CN102439771B - 用于锂离子电池的多孔导电活性复合电极 - Google Patents

用于锂离子电池的多孔导电活性复合电极 Download PDF

Info

Publication number
CN102439771B
CN102439771B CN201180001321.8A CN201180001321A CN102439771B CN 102439771 B CN102439771 B CN 102439771B CN 201180001321 A CN201180001321 A CN 201180001321A CN 102439771 B CN102439771 B CN 102439771B
Authority
CN
China
Prior art keywords
active
lithium ion
carbon
composite
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180001321.8A
Other languages
English (en)
Other versions
CN102439771A (zh
Inventor
林葆喜
江英凱
丹尼斯·麦克基恩
李英顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong Applied Science and Technology Research Institute ASTRI
Original Assignee
Hong Kong Applied Science and Technology Research Institute ASTRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong Applied Science and Technology Research Institute ASTRI filed Critical Hong Kong Applied Science and Technology Research Institute ASTRI
Publication of CN102439771A publication Critical patent/CN102439771A/zh
Application granted granted Critical
Publication of CN102439771B publication Critical patent/CN102439771B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一活性复合材料分散在一导电性多孔基体中,该导电性多孔基体形成在一集流体上,从而形成一复合锂离子电池电极。该活性复合材料包括纳米团簇的活性材料分散在一导电骨架结构上。导电性骨架包括一导电聚合物或一导电纤丝。活性材料是一金属基材料,包括一种或多种元素如锡、铝、硅、钛;或者是一碳基材料,包括一种或多种碳材如石墨、碳纤维、碳纳米管,或其组合;其粒子大小在1纳米到10微米之间。通过原位聚合方法或化学接枝方法,将活性材料分散在导电骨架上。该导电性多孔基体含一导电性聚合物粘合剂和由造孔剂产生的锂离子扩散通道,以及导电性粒子。

Description

用于锂离子电池的多孔导电活性复合电极
【技术领域】
本发明涉及锂离子电池的电极,特别涉及包括活性复合材料的电极;该活性复合材料分散在导电性多孔基体里;该导电性多孔基体中有通道用于锂离子扩散。
【背景技术】
锂离子电池用于多种便携式电子设备,如手机和手提电脑。尽管锂离子电池足够胜任用于便携式电子设备,但是未來需求包括用于电动车的电池将比那些现有的电池需要更高的电容量。已经有各种方法用于提高锂离子电池材料的比容量,比如美国专利公开文本2011/0114254、2008/0237536、2010/0021819、2010/0119942、2010/0143798、2010/0285365、2010/0062338,以及国际公开WO 2008/021961和欧洲专利1 207 572中描述的多孔结构阳极和复合阳极。虽然这些阳极可以提高电池性能,但是仍有需要寻求改善锂离子电池电极性能同时兼顾到制程简单、低成本并能够批量生产的技术,以能供应将来大规模电动车和便携式电子设备的需求。
【发明内容】
本发明涉及复合锂离子电池电极,其含一活性复合材料分散在一导电性多孔基体中,该导电性多孔基体形成在一集流体上。该活性复合材料含纳米团簇的活性材料分散在一导电骨架结构上。该活性材料是微粒子的锡、铝、硅、钛和碳,其粒子大小在大约1纳米到10微米之间。导电性骨架包括至少一导电聚合物或一导电纤絲。通过原位聚合方法或化学接枝方法,将活性材料分散在导电骨架上。
导电性多孔基体包括一导电性聚合物粘合剂和锂离子扩散通道;该通道是在活性复合材料混合在导电性多孔基体内的期间由造孔剂形成。该导电性多孔基体还包括导电性粒子。
【附图说明】
图1是本发明一个实施例的复合锂离子电池电极的示意图。
图2是用于图1电极的活性复合材料的示意图。
【具体实施方式】
参见图1,显示本发明的复合锂离子电池电极10。在图1所示的实施例中,电极包括集流体20(current collector),其通常是导电金属片如铜。置于集流体20上的是一活性复合材料30分散在一导电性多孔基体40中。该活性复合材料包括微粒子活性材料32,如图2所示,分散在导电性骨架结构34上。活性材料32有微粒子结构,其颗粒大小范围在大约1纳米到大约10微米之间。当该电极用做阳极时,粒子包括金属基材料如锡、铝、硅、钛,或碳基材料如石墨、碳纤维、纳米碳管(CNT),或者上述组合。在阳极中,这些材料在充电阶段为锂离子提供超级嵌入媒质(intercalation media)。在放电阶段,锂离子从阳极移动到阴极。由于在锂离子的嵌入和脱出期间引起的体积变化,在重复的充电和放电周期后,固体金属活性材料会产生碎化(裂成更小的粒子)。使用纳米级粒子活性材料的好处是可以避免这个问题,也可以提供一个更大的表面积用于嵌锂(lithium intercalation)。
导电性骨架34包括至少一导电聚合物或一导电纤丝(conductive filament),通过原位聚合法或者化学接枝法(将在以下讨论),活性材料32分散在该导电性骨架上。以这种方式将活性材料分开在导电性骨架上,可避免了活性材料在多孔导电性基体40中凝聚成团,因此本发明增加了批量生产制造的可行性。
导电性骨架34的导电聚合物包括吡咯(pyrrole)、苯胺(aniline)、噻吩(thiofuran);或者导电纤丝如纳米碳管或碳纳米纤维也可以用做骨架34。从图2中可以看到,骨架34与分散的活性材料32形成的结构具微通道,提供锂离子扩散通道到活性材料32。锂离子嵌入增加,因而电池的电容量就通过该活性复合材料30而得到提高。在充电和放电期间,当锂离子嵌入和脱出时,微通道也有助于为活性材料粒子的膨胀和收缩提供空间。
活性复合材料30分散在导电性多孔基体40内,如图1所示。导电性多孔基体40包括一导电性聚合物粘合剂(polymeric binder)和锂离子扩散通道42,该通道在活性复合材料混合在导电性多孔基体内的期间由造孔材料产生(以下将讨论)。导电性聚合物粘合剂可以是一种改进的吡咯、苯胺或噻吩,或其他合适的导电性聚合物,具导电率高于10S/cm的材料。锂离子通道42提供锂由电极表面移动到内部活性材料32的路径。另外,在充电和放电期间,当锂离子嵌入和脱出时,通道42有助于为整个活性电极的膨胀和收缩提供空间。在一个实施例,通道的总体积要小于电极的5%。
为了增加多孔基体40的导电性,至少一种导电性粒子如粒子50或60被包含在导电性多孔基体中。在图1的实施例里,粒子50是石墨,粒子60是碳黑(carbon black)。但是,也可以选择其他导电性粒子用在多孔基体40中。
下面描述一个典型的制作电极10的方法。活性复合材料30的形成包括从一种合适的前驱体溶液(precursor solution)如锡、铝、硅或钛前驱体盐(硝酸盐、碳酸盐等)中沉淀析出活性材料32如锡、铝、硅或钛。前驱体溶液混合于添加剂如磺酸盐(sulfonate)、亚胺(imine)和氮化物(nitride)。然后脱水干燥而得到沉淀的前驱体粉末,其粒子大小大约是1-100微米。然后,在低于1000℃的空气或惰性环境里对该沉淀物进行热处理,产生还原/煅烧粉末,研磨后会将粒子大小减小到小于100微米的范围内,最好是在1纳米到10微米的范围。该方法具符合成本效益、易复制和可批量生产可行性。
为了将活性材料32分散在骨架结构34上,可以选择使用几种方法。其中一个方法是,对碳纤维、纳米碳管和/或碳棒进行表面处理,而产生一个羧基(-COOH)绑在碳基骨架上。活性材料微粒子与添加剂混合,如APTES(氨基丙基三乙氧基硅烷)、APTMS(3-氨基丙基三乙氧基硅烷)或者APPA(2-氨基-5-膦-3-戊烯酸),再经漂洗和干燥后形成活化了的活性材料粉末。为了形成羧基在碳骨架结构上,将碳骨架结构与一试剂混合,如EDC(N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐)或NHS(N-羟基琥珀酰亚胺磺酸钠盐)。该有羧基的碳骨架结构与该活化活性材料粉末的溶液经混合进行化学作用,将该活性材料结合在该碳基骨架上。
在另一个将活性材料分散在骨架上的实施例里,使用了原位聚合法。微粒子锡、铝、硅或钛与一添加剂混合,如磺酸、钠盐或磺酸盐。该混合物被添加到一含聚合物溶液,如吡咯、苯胺、噻吩。再添加一添加剂如三氯化铁或硫酸铵。在一去氧溶液里,低于大约10℃的温度下,发生聚合反应。产生的活性复合材料就是活性材料分散在一多孔骨架上。
先将微粒子的活性材料分散在骨架上以制备一活性材料复合物,然后将活性材料复合物并入导电性多孔基体,如此活性材料粒子不会凝聚成团,且因而提高用于嵌锂的面积。为了建立导电性多孔基体,由一导电聚合物如吡咯、苯胺、或噻吩表面改性(surface-modified)得到一粘合剂;将该活性材料复合物、导电聚合物粘合剂、和一造孔剂(其可以是造孔材料和/或发泡材料如碳酸盐,(NH4)2CO3或C2H4N4O2),以及另外的导电性粒子如粒子50和/或60(石墨、碳黑)混合在一起。将该混合物敷在集流体20如铜片上,经抽气和溶剂蒸发后,留下活性材料复合物和导电性粒子分散在多孔导电基体中;造孔材料在基体中形成孔洞並产生连续的互连孔道,提供为锂离子移动的通道。
虽然已经描述了本发明的各个实施例,但是并不仅限于这些实施例。各种变化和改变将被本领域技术人员所理解。这些变化和改变包含在所附权利要求的范围内。

Claims (15)

1.一种复合锂离子电池电极,包括
一活性复合材料分散在一导电性多孔基体中,该导电性多孔基体形成在一集流体上;该活性复合材料包括一活性材料分散在一导电性骨架结构上,活性材料微粒子的颗粒大小小于10微米,包括以下至少一种材料:一金属基材料,包括一种或多种元素,所述元素包括锡、铝、硅或钛;或者一碳基材料,包括一种或多种碳材,所述碳材包括石墨、碳纤维或碳纳米管;或者该金属基材料和该碳基材料的组合物;导电性骨架包括至少一导电聚合物或一导电纤丝;通过一原位聚合法或一化学接枝法,将所述活性材料通过化学作用分散在所述导电性骨架上;
所述导电性多孔基体包括一导电性聚合物粘合剂和锂离子扩散通道,其通道在活性复合材料混合在导电性多孔基体内的期间由造孔剂形成,所述导电性多孔基体还包括微粒的导电粒子。
2.如权利要求1所述的复合锂离子电池电极,其中所述集流体是一铜片。
3.如权利要求1所述的复合锂离子电池电极,其中所述导电粒子是碳黑和/或石墨。
4.如权利要求1所述的复合锂离子电池电极,其中所述导电性骨架是一碳纤维和/或纳米碳管。
5.如权利要求1所述的复合锂离子电池电极,其中所述导电性骨架是导电性聚合物。
6.如权利要求1所述的复合锂离子电池电极,其中所述电极是阳极。
7.如权利要求1所述的复合锂离子电池电极,其中所述导电性聚合物粘合剂包括聚吡咯、聚苯胺或聚噻吩。
8.如权利要求1所述的复合锂离子电池电极,其中所述造孔剂包括至少一造孔材料或发泡材料。
9.一种制作权利要求1所述的复合锂离子电池电极的方法,包括:
从一种锡、铝、硅或钛前驱体盐或其混合物的前驱体溶液与以下一种或多种添加剂混合:磺酸盐、亚胺和氮化物;沉淀析出金属基活性材料沉淀物;
沉淀物脱水干燥而得到沉淀的前驱体粉末,其粒子大小是1-100微米;
然后,在低于1000°C的空气或惰性环境里对该沉淀物进行热处理,得到还原煅烧的活性材料粉末;
进一步研磨后将活性材料微粒子大小减小;
将活性材料通过一原位聚合法或一化学接枝法分散在一导电性骨架上,通过化学作用形成活性复合材料。
10.一种权利要求9所述的方法,其中活性材料微粒子大小在1纳米以上小于10微米的范围。
11.一种制作权利要求1所述的复合锂离子电池电极的方法,包括:使骨架材料与一试剂发生反应,形成羧基在该骨架材料上,该骨架材料包括碳纤维、纳米碳管或碳棒;活性材料微粒子与一个或多个用于活化活性材料的添加剂混合,以形成一活化了的活性材料;然后该具有羧基的骨架材料与该活化活性材料粉末的溶液经混合产生化学效应,将该活性材料结合在该骨架材料上。
12.一种制作权利要求1所述的复合锂离子电池电极的方法,包括:混合活性材料微粒子到一导电聚合物的聚合溶液中,以分散该活性材料在导电性骨架上。
13.如权利要求12所述的方法,其中所述导电聚合物包括聚吡咯、聚苯胺或聚噻吩。
14.一种制作权利要求1所述的复合锂离子电池电极的方法,包括:将活性材料通过一原位聚合法或一化学接枝法分散在一导电性骨架上,通过化学作用形成活性复合材料;将所述活性复合材料加入一混合物中,该混合物包括一导电聚合物粘合剂,由一导电聚合物经过表面改性而得到该导电聚合物粘合剂;该混合物还包括一造孔剂,其材料是造孔材料或发泡材料或其组合;该混合物还包括导电粒子;将该混合物敷在集流体上,以形成一多孔导电基体,活性复合材料和导电粒子分散在其中。
15.如权利要求14所述的方法,其中所述导电聚合物包括聚吡咯、聚苯胺、或聚噻吩。
CN201180001321.8A 2011-08-19 2011-08-19 用于锂离子电池的多孔导电活性复合电极 Expired - Fee Related CN102439771B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078672 WO2013026190A1 (en) 2011-08-19 2011-08-19 Porous conductive active composite electrode for lithium ion batteries

Publications (2)

Publication Number Publication Date
CN102439771A CN102439771A (zh) 2012-05-02
CN102439771B true CN102439771B (zh) 2014-04-09

Family

ID=45986247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180001321.8A Expired - Fee Related CN102439771B (zh) 2011-08-19 2011-08-19 用于锂离子电池的多孔导电活性复合电极

Country Status (3)

Country Link
CN (1) CN102439771B (zh)
HK (1) HK1173558A1 (zh)
WO (1) WO2013026190A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431651B2 (en) 2013-08-30 2016-08-30 Hong Kong Applied Science and Technology Research Institute Company Limited Composite material for a lithium ion battery anode and a method of producing the same
CN103904299B (zh) * 2014-03-24 2015-10-28 宁德新能源科技有限公司 锂离子二次电池及其负极极片
JP5999399B2 (ja) * 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
CN106861762B (zh) * 2015-12-12 2019-03-22 中国科学院大连化学物理研究所 金属氧化物纳米簇的合成及纳米簇和在水氧化中的应用
CN108666568A (zh) * 2017-04-01 2018-10-16 清华大学 锂离子电池阳极
CN109473633B (zh) * 2017-09-07 2021-06-11 上海杉杉科技有限公司 一种锂离子电池纳米硅基复合纤维负极材料及其制备方法
CN109205743B (zh) * 2018-11-02 2021-04-13 南京工业大学 一种碳纳米管复合氧化钛多孔碳材料的制备方法及其应用
CN109509877B (zh) * 2018-11-30 2020-12-11 清华大学深圳研究生院 碳包覆多孔金属涂层集流体、制备方法及锂电池
CN109950464A (zh) * 2019-02-01 2019-06-28 湖北锂诺新能源科技有限公司 一种多孔硅碳负极极片及其制备方法
KR102203515B1 (ko) * 2020-02-28 2021-01-14 서울대학교산학협력단 리튬 이차전지용 전극의 제조 방법
CN113278820B (zh) * 2021-05-21 2022-06-17 中南大学 一种盐湖提锂用电极材料、其制备方法及盐湖提锂用电极
CN116741993A (zh) * 2022-03-03 2023-09-12 比亚迪股份有限公司 一种电极极片及其制备方法和锂电池
CN115312777A (zh) * 2022-09-07 2022-11-08 湖北亿纬动力有限公司 一种低曲折度厚电极及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009368A (zh) * 2001-03-20 2007-08-01 爱克索里奥克斯公司 电化学电池的中孔网状电极
CN101499522A (zh) * 2008-01-28 2009-08-05 财团法人工业技术研究院 锂电池正极材料、其制造方法及应用此材料的锂二次电池
CN101894940A (zh) * 2010-08-03 2010-11-24 哈尔滨工业大学 用于锂离子电池的多孔硅基负极及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936874B2 (en) * 2008-06-04 2015-01-20 Nanotek Instruments, Inc. Conductive nanocomposite-based electrodes for lithium batteries
CA2638410A1 (en) * 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009368A (zh) * 2001-03-20 2007-08-01 爱克索里奥克斯公司 电化学电池的中孔网状电极
CN101499522A (zh) * 2008-01-28 2009-08-05 财团法人工业技术研究院 锂电池正极材料、其制造方法及应用此材料的锂二次电池
CN101894940A (zh) * 2010-08-03 2010-11-24 哈尔滨工业大学 用于锂离子电池的多孔硅基负极及其制备方法

Also Published As

Publication number Publication date
CN102439771A (zh) 2012-05-02
HK1173558A1 (zh) 2013-05-16
WO2013026190A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
CN102439771B (zh) 用于锂离子电池的多孔导电活性复合电极
TWI442618B (zh) 用於鋰離子電池的多孔導電活性複合電極
Teng et al. MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes
Yu et al. Ultrathin MoS2 nanosheets supported on N‐doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties
Xu et al. Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries
Shao et al. Water‐soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium‐ion batteries
Jin et al. Synergy of black Phosphorus–Graphite–Polyaniline-based ternary composites for stable high reversible capacity Na-ion battery anodes
Wang et al. Ni2P nanosheets on carbon cloth: An efficient flexible electrode for sodium-ion batteries
CN103208618B (zh) 锂离子电池碳硫复合正极材料及其制备方法
CN109461890B (zh) 硅碳负极材料、其制备方法及锂离子电池
Zheng et al. Hydrothermal synthesis of 3D porous structure Bi2WO6/Reduced graphene oxide hydrogels for enhancing supercapacitor performance
Jiao et al. A novel polar copolymer design as a multi-functional binder for strong affinity of polysulfides in lithium-sulfur batteries
Yu et al. Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries
He et al. Electrocatalytic activity of lithium polysulfides adsorbed into porous TiO2 coated MWCNTs hybrid structure for lithium-sulfur batteries
US11289699B2 (en) Conductive coatings for active electrochemical materials
Chen et al. PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance
Ma et al. High-performance battery-type Fe1-xS@ CFs anode for all-solid-state battery-type asymmetric supercapacitor with high energy density and wide working temperature range
Zhang et al. Polyaniline nanowire electrodes with high capacitance synthesized by a simple approach
CN106450234A (zh) 一种球形二氧化钛/石墨烯柔性复合材料的制备方法
Tang et al. Three-dimensional ordered macroporous Cu/Fe3O4 composite as binder-free anode for lithium-ion batteries
Qiao et al. Hollow carbon spheres embedded with VN quantum dots as an efficient cathode host for lithium–sulfur batteries
Yan et al. Hierarchical hybrids of mesoporous NiCo2O4 needles/graphene/carbon nanotubes with high performance for lithium ion batteries and oxygen reduction reactions
Lin et al. Single-precursor design and solvent-free nanocasting synthesis of N/S/O-doped ordered mesoporous carbons with trimodal pores for excellent oxygen reduction
Liao et al. L-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery
Wu et al. Hierarchical porous soft carbon host for the cathode of an aqueous zinc-iodine battery with ultra-long cycle life

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CI01 Publication of corrected invention patent application

Correction item: Fourth inventor

Correct: Li Yingshun

Number: 18

Volume: 28

CI02 Correction of invention patent application

Correction item: Fourth inventor

Correct: Li Yingshun

Number: 18

Page: The title page

Volume: 28

ERR Gazette correction

Free format text: CORRECT: THE FOURTH INVENTOR; FROM: NONE TO: LI YINGSHUN

RECT Rectification
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1173558

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1173558

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

CF01 Termination of patent right due to non-payment of annual fee