CN105032386A - 一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法 - Google Patents

一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法 Download PDF

Info

Publication number
CN105032386A
CN105032386A CN201510440238.0A CN201510440238A CN105032386A CN 105032386 A CN105032386 A CN 105032386A CN 201510440238 A CN201510440238 A CN 201510440238A CN 105032386 A CN105032386 A CN 105032386A
Authority
CN
China
Prior art keywords
conducted
waste
catalyst
temperature
copyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510440238.0A
Other languages
English (en)
Other versions
CN105032386B (zh
Inventor
王允圃
刘玉环
阮榕生
王小亮
刘仕涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201510440238.0A priority Critical patent/CN105032386B/zh
Publication of CN105032386A publication Critical patent/CN105032386A/zh
Application granted granted Critical
Publication of CN105032386B publication Critical patent/CN105032386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂,包括以下物质按质量份数:氧化锆60-65,氧化铝2-8,二氧化钛1-3,氯化钠12-19,碳酸氢钠3-8。制备方法:(1)按上述比例称取氧化锆、氧化铝、二氧化钛粉末,球磨;(2)然后,加入氯化钠、碳酸氢钠粉末,以酸性硅溶胶为粘结剂,混匀,造粒,烘干;(3)马弗炉内进行程序升温焙烧,500℃保温1h,之后快速升温到1500-1600℃,焙烧80-160min,冷却。本发明催化剂催化活性极高,结构稳定,不发生泥化,不易堵塞,反应时间短,裂解温度低,大大降低成本,产油率85%以上,其中烷烃含量最高达99.5%,裂解燃油热值明显高于生物柴油与0#柴油,密度和运动黏度符合0#柴油的标准,冷凝点和冷滤点均优于生物柴油,低温流动性好。

Description

一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法
技术领域
本发明属于催化剂领域,涉及泡沫陶瓷催化剂及制备方法。
背景技术
生物燃料相对于化石燃料最大的优点是具有可再生性和零排放性,目前,植物油脂是获得生物燃料的主要原料,油脂通过热裂解等热化学手段得到可再生燃油。与此同时在市政固体垃圾、农业生产中存在大量废弃塑料,因其在自然界难以生物分解形成白色污染。塑料的主要成分是聚合烯烃,已经开展的废弃塑料热高温裂解或催化裂解制备不饱和烃的研究较多,很多情况下只侧重于制备可燃气体。聚合烯烃结构致密,其裂解属于随机的自由基反应,裂解反应往往以碳氢键的断裂为优先顺序,产生大量焦炭,液态产物得率低下,且裂解油中含有大量烯烃、芳烃等不饱和烃,性质不稳定,抗氧化稳定性差。
废弃植物油脂与废聚乙烯塑料都是具有很高利用价值的生物质资源,资源化利用后能够解决环境污染问题,同时缓解当前能源紧缺。许多学者对两类资源的利用方式进行了探讨,但由于各种原因,难以扩大应用,单独植物油源甘油三酯催化裂解能得到高质量的生物燃油具有黏度小、低温流动性好、十六烷值高等特点,但由于甘油三酯富含不饱和键,同时裂解过程中酯键脱氧,因此需要贵金属催化加压加氢,存在催化剂昂贵,工艺复杂,设备要求高等缺陷。单独裂解聚乙烯塑料,裂解油存在多环芳烃含量较高、重质馏分和轻质馏分比例偏高等问题。废弃植物油脂可以增加废塑料的热导性,从而避免废塑料裂解结焦过多和裂解效率低的问题,废聚乙烯塑料中氢碳比较高,裂解时能够为废弃植物油的脱氧和不饱和烃链加氢提供氢源,从而达到提高裂解液体品质的目的。
废弃植物油脂与废聚乙烯塑料共热解具有诸多优点,但在其研究过程中始终没有发现较好的选择性催化剂,提高裂解生物燃油成分的单一性,并减少裂解生物油中含氧含氮化合物的含量。
生物燃料相对于化石燃料最大的优点是具有可再生性和零排放性,目前,植物油脂是获得生物燃料的主要原料,油脂通过热裂解等热化学手段得到可再生燃油,与此同时在市政固体垃圾、农业生产中存在大量废弃塑料,因其在自然界难以生物分解而形成白色污染。塑料的主要成分是聚合烯烃,已经开展的废弃塑料热高温裂解或催化裂解制备不饱和烃研究较多,很多情况下只能侧重于制造可燃气体。由于聚合烯烃结构致密,塑料裂解属于随机的自由基反应,裂解反应往往以碳氢键的断裂为优先顺序,产生大量焦炭,液态产物得率低下,所得到少量的裂解油中含有大量烯烃、芳烃等不饱和烃,性质不稳定,抗氧化稳定性差。废弃植物油脂可以增加废塑料的热导性,从而避免废塑料热解结焦过多和裂解效率低的问题,废聚乙烯塑料中氢碳比较高,热解时能够为废弃植物油的脱氧和不饱和烃链加氢提供氢源,从而达到提高裂解液体品质的目的。
用化学法对废弃油脂与废弃塑料裂解进行研究,常常需要借助催化剂的参与才能达到反应的预期目的,催化剂性能的好坏直接关系到反应能否顺利进行,尤其是易于产物分离且催化效率高、重复性能好的催化剂,更是影响制备工艺技术能否工业化应用的关键,目前,废弃油脂与废弃塑料裂解催化剂大多为负载催化剂,一般需要负载贵金属如Pt、Pd、Mo等,成本较高,另外,负载催化剂在高温环境下活性位点容易发生团聚作用,导致失活。贵金属负载到催化剂,活性组分分布不均,容易流失,裂解液体产物中会出现金属离子超标。
发明内容
本发明的目的是一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法。
本发明所述的用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂,包括以下物质按质量份数:氧化锆60-65份,氧化铝2-8份,二氧化钛1-3份,氯化钠12-19份,碳酸氢钠3-8份。
本发明所述的用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂的制备方法,按以下步骤。
(1)按上述比例称取氧化锆、氧化铝、二氧化钛粉末,放入球磨机球磨24h。
(2)然后,加入氯化钠、碳酸氢钠粉末,以酸性硅溶胶为粘结剂,充分混匀后,送入造粒机造粒成型,120-130℃烘干14-16h。
(3)转移至高温马弗炉内进行程序升温焙烧,500℃保温1h,之后快速升温到1500-1600℃,焙烧时间为80-160min,冷却后即得到泡沫陶瓷催化剂。
本发明步骤(2)的烘干条件优选120℃烘干12h。
本发明将泡沫陶瓷固体催化剂引入到废弃油脂与废弃塑料共裂解过程中,利用泡沫陶瓷固体催化剂催化活性极高、结构稳定、不发生泥化、不易堵塞、反应结束后易于与产物分离以及可循环利用等特点,获得了高含量烷烃燃料。
本发明具有的优点。
1、该催化剂热稳定性好、转化率高、重复利用强、耐酸、耐水并能高效催化废弃油脂与废弃塑料共裂解生产高含量烷烃燃料,废弃油脂与废弃塑料共裂解液体中烷烃的含量高达99.5%。
2、该催化剂床层阻力下,结构稳定、不发生泥化、不易堵塞,非常适用于工业生产。
3、该催化剂中Al3+和Ti4+进入ZrO2晶格内部,使得部分ZrO2能够以置换固溶体的形式存在,颗粒彼此融合而成为一体。催化剂内部和表面形成了疏松的孔洞孔隙,因此催化剂具有极高的催化活性。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
称取60g氧化锆(ZrO2)、2g氧化铝(Al2O3)、1g二氧化钛(TiO2)粉末,放入球磨机球磨24h后,加入12g氯化钠(NaCl)、9g碳酸氢钠(NaHCO3)粉末,以酸性硅溶胶为粘结剂,充分混匀后,送入造粒机造粒成型,120℃烘干12h,转移至高温马弗炉内进行程序升温焙烧,500℃保温1h以挥发掉低温造孔剂和除去物理吸附的水分,之后快速升温到1500℃保持80min,使高温造孔剂完全挥发,冷却后即得到泡沫陶瓷催化剂。
将废弃的低密度聚乙烯塑料50g切割成面积为4cm2的近正方形碎片与废弃光皮树油、泡沫陶瓷催化剂按质量比1:1:0.15混合,混合物料送入高压反应釜,用氮气置换出反应器中的空气,把裂解反应温度控制在420±5℃,当反应物温度升温到达150℃时,开启搅拌装置,反应时间为40min,裂解反应产物经气、固分离后,气体产物中可冷凝的液体得到液态燃料油63.7g。经分析其中烷烃含量高达96.8%,经过精馏的液态燃油抗氧化稳定性总不溶物小于0.5mg/100ml(GB252-200检测法)。
实施例2。
称取64g氧化锆(ZrO2)、7g氧化铝(Al2O3)、2g二氧化钛(TiO2)粉末,放入球磨机球磨24h后,加入18g氯化钠(NaCl)、7g碳酸氢钠(NaHCO3)粉末,以酸性硅溶胶为粘结剂,充分混匀后,送入造粒机造粒成型,120℃烘干12h,转移至高温马弗炉内进行程序升温焙烧,500℃保温1h以挥发掉低温造孔剂和除去物理吸附的水分,之后快速升温到1550℃保持120min,使高温造孔剂完全挥发,冷却后即得到泡沫陶瓷催化剂。
将废弃的低密度聚乙烯塑料50g切割成面积为4cm2的近正方形碎片与废弃光皮树油、泡沫陶瓷催化剂按质量比1:1:0.15混合,混合物料送入高压反应釜,用氮气置换出反应器中的空气,把裂解反应温度控制在420±5℃,当反应物温度升温到达150℃时,开启搅拌装置,反应时间为40min,裂解反应产物经气、固分离后,气体产物中可冷凝的液体得到液态燃料油65.9g。经分析其中烷烃含量高达99.5%,经过精馏的液态燃油抗氧化稳定性总不溶物小于0.5mg/100ml(GB252-200检测法)。
实施例3。
称取62g氧化锆(ZrO2)、6g氧化铝(Al2O3)、1.5g二氧化钛(TiO2)粉末,放入球磨机球磨24h后,加入18g氯化钠(NaCl)、6g碳酸氢钠(NaHCO3)粉末,以酸性硅溶胶为粘结剂,充分混匀后,送入造粒机造粒成型,120℃烘干12h,转移至高温马弗炉内进行程序升温焙烧,500℃保温1h以挥发掉低温造孔剂和除去物理吸附的水分,之后快速升温到1580℃保持120min,使高温造孔剂完全挥发,冷却后即得到泡沫陶瓷催化剂。
将废弃的低密度聚乙烯塑料50g切割成面积为4cm2的近正方形碎片与废弃光皮树油、泡沫陶瓷催化剂按质量比1:1:0.15混合,混合物料送入高压反应釜,用氮气置换出反应器中的空气,把裂解反应温度控制在420±5℃,当反应物温度升温到达150℃时,开启搅拌装置,反应时间为40min,裂解反应产物经气、固分离后,气体产物中可冷凝的液体得到液态燃料油64.2g。经分析其中烷烃含量高达97.3%,经过精馏的液态燃油抗氧化稳定性总不溶物小于0.5mg/100ml(GB252-200检测法)。
实施例4。
称取63g氧化锆(ZrO2)、6.5g氧化铝(Al2O3)、2g二氧化钛(TiO2)粉末,放入球磨机球磨24h后,加入17.5g氯化钠(NaCl)、6.5g碳酸氢钠(NaHCO3)粉末,以酸性硅溶胶为粘结剂,充分混匀后,送入造粒机造粒成型,120℃烘干12h,转移至高温马弗炉内进行程序升温焙烧,500℃保温1h以挥发掉低温造孔剂和除去物理吸附的水分,之后快速升温到1600℃保持120min,使高温造孔剂完全挥发,冷却后即得到泡沫陶瓷催化剂。
将废弃的低密度聚乙烯塑料50g切割成面积为4cm2的近正方形碎片与废弃光皮树油、泡沫陶瓷催化剂按质量比1:1:0.15混合,混合物料送入高压反应釜,用氮气置换出反应器中的空气,把裂解反应温度控制在420±5℃,当反应物温度升温到达150℃时,开启搅拌装置,反应时间为40min,裂解反应产物经气、固分离后,气体产物中可冷凝的液体得到液态燃料油61.0g。经分析其中烷烃含量高达95.1%,经过精馏的液态燃油抗氧化稳定性总不溶物小于0.5mg/100ml(GB252-200检测法)。
实施例5。
称取65g氧化锆(ZrO2)、8g氧化铝(Al2O3)、3g二氧化钛(TiO2)粉末,放入球磨机球磨24h后,加入19g氯化钠(NaCl)、8g碳酸氢钠(NaHCO3)粉末,以酸性硅溶胶为粘结剂,充分混匀后,送入造粒机造粒成型,120℃烘干12h,转移至高温马弗炉内进行程序升温焙烧,500℃保温1h以挥发掉低温造孔剂和除去物理吸附的水分,之后快速升温到1600℃保持160min,使高温造孔剂完全挥发,冷却后即得到泡沫陶瓷催化剂。
将废弃的低密度聚乙烯塑料50g切割成面积为4cm2的近正方形碎片与废弃光皮树油、泡沫陶瓷催化剂按质量比1:1:0.15混合,混合物料送入高压反应釜,用氮气置换出反应器中的空气,把裂解反应温度控制在420±5℃,当反应物温度升温到达150℃时,开启搅拌装置,反应时间为40min,裂解反应产物经气、固分离后,气体产物中可冷凝的液体得到液态燃料油65.3g。经分析其中烷烃含量高达98.8%,经过精馏的液态燃油抗氧化稳定性总不溶物小于0.5mg/100ml(GB252-200检测法)。

Claims (3)

1.一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂,其特征是包括以下物质按质量份数:氧化锆60-65份,氧化铝2-8份,二氧化钛1-3份,氯化钠12-19份,碳酸氢钠3-8份。
2.权利要求1所述的泡沫陶瓷催化剂的制备方法,其特征是按以下步骤:
(1)按上述比例称取氧化锆、氧化铝、二氧化钛粉末,放入球磨机球磨24h;
(2)然后,加入氯化钠、碳酸氢钠粉末,以酸性硅溶胶为粘结剂,充分混匀后,送入造粒机造粒成型,120-130℃烘干14-16h;
(3)转移至高温马弗炉内进行程序升温焙烧,500℃保温1h,之后快速升温到1500-1600℃,焙烧时间为80-160min,冷却后即得到泡沫陶瓷催化剂。
3.根据权利要求2所述的泡沫陶瓷催化剂的制备方法,其特征是步骤(2)的烘干条件为120℃烘干12h。
CN201510440238.0A 2015-07-24 2015-07-24 一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法 Active CN105032386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510440238.0A CN105032386B (zh) 2015-07-24 2015-07-24 一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510440238.0A CN105032386B (zh) 2015-07-24 2015-07-24 一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN105032386A true CN105032386A (zh) 2015-11-11
CN105032386B CN105032386B (zh) 2017-11-21

Family

ID=54439702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510440238.0A Active CN105032386B (zh) 2015-07-24 2015-07-24 一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN105032386B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345445A (zh) * 2016-08-28 2017-01-25 山东成泰化工有限公司 一种废塑料热裂解用催化剂组合物
CN106345444A (zh) * 2016-08-28 2017-01-25 山东成泰化工有限公司 一种废橡胶热裂解用催化剂组合物
CN106423296A (zh) * 2016-08-28 2017-02-22 山东成泰化工有限公司 一种硅橡胶催化剂组合物
CN111229197A (zh) * 2020-03-26 2020-06-05 广州派安环保科技有限公司 一种餐厨垃圾用催化剂及餐厨垃圾处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151187B2 (en) * 2004-05-03 2006-12-19 Bruno Delfort Process for transesterification of vegetable oils or animal oils by means of heterogeneous catalysts based on zinc or bismuth, titanium and aluminium
CN103752297A (zh) * 2014-01-03 2014-04-30 南昌大学 一种用于生产生物柴油的氧化锆催化剂及制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151187B2 (en) * 2004-05-03 2006-12-19 Bruno Delfort Process for transesterification of vegetable oils or animal oils by means of heterogeneous catalysts based on zinc or bismuth, titanium and aluminium
CN103752297A (zh) * 2014-01-03 2014-04-30 南昌大学 一种用于生产生物柴油的氧化锆催化剂及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOSHI FURUTA ET AL.: "Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure", 《CATALYSIS COMMUNICATION》 *
王圣威等: "多孔陶瓷材料的制备及应用研究进展", 《硅酸盐通报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345445A (zh) * 2016-08-28 2017-01-25 山东成泰化工有限公司 一种废塑料热裂解用催化剂组合物
CN106345444A (zh) * 2016-08-28 2017-01-25 山东成泰化工有限公司 一种废橡胶热裂解用催化剂组合物
CN106423296A (zh) * 2016-08-28 2017-02-22 山东成泰化工有限公司 一种硅橡胶催化剂组合物
CN111229197A (zh) * 2020-03-26 2020-06-05 广州派安环保科技有限公司 一种餐厨垃圾用催化剂及餐厨垃圾处理方法
CN111229197B (zh) * 2020-03-26 2022-12-13 广州派安环保科技有限公司 一种餐厨垃圾用催化剂及餐厨垃圾处理方法

Also Published As

Publication number Publication date
CN105032386B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN105032386A (zh) 一种用于废弃油脂与废弃塑料共裂解的泡沫陶瓷催化剂及制备方法
CN103695021B (zh) 一种生物质与废轮胎共热裂解液化制备热解油的方法
Akah et al. Enhanced feedstock recycling of post-consumer plastic
CN107083252A (zh) 一种能降低生物质热解油含氧量的化学链热解脱氧工艺及***
CN102559941B (zh) 一种利用玉米芯水解糖化的方法
CN104560225B (zh) 一种生物质制取高品质燃料油的方法
CN100999677B (zh) 生物质微波催化裂解制备富含糠醛生物油的方法
CN103752297B (zh) 一种用于生产生物柴油的氧化锆催化剂及制备方法和应用
CN106520176B (zh) 一种用聚烯烃塑料制取小分子烯烃的方法
CN107188172B (zh) 一种富含中孔沥青基超级活性炭的制备方法
Chen et al. Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon
CN104560091B (zh) 一种富含轻质芳烃生物油的制备方法
Soongprasit et al. Pyrolysis of Millettia (Pongamia) pinnata waste for bio-oil production using a fly ash derived ZSM-5 catalyst
CN101845333A (zh) 一种微孔--介孔复合分子筛催化裂解生物质制取高醇含量生物油的方法
CN104560092B (zh) 一种生物质制取富含呋喃醇生物油的方法
CN102942947B (zh) 一种催化热解生物质制备btx的方法
Khaligh et al. Solar energy and TiO2 nanotubes: biodiesel production from waste cooking olive oil
Shen et al. Catalytic pyrolysis of cellulose with biochar modified by Ni–Co–Mn cathode material recovered from spent lithium-ion battery
CN104560093A (zh) 一种生物质制取燃料油的方法
CN105038834B (zh) 一种非食用油脂与废弃塑料共裂解制备高烷烃含量燃油的方法
CN106554821B (zh) 从生物油制备富含二甲苯的芳烃和多孔炭/固体酸的方法
CN105602590A (zh) 一种废弃农作物秸秆类资源制炭工艺
CN106316727B (zh) 一种多孔粒状铵油***及其制备方法
CN106241770A (zh) 一种竹基多孔碳的制备方法
CN105586065B (zh) 一种生物热解燃料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant