CN102301479B - 基底表面上的纳米线、其制造方法及应用 - Google Patents

基底表面上的纳米线、其制造方法及应用 Download PDF

Info

Publication number
CN102301479B
CN102301479B CN200980146632.6A CN200980146632A CN102301479B CN 102301479 B CN102301479 B CN 102301479B CN 200980146632 A CN200980146632 A CN 200980146632A CN 102301479 B CN102301479 B CN 102301479B
Authority
CN
China
Prior art keywords
nano wire
nano
nanocluster
wire
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980146632.6A
Other languages
English (en)
Other versions
CN102301479A (zh
Inventor
S·库德拉
E·博克
J·P·施帕茨
L·曼纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Fondazione Istituto Italiano di Tecnologia
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Fondazione Istituto Italiano di Tecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV, Fondazione Istituto Italiano di Tecnologia filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of CN102301479A publication Critical patent/CN102301479A/zh
Application granted granted Critical
Publication of CN102301479B publication Critical patent/CN102301479B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices

Abstract

本发明涉及在基底表面上制造锚定纳米线的方法。根据本发明制造锚定纳米线的方法不包括气相沉积步骤,而是至少包括以下步骤:a)提供具有预定二维几何排列的纳米颗粒或纳米团簇的基底表面;b)将具有纳米颗粒或纳米团簇的基底表面与至少一种形成纳米线的材料的溶液接触,其中形成纳米线的材料选择性地沉积在纳米颗粒或纳米团簇上,并在此进一步生长。根据本发明的方法优选还包括在步骤a)中通过将基底表面与种子材料的溶液接触以使种子材料选择性地沉积在纳米颗粒或纳米团簇上从而将种子材料施加在纳米颗粒或纳米团簇上;以及在步骤b)中使形成纳米线的材料选择性地沉积在具有种子材料的纳米颗粒或纳米团簇上,并在此进一步生长。

Description

基底表面上的纳米线、其制造方法及应用
技术领域
纳米线及其制造方法在许多技术领域例如在半导体技术、光学和光伏中受到很大关注,并且采用一系列不同的方法,从而从各种材料,通常从金属、半金属和金属合金以及从有机化合物制造该纳米线,即直径典型地为1至100nm且长度最大在微米范围内的细线或丝线状的结构。
背景技术
例如,Pearton等人,Journal of Nanoscience and Nanotechnology,Vol.8,99-110(2008)、Yu等人,J.Am.Chem.Soc.2003,Vol.125,16168-16169、Fanfair和Korgel,Crystal Growth & Design 2005,Vol.5,No.5.1971-1976以及专利申请US 2006/0057360A1、US 2007/0194467A1、US2008/0047604A1及WO 2008/054378A2中描述了制造纳米线的方法。
但是,现有技术的许多方法费时且成本高,尤其是包含气相沉积步骤和/或无法有效控制生长条件或无法在基底表面上实现纳米线结构的所期望的特定几何排列。其他制造方法仅提供不锚定在表面上的绝缘的胶体纳米线。
因此,本发明的目的是以尽可能地简单、节省材料且成本低廉的方式在基底表面上制备特定几何排列的锚定的纳米线。
该目的是根据本发明通过权利要求1的制备方法以及权利要求10的纳米线实现的。本发明的特别的或优选的实施方案和方面是其他权利要求的主题。
发明内容
根据权利要求1的本发明用于在基底上制造锚定纳米线的方法不包括气相沉积步骤,而是至少包括以下步骤:
a)提供具有预定二维几何排列的纳米颗粒或纳米团簇的基底表面;
b)将具有纳米颗粒或纳米团簇的基底表面与至少一种形成纳米线的材料的溶液接触,其中形成纳米线的材料选择性地沉积在纳米颗粒或纳米团簇上,并在此进一步生长。
根据本发明的方法优选进一步包括在步骤a)中通过将基底表面与种子材料的溶液接触以使种子材料选择性地沉积在纳米颗粒或纳米团簇上从而将种子材料施加在纳米颗粒或纳米团簇上;以及在步骤b)中使形成纳米线的材料选择性地沉积在具有种子材料的纳米颗粒或纳米团簇上,并在此进一步生长。
基底表面基本上没有特别的限制,并且只要在本发明方法的条件下具有耐受性并且不会损害或干扰所进行的反应,则可以包含任何材料。基底例如可以选自玻璃、硅、金属、聚合物等。对于某些应用,优选透明基底,如玻璃或玻璃上的ITO。
纳米颗粒在基底表面上的预定二维几何排列具有作为特征预定的最小或中等的颗粒间距,其中该预定的颗粒间距在基底表面的所有区域内可以是相等的,或者不同区域可具有不同的预定颗粒间距。该几何排列基本上可用现有技术的任何合适方法实现。
但优选用胶束双嵌段共聚物纳米光刻技术,如EP 1 027 157B1和DE 197 47 815A1中所述,产生纳米颗粒或纳米团簇的二维排列。在胶束纳米光刻中,例如通过浸涂将嵌段共聚物的胶束溶液沉积到基底上,以及在合适的条件下在表面上形成化学上不同的聚合物畴的有序膜结构,其尤其依赖于嵌段共聚物的类型、分子量和浓度。溶液中的胶束可用在沉积聚合物膜之后可被氧化或还原成无机纳米颗粒的无机盐进行装载。在专利申请DE 10 2007 017 032A1中描述的该技术的继续发展,能够通过不同措施精确地以平面调节所述聚合物畴及因此所得纳米颗粒的横向长度分量以及该纳米颗粒的尺寸,从而可以制造具有所期望的间距梯度和/或尺寸梯度的纳米结构化的表面。典型地,用该胶束纳米光刻技术制造的纳米颗粒排列具有准六边形的图案。
提供具有特定几何排列的纳米颗粒的基底表面是本发明方法的重要框架条件,包括预定的颗粒间距和预定的颗粒尺寸。
纳米颗粒或纳米团簇的材料原则上没有特别的限制,并且可以包含在现有技术中针对该纳米颗粒已知的任何材料。优选为选自以下组中的材料:Au、Pt、Pd、Ag、In、Fe、Zr、Al、Co、Ni、Ga、Sn、Zn、Ti、Si和Ge,特别优选为金。
在本发明方法的一个优选的实施方案中,纳米颗粒在步骤a)中涂覆种子材料,其促进真正纳米线材料在该纳米颗粒上粘着和生长。该种子材料优选选自以下组中:Bi、In和这些金属的合金,其中特别优选为Bi。在某些情况下,例如在金纳米颗粒与ZnO或Si的组合作为纳米线材料的情况下,种子材料也可以被省略。
典型地通过将具有纳米颗粒优选金纳米颗粒的基底在130℃至200℃、优选160℃至170℃的范围内的温度下浸入种子材料的盐例如Bi的2-乙基己酸铋(III)在合适溶剂中的热溶液中而进行涂覆。在此,铋选择性地沉积在纳米颗粒上。停留时间决定纳米颗粒上的铋层的直径。通过将基底从溶液取出并例如用异丙醇清洗基底而停止该生长过程。
形成纳米线的材料典型地是半导体材料。纳米线材料优选选自以下组中:CdSe、CdTe、CdS、PbSe、PbTe、PbS、InP、InAs、GaP、GaAs、ZnO、(ZnMg)O、Si和经掺杂的硅。
为了制造根据本发明的纳米线,将具有任选经涂覆的纳米颗粒的基底浸入至少一种用于形成纳米线的材料的溶液中。该材料一般是金属/半金属或金属/半金属的合金,在步骤b)中根据本发明使用的该材料的溶液包括一种或多种该金属/半金属的盐的溶液。在纳米线由CdSe或CdTe组成的情况下,所用的溶液例如是硬脂酸镉在氧化三正辛基膦(TOPO)中的溶液,或镉氧化物在TOPO和具有更长烷基链的含磷的酸(如“十八烷基膦酸”)中的溶液,或镉氧化物在橄榄油(根据Sapra等人,Journalof Materials Chemistry,2006.16(33)pp.3391-3395)中的溶液,基底浸入其中,同样添加合适的Se或Te化合物,如n-R3PSe或n-R3PTe(其中R=烷基,如丁基或辛基)。
根据要求和所用组分调节生长纳米线的温度。在纳米线由CdSe和CdTe组成的情况下,温度典型地在150℃至250℃的范围内。通过改变诸如Cd和Se/Te的组分的浓度、温度和反应时间,可以改变纳米线的长度。通过本发明方法典型地制造长度约为10纳米至几微米的纳米线。
在实施方案中,更加详细地描述了用CdSe制造根据本发明的纳米线的合适条件。但是本领域技术人员清楚,可以要求根据所用的具体材料改变这些条件,并通过常规实验容易地确定。
通过使在基底上流过的所用溶液的量最小化,根据本发明的制造方法可以节省材料的方式实施。相对于许多已知的纳米线制造方法,在方法技术上的另一个优点在于,根据本发明的方法可以平行地以许多试样/批次实施。
根据本发明的方法提供锚定纳米线以预定间隔确定排列的基底,其中纳米线具有与基底表面的纳米颗粒的牢固的外延连接。从图1c和1d可以看出,纳米颗粒可以是多于一条纳米线的起始点。原则上还可制造分支的纳米线。
本发明方法的产品可以广泛地应用于电子学和压电电子学的领域,特别是纳米压电电子学、半导体技术、光学、传感器技术、光伏和传统的化学存储元件。
一些非限制性例子是在太阳能电池、晶体管、二极管、化学存储元件或传感器中的应用。
特别优选的应用涉及在太阳能电池中的应用。已知半导体纳米线和纳米晶能够有效地吸收在可见光谱中的光线。对于大多数目前使用的基于纳米晶的太阳能电池,使用胶体纳米晶与导电聚合物(Kumar和Scholes,Microchimica Acta 2008,Vol.160(3),315-325)或电解质(Nature2001,414,338)的混合物。在纳米晶中产生的电子/空位对在晶体表面上分离。一种电荷载流子类型通过聚合物传输至电极,同时另一种通过纳米晶传输至相反的电极。该方法一般受到缺少纳米晶的渗透网络的限制。载流子传输经过的距离受到纳米晶尺寸的限制。纳米晶与电极之间的接触通常也不是最优的。制造方法的结果是,纳米晶通常覆盖有在纳米晶与电极之间形成绝缘层的有机分子。与此不同,使用牢固地锚定于表面上的纳米线提供突出的优点。若表面是导电的,则在吸收过程中产生的电荷可以直接存储。Law等人,Nature Materials 2005,4,455-459建议了基于ZnO的锚定纳米线的此类排列,其被浸入液体电解质中。但是在此所述的合成法无法转移至其他纳米线材料,如CdSe和CdTe,而且不使用生长纳米线的具有预定二维几何排列的基底表面。
通过根据本发明使用具有预定图案的结构化表面可以获得纳米线的受控的高密度,其中单根纳米线以所期望的间隔适当分离。以此方式,纳米线排列的特征可以特别方便且精细地设置。例如,密度的最优化使得能够使用导电聚合物(参见图2)代替液体电解质,如Law等人所述。这在其中存在液体溢出或液体蒸发的风险的应用,例如在薄膜应用中是有利的。通过最优化密度,可以确保导电聚合物充分进入线之间,这在传统的纳米线排列的情况下通常是成问题的。
附图说明
图1显示了在根据本发明的制造方法的不同阶段中的试样的SEM照片。
(a)具有金纳米颗粒的确定排列的起始基底;(b)在金纳米颗粒上沉积铋之后;(c)在Au/Bi纳米颗粒上生长短的CdSe纳米线;(d)在基底上的CdSe纳米线的长且紧密的排列。
图2示意性地显示了使用根据本发明制得的、锚定于基底上的、作为太阳能电池元件的纳米线的电极配置结构。
以下实施例用于更详细地阐述本发明,但不将其限制于此。
具体实施方式
实施例
在具有金纳米颗粒排列的基底上制造CdSe纳米线
1.提供基底表面
首先通过胶束纳米光刻法在基底表面如玻璃或玻璃上的ITO上涂覆特定排列的金点/金纳米颗粒。在该步骤中,可以采用在EP 1 027 157B1、DE 197 47 815A1或DE 10 2007 017 032A1中所述的方案之一。该方法包括例如通过浸涂法将嵌段共聚物(如聚苯乙烯(n)-b-聚(2-乙烯基吡啶(m))的胶束溶液沉积在基底上,从而在表面上形成聚合物畴的有序薄膜结构。溶液中的胶束用金盐、优选HAuCl4装载,其在沉积聚合物薄膜之后被还原成金纳米颗粒。可以化学方式,例如用肼,或者利用高能辐射,如电子束或光照,进行还原。优选在还原之后或同时去除聚合物薄膜(例如通过Ar离子、H离子或O离子的等离子蚀刻)。
接着用铋选择性地涂覆金纳米颗粒。为此,首先将50mgBi[N(SiMe3)2]3(如Carmalt等人,Homoleptic Bismuth Amides.Inorg.Synth.,1996 31:pp.98-101中所述制得)、0.1ml Na[N(SiMe3)2](来自SigmaAldrich,#36,805-9)以及20ml聚合物溶液(42.6克来自Sigma-Aldrich,#43,050-1的聚(1-乙烯基吡咯烷酮)-g-(1-十六碳烯)在130克1,3-异丙基苯中)在烧瓶中混合,并实施下面的步骤:
1.1在溶液中悬挂具有Au涂层的基底。
1.2对烧瓶多次短暂抽真空并充入氮气。
1.3在氮气中将该溶液加热到150至170℃,并在该温度下保持30分钟至5小时。
1.4通过从溶液取出样品以终止在基底上的反应。
1.5随后用异丙醇冲洗基底,并在保护气体(氮气)中保存用于后续实验。
2.制造半导体纳米线
2.1在烧瓶中混合8克TOPO(氧化三正辛基膦,来自StremChemicals,#15-6661)和30mg硬脂酸镉(Strem Chemicals,#93-4820)。
2.2将该溶液加热到100至150℃,并多次抽真空及随后用氮气冲洗。
2.3在氮气中进一步加热该溶液至210℃,并将试样悬挂在该溶液中。
2.4一旦温度稳定,就注入硒溶液:400mg TOP(三正辛基膦,来自Sigma-Aldrich,#11,785-4)和100mg Se-TOP(200mg硒粉溶解在800mgTOP中)。
2.5使反应进行约30分钟,然后将基底从溶液取出。
2.6用异丙醇冲洗基底。

Claims (18)

1.用于在基底上制造锚定纳米线的方法,其不包括气相沉积步骤,而是包括以下步骤:
a)提供具有预定二维几何排列的纳米颗粒或纳米团簇的基底表面,其中通过将基底表面与种子材料的溶液接触以使种子材料选择性地沉积在纳米颗粒或纳米团簇上从而将种子材料施加在纳米颗粒或纳米团簇上,所述种子材料选自以下组中:Bi、In以及Bi与In的合金;
b)将具有纳米颗粒或纳米团簇的基底表面与至少一种形成纳米线的材料的溶液接触,其中使形成纳米线的材料选择性地沉积在具有种子材料的纳米颗粒或纳米团簇上,并在此进一步生长。
2.根据权利要求1的方法,其特征在于,用胶束嵌段共聚物纳米光刻技术在基底表面上产生纳米颗粒或纳米团簇的二维几何排列。
3.根据权利要求1或2的方法,其特征在于,形成纳米线的材料是金属/半金属或金属/半金属的合金,而在步骤b)中使用的该材料的溶液包括一种或多种该金属/半金属的盐的溶液。
4.根据权利要求1或2的方法,其特征在于,所述纳米颗粒或纳米团簇的材料选自以下组中:Au、Pt、Pd、Ag、In、Fe、Zr、Al、Co、Ni、Ga、Sn、Zn、Ti、Si和Ge。
5.根据权利要求4的方法,其特征在于,所述纳米颗粒或纳米团簇是金纳米颗粒或金纳米团簇。
6.根据权利要求1或2的方法,其特征在于,所述纳米线的材料是半导体材料。
7.根据权利要求1或2的方法,其特征在于,所述纳米线的材料选自以下组中:CdSe、CdTe、CdS、PbSe、PbTe、PbS、InP、InAs、GaP、GaAs、ZnO、(ZnMg)O、Si或经掺杂的Si。
8.根据权利要求1至7之一的方法获得的纳米线,其以特定的二维几何排列锚定在基底上,其特征在于,所述二维几何排列是通过纳米颗粒或纳米团簇在基底表面上的排列而预先确定的。
9.根据权利要求8的纳米线,其特征在于,所述几何排列包括六边形图案。
10.根据权利要求8或9的纳米线,其特征在于,所述纳米颗粒或纳米团簇的材料是金。
11.根据权利要求8或9的纳米线,其特征在于,所述纳米线的材料选自以下组中:CdSe、CdTe、CdS、PbSe、PbTe、PbS、InP、InAs、GaP、GaAs、ZnO、(ZnMg)O、Si或经掺杂的Si。
12.根据权利要求8至11之一的纳米线或根据权利要求1至7之一的方法获得的纳米线在电子学中的应用。
13.根据权利要求8至11之一的纳米线或根据权利要求1至7之一的方法获得的纳米线在压电电子学中的应用。
14.根据权利要求8至11之一的纳米线或根据权利要求1至7之一的方法获得的纳米线在半导体技术中的应用。
15.根据权利要求8至11之一的纳米线或根据权利要求1至7之一的方法获得的纳米线在传感器技术中的应用。
16.根据权利要求8至11之一的纳米线或根据权利要求1至7之一的方法获得的纳米线在光学中的应用。
17.根据权利要求8至11之一的纳米线或根据权利要求1至7之一的方法获得的纳米线在光伏中的应用。
18.太阳能电池、晶体管、二极管、传感器或化学存储元件,其包含根据权利要求8至11之一的纳米线或根据权利要求1至7之一的方法获得的纳米线。
CN200980146632.6A 2008-11-21 2009-11-20 基底表面上的纳米线、其制造方法及应用 Expired - Fee Related CN102301479B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008058400.2 2008-11-21
DE102008058400A DE102008058400A1 (de) 2008-11-21 2008-11-21 Nanodrähte auf Substratoberflächen, Verfahren zu deren Herstellung sowie deren Verwendung
PCT/EP2009/008277 WO2010057652A1 (de) 2008-11-21 2009-11-20 Nonodrähte auf substratoberflächen, verfahren zu deren herstellung sowie deren verwendung

Publications (2)

Publication Number Publication Date
CN102301479A CN102301479A (zh) 2011-12-28
CN102301479B true CN102301479B (zh) 2014-08-27

Family

ID=41600430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980146632.6A Expired - Fee Related CN102301479B (zh) 2008-11-21 2009-11-20 基底表面上的纳米线、其制造方法及应用

Country Status (6)

Country Link
US (1) US20110284820A1 (zh)
EP (1) EP2351087A1 (zh)
KR (1) KR20110099005A (zh)
CN (1) CN102301479B (zh)
DE (1) DE102008058400A1 (zh)
WO (1) WO2010057652A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569034A (zh) * 2012-02-15 2012-07-11 中国科学院半导体研究所 在自然氧化的Si衬底上生长InAs纳米线的方法
CN102618269B (zh) * 2012-03-13 2016-06-29 浙江理工大学 一种CdS/Sn异质结构纳米发光材料的制备方法
CN103794474A (zh) * 2014-01-29 2014-05-14 中国科学院半导体研究所 硅衬底上生长纳米线的衬底处理方法
US9528194B2 (en) * 2014-03-31 2016-12-27 Taiwan Semiconductor Manufacturing Company Limited & National Taiwan University Systems and methods for forming nanowires using anodic oxidation
US9953989B2 (en) 2014-03-31 2018-04-24 Taiwan Semiconductor Manufacturing Company Limited and National Taiwan University Antifuse array and method of forming antifuse using anodic oxidation
CN104070178A (zh) * 2014-07-01 2014-10-01 扬州大学 一种粒径可控的单分散铋纳米粒子的制备方法
US10160906B2 (en) 2015-02-24 2018-12-25 Fondazione Istituto Italiano Di Tecnologia Masked cation exchange lithography
DE102017104906A1 (de) * 2017-03-08 2018-09-13 Olav Birlem Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten
CN114520266A (zh) * 2021-10-22 2022-05-20 中国科学院重庆绿色智能技术研究院 硫化铅光电导探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005205A (ja) * 2004-06-18 2006-01-05 Nippon Telegr & Teleph Corp <Ntt> 多孔構造体及びその製造方法
WO2008027265A2 (en) * 2006-08-29 2008-03-06 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and method of their use and production
JP2008100335A (ja) * 2006-10-20 2008-05-01 Nippon Telegr & Teleph Corp <Ntt> ナノ構造およびナノ構造の作製方法
CN101255603A (zh) * 2007-12-06 2008-09-03 上海大学 模板电沉积法制备ⅱ-ⅵ族半导体纳米线的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747815A1 (de) 1997-10-29 1999-05-06 Univ Ulm Nanostrukturierung von Oberflächen
AU1665299A (en) 1997-10-29 1999-05-17 Universitat Ulm Nanostructures
WO2008054378A2 (en) 2005-10-25 2008-05-08 Massachusetts Institute Of Technology Apparatus and methods for controlled growth and assembly of nanostructures
DE102007017032B4 (de) 2007-04-11 2011-09-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur Herstellung von flächigen Größen- oder Abstandsvariationen in Mustern von Nanostrukturen auf Oberflächen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005205A (ja) * 2004-06-18 2006-01-05 Nippon Telegr & Teleph Corp <Ntt> 多孔構造体及びその製造方法
WO2008027265A2 (en) * 2006-08-29 2008-03-06 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and method of their use and production
JP2008100335A (ja) * 2006-10-20 2008-05-01 Nippon Telegr & Teleph Corp <Ntt> ナノ構造およびナノ構造の作製方法
CN101255603A (zh) * 2007-12-06 2008-09-03 上海大学 模板电沉积法制备ⅱ-ⅵ族半导体纳米线的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HuLL K L et al.Seeded solution synthesis of straight and branched CdSe nanaowires.《PROCEEDINGS OF SPIE》.2004,第5513卷116-127.
Seeded solution synthesis of straight and branched CdSe nanaowires;HuLL K L et al;《PROCEEDINGS OF SPIE》;20041231;第5513卷;116-127 *

Also Published As

Publication number Publication date
WO2010057652A8 (de) 2011-06-16
EP2351087A1 (de) 2011-08-03
KR20110099005A (ko) 2011-09-05
US20110284820A1 (en) 2011-11-24
DE102008058400A1 (de) 2010-05-27
WO2010057652A1 (de) 2010-05-27
CN102301479A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
CN102301479B (zh) 基底表面上的纳米线、其制造方法及应用
Hodes Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition
Kim et al. Fabrication of CuInTe2 and CuInTe2–x Se x Ternary Gradient Quantum Dots and Their Application to Solar Cells
US10644175B2 (en) Methods of increasing the thickness of colloidal nanosheets and materials consisting of said nanosheets
Peng et al. Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles
Zeng et al. Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition
Luan et al. Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications
US20130032767A1 (en) Octapod shaped nanocrystals and use thereof
US20130280854A1 (en) Sintered device
Li et al. Evolution of hollow CuInS2 nanododecahedrons via Kirkendall effect driven by cation exchange for efficient solar water splitting
Peng et al. Synthesis of AgInS 2 nanocrystal ink and its photoelectrical application
US8334154B2 (en) Method for the production of quantum dots embedded in a matrix, and quantum dots embedded in a matrix produced using the method
JPH07502479A (ja) 自己集合性単一層を使って固体無機表面に共有結合した半導体微少結晶
Ivanova et al. Electrochemical deposition of Ni and Cu onto monocrystalline n-Si (100) wafers and into nanopores in Si/SiO 2 template
Biçer et al. Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates
Xia et al. Synthesis and Formation Mechanism of Colloidal Janus-Type Cu2–x S/CuInS2 Heteronanorods via Seeded Injection
WO2010065611A2 (en) Electrically controlled catalytic nanowire growth
Cossuet et al. Epitaxial TiO2 shell grown by atomic layer deposition on ZnO nanowires using a double-step process and its beneficial passivation effect
Sadeghnejad et al. In Situ Biomineralization of Cu x Zn y Sn z S4 Nanocrystals within TiO2-Based Quantum Dot Sensitized Solar Cell Anodes
Liufu et al. Bismuth sulfide thin films with low resistivity on self-assembled monolayers
Musselman et al. Nanostructured inorganic solar cells
Wang et al. Crystal-Phase Control of Catalytically Grown Colloidal CdTe Quantum Wires: Dual Role of n-Tetradecylphosphonic Acid
Cozzoli et al. Colloidal oxide-based heterostructured nanocrystals
Savadogo Thin-film semiconductors deposited in nanometric scales by electrochemical and wet chemical methods for photovoltaic solar cell applications
Bozdogan et al. p-Type Cuprous Oxide Thin Films Electrodeposited on Si Nanowires with Orientation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140827

Termination date: 20151120

EXPY Termination of patent right or utility model