,氮化铝(80~320W/m·K),碳化硅(170~220W/m·K),氧化镁(36W/m·K),氧化铝(30W/m·K),氧化锌(26W/m·K),纤维状碳粉(沿纤维方向400~700W/m·K),鳞片状碳粉(1500~3000W/m·K)等制备高热导率的复合材料。聚合物材料一般为绝缘性材料,电阻率一般为1×10-12~1×10-7Ωm。在需要制备高电导率的复合材料时,一般通过加入一些高电导率的填料,如金属类金、银、铜等或碳系材料,如碳粉,碳管,碳纤维,石墨烯等。但是,由于界面效应的存在,导致填料的加入远不能达到预期效果。如高介电常数的填料加入到聚合物当中,而制备的复合材料一般在50以下。高热导率的导电填料加入到聚合物当中,而制备的复合材料的热导率一般为1W/m·K左右。高电导率的填料加入聚合物当中,而制备的复合材料的电导率一般低于1×104S/m。
发明内容
为解决上述技术问题,本发明的目的在于提供一种包含填料粒子三维网络的聚合物基复合材料及其制备方法。本发明的聚合物基复合材料中,填料粒子构成稳定且连续的填料粒子三维网络,聚合物填充在该填料粒子三维网络的空隙中,通过对复合材料的内部结构特性进行改进,建立三维连接的填料填充复合材料代替传统的混合方法制备的离散的复合材料,可以解决复合材料因界面效应导致的性能提升不足的问题。
为了达到上述目的,本发明采用如下技术方案:
第一方面,本发明提供了一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包含由填料粒子构成的填料粒子三维网络以及填充在所述填料粒子三维网络的孔隙中的聚合物。
本发明的聚合物基复合材料中,所述“由填料粒子构成的填料粒子三维网络”指:聚合物基复合材料中的填料粒子呈连续三维结构。
优选地,以所述聚合物基复合材料的总体积为100%计,所述填料粒子的体积百分比为5%~90%,例如为5%、8%、10%、13%、16%、20%、25%、30%、35%、45%、50%、55%、60%、65%、70%、75%、80%、85%或90%等,优选为10%~50%。当填料粒子的体积分数少于5%时,对复合材料的性能提升不明显。当填料粒子的体积分数高于90%时,复合材料的柔软性降低,脆性降低,容易产生大量的缺陷,降低材料的性能。
优选地,所述填料粒子在至少一个维度的尺寸在1nm~500nm,例如为1nm、5nm、10nm、20nm、30nm、35nm、45nm、55nm、70nm、80nm、100nm、115nm、130nm、140nm、160nm、185nm、200nm、220nm、245nm、260nm、280nm、300nm、325nm、360nm、380nm、400nm、430nm、450nm、475nm或500nm等,优选在至少一个维度的尺度在10nm~100nm,进一步优选在三个维度的尺寸均在10nm~100nm。
优选地,所述填料粒子的形状包括但不限于球形、线形和片状等。
优选地,所述填料粒子包括高介电填料粒子、高导热填料粒子或高导电填料粒子中的任意一种或至少两种的混合物,所述混合物典型但非限制性实例有:高介电填料粒子和高导热填料粒子的混合物,高介电填料粒子和高导电填料粒子的混合物等。但并不限于上述列举的填料粒子,具有其他性能的填料粒子也可用于本发明,比如具有阻燃性能的填料粒子、具有抗菌性能的填料粒子和具有着色性能的填料粒子等。
本发明中,所述高介电填料粒子指介电常数高于100的填料粒子;所述高导热填料粒子指热导率高于20W/m·K的填料粒子;所述高导电填料粒子指电导率高于1×104S/m的填料粒子。
本发明依据所使用的填料粒子的特性,制备得到具有相应特性的聚合物基复合材料,本发明的聚合物基复合材料中包含独特的由填料粒子构成的稳定的连续的填料粒子三维网络,这种填料粒子三维网络的存在与其空隙中的聚合物的配合作用使得填料粒子自身优异的特性能够得到非常好的发挥,从而使制备得到的聚合物基复合材料具备相应的性能,比如使用高介电填料粒子作为原料制备得到的聚合物基复合材料具有高介电性能;使用高介电填料粒子和高导热填料粒子的混合物作为原料制备得到的聚合物基复合材料不仅具有高介电性能,还具有高导热性能;使用高导电填料粒子和具有抗菌性能的填料粒子的混合物作为原料制备得到的聚合物基复合材料不仅具有高导电性能,还具有抗菌性能。
优选地,所述高介电填料粒子包括钛酸钡、钛酸锶钡、锆钛酸钡、钛酸铅、铌镁酸铅、钛酸铜钙或钛酸锶中的任意一种或至少两种的混合物,但不限于上述列举的高介电填料粒子,本领域常用的介电常数高于100的填料粒子也可用于本发明。
优选地,所述高导热填料粒子包括氮化硼、氮化铝、碳化硅、氧化镁、氧化铝、氧化锌、纤维状碳粉或鳞片状碳粉中的任意一种或至少两种的混合物,所述混合物典型但非限制性实例有:氮化硼和氮化铝的混合物,氮化硼和氮化硅的混合物,氮化铝和氧化镁的混合物,碳化硅和氧化锌的混合物,氧化镁和纤维状碳粉的混合物,氧化铝和鳞片状碳粉的混合物,纤维状碳粉和鳞片状碳粉的混合物,氮化硼、氮化铝和氧化锌的混合物,氮化铝、碳化硅、氧化镁、纤维状碳粉和鳞片状碳粉的混合物等。但并不限于上述列举的高导热填料粒子,其他本领域常用的热导率高于20W/m·K的填料粒子也可用于本发明。
优选地,所述高导电填料粒子包括碳材料、金、银、铜、铁、镍、铝;锌、锡或铂中的任意一种或至少两种的混合物,所述混合物典型但非限制性实例有:碳材料和金的混合物,金和银的混合物,金、银和铜的混合物,金、铜、铁、铂、镍和铝的混合物等。但并不限于上述列举的高导电填料粒子,其他本领域常用的电导率高于1×104S/m的填料粒子也可用于本发明。
优选地,所述碳材料包括碳纳米管、碳纤维、石墨烯或石墨中的任意一种或至少两种的混合物。
优选地,所述聚合物包括环氧树脂,酚醛树脂,聚苯乙烯,聚对苯二甲酸乙二醇酯,聚偏二氟乙烯及其共聚物,聚乙烯或聚氯乙烯中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:环氧树脂和酚醛树脂的组合,环氧树脂和聚苯乙烯的组合,酚醛树脂和聚苯乙烯的组合,酚醛树脂和聚对苯二甲酸乙二醇酯的组合,聚乙烯和聚氯乙烯的组合,酚醛树脂、聚苯乙烯和聚偏二氟乙烯的组合,环氧树脂、聚苯乙烯、聚对苯二甲酸乙二醇酯、聚乙烯和聚氯乙烯的组合等。但不限于上述列举的聚合物,其他本领域常用的聚合物也可用于本发明。
第二方面,本发明提供如第一方面所述的聚合物基复合材料的制备方法,所述方法包括以下步骤:
(1)采用支撑材料和填料粒子构建三维网络前驱体;
(2)去除步骤(1)得到的三维网络前驱体中的支撑材料,得到由填料粒子构成的填料粒子三维网络;
(3)将聚合物前驱体填充到步骤(2)得到的填料粒子三维网络中,固化,得到聚合物基复合材料。
优选地,步骤(1)所述支撑材料包括碳氢材料、碳材料或泡沫材料中的任意一种或至少两种的组合,但并不限于上述列举的支撑材料,其他本领域常用的在本发明所述热处理温度下能够氧化分解而去除的支撑材料,或者先经本发明热处理并后进行酸处理能够去除的支撑材料也可用于本发明。
优选地,所述碳氢材料包括纳米微晶纤维素、阳离子化纳米微晶纤维素、羧甲基纳米微晶纤维素、纳米纤维素纤维、微米纤维素纤维、阳离子化纳米纤维素纤维、阳离子化微米纤维素纤维、羧甲基化化纳米纤维素纤维或羧甲基化微米纤维素纤维中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:纳米微晶纤维素和阳离子化纳米微晶纤维素的组合,纳米微晶纤维素和纳米纤维素纤维的组合,微米纤维素纤维和阳离子化纳米纤维素纤维的组合,纳米纤维素纤维、微米纤维素纤维和阳离子化纳米纤维素纤维的组合,阳离子化微米纤维素纤维、羧甲基化化纳米纤维素纤维和羧甲基化微米纤维素纤维的组合等。但并不限于上述列举的碳氢材料,其他本领域常用的在高温下能够氧化分解而去除的碳氢材料也可用于本发明。
优选地,所述碳材料包括石墨烯、碳纳米管或碳纤维中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:石墨烯和碳纳米管的组合,石墨烯和碳纤维的组合等。但并不限于上述列举的碳材料,其他本领域常用的在高温下能够氧化分解而去除的碳材料也可用于本发明。
优选地,所述泡沫材料包括海绵和/或金属泡沫材料。
本发明所述“海绵和/或金属泡沫材料”指:可以是海绵,也可以是金属泡沫材料,还可以是海绵和金属泡沫材料的组合。
优选地,所述金属泡沫材料包括泡沫镍、泡沫铜、泡沫铁或泡沫银中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:泡沫镍和泡沫铁的组合,泡沫镍、泡沫铜、泡沫铁和泡沫银的组合等。但并不限于上述列举的泡沫材料,其他本领域常用的先经高温处理后经酸处理能够去除的金属泡沫材料也可用于本发明。
优选地,当支撑材料为碳氢材料和/或碳材料时,步骤(1)所述构建三维网络前驱体的方法为:
(A)将填料粒子分散到支撑材料的水溶液中,得到分散液;
(B)对步骤(A)得到的分散液进行球磨,使支撑材料和填料粒子分散均匀;
(C)对步骤(B)得到的球磨产物灌入模具中,进行冷冻干燥,得到三维网络前驱体。
优选地,步骤(A)所述支撑材料的水溶液的质量浓度为0.5%~5%;
优选地,步骤(A)所述填料粒子和所述支撑材料的水溶液的体积比为1:20~2:1,例如为1:20、1:15、1:12、1:10、1:8、1:5、1:4、1:3、1:2、1.5:1或2:1等。
优选地,当支撑材料为泡沫材料时,步骤(1)所述构建三维网络前驱体的方法为:
(A)’:将填料粒子分散到水和/或有机溶剂中,得到分散液;
(B)’:对步骤(A)’得到的分散液进行球磨,使填料粒子均匀地分散在水和/或有机溶剂中;
(C)’:将步骤(B)’得到的球磨产物灌入泡沫材料中,然后进行冷冻干燥或者挥发溶剂干燥,得到三维网络前驱体。
优选地,步骤(A)’所述有机溶剂为易挥发有机溶剂,例如乙醇、丙酮和丁酮等。
优选地,步骤(A)’所述分散液中的填料粒子的浓度为0.5g/ml~5g/ml。
优选地,步骤(A)’所述分散液中还可以包括表面活性剂,所述表面活性剂优选为十六烷基苯磺酸钠和/或聚氧乙烯烷基磷酸酯。
优选地,步骤(B)和步骤(B)’所述球磨的转速独立地为100rpm~1000rpm,例如为100rpm、200rpm、300rpm、350rpm、400rpm、500rpm、600rpm、700rpm、850rpm或1000rpm等,优选为250rpm~500rpm。
优选地,步骤(B)和步骤(B)’所述球磨的时间为2h~24h,例如为2h、h、3h、4h、5h、6h、7h、8h、9h、10h、12h、15h、16.5h、18h、20h、22h、23h或24h等,优选为4h~12h。
优选地,步骤(C)和步骤(C)’所述冷冻干燥的温度为-50℃~-10℃,例如为-50℃、-40℃、-30℃、-20℃或-10℃等,优选为-40℃。
优选地,步骤(C)和步骤(C)’所述冷冻干燥的时间为12h~48h,例如为12h、14h、16.5h、18h、20h、22h、24h、25h、26h、27h、28h、30h、32h、33h、34h、35h、36h、38h、40h、42.5h、45h或48h等,优选为24h~36h。
本发明步骤(C)’所述挥发溶剂干燥指:在自然条件下放置,水和/或有机溶剂挥发使罐有球磨产物的泡沫材料变干燥。
本发明中,当溶剂为易挥发有机溶剂时,优选采用挥发溶剂干燥的干燥方式;当溶剂为水时,优选采用冷冻干燥的干燥方式。
本发明中,步骤(1)完成后,得到三维网络前驱体,其中的填料粒子搭建成三维结构,且在三维结构的空隙中填充有支撑材料。
优选地,当支撑材料为碳氢材料、碳材料或海绵中的任意一种或至少两种的组合时,步骤(2)去除所述支撑材料采用热处理的方式。
优选地,所述热处理的温度为400℃~1500℃,例如为400℃、500℃、600℃、650℃、700℃、750℃、800℃、850℃、900℃、950℃、1000℃、1100℃、1150℃、1200℃、1250℃、1300℃、1400℃或1500℃等,优选为500℃~1000℃。
优选地,所述热处理的时间为5h~24h,例如为5h、6h、7h、8h、9h、10h、11h、12h、13h、14h、15h、16h、18h、20h、21h、22.5h或24h等,优选为8h~15h。
经过热处理后,一方面,填料粒子熔合形成稳定的连续的填料粒子三维结构;另一方面,碳氢材料、碳材料或海绵中的任意一种或至少两种的组合被高温氧化分解而去除,从而得到由填料粒子构成的填料粒子三维网络,且在填料粒子三维网络的空隙中无支撑材料填充。
优选地,当支撑材料中包含金属泡沫材料时,步骤(2)去除所述支撑材料采用在热处理之后继续酸处理的方式。
优选地,所述酸处理使用的酸为硫酸、硝酸、盐酸或王水中的任意一种或至少两种的组合。
优选地,所述硫酸为浓硫酸。
优选地,所述硫酸的质量分数为22%~98%,例如22%、25%、30%、32%、36%、40%、45%、50%、56%、60%、63%、68%、72%、80%、85%、90%或98%等。
优选地,所述硝酸的质量分数为20%~75%,例如为20%、30%、34%、36%、40%、45%、50%、56%、60%、70%或75%等。
优选地,所述盐酸的质量分数为10%~35%,例如为10%、13%、15%、18%、20%、23%、25%、30%或35%等。
优选地,所述酸处理的时间为1h~5h,例如为1h、1.5h、2h、3h、3.5h、4h、4.5h或5h等。
经过先热处理后酸处理的操作后,一方面,填料粒子熔合形成稳定且连续的填料粒子三维结构;另一方面,包含金属泡沫材料的支撑材料被去除,从而得到由填料粒子构成的填料粒子三维网络,且在填料粒子三维网络的空隙中无支撑材料填充。
优选地,步骤(3)所述聚合物前驱体为液态的聚合物、熔融态的聚合物或聚合物溶液中的任意一种或至少两种的混合物。
优选地,步骤(3)所述液态的聚合物包括双酚A环氧树脂或脂环族环氧树脂中的任意一种或两种的混合物,但并不限于上述的这两种物质,其他本领域常用的液态的聚合物也可用于本发明。
本发明中,液态的聚合物双酚A环氧树脂,例如壳牌生产的Epon828。
本发明中,液态的聚合物脂环族环氧树脂,例如江苏特泰尔TTA21,TTA26,TTA15,TTA16,TTA184,TTA182,TTA186,TTA27,TTA500,TTA520和TTA60等。
优选地,步骤(3)所述熔融态的聚合物包括聚苯乙烯,聚对苯二甲酸乙二醇酯,聚乙烯,聚偏二氟乙烯及其共聚物,聚氯乙烯或固态环氧树脂中的任意一种或至少两种的混合物。但并不限于上述列举的聚合物,其他本领域常用的熔融态为液态的聚合物也可用于本发明。
优选地,步骤(3)所述聚合物溶液是由聚合物溶于溶剂得到的,所述聚合物包括聚偏二氟乙烯及其共聚物,固态环氧树脂或固态酚醛树脂中的任意一种或至少两种的混合物。但并不限于上述列举的聚合物,其他本领域常用的溶于溶剂可变为聚合物溶液的聚合物也可用于本发明。
本发明中,溶于溶剂可变为聚合物溶液的固态环氧树脂,例如亨斯迈生产的GY 6060,GY 6063,GY 6084,GY6097,GY 6243,GY 6248和GY 7013等。
本发明中,溶于溶剂可变为聚合物溶液的固态酚醛树脂,例如圣泉生产的PF8606,PF8607,PF8611,PF8612,PF8613,PF8620,SH2107,SH2113,SH2120,SH2130,SH3080和SH3090等。
优选地,当步骤(3)所述聚合物前驱体为液态的环氧树脂、熔融态的环氧树脂或环氧树脂的溶液中的任意一种或至少两种的混合物时,还需要将聚合物前驱体与固化剂和促进剂混合得到混合料,用于填充到步骤(2)得到的三维网络中。
优选地,所述固化剂与所述聚合物前驱体的质量比为(5~120):100,例如为5:100、10:100、20:100、30:100、40:100、50:100、60:100、65:100、70:100、80:100、90:100、100:100、105:100、110:100或120:100等。
优选地,所述固化剂包括脂肪多元胺型固化剂、脂环多元胺型固化剂、芳香胺类固化剂、酸酐类固化剂、聚酰胺固化剂、潜伏型固化剂、合成树脂类固化剂中的任意一种或至少两种的混合物。
优选地,所述脂肪多元胺型固化剂包括乙二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、二丙烯三胺、二甲胺基丙胺、二乙胺基丙胺、三甲基六亚甲基二胺、二己基三胺、三甲基己二胺或聚醚二胺中的任意一种或至少两种的混合物。
优选地,所述脂环多元胺型固化剂包括二氨甲基环己烷、孟烷二氨、氨乙基呱嗪、六氢吡啶、二氨基环己烷、二氨甲基环己基甲烷或二氨基环己基甲烷中的任意一种或至少两种的混合物。
优选地,所述芳香胺类固化剂包括间苯二胺、间苯二甲胺、二氨基二苯基甲烷、二氨基二苯基砜或4-氯邻苯二胺中的任意一种或至少两种的混合物。
优选地,所述酸酐类固化剂包括苯酮四羧酸二酐、甲基内次甲基四氢邻苯二甲酸酐、四氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、戊二酸酐、聚壬二酸酐、二氯代顺丁烯二酸酐、甲基六氢邻苯二甲酸酐、邻苯二甲酸酐、偏苯三酸酐、均苯四甲酸酐、偏苯四酸二酐、二苯酮四羧基二酸酐、顺丁烯二酸酐、十二烷基代顺丁烯二酸酐、琥珀酸酐、六氢苯二甲酸酐、环戊烷四酸二酐或二顺丁烯二酸酐基甲乙苯中的任意一种或至少两种的混合物。
优选地,所述潜伏型固化剂包括双氰胺、三氟化硼单乙胺、三氟化硼苯乙胺、三氟化硼邻甲基苯胺、三氟化硼卞胺、三氟化硼二甲基苯胺、三氟化硼乙基苯胺、三氟化硼吡啶、MS-1微胶囊、MS-2微胶囊或葵二酸三酰肼中的任意一种或至少两种的混合物。
优选地,所述合成树脂类固化剂包括苯胺甲醛树脂、苯酚甲醛树脂或线性酚醛树脂中的任意一种或至少两种的混合物。
优选地,所述促进剂与所述聚合物前驱体的质量比为(0.005~3):100,例如为0.005:100、0.01:100、0.015:100、0.03:100、0.05:100、0.08:100、0.1:100、0.2:100、0.5:100、0.75:100、1:100、1.25:100、1.5:100、1.7:100、2:100、2.25:100、2.5:100、2.75:100或3:100等。
优选地,所述促进剂包括2-甲基咪唑、2-乙基咪唑、2,4-二乙基咪唑、2-乙基-4-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑等;苯酚、双酚A、间苯二酚、2,4,6-三(二甲氨基亚甲基)苯酚、卞基二甲胺、酰基胍或过氧化苯甲酰中的任意一种或至少两种的混合物。
优选地,步骤(3)所述填充在真空条件下进行。
优选地,步骤(3)所述填充的时间为2h~24h,例如为2h、3h、4h、5h、6h、6.5h、7h、8h、9h、10h、12h、13h、15h、16h、18h、19h、20h、21h、22h或24h等,优选为5h~12h。
优选地,步骤(3)所述固化的温度为100℃~220℃,例如为100℃、110℃、120℃、125℃、135℃、140℃、145℃、150℃、155℃、160℃、170℃、180℃、185℃、195℃、210℃或220℃等,优选为140℃~180℃。
优选地,步骤(3)所述固化的时间为1h~5h,例如为1h、1.5h、2h、2.5h、3h、3.5h、4h或5h等,优选为1.5h~2.5h。
三维聚合物复合材料及其制备工艺。该复合材料当中的填料粒子呈连续三维结构,聚合物填充三维结构中的空隙。利用支撑材料将填料粒子搭建成三维结构,然后将填料粒子在高温下烧结成填料的三维连续结构,最后将聚合物材料填充到形成三维结构的填料中形成复合材料。
与已有技术相比,本发明具有如下有益效果:
(1)本发明的包含填料粒子三维网络的聚合物基复合材料中,填料粒子构成稳定且连续的填料粒子三维网络,聚合物填充在该填料粒子三维网络的空隙中。本发明通过建立三维连接的填料填充复合材料代替传统混合方法制备的离散型复合材料,可以解决复合材料因界面效应导致的性能提升不足的问题。这种独特的结构能够非常好的保证发挥特定性能的填料粒子对聚合物基复合材料的相应增强作用。依据所使用的填料粒子的特性,可得到高介电、高导热或高导电的复合材料。当介电填料使用钛酸钡时,添加量为15vol%时可以得到的聚合物基复合材料的介电常数大于30;当导热填料氮化硼添加量为5vol%时可以得到的聚合物基复合材料的热导率大于2W/m·K;当导点填料银纳米颗粒添加量为10vol%时得到的聚合物基复合材料的电导率大于1×104S/m。
(2)本发明的方法先利用支撑材料将填料粒子搭建成三维网络结构,得到三维网络前驱体,然后在高温下烧结使搭建好的三维结构进行熔融,填料粒子熔融连续成一体,支撑材料在高温下被去除,或者经高温后继续酸处理被去除,从而得到带有空隙的填料粒子三维网络,最后将聚合物填充到填料粒子三维网络的空隙中,得到聚合物基复合材料。本发明的方法操作简单,适合工业化生产。
附图说明
图1为本发明包含填料粒子三维网络的聚合物基复合材料的结构示意图,其中1代表填料粒子,2代表聚合物;
图2为实施例1所制备的三维钛酸钡/环氧树脂复合材料的扫描电子显微镜照片;
图3为实施例1所制备的三维钛酸钡/环氧树脂复合材料的介电常数随频率的变化曲线;
图4为按实施例2所制备的三维钛酸钡/环氧树脂复合材料的介电常数随频率的变化曲线;
图5为按实施例3所制备的三维钛酸钡/环氧树脂复合材料的介电常数;
图6为按实施例4~6所制备的三维氮化硼/环氧树脂复合材料的热导率。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例1
一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包含钛酸钡填料粒子构成的钛酸钡三维网络,以及填充在所述钛酸钡三维网络的空隙中的环氧树脂。
制备方法:
(1)将15g粒径为100nm的钛酸钡填料粒子加入到60ml浓度为1wt%的纤维素水溶液中,得到分散液;
(2)以400rpm的转速对分散液球磨24小时,然后将球磨产物装入模具,于-40℃冷冻干燥48小时,得到三维网络前驱体;
(3)将三维网络前驱体在1000℃高温处理10小时,去除三维网络前驱体中的纤维素,得到由钛酸钡填料粒子构成的钛酸钡三维网络;
(4)按Epon828 40g,甲基六氢苯酐32g和2E4MZ 0.4g的比例将三者混合,配制环氧树脂混合物;
(5)将环氧树脂混合物注入到钛酸钡三维网络中,于150℃热固化3h,得到三维钛酸钡/环氧树脂复合材料,其中包含由钛酸钡填料粒子构成的钛酸钡三维网络以及填充在钛酸钡三维网络中的环氧树脂。
性能测试:
图2为本实施例的三维钛酸钡/环氧树脂复合材料的扫描电子显微镜照片,图中显示钛酸钡粒子已连接成三维网络结构。
图3为实施例1所制备的三维钛酸钡/环氧树脂复合材料的介电常数随频率的变化曲线。图中显示该复合材料在1kHz时的介电常数为60,随频率的增加而降低。在频率10MHz时的介电常数为48。
实施例2
一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包括钛酸钡填料粒子构成的钛酸钡三维网络,以及填充在所述钛酸钡三维网络的空隙中的环氧树脂。
制备方法:
(1)将30g粒径为100nm的钛酸钡填料粒子加入到60ml浓度为1wt%的纤维素水溶液中,得到分散液;
(2)以500rpm的转速对分散液球磨18小时,然后将球磨产物装入模具,于-40℃冷冻干燥48小时,得到三维网络前驱体;
(3)将三维网络前驱体在1000℃高温处理10小时,去除三维网络前驱体中的纤维素,得到由钛酸钡填料粒子构成的钛酸钡三维网络;
(4)按Epon828 40g,甲基六氢苯酐32g和2E4MZ 0.4g的比例将三者混合,配制环氧树脂混合物;
(5)将环氧树脂混合物注入到钛酸钡三维网络,于150℃热固化3h,得到三维钛酸钡/环氧树脂复合材料,其中包含由钛酸钡填料粒子构成的钛酸钡三维网络以及填充在钛酸钡三维网络中的环氧树脂。
性能测试:
图4为实施例2所制备的三维钛酸钡/环氧树脂复合材料的介电常数随频率的变化曲线。图中显示该复合材料在1kHz时的介电常数为95,随频率的增加而降低。在频率10MHz时的介电常数为70.4。
实施例3
一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包含钛酸钡填料粒子构成的钛酸钡三维网络,以及填充在所述钛酸钡三维网络的空隙中的环氧树脂。
制备方法:
(1)将60g粒径为100nm的钛酸钡填料粒子加入到60ml浓度为1wt%的纤维素水溶液中,得到分散液;
(2)以300rpm的转速对分散液球磨18小时,然后将球磨产物装入模具,于-40℃冷冻干燥48小时,得到三维网络前驱体;
(3)将三维网络前驱体在1000℃高温处理10小时,去除三维网络前驱体中的纤维素,得到由钛酸钡填料粒子构成的钛酸钡三维网络;
(4)按Epon828 40g,甲基六氢苯酐32g和2E4MZ 0.4g的比例将三者混合,配制环氧树脂混合物;
(5)将环氧树脂混合物注入到钛酸钡三维网络中,于150℃热固化3h,得到三维钛酸钡/环氧树脂复合材料,其中包含由钛酸钡填料粒子构成的钛酸钡三维网络以及填充在钛酸钡三维网络中的环氧树脂。
性能测试:
图5为实施例3所制备的三维钛酸钡/环氧树脂复合材料的介电常数随频率的变化曲线。图中显示该复合材料在1kHz时的介电常数为200,随频率的增加而降低。在频率10MHz时的介电常数为83.6。
实施例4
一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包含氮化硼填料粒子构成的氮化硼三维网络,以及填充在所述氮化硼三维网络的空隙中的环氧树脂。
制备方法:
(1)将2g氮化硼加入到60ml浓度为1wt%的纤维素水溶液中,得到分散液;
(2)以400rpm的转速对分散液球磨24小时,然后将球磨产物装入模具,于-40℃冷冻干燥48小时,得到三维网络前驱体;
(3)将三维网络前驱体在1000℃高温处理10小时,去除三维网络前驱体中的纤维素,得到由氮化硼填料粒子构成的氮化硼三维网络;
(4)按Epon828 40g,甲基六氢苯酐32g和2E4MZ 0.4g的比例将三者混合,配制环氧树脂混合物;
(5)将环氧树脂混合物注入氮化硼三维网络中,于150℃热固化3h,得到三维氮化硼/环氧树脂复合材料,其中包含由氮化硼填料粒子构成的氮化硼三维网络以及填充在氮化硼三维网络中的环氧树脂。
性能测试:
本实施例制备得到的三维氮化硼/环氧树脂复合材料的热导率为2.8W/m·K(参见图6)。
实施例5
一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包含氮化硼填料粒子构成的氮化硼三维网络,以及填充在所述氮化硼三维网络的空隙中的环氧树脂。
制备方法:
(1)将4g氮化硼加入到60ml浓度为1wt%的纤维素水溶液中,得到分散液;
(2)以500rpm的转速对分散液球磨18小时,然后将球磨产物装入模具,于-40℃冷冻干燥48小时,得到三维网络前驱体;
(3)将三维网络前驱体在1000℃高温处理10小时,去除三维网络前驱体中的纤维素,得到由氮化硼填料粒子构成的氮化硼三维网络;
(4)按Epon828 40g,甲基六氢苯酐32g和2E4MZ 0.4g的比例将三者混合,配制环氧树脂混合物;
(5)将环氧树脂混合物注入氮化硼三维网络中,于150℃热固化3h,得到三维氮化硼/环氧树脂复合材料,其中包含由氮化硼填料粒子构成的氮化硼三维网络以及填充在氮化硼三维网络中的环氧树脂。
性能测试:
本实施例制备得到的三维氮化硼/环氧树脂复合材料的热导率为4.5W/m·K(参见图6)。
实施例6
一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包含氮化硼填料粒子构成的氮化硼三维网络,以及填充在所述氮化硼三维网络的空隙中的环氧树脂。
制备方法:
(1)将6g氮化硼加入到60ml浓度为1wt%的纤维素水溶液中,得到分散液;
(2)以300rpm的转速对分散液球磨18小时,然后将球磨产物装入模具,于-40℃冷冻干燥48小时,得到三维网络前驱体;
(3)将三维网络前驱体在1000℃高温处理10小时,去除三维网络前驱体中的纤维素,得到由氮化硼填料粒子构成的氮化硼三维网络;
(4)按Epon828 40g,甲基六氢苯酐32g和2E4MZ 0.4g的比例将三者混合,配制环氧树脂混合物;
(5)将环氧树脂混合物注入氮化硼三维网络中,于150℃热固化3h,得到三维氮化硼/环氧树脂复合材料,其中包含由氮化硼填料粒子构成的氮化硼三维网络以及填充在氮化硼三维网络中的环氧树脂。
性能测试:
本实施例制备得到的三维氮化硼/环氧树脂复合材料的热导率为9.3W/m·K(参见图6)。
实施例7
一种包含填料粒子三维网络的聚合物基复合材料,所述聚合物基复合材料包含银纳米颗粒填料粒子构成的银三维网络,以及填充在所述银三维网络的空隙中的环氧树脂。
制备方法:
(1)将10g粒径为20nm的银纳米颗粒与去离子水40g及十六烷基苯磺酸钠1g混合,得到分散液;
(2)以600rpm的转速对分散液球磨7小时,然后将球磨产物(球磨分散液)灌入到孔径为10μm的海绵当中,于-40℃冷冻干燥48小时,得到三维网络前驱体;
(3)将三维网络前驱体在1000℃高温处理10小时,去除三维网络前驱体中的海绵,得到由银纳米颗粒填料粒子构成的银三维网络;
(4)按Epon828 40g,甲基六氢苯酐32g和2E4MZ 0.4g的比例将三者混合,,配制环氧树脂混合物;
(5)将环氧树脂混合物注入到银三维网络中,于150℃热固化3小时,得到三维银/环氧树脂复合材料,其中包含由银填料构成的银三维网络以及填充在银三维网络中的环氧树脂。
性能测试:
本实施例制备得到的三维银/环氧树脂复合材料的电导率为2.31×104S/m。
对比例1
(1)将15g粒径为100nm的钛酸钡填料粒子加入到Epon828 11.5g,甲基六氢苯酐9.2g和2E4MZ 0.1g的环氧树脂混合物中;
(2)使用球磨机500rpm球磨20小时后,将其灌入直径为2cm的模具中,于150℃热固化3h,得到钛酸钡/环氧树脂复合材料。
本对比例1得到的钛酸钡/环氧树脂复合材料中,钛酸钡填料粒子所占的体积比与实施例1得到的三维钛酸钡/环氧树脂复合材料中的三维钛酸钡网络所占的体积比相同。
性能测试:
本对比例制备得到的钛酸钡/环氧树脂复合材料的介电常数在1kHz时为5。
对比例2
1)将30g粒径为100nm的钛酸钡填料粒子加入到Epon828 13.9g,甲基六氢苯酐11.1g和2E4MZ 0.13g的环氧树脂混合物中;
(2)使用球磨机500rpm球磨20小时后,将灌入直径为2cm模具中,于150℃热固化3h,得到钛酸钡/环氧树脂复合材料。
本对比例2得到的钛酸钡/环氧树脂复合材料中,钛酸钡填料粒子所占的体积比与实施例2得到的三维钛酸钡/环氧树脂复合材料中的三维钛酸钡网络所占的体积比相同。
性能测试:
本对比例制备得到的钛酸钡/环氧树脂复合材料的介电常数在1kHz时为7。
对比例3
1)将60g粒径为100nm的钛酸钡填料粒子加入到Epon828 21.6g,甲基六氢苯酐17.3g和2E4MZ 0.22g的环氧树脂混合物中;
(2)使用球磨机500rpm球磨20小时后,将灌入直径为2cm模具中,于150℃热固化3h,得到钛酸钡/环氧树脂复合材料。
本对比例3得到的钛酸钡/环氧树脂复合材料中,钛酸钡填料粒子所占的体积比与实施例3得到的三维钛酸钡/环氧树脂复合材料中的三维钛酸钡网络所占的体积比相同。
性能测试:
本对比例制备得到的钛酸钡/环氧树脂复合材料的介电常数在1kHz时为12。
对比例4
(1)将2g氮化硼加入到Epon828 9.4g,甲基六氢苯酐7.5g和2E4MZ 0.09g的环氧树脂混合物中;
(2)使用球磨机500rpm球磨20小时后,将灌入直径为2cm模具中,于150℃热固化3h,得到氮化硼/环氧树脂复合材料。
本对比例4得到的氮化硼/环氧树脂复合材料中,氮化硼填料粒子所占的体积比与实施例4得到的三维氮化硼/环氧树脂复合材料中的三维氮化硼网络所占的体积比相同。
性能测试:
本对比例制备得到的氮化硼/环氧树脂复合材料的热导率为0.33W/m·K。
对比例5
(1)将4g氮化硼加入到Epon828 11.1g,甲基六氢苯酐8.9g和2E4MZ 0.1g的环氧树脂混合物中;
(2)使用球磨机500rpm球磨20小时后,将灌入直径为2cm模具中,于150℃热固化3h,得到氮化硼/环氧树脂复合材料。
本对比例5得到的氮化硼/环氧树脂复合材料中,氮化硼填料粒子所占的体积比与实施例1得到的三维氮化硼/环氧树脂复合材料中的三维氮化硼网络所占的体积比相同。
性能测试:
本对比例制备得到的氮化硼/环氧树脂复合材料的热导率为0.4W/m·K。
对比例6
(1)将6g氮化硼加入到Epon828 10g,甲基六氢苯酐8g和2E4MZ 0.1g的环氧树脂混合物中;
(2)使用球磨机500rpm球磨20小时后,将灌入直径为2cm模具中,于150℃热固化3h,得到氮化硼/环氧树脂复合材料。
本对比例6得到的氮化硼/环氧树脂复合材料中,氮化硼填料粒子所占的体积比与实施例6得到的三维氮化硼/环氧树脂复合材料中的三维氮化硼网络所占的体积比相同。
性能测试:
本对比例制备得到的氮化硼/环氧树脂复合材料的热导率为0.45W/m·K。
对比例7
(1)将10g粒径为20nm的银纳米颗粒加入到Epon828 5g,甲基六氢苯酐4g和2E4MZ0.05g的环氧树脂混合物中;
(2)使用球磨机500rpm球磨20小时后,将灌入直径为2cm模具中,于150℃热固化3h,得到银/环氧树脂复合材料。
本对比例7得到的银/环氧树脂复合材料中,银填料粒子所占的体积比与实施例7得到的三维银/环氧树脂复合材料中的银三维网络所占的体积比相同。
性能测试:
本对比例制备得到的银/环氧树脂复合材料的电导率为3.1×103S/m。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种包含填料粒子三维网络的聚合物基复合材料,其特征在于,所述聚合物基复合材料包含由填料粒子构成的填料粒子三维网络以及填充在所述填料粒子三维网络的空隙中的聚合物。
2.根据权利要求1所述的聚合物基复合材料,其特征在于,以所述聚合物基复合材料的总体积为100%计,所述填料粒子的体积百分比为5%~90%,优选为10%~50%;
优选地,所述填料粒子在至少一个维度的尺寸在1nm~1000nm,优选在至少一个维度的尺寸在10nm~500nm,进一步优选在三个维度的尺寸均在10nm~100nm;
优选地,所述填料粒子的形状包括球形、线形或片状中的任意一种或至少两种的组合;
优选地,所述填料粒子包括高介电填料粒子、高导热填料粒子或高导电填料粒子中的任意一种或至少两种的混合物,所述高介电填料粒子为介电常数高于100的填料粒子,所述高导热填料粒子为热导率高于20W/m·K的填料粒子,所述高导电填料粒子为电导率高于1×104S/m的填料粒子;
优选地,所述高介电填料粒子包括钛酸钡、钛酸锶钡、锆钛酸钡、钛酸铅、铌镁酸铅、钛酸铜钙或钛酸锶中的任意一种或至少两种的混合物;
优选地,所述高导热填料粒子包括氮化硼、氮化铝、碳化硅、氧化镁、氧化铝、氧化锌、纤维状碳粉或鳞片状碳粉中的任意一种或至少两种的混合物;
优选地,所述高导电填料粒子包括碳材料、金、银、铜、铁、镍、铝、锌、锡或铂中的任意一种或至少两种的混合物,所述碳材料优选包括碳纳米管、碳纤维、石墨烯或石墨中的任意一种或至少两种的混合物;
优选地,所述聚合物包括环氧树脂,酚醛树脂,聚苯乙烯,聚对苯二甲酸乙二醇酯,聚偏二氟乙烯及其共聚物,聚乙烯或聚氯乙烯中的任意一种或至少两种的组合。
3.如权利要求1或2所述的聚合物基复合材料的制备方法,其特征在于,所述方法包括以下步骤:
(1)采用支撑材料和填料粒子构建三维网络前驱体;
(2)去除步骤(1)得到的三维网络前驱体中的支撑材料,得到由填料粒子构成的填料粒子三维网络;
(3)将聚合物前驱体填充到步骤(2)得到的填料粒子三维网络中,固化,得到聚合物基复合材料。
4.根据权利要求3所述的方法,其特征在于,步骤(1)所述支撑材料包括碳氢材料、碳材料或泡沫材料中的任意一种或至少两种的组合;
优选地,所述碳氢材料包括纳米微晶纤维素、阳离子化纳米微晶纤维素、羧甲基纳米微晶纤维素、纳米纤维素纤维、微米纤维素纤维、阳离子化纳米纤维素纤维、阳离子化微米纤维素纤维、羧甲基化化纳米纤维素纤维或羧甲基化微米纤维素纤维中的任意一种或至少两种的组合;
优选地,所述碳材料包括石墨烯、碳纳米管或碳纤维中的任意一种或至少两种的组合;
优选地,所述泡沫材料包括海绵和/或金属泡沫材料;
优选地,所述金属泡沫材料包括泡沫镍、泡沫铜、泡沫铁或泡沫银中的任意一种或至少两种的组合。
5.根据权利要求3或4所述的方法,其特征在于,当支撑材料为碳氢材料和/或碳材料时,步骤(1)所述构建三维网络前驱体的方法为:
(A)将填料粒子分散到支撑材料的水溶液中,得到分散液;
(B)对步骤(A)得到的分散液进行球磨;
(C)对步骤(B)得到的球磨产物进行冷冻干燥,得到三维网络前驱体;
优选地,步骤(A)所述支撑材料的水溶液的质量浓度为0.5%~5%;
优选地,步骤(A)所述填料粒子和所述支撑材料的水溶液的体积比为1:20~2:1。
6.根据权利要求3或4所述的方法,其特征在于,当支撑材料为泡沫材料时,步骤(1)所述构建三维网络前驱体的方法为:
(A)’:将填料粒子分散到水和/或有机溶剂中,得到分散液;
(B)’:对步骤(A)’得到的分散液进行球磨;
(C)’:将步骤(B)’得到的球磨产物灌入泡沫材料中,然后进行冷冻干燥或者挥发溶剂干燥,得到三维网络前驱体;
优选地,步骤(A)’所述有机溶剂包括乙醇、丙酮或丁酮中的任意一种或至少两种的混合物;
优选地,步骤(A)’所述分散液中的填料粒子的浓度为0.5g/ml~5g/ml;
优选地,步骤(A)’所述分散液中还包括表面活性剂,所述表面活性剂优选为十六烷基苯磺酸钠和/或聚氧乙烯烷基磷酸酯。
7.根据权利要求5或6所述的方法,其特征在于,步骤(B)和步骤(B)’所述球磨的转速独立地为100rpm~1000rpm,优选为250rpm~500rpm;
优选地,步骤(B)和步骤(B)’所述球磨的时间为2h~24h,优选为4h~12h;
优选地,步骤(C)和步骤(C)’所述冷冻干燥的温度为-50℃~-10℃,优选为-40℃;
优选地,步骤(C)和步骤(C)’所述冷冻干燥的时间为12h~48h,优选为24h~36h。
8.根据权利要求3-7任一项所述的方法,其特征在于,当支撑材料为碳氢材料、碳材料或海绵中的任意一种或至少两种的组合时,步骤(2)去除所述支撑材料采用热处理的方式;
优选地,所述热处理的温度为400℃~1500℃,优选为500℃~1000℃;
优选地,所述热处理的时间为5h~24h,优选为8h~15h。
9.根据权利要求8所述的方法,其特征在于,当支撑材料中包含金属泡沫材料时,步骤(2)去除所述支撑材料采用在热处理之后继续酸处理的方式;
优选地,所述酸处理使用的酸为硫酸、硝酸、盐酸或王水中的任意一种或至少两种的组合;
优选地,所述硫酸的质量分数为22%~98%;
优选地,所述硝酸的质量分数为20%~75%;
优选地,所述盐酸的质量分数为10%~35%;
优选地,所述酸处理的时间为1h~5h。
10.根据权利要求3-9任一项所述的方法,其特征在于,步骤(3)所述聚合物前驱体为液态的聚合物、熔融态的聚合物或聚合物溶液中的任意一种或至少两种的混合物;
步骤(3)所述液态的聚合物包括双酚A环氧树脂或脂环族环氧树脂中的任意一种或两种的混合物;
优选地,步骤(3)所述熔融态的聚合物包括聚苯乙烯,聚对苯二甲酸乙二醇酯,聚乙烯,聚偏二氟乙烯及其共聚物,聚氯乙烯或固态环氧树脂中的任意一种或至少两种的混合物;
优选地,步骤(3)所述聚合物溶液是由聚合物溶于溶剂得到的,所述聚合物包括聚偏二氟乙烯及其共聚物,固态环氧树脂或固态酚醛树脂中的任意一种或至少两种的混合物;
优选地,当步骤(3)所述聚合物前驱体为液态的环氧树脂、熔融态的环氧树脂或环氧树脂的溶液中的任意一种或至少两种的混合物时,还需要将聚合物前驱体与固化剂和促进剂混合得到混合料,用于填充到步骤(2)得到的三维网络中;
优选地,所述固化剂与所述聚合物前驱体的质量比为(5~120):100;
优选地,所述固化剂包括脂肪多元胺型固化剂、脂环多元胺型固化剂、芳香胺类固化剂、酸酐类固化剂、聚酰胺固化剂、潜伏型固化剂、合成树脂类固化剂中的任意一种或至少两种的混合物;
优选地,所述脂肪多元胺型固化剂包括乙二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、二丙烯三胺、二甲胺基丙胺、二乙胺基丙胺、三甲基六亚甲基二胺、二己基三胺、三甲基己二胺或聚醚二胺中的任意一种或至少两种的混合物;
优选地,所述脂环多元胺型固化剂包括二氨甲基环己烷、孟烷二氨、氨乙基呱嗪、六氢吡啶、二氨基环己烷、二氨甲基环己基甲烷或二氨基环己基甲烷中的任意一种或至少两种的混合物;
优选地,所述芳香胺类固化剂包括间苯二胺、间苯二甲胺、二氨基二苯基甲烷、二氨基二苯基砜或4-氯邻苯二胺中的任意一种或至少两种的混合物;
优选地,所述酸酐类固化剂包括苯酮四羧酸二酐、甲基内次甲基四氢邻苯二甲酸酐、四氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、戊二酸酐、聚壬二酸酐、二氯代顺丁烯二酸酐、甲基六氢邻苯二甲酸酐、邻苯二甲酸酐、偏苯三酸酐、均苯四甲酸酐、偏苯四酸二酐、二苯酮四羧基二酸酐、顺丁烯二酸酐、十二烷基代顺丁烯二酸酐、琥珀酸酐、六氢苯二甲酸酐、环戊烷四酸二酐或二顺丁烯二酸酐基甲乙苯中的任意一种或至少两种的混合物;
优选地,所述潜伏型固化剂包括双氰胺、三氟化硼单乙胺、三氟化硼苯乙胺、三氟化硼邻甲基苯胺、三氟化硼卞胺、三氟化硼二甲基苯胺、三氟化硼乙基苯胺、三氟化硼吡啶、MS-1微胶囊、MS-2微胶囊或葵二酸三酰肼中的任意一种或至少两种的混合物;
优选地,所述合成树脂类固化剂包括苯胺甲醛树脂、苯酚甲醛树脂或线性酚醛树脂中的任意一种或至少两种的混合物;
优选地,所述促进剂与所述聚合物前驱体的质量比为(0.005~3):100;
优选地,所述促进剂包括2-甲基咪唑、2-乙基咪唑、2,4-二乙基咪唑、2-乙基-4-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑等;苯酚、双酚A、间苯二酚、2,4,6-三(二甲氨基亚甲基)苯酚、卞基二甲胺、酰基胍或过氧化苯甲酰中的任意一种或至少两种的混合物;
优选地,步骤(3)所述填充在真空条件下进行;
优选地,步骤(3)所述填充的时间为2h~24h,优选为5h~12h;
优选地,步骤(3)所述固化的温度为100℃~220℃,优选为140℃~180℃;
优选地,步骤(3)所述固化的时间为1h~5h,优选为1.5h~2.5h。
CN201611246750.2A 2016-12-29 2016-12-29 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法 Active CN108250677B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611246750.2A CN108250677B (zh) 2016-12-29 2016-12-29 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法
PCT/CN2017/082737 WO2018120560A1 (zh) 2016-12-29 2017-05-02 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611246750.2A CN108250677B (zh) 2016-12-29 2016-12-29 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108250677A true CN108250677A (zh) 2018-07-06
CN108250677B CN108250677B (zh) 2022-10-14

Family

ID=62706731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611246750.2A Active CN108250677B (zh) 2016-12-29 2016-12-29 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN108250677B (zh)
WO (1) WO2018120560A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206854A (zh) * 2018-08-30 2019-01-15 桂林电子科技大学 一种具有三维结构的氮化硼/环氧树脂复合材料的制备方法
CN109880292A (zh) * 2019-01-22 2019-06-14 中国海洋大学 基于核壳结构三维骨架的聚合物基高介电复合材料的制备方法
CN109913185A (zh) * 2019-03-11 2019-06-21 中国科学院合肥物质科学研究院 一种含导热膜的多层结构导热复合材料及其制备方法
CN110467463A (zh) * 2019-09-19 2019-11-19 河南工程学院 一种铌酸锶钡/氮化硼三维网络材料及制备方法
CN111269536A (zh) * 2020-04-16 2020-06-12 扬州金霞塑胶有限公司 纳米纤维素/铜复合材料改性树脂及其制备方法
WO2020118551A1 (zh) * 2018-12-12 2020-06-18 深圳先进技术研究院 三维柔性电容材料及其制备方法和应用
CN111312518A (zh) * 2018-12-12 2020-06-19 深圳先进技术研究院 三维柔性电容材料及其制备方法和应用
CN112870391A (zh) * 2020-12-24 2021-06-01 深圳先进技术研究院 一种铁电抗菌材料及其制备方法和应用
CN113555217A (zh) * 2021-07-21 2021-10-26 吉林大学 一种碳纳米管/石墨烯/聚偏氟乙烯介电复合材料及其制备方法
CN114656658A (zh) * 2022-04-05 2022-06-24 华南农业大学 一种含有三维网络结构天然纤维复合材料的制造方法
CN115093717A (zh) * 2022-07-07 2022-09-23 广东工业大学 一种木质纤维素/银三维网络骨架的制备方法及其应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044577B1 (fr) 2015-12-07 2017-12-22 Timothee Boitouzet Procede de delignification partielle et de remplissage d'un materiau ligno-cellulosique, et structure de materiau composite obtenue par ce procede
FR3067275B1 (fr) 2017-06-07 2022-08-12 Timothee Boitouzet Procede de delignification partielle par voie supercritique ou subcritique et de remplissage d'un materiau ligno-cellulosique
FR3077895B1 (fr) 2018-02-09 2020-02-28 Sas Woodoo Dispositif de detection tactile avec interface tactile en materiau composite
FR3104589B1 (fr) * 2019-12-13 2022-03-25 Irt Antoine De Saint Exupery Procédé de préparation d’un matériau composite électriquement conducteur et matériau composite électriquement conducteur obtenu par un tel procédé
CN113061322B (zh) * 2021-04-15 2022-07-05 安徽大学 一种CNT@Co/环氧树脂复合材料及其制备方法
CN113201195B (zh) * 2021-06-15 2022-08-02 西北工业大学 一种钛酸锶钡多孔陶瓷/聚偏氟乙烯复合材料及制备方法
CN115141412B (zh) * 2021-08-02 2023-12-01 西安航天三沃化学有限公司 一种复合材料核壳结构的制备方法及其应用
CN113831686B (zh) * 2021-09-18 2024-05-24 安徽农业大学 一种兼具屏蔽与吸声功能的多孔网络复合材料的制备方法
CN113861623A (zh) * 2021-10-25 2021-12-31 宁夏清研高分子新材料有限公司 一种导热lcp复合材料的制备方法
CN114220667B (zh) * 2021-12-31 2023-12-12 福州大学 一种空心氢氧化镍针刺微球电极材料及其制备方法和应用
CN114603133B (zh) * 2022-04-02 2024-04-12 苏州博濬新材料科技有限公司 一种含有多级结构纳米填料的导电银浆及其制备方法
CN115074082B (zh) * 2022-07-20 2023-07-25 上海欣达化工有限公司 一种生物基ms胶粘合剂及其制备方法
CN115991937B (zh) * 2023-03-23 2023-07-18 之江实验室 可拉伸压电薄膜及其制备方法、可拉伸超声换能器
CN116656247B (zh) * 2023-07-28 2023-09-29 昆山博益鑫成高分子材料有限公司 一种daf膜及其制备工艺
CN117551909A (zh) * 2023-11-16 2024-02-13 北京科技大学顺德创新学院 一种三维高导热碳纤维增强铜基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022956A1 (ja) * 2013-08-14 2015-02-19 電気化学工業株式会社 窒化ホウ素-樹脂複合体回路基板、窒化ホウ素-樹脂複合体放熱板一体型回路基板
CN104860293A (zh) * 2015-03-31 2015-08-26 大连理工大学 碳纳米管三维网络宏观体、其聚合物复合材料及其制备方法
CN105062007A (zh) * 2015-08-31 2015-11-18 中国科学院深圳先进技术研究院 高导热聚合物复合材料及其制备方法和应用
JP2016191030A (ja) * 2015-03-31 2016-11-10 国立大学法人広島大学 高熱伝導性電気絶縁組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158498A (ja) * 1999-12-02 2001-06-12 Coherent Technology:Kk コイル包装用フィルム
EP2768896A4 (en) * 2011-09-23 2016-06-22 Univ Massachusetts Medical COMPOSITE OF POLYMERS WITH HIGH MINERAL, ELASTOMERIC AND DEGRADABLE CONTENT
JP5964666B2 (ja) * 2012-06-14 2016-08-03 株式会社ダイセル 半導体素子3次元実装用充填材
CN103400637B (zh) * 2013-08-05 2016-07-13 清华大学深圳研究生院 一种导电浆料及其制备方法以及印刷线路材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022956A1 (ja) * 2013-08-14 2015-02-19 電気化学工業株式会社 窒化ホウ素-樹脂複合体回路基板、窒化ホウ素-樹脂複合体放熱板一体型回路基板
CN104860293A (zh) * 2015-03-31 2015-08-26 大连理工大学 碳纳米管三维网络宏观体、其聚合物复合材料及其制备方法
JP2016191030A (ja) * 2015-03-31 2016-11-10 国立大学法人広島大学 高熱伝導性電気絶縁組成物
CN105062007A (zh) * 2015-08-31 2015-11-18 中国科学院深圳先进技术研究院 高导热聚合物复合材料及其制备方法和应用

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206854A (zh) * 2018-08-30 2019-01-15 桂林电子科技大学 一种具有三维结构的氮化硼/环氧树脂复合材料的制备方法
CN111312518A (zh) * 2018-12-12 2020-06-19 深圳先进技术研究院 三维柔性电容材料及其制备方法和应用
CN111312518B (zh) * 2018-12-12 2022-06-03 深圳先进技术研究院 三维柔性电容材料及其制备方法和应用
WO2020118551A1 (zh) * 2018-12-12 2020-06-18 深圳先进技术研究院 三维柔性电容材料及其制备方法和应用
CN109880292A (zh) * 2019-01-22 2019-06-14 中国海洋大学 基于核壳结构三维骨架的聚合物基高介电复合材料的制备方法
CN109880292B (zh) * 2019-01-22 2020-03-06 中国海洋大学 基于核壳结构三维骨架的聚合物基高介电复合材料的制备方法
CN109913185A (zh) * 2019-03-11 2019-06-21 中国科学院合肥物质科学研究院 一种含导热膜的多层结构导热复合材料及其制备方法
CN110467463A (zh) * 2019-09-19 2019-11-19 河南工程学院 一种铌酸锶钡/氮化硼三维网络材料及制备方法
CN111269536A (zh) * 2020-04-16 2020-06-12 扬州金霞塑胶有限公司 纳米纤维素/铜复合材料改性树脂及其制备方法
CN112870391A (zh) * 2020-12-24 2021-06-01 深圳先进技术研究院 一种铁电抗菌材料及其制备方法和应用
CN113555217A (zh) * 2021-07-21 2021-10-26 吉林大学 一种碳纳米管/石墨烯/聚偏氟乙烯介电复合材料及其制备方法
CN114656658A (zh) * 2022-04-05 2022-06-24 华南农业大学 一种含有三维网络结构天然纤维复合材料的制造方法
CN114656658B (zh) * 2022-04-05 2023-12-05 华南农业大学 一种含有三维网络结构天然纤维复合材料的制造方法
CN115093717A (zh) * 2022-07-07 2022-09-23 广东工业大学 一种木质纤维素/银三维网络骨架的制备方法及其应用

Also Published As

Publication number Publication date
CN108250677B (zh) 2022-10-14
WO2018120560A1 (zh) 2018-07-05

Similar Documents

Publication Publication Date Title
CN108250677A (zh) 一种包含填料粒子三维网络的聚合物基复合材料及其制备方法
Aradhana et al. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives
Yang et al. Fabrication, applications, and prospects of aramid nanofiber
CN107459642B (zh) 一种高含量石墨烯改性尼龙6母粒及其制备方法和应用
JP4538502B2 (ja) ピッチ系炭素繊維、マットおよびそれらを含む樹脂成形体
JP5384405B2 (ja) ナノチューブの含有量が高い熱硬化性複合材料の製造方法
You et al. Preparation and characterization of conductive carbon nanotube-polyurethane foam composites
US10053544B2 (en) Carbon nanotube/polyetherimide/thermosetting resin dielectric composite and preparation method therefor
Chen et al. Greatly enhanced mechanical properties and heat distortion resistance of poly (L-lactic acid) upon compositing with functionalized reduced graphene oxide
CN107418146B (zh) 绝缘子材料、绝缘子及制备方法
Cui et al. Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy
KR20150028698A (ko) 필러 및 고분자 수지의 복합 재료 및 그 제조방법
CN109897341B (zh) 一种改性石墨烯增强环氧树脂的复合材料及制备方法
Xu et al. Aqueous solution blending route for preparing low dielectric constant films of polyimide hybridized with polytetrafluoroethylene
CN106987123B (zh) 石墨烯/氮化硼负载纳米银导热特种高分子材料及制备方法
CN106118018A (zh) 一种高性能聚苯醚/石墨烯纳米复合材料制备方法
Qi et al. Tailoring the hybrid network structure of boron nitride/carbon nanotube to achieve thermally conductive poly (vinylidene fluoride) composites
CN105778152A (zh) 一种修饰碳纳米管的方法、改性碳纳米管环氧树脂复合材料及其制备方法
CN110734642A (zh) 一种绝缘高强纳米复合材料及其制备方法
CN107415118B (zh) 一种三层结构树脂基复合材料及其制备方法
CN113980468A (zh) 垂直取向三维膨胀石墨导热体的制备方法及其增强的导热聚合物基复合材料
Han et al. Enhanced through-thickness thermal conductivity of epoxy with cellulose-supported boron nitride nanosheets
CN105646952B (zh) 一种纳米二硫化钼改性海藻酸钠复合材料的制备方法
CN114031867B (zh) MXene-石墨烯-PVC复合材料及其制备方法
CN101921479B (zh) 一种氰酸酯树脂基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant