CN105379110A - 并联谐振电路 - Google Patents

并联谐振电路 Download PDF

Info

Publication number
CN105379110A
CN105379110A CN201480039766.9A CN201480039766A CN105379110A CN 105379110 A CN105379110 A CN 105379110A CN 201480039766 A CN201480039766 A CN 201480039766A CN 105379110 A CN105379110 A CN 105379110A
Authority
CN
China
Prior art keywords
power supply
circuit
antiresonant
mos switch
variable capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480039766.9A
Other languages
English (en)
Other versions
CN105379110B (zh
Inventor
那须贵文
上村晋一朗
大原淳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Socionext Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socionext Inc filed Critical Socionext Inc
Publication of CN105379110A publication Critical patent/CN105379110A/zh
Application granted granted Critical
Publication of CN105379110B publication Critical patent/CN105379110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • H03J5/02Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with variable tuning element having a number of predetermined settings and adjustable to a desired one of these settings
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45394Indexing scheme relating to differential amplifiers the AAC of the dif amp comprising FETs whose sources are not coupled, i.e. the AAC being a pseudo-differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45631Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45634Indexing scheme relating to differential amplifiers the LC comprising one or more switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45638Indexing scheme relating to differential amplifiers the LC comprising one or more coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45644Indexing scheme relating to differential amplifiers the LC comprising a cross coupling circuit, e.g. comprising two cross-coupled transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45658Indexing scheme relating to differential amplifiers the LC comprising two diodes of current mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45688Indexing scheme relating to differential amplifiers the LC comprising one or more shunting potentiometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45694Indexing scheme relating to differential amplifiers the LC comprising more than one shunting resistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45696Indexing scheme relating to differential amplifiers the LC comprising more than two resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45712Indexing scheme relating to differential amplifiers the LC comprising a capacitor as shunt
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45714Indexing scheme relating to differential amplifiers the LC comprising a coil as shunt
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45718Indexing scheme relating to differential amplifiers the LC comprising a resistor as shunt
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/10Tuning of a resonator by means of digitally controlled capacitor bank

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Filters And Equalizers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

本发明提供一种并联谐振电路,其能够以低功耗实现失真特性及饱和特性良好的并联谐振电路。因此,在与第1电源电压(Vdd1)连接的并联谐振电路(20)中,可变电阻部(VR)由1个支路或多个支路的并联连接构成,各支路具有电阻(R1、R2、…、Rn)与MOS开关(SW1、SW2、…、SWn)的串联电路(n是1以上的整数)。第2电源的电源电压(Vdd2)比第1电源电压(Vdd1)高,该第2电源供给提供给各个MOS开关的栅极的控制信号的电源且向各个MOS开关供给背栅电压。

Description

并联谐振电路
技术领域
本发明涉及利用于调谐器***等中的并联谐振电路。
背景技术
在接收由多个频道构成的发送信号后选择期望的频道来进行解调的调谐器***中,要求低的失真特性。例如,日本的地面数字电视广播(ISDB-T)每1个频道在6MHz的信号频带内由第13频道(473.143MHz)至第52频道(707.143MHz)的总计40个频道构成,在调谐器***中,在各接收频道中对于干扰频道输入电平要求50dBc以上的耐干扰波特性。
为了实现这样的接收特性,在调谐器***中,在初级的低噪音放大器中,大多通过根据接收频道来使中心频率发生变化的并联谐振电路,去除干扰波。另一方面,对于移动终端等而言低功耗也很重要。
根据某一现有技术,将电感部、可变电容部和可变电阻部并联连接而成的并联谐振电路构成放大电路,作为跨导(transconductance)放大器的负载。可变电阻部并联连接多个支路而成,各支路具有电阻与MOS开关的串联电路。可变电容部也同样将多个支路并联连接而成,各支路具有电容与MOS开关的串联电路(参照非专利文献1)。
在先技术文献
非专利文献
非专利文献1:Y.Kanazawaetal.,″A130Mto1GHzDigitallyTunableRFLC-TrackingFilterforCMOSRFreceivers",IEEEAsianSolid-StateCircuitsConference,Nov.2008,pp.469-472
发明内容
发明要解决的课题
如上述那样将并联谐振电路作为跨导放大器的负载来构成放大电路的情况下,放大电路的输出电压Vo是交流分量Vac与该放大电路的电源电压Vdd重叠的电压。并且,Vdd被输入到可变电阻部的截止状态的PMOS开关的栅极。此时的输出电压Vo与截止状态的PMOS开关的栅极-源极间电压Vgs的关系为:
Vgs=Vdd-Vo=Vdd-(Vdd+Vac)=-Vac。
但是,若交流分量Vac变成构成PMOS开关的晶体管的阈值电压Vth以上,则截止状态的PMOS开关暂时成为导通状态。由此,输出阻抗的变动较大,放大电路的失真特性以及饱和特性恶化。此外,除了栅极-源极间以外,向源极-背栅(backgate)间的寄生二极管施加正向偏压引起的阻抗的变动也会成为使失真特性以及饱和特性恶化的原因。并且,若为了降低功耗而使用阈值电压Vth低的晶体管,则这些变动会变得更加显著。
本发明的目的在于,以低功耗实现失真特性以及饱和特性良好的并联谐振电路。
解决课题的手段
为了实现上述目的,根据本发明的某一观点,在并联连接电感部、电容部和可变电阻部且连接第1电源而构成的并联谐振电路中,所述可变电阻部由1个支路或者多个支路的并联连接构成,各个所述支路具有电阻与MOS开关的串联电路,供给提供给各个所述MOS开关的栅极的控制信号的电源且向各个所述MOS开关供给背栅电压的第2电源的电源电压比所述第1电源的电源电压高。
根据本发明的其他观点,在并联连接电感部与可变电容部且连接第1电源而构成的并联谐振电路中,并联连接多个支路而构成所述可变电容部,各个所述支路具有电容与MOS开关的串联电路,供给提供给各个所述MOS开关的栅极的控制信号的电源且向各个所述MOS开关供给背栅电压的第2电源的电源电压比所述第1电源的电源电压高。
发明效果
根据本发明,由于增大了MOS开关的栅极电压以及背栅电压,因此该MOS开关容易维持截止状态,因而并联谐振电路的失真特性以及饱和特性得到改善。
附图说明
图1是将本发明的第1实施方式所涉及的并联谐振电路构成为跨导放大器的负载的放大电路的电路图。
图2是表示图1中的可变电容部的详细结构例的电路图。
图3是表示图1中的可变电容部的另一详细结构例的电路图。
图4是表示图1中的电阻值控制电路的详细结构例的电路图。
图5是表示将本发明的第2实施方式所涉及的并联谐振电路构成为差动型跨导放大器的负载的放大电路的电路图。
图6是表示图5中的可变电容部的详细结构例的电路图。
图7是表示图5中的可变电容部的另一详细结构例的电路图。
图8是表示图5中的可变电容部的又一详细结构例的电路图。
图9是作为可变放大电路具备图1或图5的放大电路的调谐器***的框图。
具体实施方式
以下,基于附图来详细说明本发明的实施方式。
《第1实施方式》
图1是将本发明的第1实施方式所涉及的并联谐振电路构成为跨导放大器的负载的放大电路的电路图。图1的放大电路由跨导放大器10、并联谐振电路20和电阻值控制电路30构成。Vin是放大电路的输入电压,Vo是放大电路的输出电压。
并联谐振电路20由电感部L、可变电容部VC和可变电阻部VR并联连接而成,并联谐振电路20***到第1电源的电源电压(以下,称为第1电源电压)Vdd1与Vo之间。可变电阻部VR由n个(n是1以上的整数)支路的并联连接构成,第1支路由PMOS开关SW1与电阻R1的串联电路构成,第2支路由PMOS开关SW2与电阻R2的串联电路构成,第n支路由PMOS开关SWn与电阻Rn的串联电路构成。n根电阻R1、R2、…、Rn的各自的电阻值被进行互不相同的加权。
向电阻值控制电路30经由ESD(electro-staticdischarge,静电放电)对策用电阻Resd而供给第2电源的电源电压(以下,称为第2电源电压)Vdd2,使得生成提供给PMOS开关SW1、SW2、…、SWn的各个栅极的控制信号。此外,向PMOS开关SW1、SW2、…、SWn的各个背栅也经由ESD对策用电阻Resd而供给Vdd2。并且,构成各个PMOS开关SW1、SW2、…、SWn的晶体管的耐压比构成跨导放大器10的MOS晶体管的耐压高,以便提高ESD耐性。这里,Vdd2>Vdd1,例如Vdd2=3.3V,Vdd1=1.8V。
如图1中例示的那样,只有第2支路的PMOS开关SW2被电阻值控制电路30提供变成截止状态的控制信号群。放大电路的输出电压Vo在Vdd1上重叠交流分量Vac。因此,截止状态的PMOS开关SW2的栅极-源极间电压Vgs可表示为:
Vgs=Vdd2-Vo
=Vdd2-(Vdd1+Vac)
=-Vac+(Vdd2-Vdd1)。
这样,与现有技术相比,PMOS开关SW2与2个电源电压之差(Vdd2-Vdd1)相应地更难以被接通,因此放大电路的失真特性以及饱和特性得以改善。此外,由于不会使源极-背栅间的寄生二极管导通,因此PMOS开关SW1、SW2、…、SWn的各个背栅也与Vdd2连接。
另外,不需要MOS开关与n根电阻R1、R2、…、Rn的全部都串联连接。
图2是表示图1中的可变电容部VC的详细结构例的电路图。图2的可变电容部VC被***到Vdd1与Vo之间,将m个(m是2以上的整数)支路并联连接而成,第1支路由PMOS开关CSW1与电容C1的串联电路构成,第2支路由PMOS开关CSW2与电容C2的串联电路构成,第m支路由PMOS开关CSWm与电容Cm的串联电路构成。m个电容C1、C2、…、Cm的各自的电容值被进行互不相同的加权。由电容值控制电路40生成提供给PMOS开关CSW1、CSW2、…、CSWm的各自的栅极的控制信号。Vdd1既是电容值控制电路40的电源电压,还被提供给PMOS开关CSW1、CSW2、…、CSWm的各个背栅。
根据图2的结构,能够实现并联谐振电路20的可变的谐振频率。另外,不需要MOS开关与m个电容C1、C2、…、Cm的全部都串联连接。
图3是表示图1中的可变电容部VC的另一详细结构例的电路图。在图3中,与图2相比,PMOS开关CSW1、CSW2、…、CSWm与电容C1、C2、…、Cm的位置反转。此外,与所述电阻值控制电路30同样,电容值控制电路40经由ESD对策用电阻Resd而被供给Vdd2(>Vdd1),以生成提供给PMOS开关CSW1、CSW2、…、CSWm的各个栅极的控制信号。此外,对于PMOS开关CSW1、CSW2、…、CSWm的各个背栅也经由ESD对策用电阻Resd来供给Vdd2。并且,构成各个PMOS开关CSW1、CSW2、…、CSWm的晶体管是高耐压MOS晶体管。
根据图3的结构,能够抑制可变电容部VC中因MOS开关引起的失真特性以及饱和特性的恶化。
图4是表示图1中的电阻值控制电路30的详细结构例的电路图。图4的电阻值控制电路30由在第3电源的电源电压(以下,称为第3电源电压)Vdd3下工作的逻辑电路31、和基于逻辑电路31的输出在Vdd2下工作且输出PMOS开关SW1、SW2、…、SWn的各个栅极控制信号的电平移位器(levelshifter)32构成。在此,Vdd3≤Vdd1,例如Vdd3=1.2V。
根据图4的结构,能够实现低功耗。另外,图3中的电容值控制电路40也能够通过与图4相同的结构实现。
《第2实施方式》
图5是表示将本发明的第2实施方式所涉及的并联谐振电路构成为差动型跨导放大器的负载的放大电路的电路图。Vinp以及Vinn是放大电路的差动输入电压,Vop以及Von是放大电路的差动输出电压。
在图5中,与跨导放大器10是差动型的情况对应地,并联谐振电路20也是差动结构。第1,在Vop与Vdd1之间连接正侧的电感器Lp,在Vdd1与Von之间连接负侧的电感器Ln。其次,可变电阻部VR由n个(n是1以上的整数)支路的并联连接构成,第1支路由电阻R1p、PMOS开关SW1和电阻R1n的串联电路构成,第2支路由电阻R2p、PMOS开关SW2和电阻R2n的串联电路构成,第n支路由电阻Rnp、PMOS开关SWn和电阻Rnn的串联电路构成。其它方面与图1相同,电阻值控制电路30经由ESD对策用电阻Resd而被供给Vdd2(>Vdd1),以生成提供给PMOS开关SW1、SW2、…、SWn的各个栅极的控制信号。此外,也经由ESD对策用电阻Resd来向PMOS开关SW1、SW2、…、SWn的各个背栅供给Vdd2。并且,分别构成PMOS开关SW1、SW2、…、SWn的晶体管是高耐压MOS晶体管。
根据图5的结构,除了第1实施方式的效果以外,还通过采用差动结构来改善2次失真特性、干扰噪声耐性。
图6是表示图5中的可变电容部VC的详细结构例的电路图。图6的可变电容部VC被***到Vop与Von之间,将m个(m是2以上的整数)支路并联连接而成,第1支路由电容C1p、NMOS开关CSW1和电容C1n的串联电路构成,第2支路由电容C2p、NMOS开关CSW2和电容C2n的串联电路构成,第m支路由电容Cmp、NMOS开关CSWm和电容Cmn的串联电路构成。其它方面与图2相同。
图7是表示图5中的可变电容部VC的另一详细结构例的电路图。其中,省略了第1支路以外的支路的图示。与图6的情况同样地,图7所示的支路不仅是由电容C1p、NMOS开关CSW1和电容C1n的串联电路构成,还具备用于减小NMOS开关CSW1的导通电阻的偏置电路。该偏置电路由逻辑电路41和2个电阻44、45构成,该逻辑电路41由2级反相器(inverter)42、43构成。第1级反相器42的输出与NMOS开关CSW1的栅极连接,第2级反相器43的输出经由电阻44而与NMOS开关CSW1的漏极连接。此外,第2级反相器43的输出还经由电阻45而与NMOS开关CSW1的源极连接。NMOS开关CSW1的背栅与接地电压Vss连接。
通过偏置电路的作用,在NMOS开关CSW1的导通时,栅极是H电压、源极和漏极是L电压,因此导通电阻降低。另一方面,在NMOS开关CSW1截止时,栅极是L电压、源极和漏极是H电压,因此截止电阻增加。
根据图7的结构,由于能够通过可变电容部VC来减小MOS开关的导通电阻,因此能得到可使滤波特性急剧的效果。此外,由于MOS开关的存在,失真特性以及饱和特性不会恶化。
图8是表示图5中的可变电容部VC的又一详细结构例的电路图。图8的可变电容部VC被***到Vop与Von之间,将m个(m是2以上的整数)的支路并联连接而成,第1支路由PMOS开关CSW1p、电容C1和PMOS开关CSW1n的串联电路构成,第2支路由PMOS开关CSW2p、电容C2和PMOS开关CSW2n的串联电路构成,第m支路由PMOS开关CSWmp、电容Cm和PMOS开关CSWmn的串联电路构成。其它方面与图3相同,电容值控制电路40经由ESD对策用电阻Resd而被供给Vdd2(>Vdd1),以生成提供给PMOS开关CSW1p、CSW2p、…、CSWmp、CSW1n、CSW2n、…、CSWmn的各个栅极的控制信号。此外,还经由ESD对策用电阻Resd来向PMOS开关CSW1p、CSW2p、…、CSWmp、CSW1n、CSW2n、…、CSWmn的各个背栅供给Vdd2。并且,分别构成PMOS开关CSW1p、CSW2p、…、CSWmp、CSW1n、CSW2n、…、CSWmn的晶体管是高耐压MOS晶体管。
图9是作为可变放大电路而具备图1或图5的放大电路的调谐器***的框图。图9的调谐器***由天线1、采用了图1或图5的放大电路的可变放大电路2、PLL(phase-lockedloop)3、混频器4、LPF(lowpassfilter)5、ADC(analog-to-digitalconverter)6和DSP(digitalsignalprocessor)7构成。根据图9的结构,能够实现耐干扰波特性良好的调谐器***。
如上所述,作为本申请中公开的技术示例,说明了第1及第2实施方式。但是,本申请中的技术并不局限于此,也能够适用于进行了适当的变更、置换、附加、省略等的实施方式中。此外,也能够将在上述中说明过的各结构要素组合起来作为新的实施方式。
产业上的可利用性
如以上所说明的那样,本发明所涉及的并联谐振电路由于容易维持MOS开关的截止状态,因此具有失真特性以及饱和特性的改善效果,作为调谐器***中的跟踪滤波器等是有用的。
符号说明
1天线
2可变放大电路
3PLL
4混频器
5LPF
6ADC
7DSP
10跨导放大器
20并联谐振电路
30电阻值控制电路
31逻辑电路
32电平移位器
40电容值控制电路
41逻辑电路
42、43反相器
44、45电阻
C1、C2、…、Cm电容
C1p、C2p、…、Cmp电容
C1n、C2n、…、Cmn电容
CSW1、CSW2、…、CSWmMOS开关
CSW1p、CSW2p、…、CSWmpMOS开关
CSW1n、CSW2n、…、CSWmnMOS开关
L、Lp、Ln电感器
R1、R2、…、Rn电阻
R1p、R2p、…、Rnp电阻
R1n、R2n、…、Rnn电阻
ResdESD对策用电阻
SW1、SW2、…、SWnMOS开关
VC可变电容部
VR可变电阻部
Vdd1第1电源电压(第1电源的电源电压)
Vdd2第2电源电压(第2电源的电源电压)
Vdd3第3电源电压(第3电源的电源电压)

Claims (20)

1.一种并联谐振电路,并联连接电感部、电容部和可变电阻部且连接第1电源而构成,该并联谐振电路的特征在于,
所述可变电阻部由1个支路或多个支路的并联连接构成,
各个所述支路具有电阻与MOS开关的串联电路,
第2电源的电源电压比所述第1电源的电源电压高,所述第2电源供给提供给各个所述MOS开关的栅极的控制信号的电源且向各个所述MOS开关供给背栅电压。
2.根据权利要求1所述的并联谐振电路,其特征在于,
各个所述MOS开关的耐压比在所述第1电源的电源电压下工作的MOS晶体管的耐压高。
3.根据权利要求1所述的并联谐振电路,其特征在于,
所述并联谐振电路还具备***到各个所述MOS开关的背栅与所述第2电源之间的静电放电对策用的电阻。
4.根据权利要求1所述的并联谐振电路,其特征在于,
向各个所述MOS开关的栅极提供所述控制信号的控制电路具备:
逻辑电路,在第3电源的电源电压下工作;和
电平移位器,基于所述逻辑电路的输出,在所述第2电源的电源电压下工作,并输出所述控制信号,
所述第3电源的电源电压并不比所述第1电源的电源电压高。
5.根据权利要求1所述的并联谐振电路,其特征在于,
所述电容部具有可变电容部。
6.根据权利要求5所述的并联谐振电路,其特征在于,
所述可变电容部将多个支路并联连接而构成,
在所述可变电容部中,各个所述支路具有电容与MOS开关的串联电路。
7.根据权利要求6所述的并联谐振电路,其特征在于,
所述第2电源在所述可变电容部中供给提供给各个所述MOS开关的栅极的控制信号的电源,且向各个所述MOS开关供给背栅电压。
8.根据权利要求7所述的并联谐振电路,其特征在于,
在所述可变电容部中,各个所述MOS开关的耐压比在所述第1电源的电源电压下工作的MOS晶体管的耐压高。
9.根据权利要求1所述的并联谐振电路,其特征在于,
所述并联谐振电路是差动结构。
10.根据权利要求9所述的并联谐振电路,其特征在于,
所述电容部具有可变电容部。
11.根据权利要求10所述的并联谐振电路,其特征在于,
所述可变电容部将多个支路并联连接而构成,
在所述可变电容部中,各个所述支路具有MOS开关与分别连接在该MOS开关的两端上的电容的串联电路。
12.根据权利要求11所述的并联谐振电路,其特征在于,
在所述可变电容部中,各个所述支路还具有用于减小所述MOS开关的导通电阻的偏置电路。
13.根据权利要求10所述的并联谐振电路,其特征在于,
所述可变电容部将多个支路并联连接而构成,
在所述可变电容部中,各个所述支路具有电容与分别连接在该电容的两端上的MOS开关的串联电路。
14.一种放大电路,其特征在于,
将权利要求1所述的并联谐振电路构成为跨导放大器的负载。
15.一种调谐器***,其特征在于,
具备权利要求14所述的放大电路。
16.一种并联谐振电路,并联连接电感部与可变电容部且连接第1电源而构成,该并联谐振电路的特征在于,
所述可变电容部将多个支路并联连接而构成,
各个所述支路具有电容与MOS开关的串联电路,
第2电源的电源电压比所述第1电源的电源电压高,所述第2电源供给提供给各个所述MOS开关的栅极的控制信号的电源且向各个所述MOS开关供给背栅电压。
17.根据权利要求16所述的并联谐振电路,其特征在于,
所述并联谐振电路还具备相对于所述电感部和所述可变电容部并联连接的电阻部。
18.根据权利要求17所述的并联谐振电路,其特征在于,
所述电阻部具有可变电阻部。
19.一种放大电路,其特征在于,
将权利要求16所述的并联谐振电路构成为跨导放大器的负载。
20.一种调谐器***,其特征在于,
具备权利要求19所述的放大电路。
CN201480039766.9A 2013-08-08 2014-04-15 并联谐振电路 Active CN105379110B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-164841 2013-08-08
JP2013164841 2013-08-08
PCT/JP2014/002141 WO2015019523A1 (ja) 2013-08-08 2014-04-15 並列共振回路

Publications (2)

Publication Number Publication Date
CN105379110A true CN105379110A (zh) 2016-03-02
CN105379110B CN105379110B (zh) 2018-01-05

Family

ID=52460887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480039766.9A Active CN105379110B (zh) 2013-08-08 2014-04-15 并联谐振电路

Country Status (4)

Country Link
US (1) US9564858B2 (zh)
JP (1) JP6344390B2 (zh)
CN (1) CN105379110B (zh)
WO (1) WO2015019523A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983702A (zh) * 2016-11-24 2019-07-05 法国大陆汽车公司 使得能够连接多个电路并通过单个输入端口采集其状态值的用于处理单元的接口设备
CN110634860A (zh) * 2018-06-25 2019-12-31 株式会社索思未来 半导体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574245B2 (en) * 2018-03-21 2020-02-25 Globalfoundries Inc. Digitally controlled oscillator for a millimeter wave semiconductor device
JP7300968B2 (ja) * 2019-11-14 2023-06-30 三菱電機株式会社 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325163A (ja) * 2005-05-20 2006-11-30 Toyota Industries Corp 広帯域送受信装置
WO2007099622A1 (ja) * 2006-03-01 2007-09-07 Fujitsu Limited 増幅回路
CN101057396A (zh) * 2004-09-10 2007-10-17 皇家飞利浦电子股份有限公司 在较宽频率范围上具有平坦增益响应的可调谐共射共基lna
CN101501991A (zh) * 2006-06-27 2009-08-05 传感电子公司 带有动态阻抗匹配的谐振电路调谐***
JP2009284142A (ja) * 2008-05-21 2009-12-03 Sharp Corp フィルタ回路および無線機器
CN102263915A (zh) * 2010-05-25 2011-11-30 阿尔卑斯电气株式会社 电视调谐器的输入调谐电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775577A (en) * 1972-04-20 1973-11-27 Environment One Corp Induction cooking apparatus having pan safety control
US6462962B1 (en) * 2000-09-08 2002-10-08 Slobodan Cuk Lossless switching DC-to-DC converter
US6424222B1 (en) * 2001-03-29 2002-07-23 Gct Semiconductor, Inc. Variable gain low noise amplifier for a wireless terminal
JP3840468B2 (ja) * 2003-09-29 2006-11-01 松下電器産業株式会社 Pll周波数シンセサイザ
WO2008147932A2 (en) * 2007-05-24 2008-12-04 Bitwave Semiconductor, Incorporated Reconfigurable tunable rf power amplifier
US8704598B2 (en) * 2010-05-28 2014-04-22 Rf Micro Devices, Inc. Linear FET feedback amplifier
US10903753B2 (en) * 2011-03-29 2021-01-26 Texas Instruments Incorporated Resonant isolated converters for power supply charge balancing systems and other systems
WO2013157039A1 (ja) * 2012-04-18 2013-10-24 三菱電機株式会社 経路切替電力増幅器
US20130277333A1 (en) * 2012-04-24 2013-10-24 Applied Materials, Inc. Plasma processing using rf return path variable impedance controller with two-dimensional tuning space
EP3675342A1 (en) * 2012-11-02 2020-07-01 Danmarks Tekniske Universitet Self-oscillating resonant power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057396A (zh) * 2004-09-10 2007-10-17 皇家飞利浦电子股份有限公司 在较宽频率范围上具有平坦增益响应的可调谐共射共基lna
JP2006325163A (ja) * 2005-05-20 2006-11-30 Toyota Industries Corp 広帯域送受信装置
WO2007099622A1 (ja) * 2006-03-01 2007-09-07 Fujitsu Limited 増幅回路
CN101501991A (zh) * 2006-06-27 2009-08-05 传感电子公司 带有动态阻抗匹配的谐振电路调谐***
JP2009284142A (ja) * 2008-05-21 2009-12-03 Sharp Corp フィルタ回路および無線機器
CN102263915A (zh) * 2010-05-25 2011-11-30 阿尔卑斯电气株式会社 电视调谐器的输入调谐电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983702A (zh) * 2016-11-24 2019-07-05 法国大陆汽车公司 使得能够连接多个电路并通过单个输入端口采集其状态值的用于处理单元的接口设备
CN109983702B (zh) * 2016-11-24 2023-06-20 法国大陆汽车公司 使得能够连接多个电路并通过单个输入端口采集其状态值的用于处理单元的接口设备
CN110634860A (zh) * 2018-06-25 2019-12-31 株式会社索思未来 半导体装置
CN110634860B (zh) * 2018-06-25 2023-04-07 株式会社索思未来 半导体装置

Also Published As

Publication number Publication date
JP6344390B2 (ja) 2018-06-20
WO2015019523A1 (ja) 2015-02-12
US20160156315A1 (en) 2016-06-02
CN105379110B (zh) 2018-01-05
JPWO2015019523A1 (ja) 2017-03-02
US9564858B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
US9082543B2 (en) Inductor
US7049888B2 (en) Active inductance circuit and differential amplifier circuit
US20140118053A1 (en) High frequency switch circuit
KR101820499B1 (ko) 클래스 ab 증폭기들
CN105577133A (zh) 低噪声放大器以及用于载波聚合和非载波聚合的方法
CN105379110A (zh) 并联谐振电路
US20200007095A1 (en) High-frequency amplifier circuitry and semiconductor device
CN103107790A (zh) 可编程增益放大器
JP6064225B2 (ja) 極性切替増幅回路
US20120274387A1 (en) RF Switching System, Module, and Methods with Improved High Frequency Performance
CN112398448B (zh) 射频差分放大电路和射频模组
US10944417B1 (en) Radio frequency DAC with improved linearity using shadow capacitor switching
CN108696259B (zh) 射频功率放大器
US11489705B1 (en) Integrated circuit including a continuous time linear equalizer (CTLE) circuit and method of operation
US20140009139A1 (en) Differential current source and differential current mirror circuit
JP5588496B2 (ja) スプリッタ回路およびチューナーシステム
JP6845680B2 (ja) アナログスイッチ回路
KR20160044793A (ko) Btts 트랜지스터를 활용한 적층-트랜지스터 전력증폭기
US10382002B2 (en) Apparatus and methods for tunable phase networks
US8847687B2 (en) Multi-path broadband amplifier
US12028071B2 (en) High-speed wide-band low-power level shifter for high-speed applications
CN108259012B (zh) 一种宽带电力线的功率放大器
GB2514784A (en) Signal Processing
CN118017997A (zh) 用于高速应用的高速宽带低功率电平移位器
Sy et al. Design of a differential diplexer based on integrated active inductors with 0.25 µm SiGeC process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant