CN106133118B - 使用co2转化甲烷蒸汽重整合成气的方法 - Google Patents

使用co2转化甲烷蒸汽重整合成气的方法 Download PDF

Info

Publication number
CN106133118B
CN106133118B CN201580011184.4A CN201580011184A CN106133118B CN 106133118 B CN106133118 B CN 106133118B CN 201580011184 A CN201580011184 A CN 201580011184A CN 106133118 B CN106133118 B CN 106133118B
Authority
CN
China
Prior art keywords
steam reforming
catalyst
gas
methane steam
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201580011184.4A
Other languages
English (en)
Other versions
CN106133118A (zh
Inventor
阿加丁·柯·马马多夫
沙希德·谢赫
克拉克·戴维·雷亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Basic Industries Corp
Original Assignee
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Basic Industries Corp filed Critical Saudi Basic Industries Corp
Publication of CN106133118A publication Critical patent/CN106133118A/zh
Application granted granted Critical
Publication of CN106133118B publication Critical patent/CN106133118B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/86Carbon dioxide sequestration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

在一个实施方式中,一种制备C2+烃的方法包括:在620至650℃的温度下的等温条件下,在接触区中使包含甲烷蒸汽重整气体和额外的二氧化碳的进料与氧化锰‑氧化铜催化剂接触,以产生产物合成气;以及在费‑托催化剂的存在下,将所述产物合成气转化为C2+烃;其中所述甲烷蒸汽重整气体具有大于3的初始H2:CO体积比;其中所述产物合成气具有1.5至3的H2:CO体积比;并且其中所述接触进一步包括除去水。

Description

使用CO2转化甲烷蒸汽重整合成气的方法
技术领域
本公开涉及用于增加甲烷蒸汽重整合成气(methane steam reforming syngas)的一氧化碳含量的方法。
背景技术
合成气体(本文中也称为合成气)是含有氢气(H2)和一氧化碳(CO)的气体混合物,其可以进一步包含其它气体组分如二氧化碳(CO2)、水(H2O)、甲烷(CH4)、氮(N2)中的一种或多种。在过去的几十年中,由于合成气成功地用作合成燃料以及用于许多化学过程,如甲醇、氨的合成,费-托(Fischer-Tropsch)型合成和其它烯烃合成,加氢甲酰化反应,羰基化反应,钢铁生产中铁氧化物的还原等,已经开发了许多种方法以产生合成气。
天然气和(轻质)烃是用于制备合成气的主要起始材料。例如,合成气可以使用甲烷作为主导原料通过蒸汽重整、部分氧化、CO2重整或通过所谓的自热重整反应来生产。通过甲烷的蒸汽重整生产合成气是最广泛应用的生产合成气的方法,与此相关的缺点之一是所产生的气体混合物的组成由反应化学计量局限于3或更高,例如大于或等于5的H2/CO比率。
本领域中仍然存在对于将CO2转化为合成气以使H2/CO比率小于3的方法的需要。
发明内容
本文公开的是转化甲烷蒸汽重整合成气的方法。
在一个实施方式中,一种制备C2+烃的方法包括:在620至650摄氏度(℃)的温度下的等温条件下,在接触区中,使包含甲烷蒸汽重整气体和额外的二氧化碳的进料与氧化锰-氧化铜催化剂接触以产生产物合成气;和在费-托催化剂的存在下将产物合成气转化为C2+烃;其中甲烷蒸汽重整气体具有大于3的初始H2:CO体积比;其中产物合成气具有1.5至3的H2:CO体积比;并且其中所述接触进一步包含去除水。
在另一个实施方式中,一种调整甲烷蒸汽重整气体中H2:CO比率的方法包括:在转化区中使甲烷蒸汽重整气体和额外的二氧化碳接触,其中甲烷蒸汽重整气体包含CO和H2并且具有大于或等于4的H2:CO比率;和在氧化锰-氧化铜催化剂的存在下使CO2和H2反应,以生产具有小于或等于2.5的H2:CO比率的产物流股;以及从接触区除去水。
通过以下的具体实施方式来举例说明上述及其它特征。
具体实施方式
申请人发现,他们可以使包含由甲烷蒸汽重整过程生产的合成气和额外的二氧化碳的进料气体与催化剂(例如,氧化锰催化剂)接触以产生具有1.5至3,优选2至2.5的H2/CO比率的产物气体,使得该产物气体可以用于费-托反应。因此,由甲烷蒸汽重整过程生产的合成气中可用的过量氢气被有利地利用以优化所形成的一氧化碳的量。申请人出乎意料地发现,通过在620至650℃的增加的温度的等温条件下进行该反应,他们能够实现增加的转化和减少的焦化中的一种或两种。
接触进料包含甲烷蒸汽重整气体和额外的二氧化碳。甲烷蒸汽重整气体包含氢气、一氧化碳和二氧化碳。甲烷蒸汽重整气体中H2与CO的体积比可以大于或等于3,优选大于或等于5。例如,甲烷蒸汽重整气体可以包含14体积(vol%)的CO、8vol%的CO2和78vol%的H2
可以通过在蒸汽甲烷重整器中将包含甲烷的气体(诸如天然气)通过等式(1)和(2)转化为包含一氧化碳、二氧化碳、氢气、未反应的甲烷和水的混合物,来形成甲烷蒸汽重整气体:
天然气可以以大于或等于75摩尔百分数(mol%),优选80至97mol%的量包含甲烷。天然气还可以含有其它气态烃,如乙烷(通常以基于天然气的总摩尔3至5mol%的量)、丙烷、丁烷和少量的高级烃(通常基于天然气的总摩尔少于5mol%)以及变化量的含硫气体如硫化氢。还可以存在更少量(或甚至微量)的氮气、氦气、二氧化碳、水、加臭剂(odorant)、和金属如汞。天然气的确切组成因其来源而不同。需要注意的是,在重整之前可以除去含硫气体,优选地将硫含量降低到低于按体积计1份每百万份的量。
甲烷蒸汽重整可以在高温,优选450至1,100℃,更优选700至950℃,更优选850至900℃下;在1至4兆帕斯卡(MPa),优选3至4MPa的压力下;以及在重整催化剂如基于镍的催化剂的存在下发生。
可以以2至4的体积比将甲烷蒸汽重整气体和额外的二氧化碳加入接触区。H2与总CO2的体积比可以为1至2,其中总CO2等于甲烷蒸汽重整气体中存在的CO2加额外的CO2中的CO2。甲烷蒸汽重整气体和额外的二氧化碳可以作为两个独立的流股进料到接触区中,或者可以在进料到接触区中之前进行结合。
接触区可以是反应器,如连续固定床反应器。接触区的壁可以不含镍或可以内衬有惰性材料如玻璃,因为镍在甲烷化反应中可以具有催化活性。
接触可以发生在等温或绝热条件下。接触可以发生在620至650℃、优选630至650℃、更优选640至650℃的等温条件下。接触可以发生在0.1至6MPa、优选1.5至5MPa、更优选2至4MPa的压力下。进料和氧化锰催化剂之间的接触时间可以是0.5至6秒(s),优选1.5至5s,更优选2至4s。
在接触的过程中,至少部分二氧化碳通过逆水煤气变换反应(reverse water gasshift)(RWGS)转化为一氧化碳。因此,产物气体包含一氧化碳、水、未转化的二氧化碳和氢气。在氢气过量的情况下,这可以由以下等式(3)来表示:
从产物流股中除去该反应中形成的水以期望的方向驱动反应的平衡,因为水经常干扰利用合成气的后续反应。可以通过例如冷凝、液体/气体分离等从产物流股中除去水。可以除去水以使接触区中存在小于或等于0.05vol%水。
额外的二氧化碳可以来源于各种来源。额外的二氧化碳可以来自,例如来自同一位置的工厂,例如来自氨合成,(可选地具有(非催化)调整的气体组成)或在从气体流股中回收二氧化碳之后的废气流股。将这种二氧化碳再循环作为起始材料有助于减少(从化学生产地)排入到大气中的二氧化碳量。额外的二氧化碳还可以至少部分地从接触区的流出气体中除去并且在额外的二氧化碳中再循环回到该区域中。
氧化锰催化剂可以包含氧化锰,例如MnO2、Mn2O3、Mn3O4或包括上述的一种或多种的组合。氧化锰催化剂可以包含第二金属氧化物,其中第二金属可以包括镧(La)、钙(Ca)、钾(K)、钨(W)、铜(Cu)、铝(Al)或包括上述的一种或多种的组合。第二金属氧化物可以包含氧化镧。第二金属可以包含铜并且在本文中称为氧化锰-氧化铜催化剂。锰与第二金属的比率可以为4:1至1:4,优选3:1至1:3,更优选1:2至2:1,更加优选1:1.5至1.5:1,更加优选1:1。
锰和第二金属中的一种或两种的金属来源可以是在高温下与氧交换从而使金属化合物变为金属氧化物的组,例如硝酸盐、卤化物、有机酸、无机酸、氢氧化物、碳酸盐、卤氧化物(oxyhalide)、硫酸盐、或包括上述中一种或多种的组合。
所述氧化锰催化剂可以是载体催化剂。载体材料可以是惰性载体如氧化铝(如Al2O3)、氧化镁(如MgO)、二氧化硅、二氧化钛、氧化锆、或包括上述中的一种或多种的组合。基于金属氧化物和载体的总重量,氧化锰催化剂可以包含40至95重量百分数(wt%)、优选50至90wt%、更优选60至85wt%的载体。基于金属氧化物和载体的总重量,氧化锰催化剂可以包含1至50wt%、优选5至30wt%、更优选5至15wt%的锰。基于金属氧化物和载体的总重量,氧化锰催化剂可以包含1至30wt%、优选2.5至25wt%,更优选7.5至12.5wt%、更加优选10wt%的锰。基于金属氧化物和载体的总重量,氧化锰催化剂可以包含0.1至95wt%、优选1至30wt%、更优选2.5至25wt%、更优选5至20wt%、根据优选5至15wt%、更加优选7.5至12.5wt%、更加优选10wt%的第二金属。基于氧化锰催化剂和载体的总重量,氧化锰催化剂可以包含0.1至95wt%、优选0.1至50wt%、更优选1至10wt%、更加优选2至8wt%的铜。
氧化锰催化剂可以是成型的催化剂,并且可以通过如将载体和可选的铬压片、制粒或挤出成形如球、片、粒料、挤出物等的方法来制备。如果在成型的过程中不存在金属氧化物,则可以将金属浸渍到载体上。然后,可以干燥和/或煅烧成型的催化剂。成型的催化剂可以是例如球形粒料、挤出物、片、环等形状。成型的催化剂可以是具有5微米至15毫米(mm)的平均直径的球。成型的催化剂可以是具有0.5至10mm的平均直径和1至15mm的平均长度的挤出物。
氧化锰催化剂在等温条件下可以具有至少50%、优选至少55%、更优选至少60%的二氧化碳(CO2)转化率。
产物合成气具有1.5至3,优选2至2.5的H2:CO体积比。产物合成气可以用于费-托反应(下文称为转化反应)中以将一氧化碳和氢转化为C2+烃,优选转化为C2-6烃。需要注意的是,C2+烃是指包含2个或更多个碳原子的烃。C2+烃可以是脂肪族和/或芳香族烃。
在转化反应之前和/或过程中可以将产物合成气与分子氧结合。氧可以以至少0.1mol%、优选0.2至5mol%、更优选0.3至2.5mol%、更加优选0.35至1mol%、更加优选0.35至0.5mol%的量存在于转化反应中。同样地,转化反应可以不存在氧。
在转化反应中可以存在惰性气体,其中如本文中使用的术语“惰性气体”涉及在其中费-托催化剂(本文中也被称为转化催化剂)与产物合成气接触的条件下处于气相并且不参与和/或干扰费-托反应的任何元素。优选地,惰性气体包含氮气(N2)。
转化反应可以在100至400℃、优选275至350℃、更优选150至300℃、更加优选150至230℃的温度下发生。同样地,转化反应优选地可以在300至400℃、优选330至350℃的温度下发生。转化反应可以在400至1200倒数小时(h-1)的合成气的总空速下发生。
转化反应可以在转化催化剂的存在下发生。转化催化剂可以包含金属氧化物,其中金属可以包括钴、铁、钌、镍、或包括上述中的一种或多种的组合。转化催化剂可以包含第二金属氧化物。第二金属可以包括钾、铜、锰、铬、钼、钒、或包括上述中的一种或多种的组合。如果在转化反应中存在氧气,那么转化催化剂可以不含锰、铬、钼、铜和钒。转化催化剂可以包含载体如氧化铝(Al2O3)、二氧化硅(SiO2)、二氧化钛(TiO2)、氧化锆(ZrO2)、氧化镁(MgO)、或包括上述中的一种或多种的组合。
实施例
实施例1:氧化锰催化剂制备
使用共沉淀法用氧化铝(Al2O3)载体制备氧化锰催化剂。具体地,在1000mL烧杯中,在400rpm的搅拌下,10.53g的Mn(NO3)2·4H2O、8.15g的Cu(NO3)2·3H2O和135.2g的Al(NO3)3·9H2O。以小份向该盐混合物中加入20wt%的NH4OH溶液,直到所得到的浆料的pH被调整到pH 9.0。然后,将浆料搅拌10分钟以稳定pH。如果存在任何偏差,那么向浆料中加入更多的20wt%的NH4OH溶液,以将pH保持恒定在pH 9.0。然后使用加热旋钮设定在位置#10的Cimarac-II加热罩(heating mantle)加热混合物。当温度达到70℃时,将加热旋钮设定回位置#3。将混合物的温度稳定在75±3℃并且保持在该温度下30分钟。然后停止搅拌和加热混合物,并且将浆料冷却到室温并在真空下过滤。然后将催化剂前体在真空下保持30分钟直到所有的水被排干。将滤饼转移到瓷皿中并且放置于加热炉中用于煅烧。以5℃/分钟的速度将催化剂前体加热最高至干燥温度125℃并且在该温度下保持6小时。随后,在3.0升每分钟(L/min)的空气流中,以10℃/分钟将催化剂前体加热最高至温度250℃ 6小时。随后,在3.0L/min的空气流中,以10℃/分钟将催化剂前体加热最高到温度650℃。然后,将固体催化剂粉碎成粉末,并且通过具有20至50目筛目值的筛子过筛,以形成产物。
基于总氧化锰催化剂重量加上粘合剂,所得到的氧化锰催化剂具有10wt%的Mn含量和5wt%的Cu含量。
实施例2:氧化锰催化剂性能对温度的依赖性
在不同的温度下测试了氧化锰催化剂的性能,其中将26.2cc/min的,包含14体积百分数(vol%)的CO、8vol%的CO2和78vol%的H2的共混气体以及6.2立方厘米每分钟(cc/min)的额外CO2导入到2g实施例1的氧化锰催化剂。在运行18天后,将甲烷蒸汽重整气体和额外的CO2的流速分别调整为34cc/min和8.5cc/min。转化数据列表于表1中。
实施例3:在630℃下的氧化锰催化剂性能
研究了实施例1的氧化锰催化剂的长期稳定性,其中将26.2cc/min的,包含14vol%的CO、8vol%的CO2和78vol%的H2的共混气体和6.7cc/min的额外CO2导入到反应器中。转化数据列表于表2中。
表2显示,甚至在运行136天之后,630℃下的氧化锰催化剂活性未降低。
下面阐述的是本发明方法的一些实施方式。
实施方式1:一种调整甲烷蒸汽重整气体中的H2:CO比率的方法,包括:在620至650℃的温度下的等温条件下,在接触区中使甲烷蒸汽重整气体和额外的二氧化碳接触,其中甲烷蒸汽重整气体包含CO和H2并且具有大于或等于4的H2:CO比率;和在氧化锰-氧化铜催化剂的存在下使CO2和H2反应以产生具有小于或等于2.5的H2:CO比率的产物合成气;和从接触区除去水。
实施方式2:实施方式1的方法,进一步包括在费-托催化剂的存在下将产物合成气转化为C2+烃。
实施方式3:一种制备C2+烃的方法,包括:在620至650℃的温度下的等温条件下,在接触区中使包含甲烷蒸汽重整气体和额外二氧化碳的进料与氧化锰-氧化铜催化剂接触,以产生产物合成气;和在费-托催化剂的存在下,将产物合成气转化为C2+烃;其中甲烷蒸汽重整气体具有大于3的初始H2:CO体积比;其中产物合成气具有1.5至3的H2:CO体积比;并且其中,接触进一步包括除去水。
实施方式4:实施方式2-3中任一项的方法,其中C2+烃是C2-6烃。
实施方式5:实施方式2-4中任一项的方法,其中转化在分子氧的存在下发生。
实施方式6:实施方式2-4中任一项的方法,其中转化在不存在分子氧的情况下发生。
实施方式7:实施方式2-6中任一项的方法,其中转化在100至400℃的温度下进行。
实施方式8:实施方式2-7中任一项的方法,其中费-托催化剂包含金属氧化物,其中金属包括钴、铁、钌、镍、或包括上述中的一种或多种的组合。
实施方式9:实施方式2-8中任一项的方法,其中费-托催化剂包含第二金属氧化物。
实施方式10:实施方式9的方法,其中第二金属包括钾、铜、锰、铬、钼、钒、或包括上述中的一种或多种的组合。
实施方式11:实施方式9的方法,其中费-托催化剂不含锰、铬、钼、铜和钒。
实施方式12:实施方式2-11中任一项的方法,其中费-托催化剂包含载体,并且其中载体包含氧化铝、二氧化硅、二氧化钛、氧化锆、氧化镁、或者包括上述中的一种或多种的组合。
实施方式13:实施方式1-12中任一项的方法,其中去除水去以使接触区中存在小于或等于0.05vol%的水。
实施方式14:实施方式1-13中任一项的方法,其中初始H2:CO体积比大于5。
实施方式15:实施方式1-14中任一项的方法,进一步包括在基于镍的催化剂的存在下将甲烷进料转化为甲烷蒸汽重整气体。
实施方式16:实施方式15的方法,其中甲烷进料包含天然气。
实施方式17:实施方式15-16中任一项的方法,其中基于甲烷进料的总摩尔数,甲烷进料包含大于或等于75mol%的甲烷。
实施方式18:实施方式17的方法,其中基于甲烷进料的总摩尔数,甲烷进料包含80至97mol%的甲烷。
实施方式19:实施方式15-18中任一项的方法,其中甲烷进料包含硫污染物并且其中所述方法进一步包括将含硫污染物的量降低到小于按体积计1份每百万份的量。
实施方式20:实施方式2-19中任一项的方法,其中转化在450至1100℃的温度和1至4MPa的压力下发生。
实施方式21:实施方式1-20中任一项的方法,进一步包含以2至4的体积比添加甲烷蒸汽重整气体和额外的二氧化碳。
实施方式22:实施方式1-21中任一项的方法,其中H2与总CO2的体积比为1至2,其中总CO2等于甲烷蒸汽重整气体中存在的CO2加上额外的CO2中的CO2
实施方式23:实施方式1-22中任一项的方法,其中接触区不含镍。
实施方式24:实施方式1-23中任一项的方法,其中接触区内衬有惰性材料。
实施方式25:实施方式1-24中任一项的方法,其中接触发生在0.1至6MPa的压力下。
实施方式26:实施方式1-25中任一项的方法,其中进料与氧化锰-氧化铜催化剂之间的接触时间为0.5至6秒。
实施方式27:实施方式1-26中任一项的方法,其中氧化锰-氧化铜催化剂包含载体。
实施方式28:实施方式27的方法,其中基于金属氧化物和载体的总重量,氧化锰-氧化铜催化剂包含40至95wt%的载体。
实施方式29:实施方式27-28中任一项的方法,其中载体包含氧化铝、氧化镁、二氧化硅、二氧化钛、氧化锆或包括上述中的一种或多种的组合。载体可以包含氧化铝。
实施方式30:实施方式27-29中任一项的方法,其中基于氧化锰-氧化铜催化剂和载体的总重量,氧化锰-氧化铜催化剂包含1至50wt%的锰。
实施方式31:实施方式27-30中任一项的方法,其中基于氧化锰-氧化铜催化剂和载体的总重量,氧化锰-氧化铜催化剂包含0.1至95wt%的镧。
实施方式32:实施方式27-31中任一项的方法,其中基于氧化锰-氧化铜催化剂和载体的总重量,氧化锰-氧化铜催化剂包含0.1至95wt%、具体地0.1至50wt%、更具体地1至10wt%、更加具体地2至8wt%的铜。
实施方式33:实施方式1-32中任一项的方法,其中产物合成气具有2至2.5的H2:CO体积比。
实施方式34:实施方式1-33中任一项的方法,其中接触处于630至650℃的温度下。
实施方式35:实施方式1-34中任一项的方法,其中接触处于640至650℃的温度下。
通常,本发明可以可替换地包含本文所公开的任何适当的组分,由其组成,或基本上由其组成。本发明可以另外地或可替换地配制以便不含或基本上不含现有技术组合物中使用的或者另外不是实现本发明的功能和/或目标所需要的任何组分、材料、成分、佐剂或物质。
本文公开的所有范围均包括端点,并且端点可以彼此独立地组合(例如,范围“最高达25wt%,或更优选5至20wt%”包括端点以及“5至25wt%”范围内的所有中间值等)。“组合”包括共混物、混合物、合金、反应产物等。另外,本文中的术语“第一”、“第二”等不表示任何顺序、数量或重要性,而是用于表示区分一种元素与另一种元素。本文中使用的术语“一个”、“一种”和“该”不表示限制数量并且应被解释为包括单数和复数,除非本文另有指明或与上下文明显矛盾。在本文中使用的后缀“(s)”旨在包含其所修饰的术语的单数和复数,由此包括一个或多个该术语(例如,膜(film(s))包括一个或多个膜)。在整个说明书中,提及“一个实施方式”、“另一个实施方式”、“实施方式”等是指与实施方式相关描述的特定元素(例如,特征、结构和/或特性)包括在本文所描述的至少一个实施方式中,并且可以存在或不存在于其它实施方式中。另外,应当理解的是,所描述的元素可以以任何适合的方式组合在各个实施方式中。
虽然已经描述了特定的实施方式,但申请人或其他本领域技术人员可以想到当前未预见的或可能未预见的替代、修改、改变、改进或实质等效物。因此,所提交的以及可能修改的所附权利要求旨在包括所有此类替代、修改、改变、改进和实质等效物。
公开了除了较宽范围之外的较窄范围不是对较宽范围的放弃。

Claims (15)

1.一种制备C2+烃的方法,包括:
在620至650℃的温度下的等温条件下,在接触区中使包含甲烷蒸汽重整气体和额外的二氧化碳的进料与氧化锰-氧化铜催化剂接触,以产生产物合成气;以及
在费-托催化剂的存在下将所述产物合成气转化为C2+烃;
其中,所述甲烷蒸汽重整气体具有大于3的初始H2:CO体积比;其中,所述产物合成气具有1.5至3的H2:CO体积比;并且其中,所述接触进一步包括除去水。
2.根据权利要求1所述的方法,其中,除去水以使所述接触区中存在小于或等于0.05vol%的水。
3.根据权利要求1-2中任一项所述的方法,其中,所述初始H2:CO体积比大于5。
4.根据权利要求1-2中任一项所述的方法,进一步包括在基于镍的催化剂的存在下将甲烷进料转化为所述甲烷蒸汽重整气体。
5.根据权利要求1-2中任一项所述的方法,进一步包括以2至4的体积比添加所述甲烷蒸汽重整气体和所述额外的二氧化碳。
6.根据权利要求1-2中任一项所述的方法,其中,H2与总CO2的体积比为1至2,其中所述总CO2等于存在于所述甲烷蒸汽重整气体中的CO2加上所述额外的二氧化碳中的CO2
7.根据权利要求1-2中任一项所述的方法,其中,所述接触在0.1至6MPa的压力,以及所述进料与所述氧化锰-氧化铜催化剂之间的接触时间为0.5至6秒中的一种或两种下发生。
8.根据权利要求1-2中任一项所述的方法,其中基于金属氧化物和载体的总重量,所述氧化锰-氧化铜催化剂包含40至95wt%的载体。
9.根据权利要求8所述的方法,其中,基于所述氧化锰-氧化铜催化剂和载体的总重量,所述氧化锰-氧化铜催化剂包含1至50wt%的锰和0.1至95wt%的铜中的一种或两种。
10.根据权利要求1-2中任一项所述的方法,其中,所述产物合成气具有2至2.5的H2:CO体积比。
11.根据权利要求1-2中任一项所述的方法,其中,所述C2+烃是C2-6烃。
12.根据权利要求1-2中任一项所述的方法,其中,所述费-托催化剂包含含有金属的金属氧化物,并且其中,所述金属包括钴、铁、钌、镍、或包括上述中的一种或多种的组合。
13.一种调整甲烷蒸汽重整气体中的H2:CO比率的方法,包括:
在620至650℃的温度下的等温条件下,在接触区中使甲烷蒸汽重整气体和额外的二氧化碳接触,其中,所述甲烷蒸汽重整气体包含CO和H2并且具有大于或等于4的H2:CO比率;以及
在氧化锰-氧化铜催化剂的存在下使CO2和H2反应以生产具有小于或等于2.5的H2:CO比率的产物流股;以及
从所述接触区除去水。
14.根据权利要求13所述的方法,进一步包括在费-托反应中使用所述产物流股。
15.根据权利要求13-14中任一项所述的方法,其中,所述接触处于630至650℃的温度下。
CN201580011184.4A 2014-04-03 2015-03-31 使用co2转化甲烷蒸汽重整合成气的方法 Expired - Fee Related CN106133118B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461974526P 2014-04-03 2014-04-03
US61/974,526 2014-04-03
PCT/US2015/023589 WO2015153610A1 (en) 2014-04-03 2015-03-31 Process for converting of methane stream reforming syngas with co2

Publications (2)

Publication Number Publication Date
CN106133118A CN106133118A (zh) 2016-11-16
CN106133118B true CN106133118B (zh) 2018-03-23

Family

ID=52829462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580011184.4A Expired - Fee Related CN106133118B (zh) 2014-04-03 2015-03-31 使用co2转化甲烷蒸汽重整合成气的方法

Country Status (4)

Country Link
US (1) US9714167B2 (zh)
EP (1) EP3155070A1 (zh)
CN (1) CN106133118B (zh)
WO (1) WO2015153610A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141143A1 (en) * 2016-02-16 2017-08-24 Sabic Global Technologies B.V. Conversion of methane steam reforming gas composition with co2 for the production of syngas composition for oxosynthesis
WO2018015827A1 (en) * 2016-07-18 2018-01-25 Sabic Global Technologies B.V. Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of copper-manganese-aluminum mixed metal oxide catalysts
CN106564860B (zh) * 2016-11-02 2018-10-02 昆明理工大学 一种冶金炉窑烟气与甲烷重整制取合成气的方法
CN107585739B (zh) * 2017-08-30 2019-06-18 华中科技大学 一种基于微波重整甲烷蒸汽的车载制氢装置
WO2019110268A1 (en) * 2017-12-08 2019-06-13 Haldor Topsøe A/S A plant and process for producing synthesis gas
BR112020011312A2 (pt) 2017-12-08 2020-11-17 Haldor Topsøe A/S processo e sistema para a produção de gás de síntese
US11932538B2 (en) 2017-12-08 2024-03-19 Haldor Topsøe A/S Process and system for reforming a hydrocarbon gas
CN110357759B (zh) * 2019-07-04 2021-02-12 华南理工大学 一种利用储氢合金氢化物在室温下实现二氧化碳甲烷化的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256687A (zh) * 2008-12-17 2011-11-23 沙特基础工业公司 增加合成气混合物中一氧化碳含量的方法
US8551434B1 (en) * 2012-06-29 2013-10-08 Saudi Basic Industries Corporation Method of forming a syngas mixture

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB335632A (en) 1929-07-02 1930-10-02 British Celanese Improvements in or relating to the treatment of mixtures containing carbon dioxide and hydrogen for the purpose of reducing or eliminating hydrogen content, and to the formation of carbon monoxide therefrom
US3479149A (en) 1963-09-10 1969-11-18 Mobil Oil Corp Process for reducing carbon dioxide with hydrogen to carbon monoxide
US4216194A (en) 1975-11-06 1980-08-05 Phillips Petroleum Company Method of producing methane and carbon
GB2168718B (en) 1984-10-29 1988-06-29 Humphreys & Glasgow Ltd Process for the production of synthesis gas and its utilisation
US5346679A (en) 1991-08-15 1994-09-13 Agency Of Industrial Science & Technology Method for reduction of carbon dioxide, catalyst for the reduction, and method for production of the catalyst
DK169615B1 (da) 1992-12-10 1994-12-27 Topsoe Haldor As Fremgangsmåde til fremstilling af carbonmonoxidrig gas
JP2847018B2 (ja) 1993-06-25 1999-01-13 株式会社コスモ総合研究所 二酸化炭素還元反応触媒
US6303092B1 (en) 1995-04-10 2001-10-16 Air Products And Chemicals, Inc. Process for operating equilibrium controlled reactions
JP3676300B2 (ja) 1999-10-01 2005-07-27 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド ヒドロタルサイト−誘導ニッケル触媒を使用する合成ガスの製造
FR2806073B1 (fr) 2000-03-07 2002-06-07 Air Liquide Procede de production de monoxyde de carbone par retroconversion inverse avec un catalyseur adapte
DE10252103A1 (de) 2002-11-08 2004-05-27 Süd-Chemie AG Ce/Cu/Mn-Katalysatoren
EP1445235B1 (en) 2003-02-05 2012-03-07 Haldor Topsoe A/S Process for treatment of synthesis gas
WO2007041440A2 (en) * 2005-10-03 2007-04-12 The Brigham And Women's Hospital, Inc. Anti-inflammatory actions of neuroprotectin d1/protectin d1 and its natural stereoisomers
CN1880414A (zh) 2006-05-17 2006-12-20 成都恒新威石化科技有限公司 一种利用逆水煤气变换技术优化合成气组分的方法和流程
EA016492B9 (ru) 2007-04-27 2012-07-30 Сауди Бейсик Индастриз Корпорейшн Каталитическая конверсия диоксида углерода в смесь синтез-газа
EA016496B9 (ru) 2007-06-25 2012-07-30 Сауди Бейсик Индастриз Корпорейшн Способ получения смеси синтез-газа
EP2184105A1 (en) 2008-11-05 2010-05-12 Süd Chemie - Catalysts Italia S.R.L. Mixed oxides catalysts
US8962702B2 (en) 2011-12-08 2015-02-24 Saudi Basic Industries Corporation Mixed oxide based catalyst for the conversion of carbon dioxide to syngas and method of preparation and use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256687A (zh) * 2008-12-17 2011-11-23 沙特基础工业公司 增加合成气混合物中一氧化碳含量的方法
US8551434B1 (en) * 2012-06-29 2013-10-08 Saudi Basic Industries Corporation Method of forming a syngas mixture

Also Published As

Publication number Publication date
WO2015153610A1 (en) 2015-10-08
US9714167B2 (en) 2017-07-25
EP3155070A1 (en) 2017-04-19
US20170015549A1 (en) 2017-01-19
CN106133118A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106133118B (zh) 使用co2转化甲烷蒸汽重整合成气的方法
JP5592250B2 (ja) 二酸化炭素の合成ガスへの接触水素化
CN103974767B (zh) 用于将二氧化碳转化成合成气的基于混合氧化物的催化剂及制备和使用方法
US8551434B1 (en) Method of forming a syngas mixture
US20240139718A1 (en) Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same
JP5411133B2 (ja) 二酸化炭素の合成ガスへの接触水素化
RU2516546C2 (ru) Способ эксплуатации реактора для высокотемпературной конверсии
JP2011529394A (ja) 天然ガス及び二酸化炭素からの合成ガス製造用触媒及びその製造方法
US20160332874A1 (en) Method for carbon dioxide hydrogenation of syngas
US9688593B2 (en) Method for carbon dioxide hydrogenation of syngas and the integration of the process with syngas conversion processes
CN105593160A (zh) 在绝热金属反应器中氢化co2的方法
JPS5948140B2 (ja) 炭化水素の水蒸気改質用触媒
KR20150129566A (ko) 천연가스의 복합 개질반응용 니켈계 촉매
WO2018020345A1 (en) Process for producing oxo-synthesis syngas composition by high-pressure hydrogenation of c02 over spent chromium oxide/aluminum catalyst
JPS59189937A (ja) メタノ−ルの水蒸気改質用触媒の製造法
WO2018015828A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of used chromium oxide supported catalysts
WO2018015829A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas applicable for methanol synthesis
WO2018020343A1 (en) Process for producing an oxo-synthesis syngas composition by high-pressure hydrogenation over a chromium oxide/aluminum supported catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180323

Termination date: 20190331

CF01 Termination of patent right due to non-payment of annual fee