CN106929927B - 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法 - Google Patents

聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法 Download PDF

Info

Publication number
CN106929927B
CN106929927B CN201511028587.8A CN201511028587A CN106929927B CN 106929927 B CN106929927 B CN 106929927B CN 201511028587 A CN201511028587 A CN 201511028587A CN 106929927 B CN106929927 B CN 106929927B
Authority
CN
China
Prior art keywords
fiber
spinning solution
zirconia crystal
crystal fiber
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511028587.8A
Other languages
English (en)
Other versions
CN106929927A (zh
Inventor
王新强
许东
刘雪松
朱陆益
张光辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201511028587.8A priority Critical patent/CN106929927B/zh
Publication of CN106929927A publication Critical patent/CN106929927A/zh
Application granted granted Critical
Publication of CN106929927B publication Critical patent/CN106929927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material

Abstract

本发明涉及聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法。包括将聚乙酰丙酮合锆、六水合硝酸钇和助纺剂按照一定配比,在10~60℃、搅拌条件下充分溶于醇中,得聚乙酰丙酮合锆前驱体溶胶纺丝液;将该纺丝液采用静电纺丝法获得聚乙酰丙酮合锆前驱体纤维;将该前驱体纤维通过压力解析去除配体后进行中高温处理。所得纤维直径300nm~3μm,连续、柔韧性好、隔热和力学性能优异,可在1800℃及以上的超高温度下长期使用。

Description

聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维 的制备方法
技术领域
本发明涉及一种聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法,属于无机非金属材料领域。
背景技术
随着航天、航空和高温隔热等领域的不断发展,研制能够满足1600~1800℃以上超高温环境长期使用要求的超高温隔热材料是目前的一大热点。由于氧化锆自身具有耐超高温(熔点2715℃)、超高温化学稳定性、抗氧化和极耐酸碱腐蚀等优异特性,使得氧化锆纤维及其制品比其它氧化物纤维具有更为优异的耐温、隔热、节能效果。氧化锆纤维是当今唯一能够满足1800℃以上超高温氧化气氛下长期使用的多晶质耐火纤维材料。
目前已有很多关于氧化锆纤维研究的公开报道,研究趋势在于完善其制备技术、全面优化、提升其综合性能。本申请人已有发明专利包括CN03112408.9氧化锆连续纤维的制备方法及设备,CN200410024264.7有机聚锆前驱体纺丝液甩丝法制备氧化锆纤维棉、CN200410085390.3用于制备氧化锆连续纤维的烧结炉、CN200910013781.7全稳定立方相氧化锆晶体纤维的制备方法、CN201210264131.1一步溶剂法制备氧化锆纤维生产用有机聚锆前驱体或其甩丝液的方法等中,主要选用聚乙酰丙酮合锆作为锆源,采用离心甩丝技术制备高温隔热材料微米级氧化锆晶体纤维及其制品。本申请人研究发现,如能进一步降低氧化锆纤维直径,可同时改善其超高温隔热和力学性能。因而氧化锆超细纤维,特别是亚微米纤维的制备变得尤为重要。现有技术还不能满足亚微米超细氧化锆纤维的制备,其影响因素众多,主要包括现有的前驱体纺丝液的固含量较低,可纺性与纤维晶体品质难以同时保证。
发明内容
针对现有技术的不足,本发明提供一种用于静电纺丝的聚乙酰丙酮合锆前驱体溶胶纺丝液的制备方法,本发明还提供一种利用聚乙酰丙酮合锆前驱体溶胶纺丝液制备亚微米氧化锆晶体纤维的方法。
本发明的技术方案如下:
一种聚乙酰丙酮合锆前驱体溶胶纺丝液的制备方法,包括步骤如下:
按重量比聚乙酰丙酮合锆:六水合硝酸钇:助剂:溶剂=100:(10~28):(1~6):(70~200)的比例,分别称取聚乙酰丙酮合锆、六水合硝酸钇、助剂和溶剂,在10~60℃、搅拌条件下充分混合溶解,得聚乙酰丙酮合锆前驱体溶胶纺丝液,用于制备亚微米氧化锆晶体纤维。
所述的溶剂选自甲醇、乙醇、异丙醇之一或其组合。
所述的助剂选自聚乙烯吡咯烷酮、聚丙烯酰胺、聚乙烯醇、聚丙烯酸、聚氧化乙烯、聚氧化丙烯、聚醋酸乙烯、聚醋酸乙烯酯、聚甲基纤维素、羟烷基纤维素、烷基纤维素、葡聚糖、聚乙二醇等中的一种或多种。
根据本发明优选的,所述聚乙酰丙酮合锆:六水合硝酸钇:助剂:溶剂=100:(10~28):(1~4):(100~150)重量比。
根据本发明优选的,所得聚乙酰丙酮合锆前驱体溶胶纺丝液密度1.0~1.2g/ml,25℃测得。
一种亚微米氧化锆晶体纤维的制备方法,步骤如下:
(1)聚乙酰丙酮合锆前驱体溶胶纺丝液的制备,采用上述的聚乙酰丙酮合锆前驱体溶胶纺丝液的制备方法。
(2)静电纺丝
将制得的聚醋酸氧锆前驱体溶胶纺丝液加入到带不锈钢针头的注射器中,采用高压静电纺丝法进行高压静电纺丝,工艺条件为:不锈钢针头内径为0.13~0.60mm(型号3#~9#),温度15~35℃,湿度为30~70%,电压为15~45kV,在负极接收屏上覆盖铝箔以接收纤维,接收距离为10~60cm,得聚乙酰丙酮合锆前驱体纤维。
(3)压力解析
将聚乙酰丙酮合锆前驱体纤维置于预热至90~110℃的压力容器中,通入水蒸汽后压力控制在2~20个大气压,加热升温,使温度为120~210℃,进行解析处理,处理时间为5min~1h。使得前驱体纤维中的配体乙酰丙酮解析出来。
解析处理结束后,排放蒸汽使压力容器内的温度降至80~100℃,将纤维继续放置于容器内干燥5~15min,然后取出进行后续热处理。
(4)中高温热处理
将压力解析处理后的纤维置程控烧结炉内进行中高温热处理,在水蒸汽存在下,以0.5~3℃/min的升温速率升温至450~1000℃,保温0.5-1.5h。使纤维发生充分解析并结晶转化为氧化锆晶体纤维。然后,以3~6℃/min的升温速率升温至1200~1600℃,并保温1~1.5h,对氧化锆晶体纤维进行充分烧结,得亚微米氧化锆晶体纤维。
本发明所得亚微米氧化锆晶体纤维直径为300nm~2.5μm,长度1~40cm。
根据本发明优选的,所述注射器为玻璃或有机玻璃注射器,以重力推进纺丝液缓慢流出,纺丝液从不锈钢针头中喷出,所述不锈钢针头的型号选择5#、5.5#、6#、7#(内径依次为0.26、0.30、0.33和0.41mm)。
本发明所制备的亚微米氧化锆晶体纤维的晶相为四方相、四方相和立方相共存或者全稳定立方相,直径300nm~2.5μm,连续、柔韧性好、隔热和力学性能优异。可在1800℃及以上的超高温度下长期使用。
本发明与现有技术相比,其显著优点在于:
1、本发明方法中前驱体纺丝液的制备更为简单。现有技术中纺丝液的制备需要经过减压浓缩获得,而本发明的纺丝液可以将前驱体聚乙酰丙酮合锆、相稳定剂六水合硝酸钇和助剂直接溶于溶剂获得。其次,本发明选择添加极少量水溶性高分子聚合物做助剂,出人意料地改善了纺丝液用于静电纺丝的可纺性,提高前驱体纺丝液固含量,有利于静电纺丝得到均一的超细的前驱体纤维。
2、本发明采用静电纺丝法获得的纤维直径为300nm~2.5μm,而且连续、柔韧性好,在保证氧化锆晶体纤维质量的前提下,降低氧化锆超细纤维直径,可同时改善其超高温隔热和力学性能。
3、本发明在保持现有技术优点的基础上进一步进行了工艺流程简化、纤维质量优化和绿色环保等有利于工业化大生产的改进。
附图说明
图1是实施例1制备的亚微米氧化锆晶体纤维照片;
图2是实施例1制备的亚微米氧化锆晶体纤维的扫描电镜照片;
图3是实施例2制备的亚微米氧化锆晶体纤维的扫描电镜照片。
具体实施方式
下面通过比较典型的实施例对本发明做进一步说明,但不仅限于此。
静电纺丝不锈钢针头5#、6#的内径分别是0.26、0.33mm。
实施例1:
(1)聚乙酰丙酮合锆前驱体溶胶纺丝液的制备:
称取300g聚乙酰丙酮合锆、58g六水合硝酸钇、5g聚乙烯吡咯烷酮在搅拌的条件下溶于420g无水甲醇。待固体完全溶解、反应液转变为透明溶液,即获得了聚乙酰丙酮合锆前驱体溶胶纺丝液。
(2)静电纺丝
将纺丝液加入到带6#不锈钢针头的玻璃注射器中,以重力推进纺丝液缓慢流出,在负极接收屏上覆盖铝箔收集纤维。在温度25℃,湿度为50%,电压为24kV,接收距离为25cm,将纺丝液从不锈钢针头中喷出,获得聚乙酰丙酮合锆前驱体纤维。
(3)压力解析
将上述获得的聚乙酰丙酮合锆前驱体纤维置于已经预热至100℃的压力容器中,通入水蒸气,在2.2个大气压和134℃的条件下进行压力解析处理,处理时间为20min,然后将压力容器中的气体排出,打开容器门后再将纤维放置6min后再取出。
(4)中高温热处理
将压力解析处理后的纤维置于程控烧结炉内,在水蒸汽存在下,以0.5℃/min的升温速率升温至450℃,保温1h,以3.5℃/min的升温速率升温至1100℃,并保温1h,获得白色、四方和立方混合晶相的亚微米氧化锆晶体纤维(如图1所示),直径0.9~2.4μm,平均直径1.5μm,长度1~40cm,(如图2所示),可在1800℃及以上温度下长期使用。
实施例2:
如实施例1所述,所不同的是步骤(1)中的420g甲醇换成540g;步骤(2)中,将不锈钢针头换成5#,湿度改为60%,电压调为34kV,获得的亚微米氧化锆晶体纤维直径300~600nm,平均直径427nm,长度1~40cm(如图3所示)。
实施例3:
如实施例1所述,所不同的是步骤(1)中,将5g聚乙烯吡咯烷酮换成5g聚丙烯酰胺。获得亚微米氧化锆晶体纤维,直径0.8~2.5μm,平均直径1.6μm,长度1~40cm,可在1800℃及以上温度下长期使用。
实施例4:
如实施例1所述,所不同的是步骤(1)中,将5g聚乙烯吡咯烷酮换成4g聚氧化乙烯。获得亚微米氧化锆晶体纤维,直径0.7~2.2μm,平均直径1.3μm,长度1~40cm,可在1800℃及以上温度下长期使用。
实施例5:
如实施例1所述,所不同的是步骤(1)中,将5g聚乙烯吡咯烷酮换成4.5g聚氧化丙烯。获得亚微米氧化锆晶体纤维,直径0.8~2.3μm,平均直径1.4μm,长度1~40cm,可在1800℃及以上温度下长期使用。
实施例6:
如实施例1所述,所不同的是步骤(1)中,将5g聚乙烯吡咯烷酮换成6g聚乙烯醇。获得亚微米氧化锆晶体纤维,直径0.9~2.4μm,平均直径1.5μm,长度1~40cm,可在1800℃及以上温度下长期使用。
实施例7:
如实施例1所述,所不同的是步骤(1)中,将5g聚乙烯吡咯烷酮换成3.5g聚乙二醇。获得亚微米氧化锆晶体纤维,直径0.8~2.4μm,平均直径1.5μm,长度1~40cm,可在1800℃及以上温度下长期使用。
实施例8:
如实施例1所述,所不同的是步骤(1)中将58g六水硝酸钇换成35g六水硝酸钇,得到四方相的亚微米氧化锆晶体纤维,直径0.9~2.4μm,平均直径1.5μm,长度1~40cm。
实施例9:
如实施例1所述,所不同的是步骤(1)中将58g六水硝酸钇换成81g六水硝酸钇,得到立方相的亚微米氧化锆晶体纤维,直径0.9~2.4μm,平均直径1.5μm,长度1~40cm。
实施例10:
如实施例1所述,所不同的是步骤(1)中将甲醇化成乙醇,获得亚微米氧化锆晶体纤维,直径0.9~2.8μm,平均直径1.7μm,长度1~30cm,可在1800℃及以上温度下长期使用。
实施例11:
如实施例1所述,所不同的是步骤(3)中,蒸汽压力换为4大气压,处理时间为40min,配体乙酰丙酮的解析效率稍有提高。
实施例12:
如实施例1所述,所不同的是步骤(4)中,在水蒸汽存在下,以0.5℃/min的升温速率升温至530℃。

Claims (5)

1.一种亚微米氧化锆晶体纤维的制备方法,步骤如下:
(1)聚乙酰丙酮合锆前驱体溶胶纺丝液的制备
按重量比聚乙酰丙酮合锆:六水合硝酸钇:助剂:溶剂=100:(10~28):(1~6):(70~200)的比例,分别称取聚乙酰丙酮合锆、六水合硝酸钇、助剂和溶剂,在10~60℃、搅拌条件下充分混合溶解,得聚乙酰丙酮合锆前驱体溶胶纺丝液;
所述的溶剂选自甲醇、异丙醇之一或其组合;
所述的助剂选自聚乙烯吡咯烷酮、聚丙烯酰胺、聚丙烯酸、聚氧化乙烯、聚氧化丙烯、聚醋酸乙烯、聚醋酸乙烯酯、聚甲基纤维素、羟烷基纤维素、烷基纤维素、葡聚糖、聚乙二醇中的一种或多种;
所得聚乙酰丙酮合锆前驱体溶胶纺丝液密度1.0~1.2g/ml ,25℃测得;
(2)静电纺丝
将制得的聚乙酰丙酮合锆前驱体溶胶纺丝液加入到带不锈钢针头的注射器中,采用高压静电纺丝法进行高压静电纺丝,工艺条件为:不锈钢针头内径为0.13~0.60mm,温度15~35℃,湿度为30~70%,电压为15~45kV,在负极接收屏上覆盖铝箔以接收纤维,接收距离为10~60cm,得聚乙酰丙酮合锆前驱体纤维;
(3)压力解析
将聚乙酰丙酮合锆前驱体纤维置于预热至90~110℃的压力容器中,通入水蒸汽后压力控制在2~20个大气压,加热升温,使温度为120~210℃,进行解析处理,处理时间为 5min~1h;解析处理结束后,排放蒸汽使压力容器内的温度降至80~100℃,将纤维继续放置于容器内干燥5~15min,然后取出进行后续热处理;
(4)中高温热处理
将压力解析处理后的纤维置程控烧结炉内进行中高温热处理,在水蒸汽存在下,以0.5~3℃/min的升温速率升温至450~1000℃,保温0.5-1.5h;然后,以3~6℃/min的升温速率升温至1200~1600℃并保温1~1.5h,对氧化锆晶体纤维进行烧结,得亚微米氧化锆晶体纤维;
所得亚微米氧化锆晶体纤维直径为300nm~2.5mm,长度1~40cm。
2.如权利要求1所述的亚微米氧化锆晶体纤维的制备方法,其特征在于步骤(1)中所述聚乙酰丙酮合锆:六水合硝酸钇:助剂:溶剂=100:(10~28):(1~4):(100~150)重量比。
3.如权利要求1所述的亚微米氧化锆晶体纤维的制备方法,其特征在于步骤(2)所述注射器为玻璃或有机玻璃注射器,以重力推进纺丝液缓慢流出,纺丝液从不锈钢针头中喷出,所述不锈钢针头的型号选择5#、5.5#、6#或7#。
4.如权利要求1所述的亚微米氧化锆晶体纤维的制备方法,其特征在于制备的亚微米氧化锆晶体纤维的晶相为四方相、四方相和立方相共存或者全稳定立方相,直径300nm~2.5mm,纤维连续且柔韧,可在1800℃及以上的超高温度下长期使用。
5.如权利要求1所述的亚微米氧化锆晶体纤维的制备方法,其特征在于步骤如下:
(1)聚乙酰丙酮合锆前驱体溶胶纺丝液的制备:
称取300g聚乙酰丙酮合锆、58g六水合硝酸钇、5g聚乙烯吡咯烷酮在搅拌的条件下溶于420g无水甲醇;待固体完全溶解、反应液转变为透明溶液,即获得得聚乙酰丙酮合锆前驱体溶胶纺丝液;
(2)静电纺丝
将纺丝液加入到带6#不锈钢针头的玻璃注射器中,以重力推进纺丝液缓慢流出,在负极接收屏上覆盖铝箔收集纤维;在温度25℃,湿度为50%,电压为24kV,接收距离为25cm,将纺丝液从不锈钢针头中喷出,获得聚乙酰丙酮合锆前驱体纤维;
(3)压力解析
将上述获得的聚乙酰丙酮合锆前驱体纤维置于已经预热至100℃的压力容器中,通入水蒸气,在2.2个大气压和134℃的条件下进行压力解析处理,处理时间为20min,然后将压力容器中的气体排出,打开容器门后再将纤维放置6min后再取出;
(4)中高温热处理
将压力解析处理后的纤维置于程控烧结炉内,在水蒸汽存在下,以0.5℃/min的升温速率升温至450℃,保温1h,以3.5℃/min的升温速率升温至1100℃,并保温1h,获得白色、四方和立方混合晶相的亚微米氧化锆晶体纤维,直径0.9~2.4mm,平均直径1.5mm,长度1~40cm,可在1800℃及以上温度下长期使用。
CN201511028587.8A 2015-12-30 2015-12-30 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法 Active CN106929927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511028587.8A CN106929927B (zh) 2015-12-30 2015-12-30 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511028587.8A CN106929927B (zh) 2015-12-30 2015-12-30 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法

Publications (2)

Publication Number Publication Date
CN106929927A CN106929927A (zh) 2017-07-07
CN106929927B true CN106929927B (zh) 2020-03-24

Family

ID=59442056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511028587.8A Active CN106929927B (zh) 2015-12-30 2015-12-30 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法

Country Status (1)

Country Link
CN (1) CN106929927B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315838B (zh) * 2018-02-06 2020-05-22 山东大学 一种钇聚合物前驱体制备氧化钇纳米纤维的方法
CN108866677A (zh) * 2018-07-05 2018-11-23 合肥萃励新材料科技有限公司 一种ZrW2O8亚微米纤维的制备方法
CN108914250B (zh) * 2018-08-16 2020-07-17 山东大学 聚乙酰丙酮合钛前驱体溶胶纺丝液、氧化钛连续纤维和纳米纤维的制备方法
CN109868526B (zh) * 2018-12-28 2021-05-28 山东大学 一种锆-钇聚合物前驱体制备锆酸钇纳米纤维的方法
CN110911672A (zh) * 2019-11-06 2020-03-24 三峡大学 一种Ga2O3/C纳米线锂离子电池负极材料的制备方法
CN111790355B (zh) * 2020-07-22 2021-10-08 山东大学 一种金属有机框架-氧化锆纤维复合材料及其制备方法与应用
CN113149655B (zh) * 2021-04-01 2021-09-21 哈尔滨工业大学 一种涡流场辅助-静电纺丝制备三维纳米纤维陶瓷气凝胶的方法
CN113999037B (zh) * 2021-11-26 2022-04-22 哈尔滨工业大学 一种三维富碳纳米纤维陶瓷气凝胶及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131040A (en) * 1978-03-29 1979-10-11 Kanebo Ltd Production of alkali-resistant fiberglass resisting high- temperature curing
CN101462876B (zh) * 2009-01-14 2012-01-04 山东大学 一种氧化锆陶瓷纤维板的制备方法
CN102557628B (zh) * 2011-12-29 2013-04-24 山东大学 一种柔性钇稳定氧化锆陶瓷纤维及其制备方法
CN102787393B (zh) * 2012-08-07 2014-05-21 山东大学 氧化锆晶体纤维制备中聚乙酰丙酮合锆前驱体纤维的压力解析方法、装置及配体回收技术
CN103127923B (zh) * 2013-03-11 2015-03-04 山东大学 一种二氧化钛-氧化锆复合纤维的制备方法
CN103993387B (zh) * 2014-05-30 2016-08-17 山东大学 一种耐超高温千米级连续氧化锆晶体纤维的制备方法

Also Published As

Publication number Publication date
CN106929927A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN106929927B (zh) 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法
WO2022247346A1 (zh) 一种氧化物高熵陶瓷纤维的制备方法
CN106179368B (zh) 一种催化性能较高具有壳核结构的LaCoO3@La(OH)3复合催化剂及其制备方法
CN104451957B (zh) 低密度SiC纳米纤维及其制备方法
CN110624558B (zh) 一种四氧化三钴与氧化锡复合物纳米线的制备方法及用途
CN101239828A (zh) 氧化锆耐火纤维的制备方法
CN109704750B (zh) 利用芦苇纤维制备中空镁铝尖晶石陶瓷纤维的方法
CN106744783A (zh) 一种石墨化空心炭微球的制备方法
CN101172856A (zh) 一种氧化锆纤维的制备方法
CN105754106A (zh) 一种氧化铝陶瓷前驱体聚合物及其制备方法
CN104291812A (zh) 一种硅氧碳/金属氧化物连续复相陶瓷纤维的制备方法
CN107587208A (zh) 一种氮化钨纳米纤维的制备方法及产品
CN111995393B (zh) 一种钛-铝聚合物前驱体制备钛酸铝陶瓷纤维的方法
CN108286087B (zh) 制备氧化铝板条增强氧化锆中空隔热纤维的方法
CN103643350B (zh) 一种Co3O4/In2O3异质结构纳米管及其制备方法与应用
CN103706350A (zh) 一种In2O3/ZnO异质结构纳米管及其制备方法与应用
CN110282976A (zh) 一种三维结构碳化铪-钛硅碳复相陶瓷的制备方法
CN101864619A (zh) 利用稻壳制备微纳米直径碳化硅短纤维和晶须的方法
CN105622095A (zh) 一种耐高温氧化锆纤维陶瓷板及其制备方法
CN113896536B (zh) 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用
CN110790274A (zh) 氮磷共掺杂多孔碳材料的制备方法及产品和应用
CN108395258B (zh) 一种利用微波烧结萝藦纤维获得氧化铝中空纤维的方法
CN113860875A (zh) 一种原位自生碳化硅纳米线网络改性碳/碳复合材料的制备方法
CN113321524A (zh) 一种基于多腔结构纤维的超高温陶瓷气凝胶的制备方法
CN109778352B (zh) 一种静电纺丝原位还原制备的Ti4O7纳米纤维及其方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant