CN106064833A - 一种由钼精矿制备2H‑MoS2纳米片的方法 - Google Patents

一种由钼精矿制备2H‑MoS2纳米片的方法 Download PDF

Info

Publication number
CN106064833A
CN106064833A CN201610361918.8A CN201610361918A CN106064833A CN 106064833 A CN106064833 A CN 106064833A CN 201610361918 A CN201610361918 A CN 201610361918A CN 106064833 A CN106064833 A CN 106064833A
Authority
CN
China
Prior art keywords
mos
nanometer sheet
prepared
molybdenum concntrate
micropowder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610361918.8A
Other languages
English (en)
Inventor
唐军利
崔玉青
席莎
周新文
何凯
朱琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinduicheng Molybdenum Co Ltd
Original Assignee
Jinduicheng Molybdenum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinduicheng Molybdenum Co Ltd filed Critical Jinduicheng Molybdenum Co Ltd
Priority to CN201610361918.8A priority Critical patent/CN106064833A/zh
Publication of CN106064833A publication Critical patent/CN106064833A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Abstract

本发明公开了一种由钼精矿制备2H‑MoS2纳米片的方法,先将钼精矿放置在气流粉碎机中,粉碎成超细粉;然后将超细粉加入到H2O2中,再加入乙醇并搅拌混匀,静置分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥,得到2H‑MoS2纳米片。本发明采用钼精矿在常压下操作制备2H‑MoS2纳米片,该方法工艺简单、制备效率高,且整个过程能耗低、无污染,对环境友好,能够广泛适用于工业生产,制备出的2H‑MoS2纳米片可广泛应用于能量储存与转化、催化、润滑以及各种复合材料等领域。

Description

一种由钼精矿制备2H-MoS2纳米片的方法
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种由钼精矿制备2H-MoS2纳米片的方法。
背景技术
MoS2是一种典型的过渡金属层状化合物,具有1T、2H、3R三种晶体结构:1T-MoS2为亚稳性,晶型结构具有金属性,Mo原子为八面体配位,晶胞由1个S-Mo-S单分子层组成。2H-MoS2为稳定相,晶型结构具有半导体性和润滑性,Mo原子为三角棱柱配位,晶胞由2个S-Mo-S单分子层组成,天然产出的钼矿为2H型,常温下存在典型的层状结构。3R-MoS2也为亚稳性,Mo原子为三角棱柱配位,晶胞由3个S-Mo-S单分子层组成。只有2H-MoS2具有优异的润滑性、半导体特性,当其变为超薄二维结构材料时,MoS2的禁带宽度随着其层数的较小而增加,到单层时,不但其禁带宽度由体相材料时的1.29eV增加至1.90eV,而且电子能带结构也由非直接带隙变为直接带隙。
单层的MoS2相比零带隙的石墨烯,在光电子器件方面,表现出更为优异的特性,使得人们有望得到比硅芯片更薄的一种新型的MoS2芯片。此外,MoS2因其固有的二维层状结构能够方便锂离子的嵌脱而使得其在锂离子电池中具有较高的电化学储锂性能,并得到了人们的广泛关注,在催化剂方面,二维结构的MoS2也具有更广阔的应用前景。
目前MoS2纳米片的制备方法主要分为微机械剥离法、锂离子插层法、液相超声剥离法、水热法以及CVD法等。微机械剥离法工艺简单,剥离效率高,但产量低和重复性差。锂离子插层剥离法的剥离效率高,但制备方法复杂,插层剂对环境敏感,生产成本高,制备时间较长。液相超声剥离法简单快捷,能够适合大规模生产,但一般剥离程度不高,得到纳米片溶液浓度较小,对超声条件依赖性高。水热法具有操作简单、条件温和、污染小等优点,但反应过程中纳米粒子易团聚,很难控制合成单层的纳米片,CVD法一般得到的晶体结晶性较差,大多需要经过退火处理,工艺还不成熟。
以上MoS2纳米片的制备技术,多为人工合成方法,合成的一般为3R或2H+3R型,半导体性能及润滑性能逊色2H型,制备过程周期长、工艺繁琐、能耗大,效率有待进一步改善。
发明内容
本发明的目的是提供一种由钼精矿制备2H-MoS2纳米片的方法,实现低成本、低能耗、高效率、环境友好的2H-MoS2纳米片的制备,解决了现有制备方法制备过程周期长、工艺繁琐、效率较低、能耗大的问题。
本发明所采用的技术方案是,一种由钼精矿制备2H-MoS2纳米片的方法,先将钼精矿放置在气流粉碎机中,粉碎成超细粉;然后将超细粉加入到H2O2(30%)中,再加入乙醇并搅拌混匀,静置分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥,得到2H-MoS2纳米片。
优选地,钼精矿中Mo的含量≥59%。
优选地,超细粉激光粒度D50=0.5~0.8μm。
优选地,H2O2(30%)的质量为超细粉的50~200倍,乙醇的质量为超细粉的800~1500倍。
优选地,搅拌时间为1~8h。
优选地,真空干燥至水分含量≤0.2%。
优选地,2H-MoS2纳米片的横向尺寸为0.2~5μm,厚度为1~2nm。
本发明的有益效果是,本发明采用钼精矿在常压下操作制备2H-MoS2纳米片,该方法工艺简单、制备效率高,且整个过程能耗低、无污染,对环境友好,能够广泛适用于工业生产,制备出的2H-MoS2纳米片可广泛应用于能量储存与转化、催化、润滑以及各种复合材料等领域。
附图说明
图1是钼精矿的XRD衍射图谱;
图2是本发明制备的2H-MoS2纳米片的原子力显微镜的形貌图;
图3是本发明制备的2H-MoS2纳米片的原子力显微镜的数据图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的详细说明,但本发明并不限于这些实施方式。
本发明的由钼精矿制备2H-MoS2纳米片的方法具体为:
先将Mo含量≥59%的钼精矿放置在气流粉碎机中,粉碎成激光粒度D50=0.5~0.8μm的超细粉;然后将超细粉加入到H2O2(质量分数30%)中,再加入乙醇,其中H2O2(30%)的质量为超细粉的50~200倍,乙醇的质量为超细粉的800~1500倍。对混合液充分搅拌1~8h,静止分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥至水分含量≤0.2%,得到2H-MoS2纳米片。
根据以上方法即可制备出2H型的MoS2纳米片。区别于人工合成法,本发明采用2H型的钼精矿为原料,如图1所示,以其制备MoS2纳米片,得到的产物为2H型,制备方法简单、效率高,且能耗低。由图2、3的原子力显微镜图(AFM)可知,本发明制备的2H-MoS2纳米片横向尺寸为0.2~5μm,厚度约为1~2nm。该尺寸纳米片的产率为30-50%。
下面以实施例进一步说明本粉末的方法。
将纯化后的钼精矿(Mo≥59%)放置于气流粉碎机中,粉碎成激光粒度D50在0.5~0.8μm之间的超细粉。
实施例1
取上述超细粉(D50=0.5μm)1g,加入到50mL H2O2(30%)中,再加入800mL乙醇,持续搅拌1h后静置分层,取上层液,过滤、真空干燥至水分含量≤0.2%,得到2H-MoS2纳米片,放置冷冻保存。
实施例2
取上述超细粉(D50=0.7μm)1g,加入到100mL H2O2(30%)中,再加入1200mL乙醇,持续搅拌4h后静置分层,取上层液,过滤、真空干燥至水分含量≤0.2%,得到2H-MoS2纳米片,放置冷冻保存。
实施例3
取上述超细粉(D50=0.8μm)1g,加入到200mL H2O2(30%)中,再加入1500mL乙醇,持续搅拌8h后静置分层,取上层液,过滤、真空干燥至水分含量≤0.2%,得到2H-MoS2纳米片,放置冷冻保存。
本发明采用钼精矿在常压下操作制备2H-MoS2纳米片,该方法工艺简单、制备效率高,且整个过程能耗低、无污染,对环境友好,能够广泛适用于工业生产,制备出的2H-MoS2纳米片可广泛应用于能量储存与转化、催化、润滑以及各种复合材料等领域。
本发明以上描述只是部分实施例,但是本发明并不局限于上述的具体实施方式。上述的具体实施方式是示意性的,并不是限制性的。凡是采用本发明的材料和方法,在不脱离本发明宗旨和权利要求所保护的范围情况下,所有具体拓展均属本发明的保护范围之内。

Claims (7)

1.一种由钼精矿制备2H-MoS2纳米片的方法,其特征在于,先将钼精矿放置在气流粉碎机中,粉碎成超细粉;然后将超细粉加入到H2O2中,再加入乙醇并搅拌混匀,静置分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥,得到2H-MoS2纳米片。
2.根据权利要求1所述的由钼精矿制备2H-MoS2纳米片的方法,其特征在于,所述钼精矿中Mo的含量≥59%。
3.根据权利要求1所述的由钼精矿制备2H-MoS2纳米片的方法,其特征在于,所述超细粉激光粒度D50=0.5~0.8μm。
4.根据权利要求1所述的由钼精矿制备2H-MoS2纳米片的方法,其特征在于,所述H2O2质量分数为30%,所述H2O2的质量为所述超细粉的50~200倍,所述乙醇的质量为所述超细粉的800~1500倍。
5.根据权利要求1所述的由钼精矿制备2H-MoS2纳米片的方法,其特征在于,所述搅拌时间为1~8h。
6.根据权利要求1所述的由钼精矿制备2H-MoS2纳米片的方法,其特征在于,所述真空干燥至水分含量≤0.2%。
7.根据权利要求1所述的由钼精矿制备2H-MoS2纳米片的方法,其特征在于,所述2H-MoS2纳米片的横向尺寸为0.2~5μm,厚度为1~2nm。
CN201610361918.8A 2016-05-26 2016-05-26 一种由钼精矿制备2H‑MoS2纳米片的方法 Pending CN106064833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610361918.8A CN106064833A (zh) 2016-05-26 2016-05-26 一种由钼精矿制备2H‑MoS2纳米片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610361918.8A CN106064833A (zh) 2016-05-26 2016-05-26 一种由钼精矿制备2H‑MoS2纳米片的方法

Publications (1)

Publication Number Publication Date
CN106064833A true CN106064833A (zh) 2016-11-02

Family

ID=57420410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610361918.8A Pending CN106064833A (zh) 2016-05-26 2016-05-26 一种由钼精矿制备2H‑MoS2纳米片的方法

Country Status (1)

Country Link
CN (1) CN106064833A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641291A (zh) * 2006-11-16 2010-02-03 雅宝荷兰有限责任公司 由辉钼矿精制的钼工业氧化物
CN103771517A (zh) * 2014-01-17 2014-05-07 哈尔滨工业大学 一种基于液相分散的二维MoS2纳米片的制备方法
CN104495935A (zh) * 2014-12-03 2015-04-08 安徽百特新材料科技有限公司 一种二硫化钼纳米片层的剥离制备方法
CN104609474A (zh) * 2015-01-29 2015-05-13 南昌航空大学 一种制备少层MoS2纳米片的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641291A (zh) * 2006-11-16 2010-02-03 雅宝荷兰有限责任公司 由辉钼矿精制的钼工业氧化物
CN103771517A (zh) * 2014-01-17 2014-05-07 哈尔滨工业大学 一种基于液相分散的二维MoS2纳米片的制备方法
CN104495935A (zh) * 2014-12-03 2015-04-08 安徽百特新材料科技有限公司 一种二硫化钼纳米片层的剥离制备方法
CN104609474A (zh) * 2015-01-29 2015-05-13 南昌航空大学 一种制备少层MoS2纳米片的方法

Similar Documents

Publication Publication Date Title
Liang et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production
Xie et al. MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage
Ren et al. Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering
Shi et al. Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity
CN105668631B (zh) 一种单层或少层二硫化钼纳米材料的制备方法
CN103337611A (zh) 一种石墨烯和二氧化钛复合材料的制备方法
CN106430128A (zh) 一种超薄硼碳氮纳米片的合成方法
CN102897724A (zh) 硒化锡纳米花及其制备方法
Feng et al. Monodispersed cation-disordered cubic AgInS2 nanocrystals with enhanced fluorescence
CN100545081C (zh) 树枝状硒化银纳米晶薄膜材料及制备方法
CN108083336B (zh) 一种有机胺导向的水热制备多种形貌二硫化钼的方法
CN105688944A (zh) 一种层状MoS2-SnO2纳米复合材料的制备方法
CN101417258B (zh) 用于超细功能粉体制备的湿法精确分级工艺
CN106379871A (zh) 一种制备二硒化铼纳米片的方法
Chen et al. Chemical synthesis of Cu (In) metal inks to prepare CuInS2 thin films and solar cells
CN102897722B (zh) 一种α-In2Se3纳米花球溶剂热合成方法
CN102874863B (zh) 一种氧化锌纳米颗粒的合成方法
CN105858727B (zh) 一种2H-MoS2纳米片的制备方法
Lu et al. Controllable synthesis of spindle-like ZnO nanostructures by a simple low-temperature aqueous solution route
CN106299284A (zh) 凹凸棒土基多孔硅纳米线的一种低温制备方法
Lee et al. Electrophoretic deposition of Ga–Cu core–shell nanocomposites for CuGaS2 thin films
CN106064833A (zh) 一种由钼精矿制备2H‑MoS2纳米片的方法
CN109487243B (zh) 贵金属二维材料及其制备方法
CN108807005B (zh) 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用
CN104085915A (zh) 暴露高能(001)晶面六方相CdS纳米片的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161102

RJ01 Rejection of invention patent application after publication