CN106207171B - 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池 - Google Patents

一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池 Download PDF

Info

Publication number
CN106207171B
CN106207171B CN201610762436.3A CN201610762436A CN106207171B CN 106207171 B CN106207171 B CN 106207171B CN 201610762436 A CN201610762436 A CN 201610762436A CN 106207171 B CN106207171 B CN 106207171B
Authority
CN
China
Prior art keywords
preparation
graphene
molybdenum disulfide
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610762436.3A
Other languages
English (en)
Other versions
CN106207171A (zh
Inventor
黄家锐
刘小四
谷翠萍
陈玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN201610762436.3A priority Critical patent/CN106207171B/zh
Publication of CN106207171A publication Critical patent/CN106207171A/zh
Application granted granted Critical
Publication of CN106207171B publication Critical patent/CN106207171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池,制备方法步骤包括水热工序、复合工序,本发明制备方法使得片状的二硫化钼在石墨烯表面直接进行原位生长,这种材料不仅形貌独特;具有很大的比表面积,解决了石墨烯与二硫化钼的团聚问题,该材料应用于锂离子电池负极材料,有着循环稳定性好,比能量密度高等优点。

Description

一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池 负极、锂离子电池
技术领域
本发明涉及无机纳米材料技术领域,特别涉及一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池。
背景技术
随着环境日益恶化,能源问题也日益凸显,近些年对于锂离子储能材料的研究日渐常态化。锂离子电池作为一种新兴储能工具,可充分利用可再生能源,同时解决其有限制的问题,锂离子电池成本低廉,储能能力好,转换效率高,循环稳定性好。
二硫化钼二维片层结构对于锂离子的更好脱嵌提供了可能,同时二硫化钼具有相对较高的比容量(1334mAh/g),但是由于二硫化钼导电性差,以及循环稳定性差从而限制其发展。三维石墨烯结构一直被视为锂离子电池负极材料的理想结构,石墨烯三维结构极大地增强材料的导电性,而氧化石墨烯有着羰基、羧基等多种基团,可使其与其他纳米材料复合,三维氧化石墨烯有着三维石墨烯的优点,同时携带了很多基团,利于材料符合。
由于石墨烯有着导电性好,结构稳定等优点,二硫化钼与石墨烯复合材料成为一个研究热点,例如Ye Jianbo等人(J.Mater.Chem.A,2015,3,6884–6893.)通过简单的水热法合成了片状二硫化钼,此种结构比表面积大,导电性好;Jeong Jae-Min等人(Nanoscale,2015,7,324–329.)通过简单的方法合成了MoS2@C核壳结构,这种材料用于锂电池负极具有优越的循环性能。
但石墨烯作为锂离子电池负极材料也存在一些问题:石墨烯很容易由于范德华力再重新堆积到一起,影响锂离子在石墨烯中的传输,进而导致石墨烯的倍率性能下降。因此对不同方法制备石墨烯材料的结构参数及表面官能团、结构缺陷、异质原子如氮、氧、氢等如何影响其电化学储锂性能需要深入研究。在石墨烯复合材料方面,目前报道的绝大多数石墨烯复合材料仍然是石墨烯和活性材料的简单混合,在多次充放电后,活性材料可能与石墨烯分离,从而导致锂离子电池性能下降。
发明内容
鉴于现有技术存在的不足,本发明所要解决的技术问题是提供一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池,本发明利用价格低廉原料制备得到三维柱状还原氧化石墨烯,通过浸泡、复合、洗涤、干燥,得到由二硫化钼/石墨烯复合材料。本发明针对提高二硫化钼作为电极材料的循环稳定性等技术难题,提供了一种工艺简单、产率高、成本低的复合材料制备方法。
一种二硫化钼/石墨烯纳米复合材料的制备方法,步骤包括:
A、水热工序:将氧化石墨分散在水中超声制得氧化石墨烯容液,向溶液中加入硫酸,再超声混合得到混合液,然后将混合液转移到反应釜中在160~260℃下反应18~30小时,取出洗涤,得到三维柱状还原氧化石墨烯,反应条件优选在190~220℃下反应20~24小时;
所述步骤A中氧化石墨烯通过改进Hummers法合成,具体步骤为:
分别称取5.0g石墨和3.75g NaNO3放入1L的烧杯中,机械强力搅拌,缓慢加入150mL的浓硫酸,搅拌0.5小时,再缓慢加入20g的KMnO4,0.5小时加完,继续搅拌20小时后,由于反应物粘度增大,停止搅拌,得到浆糊状***物质。放置5天后,分别缓慢加入500mL去离子水和30mLH2O2,此时溶液颜色变为较明显的亮黄色,待溶液充分反应后,离心、洗涤,得到氧化石墨。
所述步骤A中混合液中氧化石墨烯的浓度为0.75~1.5g/L,优选1.0~1.25g/L;
所述步骤A中混合液中硫酸的浓度为0.8~1.7mol/L,优选1.2~1.4mol/L。
B、复合工序:将钼盐、硫源、尿素溶于水和有机溶剂的混合溶剂中,配成混合溶液,然后将三维柱状还原氧化石墨烯投入上述溶液中,在3~60℃下浸泡1天以上,优选10~30℃下浸泡1~2天;最后将混合溶液和三维柱状还原氧化石墨烯转移至水热反应釜中,在160~240℃下反应18~30小时,优选在180~210℃下反应20~24小时,产物经洗涤和干燥后,得到二硫化钼与石墨烯复合材料即二硫化钼/石墨烯纳米复合材料。
所述步骤B中钼盐选自钼酸钠、钼酸铵中的一种或两种,钼盐在混合溶液中的浓度为0.05~0.2mol/L,优选0.1~0.2mol/L;
所述步骤B中硫源选自硫代乙酰胺、硫脲、L-半胱氨酸中的一种或几种,硫源在混合溶液中的浓度为0.15~0.6mol/L,优选0.25~0.4mol/L;
所述步骤B中尿素在混合溶液中的浓度为0.15~0.6mol/L,优选0.3~0.5mol/L;
所述步骤B中三维柱状还原氧化石墨烯在混合溶液中的浓度为0.1~4.0mg/mL,优选0.6~1.2mg/mL;
所述步骤B中有机溶剂选自乙醇、DMF(N-N二甲基甲酰胺)中的一种或两种,优选DMF;所述混合溶剂中水与有机溶剂的体积比为1:3~3:1,优选1:1~1:2;
所述步骤B中干燥为真空干燥,真空干燥温度30~80℃,干燥时间4~12小时,优选在40~60℃下干燥6~10小时。
一种锂离子电池负极,由二硫化钼/石墨烯纳米复合材料制成;
一种锂离子电池,由包括二硫化钼/石墨烯纳米复合材料制成的锂离子电池负极制成。
本发明的机理:本发明以水热步骤中合成的三维还原氧化石墨烯为模板,通过在混合溶液中浸泡,三维还原氧化石墨烯上的基团将会吸附溶液中的正负离子,然后通过溶剂热法再进行原位生长。
本发明以水热工序中的三维还原氧化石墨烯为模板,将其浸泡在钼盐、硫源、尿素的混合溶液中,通过溶剂热法使得片状的二硫化钼在石墨烯表面直接进行原位生长,这种材料不仅形貌独特;具有很大的比表面积,解决了石墨烯与二硫化钼的团聚问题,该材料应用于锂离子电池负极材料,有着循环稳定性好,比能量密度高等优点。
本发明与现有技术相比具有以下优点:
(1)所制得的二硫化钼/石墨烯纳米复合材料,二硫化钼片状在石墨烯表面分布均匀;
(2)所制得的二硫化钼/石墨烯纳米复合材料性能稳定,在空气中不易变性,容易存放;
(3)所制得的二硫化钼/石墨烯纳米复合材料纳米片厚度小,产品比表面积大;
(4)所制得的二硫化钼/石墨烯纳米复合材料用作锂离子电池负极材料,具有较大的比容量和较好的循环性能;
(5)实验过程简单,对实验仪器设备要求低,原料易得到,费用低,可进行批量生产。
附图说明
图1为实施例1制备的二硫化钼/石墨烯复合材料的SEM图。
图2为实施例2制备的二硫化钼/石墨烯复合材料的SEM图。
图3为实施例2制备的二硫化钼/石墨烯复合材料的XRD图。
图4为实施例3制备的二硫化钼/石墨烯复合材料的SEM图。
图5为实施例4制备的二硫化钼/石墨烯复合材料的SEM图。
图6为实施例5制备的二硫化钼/石墨烯复合材料的SEM图。
图7为实施例5制备的二硫化钼/石墨烯复合材料作为锂离子电池负极材料在100mA/g电流密度下的循环稳定性测试图。
具体实施方式
实施例1
氧化石墨的制备:分别称取5.0g石墨和3.75g NaNO3放入1L的烧杯中,机械强力搅拌,缓慢加入150mL的浓硫酸,搅拌0.5小时,再缓慢加入20g的KMnO4,0.5小时加完,继续搅拌20小时后,反应物粘度增大,停止搅拌,得到浆糊状***物质。放置5天后,分别缓慢加入500mL去离子水和30mL H2O2,此时溶液颜色变为较明显的亮黄色,待溶液充分反应后,离心、洗涤,得到氧化石墨。
水热工序:将70mg氧化石墨烯溶于80ml去离子水中,加入7ml浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后将其转移到反应釜中,190℃恒温反应23小时,获得三维柱状还原氧化氧化石墨烯,洗涤收集。
复合工序:将0.4g钼酸钠,0.3g硫脲,0.2g尿素,溶解到混合溶剂(8ml水和8mlDMF)中,将14mg三维还原氧化石墨烯加入到上述混合溶液中,3℃浸泡3天,随后将其转移至反应釜中,210℃恒温反应30小时,将产物洗涤,60℃真空干燥7小时,收集得到二硫化钼/石墨烯复合材料。
实施例2
氧化石墨的制备方法同实施例1。
水热工序:将120mg氧化石墨烯溶于80ml去离子水中,加入6ml浓硫酸(ρ=1.84g/cm3),超声分散2小时,然后将其转移到反应釜中,160℃恒温反应20小时,获得三维柱状还原氧化氧化石墨烯,洗涤收集。
复合工序:将0.5g钼酸铵,0.4g硫代乙酰胺,0.5g尿素,溶解到混合溶剂(4ml水和12ml DMF)中,将24mg三维还原氧化石墨烯加入到上述混合溶液中,10℃浸泡1天,随后将其转移至反应釜中,200℃恒温反应18小时,将产物洗涤,30℃真空干燥12小时,收集得到二硫化钼/石墨烯复合材料。
实施例3
氧化石墨的制备方法同实施例1。
水热工序:将90mg氧化石墨烯溶于80ml去离子水中,加入9ml浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后将其转移到反应釜中,260℃恒温反应30小时,获得三维柱状还原氧化石墨烯,洗涤收集。
复合工序:将0.6g钼酸钠,0.7g硫脲,0.6g尿素,溶解到混合溶剂(12ml水和4ml乙醇)中,将18mg三维还原氧化石墨烯加入到上述混合溶液中,30℃浸泡3天,随后将其转移至反应釜中,180℃恒温反应30小时,将产物洗涤,40℃真空干燥12小时,收集得到二硫化钼/石墨烯复合材料。
实施例4
氧化石墨的制备方法同实施例1。
水热工序:将100mg氧化石墨烯溶于80ml去离子水中,加入10ml浓硫酸(ρ=1.84g/cm3),超声分散4小时,然后将其转移到反应釜中,190℃恒温反应21小时,获得三维柱状还原氧化石墨烯,洗涤收集。
复合工序:将0.2g钼酸铵,0.2g L-半胱氨酸,0.4g尿素,溶解到混合溶剂(9ml水和7ml DMF)中,将20mg三维还原氧化石墨烯加入到上述混合溶液中,40℃浸泡2天,随后将其转移至反应釜中,240℃恒温反应20小时,将产物洗涤,70℃真空干燥7小时,收集得到二硫化钼/石墨烯复合材料。
实施例5
氧化石墨的制备方法同实施例1。
水热工序:将80mg氧化石墨烯溶于80ml去离子水中,加入12ml浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后将其转移到反应釜中,220℃恒温反应19小时,获得三维柱状还原氧化石墨烯,洗涤收集。
复合工序:将0.3g钼酸钠,0.4g L-半胱氨酸,0.7g尿素,溶解到混合溶剂(8ml水和8ml乙醇)中,将16mg三维还原氧化石墨烯加入到上述混合溶液中,60℃浸泡2天,随后将其转移至反应釜中,160℃恒温反应24小时,将产物洗涤,80℃真空干燥4小时,收集得到二硫化钼/石墨烯复合材料。
将实施例5所得最终产物二硫化钼/石墨烯的复合材料作为锂离子电池的负极材料,采用复合材料、乙炔黑和CMC的质量比为80:5:15,以水作为溶剂调制成均匀浆状;将浆状物涂于铜箔之上,用刮刀将其均匀涂布成膜片状,均匀地附着于铜箔表面。制成的涂层放于烘箱中,以110℃烘干12小时;烘干完成后移入真空干燥箱中,以120℃真空干燥10小时;再将干燥后的复合材料涂层采用对辊机或者压片机等进行压片处理;采用机械裁片机裁剪电极片,以锂片作为对电极,电解液为市售1mol/L LiPF6/EC+DMC溶液,利用电池测试仪进行充放电性能测试,所得产物作为锂离子电池负极材料在100mA/g电流密度下的循环稳定性测试结果如附图7所示。由附图7可见,电池的循环稳定性好,循环100次后电池容量仍稳定在1140mAh/g。

Claims (11)

1.一种二硫化钼/石墨烯纳米复合材料的制备方法,步骤包括:
A、水热工序:将氧化石墨分散在水中超声制得氧化石墨烯溶液,向溶液中加入硫酸,再超声混合得到混合液,然后将混合液转移到反应釜中在160~260℃下反应18~30小时,取出洗涤,得到三维柱状还原氧化石墨烯,反应条件优选在190~220℃下反应20~24小时;
B、复合工序:将钼盐、硫源、尿素溶于水和有机溶剂的混合溶剂中,配成混合溶液,然后将三维柱状还原氧化石墨烯投入上述溶液中,在3~60℃下浸泡1天以上,优选10~30℃下浸泡1~2天;最后将混合溶液和三维柱状还原氧化石墨烯转移至水热反应釜中,在160~240℃下反应18~30小时,优选在180~210℃下反应20~24小时,产物经洗涤和干燥后,得到二硫化钼与石墨烯复合材料即二硫化钼/石墨烯纳米复合材料。
2.如权利要求1所述的制备方法,其特征在于:所述步骤A中混合液里氧化石墨烯的浓度为0.75~1.5g/L,优选1.0~1.25g/L。
3.如权利要求1所述的制备方法,其特征在于:所述步骤A中混合液里硫酸的浓度为0.8~1.7mol/L,优选1.2~1.4mol/L。
4.如权利要求1所述的制备方法,其特征在于:所述步骤B中钼盐选自钼酸钠、钼酸铵中的一种或两种,钼盐在混合溶液中的浓度为0.05~0.2mol/L,优选0.1~0.2mol/L。
5.如权利要求1所述的制备方法,其特征在于:所述步骤B中硫源选自硫代乙酰胺、硫脲、L-半胱氨酸中的一种或几种,硫源在混合溶液中的浓度为0.15~0.6mol/L,优选0.25~0.4mol/L。
6.如权利要求1所述的制备方法,其特征在于:所述步骤B中尿素在混合溶液中的浓度为0.15~0.6mol/L,优选0.3~0.5mol/L。
7.如权利要求1所述的制备方法,其特征在于:所述步骤B中三维柱状还原氧化石墨烯在混合溶液中的浓度为0.1~4.0mg/mL,优选0.6~1.2mg/mL。
8.如权利要求1所述的制备方法,其特征在于:所述步骤B中有机溶剂选自乙醇、DMF中的一种或两种,优选DMF;所述混合溶剂中水与有机溶剂的体积比为1:3~3:1,优选1:1~1:2。
9.如权利要求1所述的制备方法,其特征在于:所述步骤B中干燥为真空干燥,真空干燥温度30~80℃,干燥时间4~12小时,优选在40~60℃下干燥6~10小时。
10.一种锂离子电池负极,由权利要求1所述的制备方法制备的二硫化钼/石墨烯纳米复合材料制成。
11.一种锂离子电池,由包括权利要求1所述的制备方法制备的二硫化钼/石墨烯纳米复合材料制成的锂离子电池负极制成。
CN201610762436.3A 2016-08-30 2016-08-30 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池 Active CN106207171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610762436.3A CN106207171B (zh) 2016-08-30 2016-08-30 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610762436.3A CN106207171B (zh) 2016-08-30 2016-08-30 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池

Publications (2)

Publication Number Publication Date
CN106207171A CN106207171A (zh) 2016-12-07
CN106207171B true CN106207171B (zh) 2019-03-26

Family

ID=58089406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610762436.3A Active CN106207171B (zh) 2016-08-30 2016-08-30 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池

Country Status (1)

Country Link
CN (1) CN106207171B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107474469A (zh) * 2017-08-28 2017-12-15 浙江理工大学 一种二硫化钼量子点修饰的柔性传感器电极的制备方法
CN109904398A (zh) * 2017-12-08 2019-06-18 中国石油化工股份有限公司 一种二硫化钼/石墨烯复合材料
CN108520832A (zh) * 2018-04-02 2018-09-11 哈尔滨工业大学 SiQDs-MoS2/rGO复合材料及其制备方法和应用
CN109065852A (zh) * 2018-07-04 2018-12-21 上海电气集团股份有限公司 一种正极材料及其制备方法
CN110794006B (zh) * 2019-11-27 2021-05-28 西安交通大学 二硫化钼-黑磷烯复合材料在no2气体传感器件中的应用
CN112939083A (zh) * 2021-02-07 2021-06-11 哈尔滨工业大学(威海) 一种二硫化钼/四氧化三铁/石墨烯纳米片复合吸波剂及其制备方法
CN113683861A (zh) * 2021-08-24 2021-11-23 江苏中科睿赛污染控制工程有限公司 一种高耐磨性和高导热性复合材料及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142551A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯纳米片/MoS2复合纳米材料及其合成方法
CN102142541A (zh) * 2011-02-25 2011-08-03 浙江大学 一种高容量和循环性能稳定的锂离子电池电极及制备方法
CN103094563A (zh) * 2013-01-08 2013-05-08 哈尔滨工程大学 具有三维结构的石墨烯与MoS2纳米复合材料及制备方法和应用
CN104617300A (zh) * 2015-02-09 2015-05-13 天津师范大学 一种采用还原氧化石墨烯制备锂离子电池正负极材料的方法
CN104857976A (zh) * 2015-04-03 2015-08-26 浙江理工大学 一种三维二硫化钼纳米花-石墨烯复合材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142551A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯纳米片/MoS2复合纳米材料及其合成方法
CN102142541A (zh) * 2011-02-25 2011-08-03 浙江大学 一种高容量和循环性能稳定的锂离子电池电极及制备方法
CN103094563A (zh) * 2013-01-08 2013-05-08 哈尔滨工程大学 具有三维结构的石墨烯与MoS2纳米复合材料及制备方法和应用
CN104617300A (zh) * 2015-02-09 2015-05-13 天津师范大学 一种采用还原氧化石墨烯制备锂离子电池正负极材料的方法
CN104857976A (zh) * 2015-04-03 2015-08-26 浙江理工大学 一种三维二硫化钼纳米花-石墨烯复合材料及其应用

Also Published As

Publication number Publication date
CN106207171A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106207172B (zh) 一种硫化钴/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106207171B (zh) 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106207127B (zh) 一种硫化镍/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106159239B (zh) 一种硫化锰/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106229503B (zh) 一种氧化镍/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN104201380B (zh) 一种具有片层结构的纳米Ni3S2材料的制备方法
CN106252628B (zh) 一种氧化锰/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106129377B (zh) 一种三氧化二铁/石墨烯复合材料的制备方法、锂离子电池负极、锂离子电池
CN106129378A (zh) 一种二硫化锡/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN107959006A (zh) 一种木质素基硬碳/碳纳米管复合材料及其制备方法和在锂离子电池负极材料中的应用
CN109192949A (zh) 由ZIF-67多面体衍生化得到绒壳空心多面体Co9S8@MoS2的方法
CN107293710A (zh) 过渡金属氧化物/石墨烯复合材料的制备方法、锂离子电池负极、锂离子电池
CN106158405A (zh) 一种氢氧化镍/石墨烯纳米复合材料及其制备方法、超级电容器电极及超级电容器
CN106941151A (zh) 一种石墨烯复合石墨负极材料及其制备方法和应用
CN106099081A (zh) 一种四氧化三钴/石墨烯纳米复合材料及其制备方法、锂离子电池负极、锂离子电池
CN108658119A (zh) 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN104091922B (zh) Mo0.5W0.5S2纳米瓦/石墨烯电化学贮钠复合电极及制备方法
CN106654236A (zh) 一种硫掺杂三维多孔石墨烯/硫复合正极材料及其制备方法和应用
CN106328892B (zh) 一种二氧化硅/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN109037623B (zh) 一种镁二次电池的正极材料及其制备方法
CN109721108B (zh) 一种多孔硫化钴纳米花及其制备方法和应用
CN106159240B (zh) 一种硫/石墨烯纳米复合材料的制备方法、锂离子电池正极、锂离子电池
CN110492088A (zh) 一种zif-8@还原氧化石墨烯负载硫复合材料及其制备方法及锂硫电池正极和锂硫电池
CN110002500A (zh) 一种聚丙烯酸钠协助制备二硫化钼花球的方法及应用
CN106169581B (zh) 一种四硫化三铁/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant