CN104609474A - 一种制备少层MoS2纳米片的方法 - Google Patents

一种制备少层MoS2纳米片的方法 Download PDF

Info

Publication number
CN104609474A
CN104609474A CN201510045702.6A CN201510045702A CN104609474A CN 104609474 A CN104609474 A CN 104609474A CN 201510045702 A CN201510045702 A CN 201510045702A CN 104609474 A CN104609474 A CN 104609474A
Authority
CN
China
Prior art keywords
mos
mos2
nanometer sheet
hours
nanosheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510045702.6A
Other languages
English (en)
Inventor
邢秋菊
包少魁
熊华萍
占玉霞
邹建平
罗胜联
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201510045702.6A priority Critical patent/CN104609474A/zh
Publication of CN104609474A publication Critical patent/CN104609474A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/36Spheres fragmented
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

本发明公开了一种制备少层MoS2纳米片的方法,其方法为:配制100ml比例为30%的乙醇溶液置于250ml三口烧瓶中,称取0.1g MoS2粉末投入上述混合溶液中;将三口烧瓶置于水浴中升温回流,待温度达到75~85℃后持续2~4小时自然冷却至室温;混合溶液在一定的转速下离心20分钟,取上层清液,使用有机滤膜进行抽滤,再经60℃干燥12小时,得到目标产物。本发明的优点是:解决MoS2纳米片制备困难的问题,以及为MoS2纳米片在其他领域扩大应用奠定基础;本发明的材料制备采用混合溶剂回流剥离的方法,其操作简单、生产成本低廉、产品纯度高以及重复性好,适合扩大化生产的要求。

Description

一种制备少层MoS2纳米片的方法
技术领域
    本发明涉及一种新型液相剥离MoS2粉末,得到少层MoS2纳米片的制备方法。
背景技术
MoS2是由六方晶系的单层或多层二硫化钼组成的具有“三明治夹心”层状结构的类石墨烯材料。单层MoS2由三层原子层构成,中间一层为钼原子层,上下两层为硫原子层。若干单层MoS2叠加构成体相MoS2,层间存在弱的范德华力。相对于体相MoS2,单层MoS2具有比表面积大、裸露的活性位点多,以及转变为直接带隙半导体的特性,其光电特性也相对突出,因此单层MoS2在二次电池、场效应晶体管、传感器、有机电致发光、电存储等光电子器件以及光催化领域有着广泛的应用前景。但是单层MoS2的制备相对困难,直接合成的单层MoS2结构多无定型、稳定性差,由体相MoS2剥离制备单层或少层MoS2正在获得越来越多的关注。
剥离体相MoS2的方法主要有机械剥离法、锂离子插层法、液相超声法等。其中虽然机械剥离法得到的MoS2层数最少,剥离率最高,但是其产量过低,无法大规模生产。锂离子插层法剥离范围广、剥离效率高,但是其成本也最高,而且最近有文献报道称锂离子插层法处理过的MoS2具有了更高的毒性,不利于环境保护,因此液相剥离因其无污染,操作简单,适宜工业生产的特点,成为目前最有前景的剥离方法之一。就已报道的液相剥离方法而言,也依然存在不足,例如能耗高、成本高等。
发明内容
本发明的目的在于提供一种制备少层MoS2纳米片的方法,为解决MoS2纳米片制备困难的问题,以及为MoS2纳米片在其他领域扩大应用奠定基础。本发明的材料制备采用混合溶剂回流剥离的方法,其操作简单、生产成本低廉、产品纯度高以及重复性好,适合扩大化生产的要求。
本发明是这样来实现的,一种制备少层MoS2纳米片的方法,其特征在于方法步骤如下:
(1)配制100毫升体积比为30%的乙醇-水溶液置于250毫升三口烧瓶中,称取0.1克 MoS2粉末投入上述混合溶液中;
(2)再将三口烧瓶置于水浴中升温回流,待温度达到75~85℃后持续2~4小时,而后自然冷却至室温;
(3)混合溶液在1500~2500转/分的转速下离心20分钟,取上层清液,使用0.22微米孔径有机滤膜进行抽滤,再经60℃干燥12小时,得到目标产物。
本发明通过使用乙醇-水混合溶液回流剥离MoS2粉末,得到少层MoS2纳米片,通过对比使用不同比例乙醇-水混合溶液回流处理体相MoS2得到的几种MoS2纳米片,在模拟太阳光下,以三乙醇胺作为牺牲试剂,光催化分解水产氢速率,评估所制备MoS2纳米片的光催化活性大小,结果表明30%乙醇-水混合溶液回流剥离所得MoS2纳米片光催化活性最强。而且X射线粉末衍射、扫描电镜、透射电镜测试结果显示,本方法所制备MoS2纳米片纯度较高,大小约为500纳米,厚度约为20纳米。
本发明的优点是:解决MoS2纳米片制备困难的问题,以及为MoS2纳米片在其他领域扩大应用奠定基础;本发明的材料制备采用混合溶剂回流剥离的方法,其操作简单、生产成本低廉、产品纯度高以及重复性好,适合扩大化生产的要求。
附图说明
图1为本发明中MoS2粉末以及不同比例乙醇-水混合溶液回流处理MoS2粉末得到的几种MoS2纳米片的光催化分解水产氢速率比较图(其中bulk MoS2为MoS2粉末,25%、30%、35%、40%分别表示使用相应乙醇-水混合溶液处理得到的MoS2纳米片)。
图2为本发明方法中使用30%乙醇-水溶液回流剥离得到的MoS2纳米片与MoS2粉末的X射线粉末衍射对比图(a谱线为本发明方法得到的MoS2纳米片、b谱线为MoS2粉末、JCPDS:03-065-1951为MoS2晶体的标准卡片)。
图3为本发明方法中使用体积比为30%的乙醇-水溶液回流剥离得到的MoS2纳米片的FESEM(场发射扫描电子显微镜)、TEM(透射电子显微镜)、HRTEM(高分辨率透射电子显微镜)照片(其中a、b图分别为MoS2粉末和本发明方法得到的MoS2纳米片的扫描电镜照片、c图为本发明方法得到的MoS2纳米片的透射电镜照片、d图为本发明方法得到的MoS2纳米片的高分辨率透射电镜照片)。
具体实施方式
本发明的制备方法如下:分别配制四份100毫升比例分别为25%、30%、40%、45%的乙醇溶液置于250ml三口烧瓶中,称取四份0.1克 MoS2粉末分别投入上述混合溶液中,再将三口烧瓶置于水浴中升温回流,待温度达到80℃后持续3小时,而后自然冷却至室温。混合溶液在2000rpm(转/分)转速下离心20分钟,取上层清液,使用0.22微米孔径有机滤膜进行抽滤,再经60℃干燥12小时,得到目标产物。
分别对体相MoS2以及25%、30%、40%、45%的乙醇溶液回流剥离过的MoS2纳米片样品进行光催化分解水产氢速率测试,具体方法如下:称取30毫克样品,置于80ml 10%三乙醇胺(牺牲剂)溶液中,在模拟太阳光照射下,检测单位小时产氢总量,结果如图1所示,所得四份经过处理的MoS2纳米片的产氢速率相对于MoS2粉末都有显著提高,其中30%乙醇-水混合溶液回流剥离所得MoS2纳米片光催化活性最强,其产氢速率已达到MoS2粉末的8倍以上。
如图2所示,30%乙醇-水混合溶液回流剥离所得MoS2纳米片经X射线粉末衍射测试谱图与MoS2粉末以及标准卡片对比表明,MoS2粉末经本发明的方法处理后主峰位置没有发生变化,说明处理过程并没有引起MoS2的化学变化,但其中002晶面的峰强显著提高,此特征与MoS2粉末经剥离处理后,厚度减小,形成纳米片所导致结果相吻合。元素分析也表明该少层MoS2纳米片只含Mo和S两种元素,其比例也为2:1。
如图3所示,通过对比a、b两图,可以看出经回流剥离处理后,MoS2纳米片层的大小在500纳米至2微米范围内。从c图中可以看出,MoS2纳米片的大小为500纳米左右,厚度较小。从d图中可以看出,3.01纳米和2.94纳米处均是5层晶格条纹,单层晶格条纹的间距与MoS2晶体002晶面厚度0.61纳米相近,而2.51纳米处为10层晶格条纹,其单层晶格条纹的间距与MoS2晶体102晶面厚度0.25纳米相近,图片显示该纳米片的厚度约为20纳米。

Claims (1)

1.一种制备少层MoS2纳米片的方法,其特征在于方法步骤如下:
(1)配制100毫升体积比为30%的乙醇-水溶液置于250毫升三口烧瓶中,称取0.1克 MoS2粉末投入上述混合溶液中;
(2)再将三口烧瓶置于水浴中升温回流,待温度达到75~85℃后持续2~4小时,而后自然冷却至室温;
(3)混合溶液在1500~2500转/分的转速下离心20分钟,取上层清液,使用0.22微米孔径有机滤膜进行抽滤,再经60℃干燥12小时,得到目标产物。
CN201510045702.6A 2015-01-29 2015-01-29 一种制备少层MoS2纳米片的方法 Pending CN104609474A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510045702.6A CN104609474A (zh) 2015-01-29 2015-01-29 一种制备少层MoS2纳米片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510045702.6A CN104609474A (zh) 2015-01-29 2015-01-29 一种制备少层MoS2纳米片的方法

Publications (1)

Publication Number Publication Date
CN104609474A true CN104609474A (zh) 2015-05-13

Family

ID=53144174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510045702.6A Pending CN104609474A (zh) 2015-01-29 2015-01-29 一种制备少层MoS2纳米片的方法

Country Status (1)

Country Link
CN (1) CN104609474A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551909A (zh) * 2015-12-23 2016-05-04 深圳先进技术研究院 场发射阴极及其制备方法和应用
CN106064833A (zh) * 2016-05-26 2016-11-02 金堆城钼业股份有限公司 一种由钼精矿制备2H‑MoS2纳米片的方法
CN106925301A (zh) * 2017-02-28 2017-07-07 杭州电子科技大学 一种非贵金属基二维MoS2/石墨烯水还原催化剂以及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周凯歌: "新型有机分子器件与二维纳米材料的设计、合成和表征", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551909A (zh) * 2015-12-23 2016-05-04 深圳先进技术研究院 场发射阴极及其制备方法和应用
CN106064833A (zh) * 2016-05-26 2016-11-02 金堆城钼业股份有限公司 一种由钼精矿制备2H‑MoS2纳米片的方法
CN106925301A (zh) * 2017-02-28 2017-07-07 杭州电子科技大学 一种非贵金属基二维MoS2/石墨烯水还原催化剂以及其制备方法和应用

Similar Documents

Publication Publication Date Title
Hu et al. Graphene-based nanomaterials for catalysis
Li et al. Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes
Su et al. Ultrathin mesoporous g-C3N4/NH2-MIL-101 (Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance
Wu et al. Temperature-controlled synthesis of porous CuO particles with different morphologies for highly sensitive detection of triethylamine
Feng et al. Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties
Quang et al. In situ observations of free-standing graphene-like mono-and bilayer ZnO membranes
Wang et al. One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity
Song et al. Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties
Li et al. Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment
Xia et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage
Ren et al. Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering
Roy et al. Synthesis of twinned CuS nanorods by a simple wet chemical method
Saab et al. Tuning the magnetic properties of MoS2 single nanolayers by 3d metals edge doping
Zhou et al. Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures
Takenaka et al. Preparation of metal oxide nanofilms using graphene oxide as a template
Guo et al. Single-crystalline organic–inorganic layered cobalt hydroxide nanofibers: facile synthesis, characterization, and reversible water-induced structural conversion
Zhang et al. WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation
Gopiraman et al. Facile mechanochemical synthesis of nickel/graphene oxide nanocomposites with unique and tunable morphology: applications in heterogeneous catalysis and supercapacitors
CN104609474A (zh) 一种制备少层MoS2纳米片的方法
Wang et al. Synthesis and intrinsic peroxidase-like activity of sisal-like cobalt oxide architectures
Liu et al. Biotemplating synthesis and photocatalytic activities of N-doped CeO2 microcapsule tailored by hemerocallis pollen
Chumha et al. Cyclic microwave radiation synthesis, photoconductivity, and optical properties of CuInS2 hollow sub-microspheres
Di Mari et al. Low-Cost, High-Yield ZnO Nanostars Synthesis for Pseudocapacitor Applications
Ridha et al. Effect of Al thickness on the structural and ethanol vapor sensing performance of ZnO porous nanostructures prepared by microwave-assisted hydrothermal method
Liang et al. Design and synthesis of novel 2D porous zinc oxide-nickel oxide composite nanosheets for detecting ethanol vapor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150513