DE102017104906A1 - Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten - Google Patents

Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten Download PDF

Info

Publication number
DE102017104906A1
DE102017104906A1 DE102017104906.1A DE102017104906A DE102017104906A1 DE 102017104906 A1 DE102017104906 A1 DE 102017104906A1 DE 102017104906 A DE102017104906 A DE 102017104906A DE 102017104906 A1 DE102017104906 A1 DE 102017104906A1
Authority
DE
Germany
Prior art keywords
nanowires
film
layer
electrically conductive
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017104906.1A
Other languages
English (en)
Inventor
Helmut F. Schlaak
Sebastian Quednau
Farough Roustaie
Florian Dassinger
Konja Wick
Olav Birlem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanowired GmbH
Original Assignee
Technische Universitaet Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Darmstadt filed Critical Technische Universitaet Darmstadt
Priority to DE102017104906.1A priority Critical patent/DE102017104906A1/de
Priority to EP18712114.0A priority patent/EP3592696B1/de
Priority to PCT/EP2018/055835 priority patent/WO2018162681A1/de
Priority to JP2019549394A priority patent/JP7304290B2/ja
Priority to CN201880023895.7A priority patent/CN110730760B/zh
Priority to KR1020197028960A priority patent/KR102551975B1/ko
Publication of DE102017104906A1 publication Critical patent/DE102017104906A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/13078Plural core members being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0469Electroforming a self-supporting electrode; Electroforming of powdered electrode material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/308Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten (2), wobei das Verfahren zumindest die folgenden Verfahrensschritte umfasst:a) Auflegen einer Folie (5) auf eine Oberfläche (3), wobei die Folie (5) eine Vielzahl von durchgehenden Poren (8) aufweist, in denen die Nanodrähte (2) gewachsen werden können,b) Auflegen eines Mittels zum Bereitstellen eines Elektrolyten (6) auf die Folie (5), undc) galvanisches Wachsen der Vielzahl von Nanodrähten (2) aus dem Elektrolyten.

Description

  • Die Erfindung betrifft eine Anordnung und ein Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten.
  • Es sind verschiedenste Anordnungen und Verfahren bekannt, mit denen Nanodrähte auf verschiedenste Weisen erhalten werden können. Beispielsweise können Nanodrähte über galvanische Prozesse oder mittels Verfahren, die aus der Dünnschichttechnologie bekannt sind, erhalten werden. Vielen bekannten Verfahren ist gemein, dass diese komplexe Maschinen erfordern und insbesondere deshalb üblicherweise nur in Labors bzw. Reinräumen eingesetzt werden (können). Insbesondere mangelt es an einer industrie-tauglichen Vorrichtung, die die Nanodrähte direkt auf beliebigen Strukturen und Oberflächen (z.B. Chips, printed circuit board (PCB), Sensoren, Batterien etc.) erzeugen kann, ohne in die Strukturen einzugreifen oder diese zu zerstören.
  • Auch haben viele bekannte Anordnungen und Verfahren den Nachteil, dass die erhaltenen Nanodrähte stark in ihren Eigenschaften und insbesondere hinsichtlich ihrer Qualität variieren. Regelmäßig unterscheiden sich die Nanodrähte aus verschiedenen Wachstumsvorgängen auch dann zum Teil erheblich, wenn die gleichen oder dieselben Maschinen, Ausgangsmaterialien und/oder Rezepte verwendet werden. Oft hängt die Qualität von Nanodrähten insbesondere von dem Können des Nutzers einer entsprechenden Anordnung bzw. des Anwenders eines entsprechenden Verfahrens, von Umwelteinflüssen und/oder auch schlicht vom Zufall ab. Erschwert wird all dies dadurch, dass es sich bei Nanodrähten um Strukturen handelt, die teilweise auch mit einem Lichtmikroskop nicht zu visualisieren sind. Daher können aufwendige Untersuchungen notwendig sein, um die beschriebenen Eigenschaften (und insbesondere die Schwankungen in diesen) überhaupt feststellen zu können.
  • Mit bekannten Verfahren und Anordnungen ist es insbesondere aufgrund der beschriebenen Qualitätsunterschiede oft nicht möglich, größere Flächen mit Nanodrähten zu bewachsen. So ist es wahrscheinlich, dass sich die Nanodrähte hinsichtlich ihrer Eigenschaften zwischen verschiedenen Bereichen einer größeren bewachsenen Fläche unterscheiden. Dies kann für viele Anwendungen nachteilig sein.
  • Hiervon ausgehend ist es Aufgabe der hier vorliegenden Erfindung, die im Zusammenhang mit dem Stand der Technik geschilderten technischen Probleme zu lösen bzw. zumindest zu verringern. Es soll insbesondere ein Verfahren vorgestellt werden, mit dem eine Vielzahl von Nanodrähten besonders großflächig und besonders zuverlässig bereitgestellt werden kann. Insbesondere soll ein Verfahren bereitgestellt werden, das einen industriellen Einsatz ohne zwingende Verwendung eines Reinraum-Labors ermöglicht. Außerdem soll eine entsprechende Anordnung vorgestellt werden.
  • Diese Aufgaben werden gelöst mit einem Verfahren und einer Anordnung gemäß den Merkmalen der unabhängigen Patentansprüche. Weitere vorteilhafte Ausgestaltungen des Verfahrens und der Anordnung sind in den jeweils abhängig formulierten Patentansprüchen angegeben. Die in den Patentansprüchen einzeln aufgeführten Merkmale sind in beliebiger, technologisch sinnvoller Weise miteinander kombinierbar und können durch erläuternde Sachverhalte aus der Beschreibung ergänzt werden, wobei weitere Ausführungsvarianten der Erfindung aufgezeigt werden.
  • Erfindungsgemäß wird ein Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten vorgestellt, wobei das Verfahren zumindest die folgenden Verfahrensschritte umfasst:
    1. a) Auflegen einer Folie auf eine Oberfläche, wobei die Folie eine Vielzahl von durchgehenden Poren aufweist, in denen die Nanodrähte gewachsen werden können,
    2. b) Auflegen eines Mittels zum Bereitstellen eines Elektrolyten auf die Folie, und
    3. c) galvanisches Wachsen der Vielzahl von Nanodrähten aus dem Elektrolyten.
  • Die angegebenen Verfahrensschritte werden vorzugsweise, aber nicht notwendigerweise, in der angegebenen Reihenfolge durchlaufen.
  • Unter einem Nanodraht (engl. „nanowire“) wird hier jeder materielle Körper verstanden, der eine drahtähnliche Form und eine Größe im Bereich von wenigen Nanometern bis zu wenigen Mikrometern hat. Ein Nanodraht kann z.B. eine kreisförmige, ovale oder mehreckige Grundfläche aufweisen. Insbesondere kann ein Nanodraht eine hexagonale Grundfläche aufweisen. Vorzugsweise sind alle Nanodrähte aus dem gleichen Material gebildet.
  • Bevorzugt weisen die Nanodrähte eine Länge im Bereich von 100 nm [Nanometer] bis 100 µm [Mikrometer], insbesondere im Bereich von 500 nm bis 30 µm auf. Weiterhin weisen die Nanodrähte bevorzugt einen Durchmesser im Bereich von 10 nm bis 10 µm, insbesondere im Bereich von 30 nm bis 2 µm auf. Dabei bezieht sich der Begriff Durchmesser auf eine kreisförmige Grundfläche, wobei bei einer davon abweichenden Grundfläche eine vergleichbare Definition eines Durchmessers heranzuziehen ist. Es ist besonders bevorzugt, dass alle verwendeten Nanodrähte die gleiche Länge und den gleichen Durchmesser aufweisen.
  • Das beschriebene Verfahren ist für verschiedenste Materialien der Nanodrähte anwendbar. Als Material der Nanodrähte bevorzugt sind elektrisch leitende Materialien, insbesondere Metalle wie Kupfer, Silber, Gold, Nickel, Zinn und Platin. Aber auch nichtleitende Materialien wie Metalloxide sind bevorzugt.
  • Die Oberfläche, auf die die Nanodrähte gewachsen werden sollen, ist vorzugsweise elektrisch leitend ausgeführt. Sofern die Oberfläche Teil eines ansonsten nicht elektrische leitenden Körpers (wie z.B. eines Substrats ist), kann die elektrische Leitfähigkeit z. B. durch eine Metallisierung erreicht werden. So kann z. B. ein nicht elektrisch leitendes Substrat mit einer dünnen Schicht Metall überzogen werden. Durch die Metallisierung kann insbesondere eine Elektrodenschicht erzeugt werden. Je nach Material der Oberfläche und/oder der Elektrodenschicht kann es sinnvoll sein, eine Haftschicht zwischen der Oberfläche und der Elektrodenschicht vorzusehen, die eine Haftung zwischen der Oberfläche und der Elektrodenschicht vermittelt.
  • Durch die elektrische Leitfähigkeit der Oberfläche kann diese als Elektrode für das galvanische Wachstum der Nanodrähte genutzt werden. Das Substrat kann insbesondere ein Siliziumsubstrat sein. Die Oberfläche kann insbesondere die Oberfläche eines Körpers sein, der mit elektrisch leitenden Strukturen versehen ist. Das kann insbesondere ein Siliziumchip oder ein sogenanntes printed circuit board (PCB) sein.
  • Die Verfahrensschritte a) bis c) können zunächst in der angegebenen Reihenfolge durchlaufen werden. Anschließend können die Nanodrähte von der Oberfläche entfernt und an anderer Stelle weiterverwendet werden. Dies kann z. B. wie weiter unten beschrieben durch Entfernen der Folie erfolgen. Alternativ ist es bevorzugt, dass die Nanodrähte durch Abkratzen oder Abstreifen (z. B. mittels eines Messers oder einer Klinge) von der Oberfläche entfernt werden. Auch ist es bevorzugt, dass die Nanodrähte durch Abtupfen (z. B. mittels eines Tuchs) von der Oberfläche entfernt werden. In all den genannten Fällen können die Nanodrähte (an einem anderen Ort als der Oberfläche, auf die sie gewachsen wurden) weiterverwendet werden.
  • Wurden die Nanodrähte wie beschrieben entfernt, können anschließend die Verfahrensschritte a) bis c) erneut durchgeführt werden (sowie ein gegebenenfalls erneutes Entfernen von neuen Nanodrähten).
  • Die Folie ist vorzugsweise mit einem Kunststoffmaterial, insbesondere mit einem Polymermaterial gebildet. Insbesondere ist es bevorzugt, dass die Folie derart mit der der Oberfläche verbunden wird, dass die Folie nicht verrutscht. Dies könnte die Qualität der gewachsenen Nanodrähte mindern.
  • Dass die Poren der Folie durchgehend ausgeführt sind, ist vorzugsweise derart realisiert, dass die Poren von einer Oberseite der Folie zu einer Unterseite der Folie durchgehende Kanäle ausbilden. Insbesondere ist es bevorzugt, dass die Poren zylinderförmig ausgeführt sind. Es ist aber auch möglich, dass die Poren als Kanäle mit gekrümmtem Verlauf ausgeführt sind. Eine Pore kann z.B. eine kreisförmige, ovale oder mehreckige Grundfläche aufweisen. Insbesondere kann eine
    Pore eine hexagonale Grundfläche aufweisen. Vorzugsweise sind die Poren gleichmäßig ausgeführt (d.h. die Poren unterscheiden sich vorzugsweise nicht hinsichtlich der Größe, Form, Anordnung und/oder Abstand zu benachbarten Poren).
  • Werden die Nanodrähte in Schritt c) gewachsen, so werden die Poren vorzugsweise (insbesondere vollständig) mit dem galvanisch abgeschiedenen Material gefüllt. Dadurch erhalten die Nanodrähte die Größe, Form und Anordnung der Poren. Durch Wahl der Folie bzw. der Poren darin können also die Eigenschaften der zu wachsenden Nanodrähte festgelegt bzw. beeinflusst werden. Die Folie kann daher auch als „Template“, „Templatefolie“ oder „Schablone“ bezeichnet werden.
  • Bei dem Mittel zum Bereitstellen des Elektrolyten kann es sich um jede Vorrichtung handeln, die dazu eingerichtet und bestimmt ist, einen Elektrolyten zumindest an einer Ausgabestelle abzugeben. Vorzugsweise ist die Ausgabestelle flächig ausgeführt, wobei besonders bevorzugt ist, dass der Elektrolyt über eine Ausgabefläche gleichmäßig ausgegeben werden kann. Weiterhin ist es bevorzugt, dass das Mittel zum Bereitstellen des Elektrolyten die Folie vollständig überdeckt. Beispielsweise kann es sich bei dem Mittel zum Bereitstellen des Elektrolyten um einen Schwamm, ein Tuch, einen porösen festen Körper oder aber auch um eine Einspritzeinrichtung mit einer oder mehreren Düsen handeln. Das Mittel zum Bereitstellen des Elektrolyten ist bevorzugt derart ausgeführt, dass es zusätzlich eine Fixierung der Folie bewirken kann. Das kann insbesondere dadurch realisiert sein, dass das Mittel zum Bereitstellen des Elektrolyten flächig ausgeführt ist und zum Anpressen der Folie an die Oberfläche bestimmt und eingerichtet ist.
  • Gemäß der Schritte a) bis c) entsteht vorzugsweise ein Schichtaufbau aus zumindest den drei Schichten: Oberfläche, Folie und Mittel zum Bereitstellen des Elektrolyten (die in der hier genannten Reihenfolge angeordnet sind). Dieser Schichtaufbau kann in jeder beliebigen räumlichen Orientierung verwendet werden. Bevorzugt ist jedoch eine Orientierung, bei der die Oberfläche unten und das Mittel zum Bereitstellen des Elektrolyten oben angeordnet sind.
  • In Schritt c) erfolgt schließlich unter Verwendung des beschriebenen Schichtaufbaus das Wachstum der Nanodrähte. Dabei kann insbesondere über die folgenden Parameter die Qualität der Nanodrähte beeinflusst werden:
    • - eine angelegte Spannung,
    • - eine vorliegende Stromdichte,
    • - ein zeitlicher Verlauf der Stromdichte und/oder der Spannung,
    • - ein Druck des Elektrolyten auf die Oberfläche,
    • - eine Zusammensetzung des Elektrolyten,
    • - ein Anpressdruck der Folie auf die Oberfläche, insbesondere durch Anpressen des Mittels zum Bereitstellen des Elektrolyten,
    • - ein zeitlicher Verlauf des Anpressdruckes der Folie,
    • - eine bei dem Verfahren vorliegende Temperatur,
    • - ein bei dem Verfahren verwendeter zeitlicher Temperaturverlauf, und
    • - eine Strömung bzw. Bewegung des Elektrolyten.
  • Bei der angelegten Spannung handelt es ich um eine zwischen Elektroden für das galvanische Wachstum angelegte Spannung. Bei der Stromdichte handelt es sich um den auf die zu bewachsende Fläche bezogenen Strom (Strom / Rasenfläche).
  • Insbesondere können diese Parameter auch mit der Zeit verändert werden. Je nach verwendetem Material, Größe, Form, Dichte (d.h. mittlerem Abstand zwischen benachbarten Nanodrähten) und Anordnung der Nanodrähte können die optimalen Parameter variieren. Insbesondere eine zeitliche Veränderung der Stromdichte kann die Nanodrahtherstellung verbessern.
  • Bevorzugt wird das Verfahren für Kupfer bei Raumtemperatur durchgeführt. Die angelegte Spannung liegt bevorzugt zwischen 0,01 V und 2 V [Volt], insbesondere bei 0,2 V. Als die Galvanik für Kupfer ist insbesondere eine Mischung aus CuSO4 [Kupfersulfat], H2SO4 [Schwefelsäure] und H2O [Wasser] bevorzugt. Um unter diesen Bedingungen beispielsweise Nanodrähte aus Kupfer mit einem Durchmesser von 100 nm [Nanometer] und einer Länge von 10 µm [Mikrometer] zu erhalten, wird bevorzugt eine Stromdichte von 1,5 mA/cm2 [Milliampere pro Quadratzentimeter] (Gleichstrom) über eine Wachstumsdauer von 20 Minuten verwendet. Um beispielsweise Nanodrähte aus Kupfer mit einem Durchmesser von 1 µm [Mikrometer] und einer Länge von 10 µm [Mikrometer] zu erhalten, wird bevorzugt eine Stromdichte von 0,5-2 mA/cm2 [Milliampere pro Quadratzentimeter] (Gleichstrom) über eine Wachstumsdauer von 40 Minuten verwendet.
  • Vorzugsweise wird nach Abschluss des Wachstums der Nanodrähte in Schritt c) die Folie zumindest teilweise (besonders bevorzugt vollständig) entfernt. Damit können die Nanodrähte freigelegt werden, so dass sie zur weiteren Verwendung zur Verfügung stehen. Das Entfernen der Folie erfolgt vorzugsweise thermisch und/oder chemisch (z. B. mittels einer Lauge oder eines organischen Lösungsmittels) oder mittels Sauerstoffplasma.
  • In einer Ausführungsform ist es bevorzugt, dass zwei oder mehr Folien verwendet werden. Durch Aneinanderlegen mehrerer Folien können insbesondere Nanodrähte mit einer besonders großen Länge und/oder mit einer variablen geometrischen Form erhalten werden. Ebenfalls ist durch das Aneinanderlegen mehrerer Folien ein Prozessschritt möglich, bei dem durch Abziehen der äußersten Folie alle Nanodrähte auf eine gemeinsame Länge, die sich insbesondere aus der Dicke der an der Oberfläche anliegenden Folie ergibt, gekürzt werden.
  • Mit dem beschriebenen Verfahren, insbesondere unter Verwendung der als bevorzugt beschriebenen Parameter, können Nanodrähte besonders hoher Qualität erhalten werden. Auch können diese über eine besonders große Oberfläche besonders gleichmäßig hinsichtlich Länge, Durchmesser, Struktur, Dichte (d.h. mittleren Abstands zwischen benachbarten Nanodrähten) und Materialzusammensetzung gewachsen werden. Auch ist das beschriebene Verfahren nicht auf den Einsatz in einem Labor beschränkt, da es insbesondere ohne Mikromontage-Handhabung auskommt. Verfahren, die beispielswiese mit Schwerionen-Beschuss arbeiten, sind auf eine Forschungseinrichtung beschränkt, da ein Ionenbeschleuniger eine feststehende Großanlage ist.
  • In einer bevorzugten Ausführungsform des Verfahrens wird eine Strukturierungsschicht zwischen der Oberfläche und der Folie bereitgestellt, wobei die Strukturierungsschicht mindestens eine Auslassung aufweist an einer Stelle der Oberfläche, an der die Nanodrähte auf die Oberfläche gewachsen werden sollen.
  • Mit der Strukturierungsschicht kann erreicht werden, dass die Nanodrähte nur in festlegbaren Bereichen der Oberfläche gewachsen werden. Diese Bereiche werden durch die mindestens eine Auslassung definiert. Vorzugsweise wird die mindestens eine Auslassung in der Strukturierungsschichtschicht durch eine fotolithographische Strukturierung erzeugt. Würde auf die Strukturierungsschichtschicht verzichtet, würden die Nanodrähte auf der gesamten Oberfläche erzeugt.
  • Bei der Strukturierungsschicht handelt es sich vorzugsweise um eine Schicht aus einem nicht elektrisch leitenden Material. Die Strukturierungsschichtschicht kann entweder vor Schritt a) auf die Oberfläche aufgebracht werden oder es kann eine Oberfläche mit bereits darauf befindlicher Strukturierungsschicht bereitgestellt werden. In dieser Ausführungsform erfolgt das Anlegen der Folie an die Oberfläche in Schritt a) durch Anlegen der Folie an die Strukturierungsschicht. Die Oberfläche und die Folie kommen insoweit jedenfalls außerhalb der mindestens einen Auslassung nicht unmittelbar sondern nur mittelbar (über die Strukturierungsschicht) in Kontakt.
  • Werden Nanodrähte auf der Oberfläche gewachsen und anschließend entfernt (insbesondere zur Verwendung an anderer Stelle), kann die Oberfläche zum Wachsen weiterer Nanodrähte wiederverwendet werden. In dem Fall kann die Strukturierungsschicht auf der Oberfläche belassen werden und eine (neue) Folie an die Strukturierungsschicht angelegt werden. Auch dies soll als ein Bereitstellen einer Strukturierungsschicht zwischen der Oberfläche und der Folie verstanden werden. Das bedeutet insbesondere, dass eine einmal mit einer Strukturierungsschicht versehene Oberfläche zu mehrmaligem Wachstum von Nanodrähten gemäß der Verfahrensschritte a) bis c) verwendet werden kann.
  • Die Strukturierungsschicht ist bevorzugt als eine Laminierschicht ausgebildet. Dabei meint Laminierschicht, dass die Strukturierungsschicht durch erweichen eines Kunststoffmaterials (insbesondere eines Polymermaterials) auf die Oberfläche aufgebracht wird. Die Strukturierungsschicht ist dabei bevorzugt mit Polymeren gebildet. Bevorzugt dient die Strukturierungsschicht auch dazu, die Position der Folie zu fixieren. Insbesondere in der alternativen Ausführungsform, in der die Strukturierungsschicht die Position der Folie nicht fixiert, kann die Strukturierungsschicht auch mit weiteren elektrisch isolierenden Materialien wie zum Beispiel Siliziumdioxid oder Siliziumnitrid gebildet sein.
  • Die Strukturierungsschicht weist bevorzugt eine Dicke von 200 nm [Nanometer] bis 10 mm [Millimeter] auf. Die Dicke der Strukturierungsschicht wird bevorzugt insbesondere in Abhängigkeit des Materials der Strukturierungsschicht gewählt. Ist die Strukturierungsschicht als eine Laminierschicht ausgeführt, kann die Folie durch Lamination auf der Oberfläche fixiert werden.
  • Durch die Wahl der Anzahl, Position, Größe und Gestalt der mindestens einen Auslassung in der Strukturierungsschicht kann gesteuert werden, in welchen Bereichen der Oberfläche die Nanodrähte gewachsen werden sollen. Dies ist insbesondere dadurch möglich, dass die Strukturierungsschicht nicht elektrisch leitend ausgeführt ist, so dass eine galvanische Abscheidung (und damit ein galvanisches Wachstum der Nanodrähte) auf das Material der Strukturierungsschicht nicht möglich ist. Dabei weist jede Auslassung vorzugsweise eine Ausdehnung auf, die groß ist im Vergleich zu einem mittleren Durchmesser der Nanodrähte und zu einem mittleren Abstand zwischen benachbarten Nanodrähten. Das bedeutet insbesondere, dass innerhalb jeder Auslassung jeweils eine Vielzahl von Nanodrähten gewachsen werden kann.
  • Es ist bevorzugt, dass die Folie derart auf die Strukturierungsschicht aufgelegt wird, dass die Folie zumindest teilweise die mindestens eine Auslassung in der Strukturierungsschicht überdeckt. Dadurch kann sichergestellt werden, dass zumindest in diesem Bereich der Überlappung ein Wachstum der Nanodrähte stattfinden kann. Weiterhin ist es bevorzugt, dass die Folie zumindest teilweise auch die Strukturierungsschicht in einem Bereich überdeckt, in dem die Strukturierungsschicht keine Auslassung aufweist. Dadurch kann sichergestellt werden, dass die Folie in ihrer Position fixiert ist. Die Fixierung kann auch durch das Mittel zum Bereitstellen des Elektrolyten sichergestellt werden.
  • Es ist bevorzugt, aber nicht notwendig, dass die Strukturierungsschicht die gesamte Oberfläche überdeckt und dass die Folie die gesamte Strukturierungsschicht überdeckt.
  • Als Alternative zum Laminierungsverfahren kann die Strukturierungsschicht durch einen Fotolack erzeugt werden, der durch einen Lithographie Prozess (Belichten mit einer Maske) mit der entsprechenden Strukturierung versehen wird und nach dem Entwickeln dann die Auslassungen freigibt auf denen dann die Nanodrähte gemäß Schritt a) bis c) gewachsen werden. In einer bevorzugten Variante dient der Fotolack aus als Laminierschicht.
  • In diesen Ausführungsformen entsteht vorzugsweise ein Schichtaufbau aus zumindest den vier Schichten: Oberfläche, Strukturierungsschicht, Folie und Mittel zum Bereitstellen des Elektrolyten (die in der hier genannten Reihenfolge angeordnet sind). Zusätzlich können auch die weiter oben beschriebene Elektrodenschicht (insbesondere bei einer elektrisch nicht leitenden Oberfläche) und gegebenenfalls auch eine Haftschicht in dem Schichtaufbau enthalten sein. So kann der Schichtaufbau insbesondere die folgenden sechs Schichten umfassen: Oberfläche, Haftschicht (die insbesondere elektrisch leitend sein kann), Elektrodenschicht (die elektrisch leitend ist), Strukturierungsschicht (die isolierende flächig ausgeführt sein kann), Folie und Mittel zum Bereitstellen des Elektrolyten. Die Elektrodenschicht stellt dann die Gegenelektrode für den galvanischen Prozess (Schritt c)) dar, die alternativ durch die Oberfläche selber gebildet wird.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens findet das Verfahren zumindest teilweise unter Erwärmung statt.
  • Die Erwärmung findet vorzugsweise in Schritt c) statt. Dabei werden bevorzugt die in der folgenden Tabelle für die verschiedenen Materialien der Nanodrähte angegebenen bevorzugten beziehungsweise besonders bevorzugten Temperaturen verwendet.
    Material der Bevorzugte besonders bevorzugte
    Nanodrähte Temperatur Temperatur
    Kupfer 13°...43° 18°...28°
    Silber 50°...70° 55°...65°
    Platin 50°...70° 55°...65°
    Gold 50°...70° 55°...65°
    Nickel 35°...55° 40°...50°
    Zinn 13°...43° 18°...28°
  • Durch eine erhöhte Temperatur kann die Mobilität der Ionen im Elektrolyten erhöht werden. Damit kann das Wachstum der Nanodrähte begünstigt werden.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird der Elektrolyt dem Mittel zum Bereitstellen des Elektrolyten nach Bedarf zugeführt.
  • Der Elektrolyt wird dem Mittel zum Bereitstellen des Elektrolyten vorzugsweise über ein Rohr zugeführt. Der Bedarf an dem Elektrolyten ergibt sich insbesondere aus dem Verbrauch durch die galvanische Abscheidung. Steht am Ort des Wachstums der Nanodrähte zu wenig Elektrolyt zur Verfügung, so können sich Fehlstellen innerhalb der Nanodrähte bilden bzw. es können Bereiche entstehen, in denen keine Nanodrähte vorhanden sind. Weiterhin kann bei einem ungleichmäßig verteilten Elektrolyten, bei einer ungleichmäßigen Ionenkonzentration des Elektrolyten und/oder bei einer ungleichmäßigen Temperatur des Elektrolyten eine ungleichmäßige Wachstumsrate auftreten. Eine ungleichmäßige Wachstumsrate kann dazu führen, dass die Nanodrähte ungleichmäßig wachsen. Wird die zugeführte Menge des Elektrolyten also genau an den Verbrauch angepasst, können Nanodrähte besonders hoher Qualität und Homogenität erhalten werden. Insbesondere kann auch auf eine Abdichtung z. B. einer Elektrolysezelle (in der das Verfahren beispielsweise durchgeführt werden kann) verzichtet werden, wenn der Elektrolyt nicht derart überschüssig vorhanden ist, dass dieser unkontrolliert aus dem Mittel zum Bereitstellen des Elektrolyten austritt.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird das Mittel zum Bereitstellen des Elektrolyten zumindest zeitweise an die Folie gepresst.
  • Bevorzugt findet das Anpressen des Mittels zum Bereitstellen des Elektrolyten an die Folie während Schritt c) statt. Dies kann insbesondere während des gesamten Schritts c) erfolgen, bevorzugt jedoch nur in einer Anfangsphase des Nanodraht-Wachstums. Auch ein Anpressen bereits in Schritt c) ist bevorzugt. Durch das Anpressen des Mittels zum Bereitstellen des Elektrolyten an die Folie kann das Bereitstellen des Elektrolyten erleichtert werden. Beispielsweise kann der Elektrolyt aus einem Schwamm durch Pressen dieses Schwamms zum Austreten angeregt werden. Vorzugsweise ist zum Anpressen eine Feder vorgesehen, wobei die Kraft, mit der die Feder das Mittel zum Bereitstellen des Elektrolyten an die Folie presst, einstellbar ist. Auch können elastische oder plastische Elemente, motorische, hydraulische und/oder pneumatische Verstell-Einheiten oder Hebelmechanismen zum Erzeugen der Anpresskraft verwendet werden. Durch Einstellen der Kraft kann die ausgegebene Menge an Elektrolyt kontrolliert werden. Weiterhin kann durch das Anpressen der Folie auf die Oberfläche beziehungsweise auf die Strukturierungsschicht sichergestellt werden, dass die Folie formschlüssig, ortsfest und frei von Lufteinschlüssen (zwischen der Folie und der Oberfläche beziehungsweise Strukturierungsschicht sowie in den Kanälen innerhalb der Folie) gehalten wird. Eine besonders gleichmäßige Elektrolytverteilung kann auch durch Bewegen des Mittels zum Bereitstellen des Elektrolyten während des Verfahrens sichergestellt werden. Die Bewegung kann dabei beispielsweise rotatorisch, horizontal und/oder vertikal erfolgen. Insbesondere ist es bevorzugt, dass das Mittel zum Bereitstellen des Elektrolyten mit einem zeitlich veränderlichen Druck an die Folie gepresst wird oder nach einer ersten Wachstumsphase von der Folie abgehoben wird und so ein optionales Verschließen von einzelnen Poren verhindert wird.
  • In einer weiteren bevorzugten Ausführungsform wird kontinuierlich frischer Elektrolyt dem Mittel zum Bereitstellen zugeführt und gleichzeitig überschüssiger Elektrolyt abgeführt. Dadurch wird eine Strömung des Elektrolyts erzwungen, die eine ausreichende Ionenzufuhr gewährleistet. Die Strömung kann auch durch Zirkulieren des Elektrolyts erreicht werden.
  • In einer weiteren bevorzugten Ausführungsform wird der Anpressdruck mit einem Messmittel überwacht und geregelt. Die Regelung kann insbesondere mit einem Regelglied erfolgen. Durch die Regelung kann insbesondere der Anpressdruck über die (vorzugsweise gesamte) Prozesszeit bestmöglich entsprechend vorgebbarer Werte eingestellt werden.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens ist das Mittel zum Bereitstellen des Elektrolyten schwammartig ausgeführt.
  • Unter einer schwammartigen Ausführung ist zu verstehen, dass das Mittel zum Bereitstellen des Elektrolyten dazu eingerichtet ist, den Elektrolyten zunächst aufzunehmen (insbesondere aufzusaugen), zu speichern und bei Bedarf (insbesondere unter Druck) wieder abzugeben. Als ein schwammartig ausgeführtes Mittel zum Bereitstellen des Elektrolyten sind bevorzugt:
    • - ein Schwamm (z. B. aus einem Schaumstoffmaterial, vorzugsweise einem Melaminschaum und/oder Teflonschaum),
    • - ein Tuch (z. B. aus Mikrofaser, Filterpapier, Baumwolle und/oder einem anderen Stoff) und
    • - ein poröser fester Körper (wie z. B. ein poröser Stein, ein poröses Glas und/oder ein Keramikschaum).
  • Besonders bevorzugt ist das Mittel zum Bereitstellen des Elektrolyten flexibel ausgeführt. Damit kann erreicht werden, dass das Mittel zum Bereitstellen des Elektrolyten den Elektrolyten unter Druck besonders gut abgeben kann. Auf diese Weise kann sichergestellt werden, dass jede Pore der Folie mit einer ausreichenden Menge des Elektrolyten versorgt wird. Auch kann ein solches Mittel zum Bereitstellen des Elektrolyten besonders gut an die Folie angepresst werden. Auch kann so eine Beschädigung der Folie verhindert werden.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens sind die durchgehenden Poren der Folie senkrecht zu der Oberfläche ausgeführt.
  • In dieser Ausführungsform können die Nanodrähte senkrecht zu der Oberfläche gewachsen werden. Dies ist für viele Anwendungen sinnvoll.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird zum galvanischen Wachsen der Vielzahl von Nanodrähten eine Spannung zwischen der zu bewachsenden Oberfläche und einer an dem Mittel zum Bereitstellen des Elektrolyten anliegenden Elektrode angelegt.
  • Als eine Elektrode kommt hier die elektrisch leitende Oberfläche (ggf. unter Berücksichtigung der weiter oben bereits beschriebenen Möglichkeit einer insbesondere durch Metallisierung erhaltbaren Elektrodenschicht) in Betracht. Die Elektrodenschicht ist bevorzugt durchgängig und geschlossen auf der Oberfläche ausgeprägt. Vorteilhafter weise werden für die Elektrodenschicht wahlweise Kupfer, Gold, Silber und/oder Aluminium verwendet. Wird die Oberfläche als eine Elektrode für das Wachstum der Nanodrähte verwendet, kann so ein homogenes elektrisches Feld über der gesamten Oberfläche erzeugt werden. Die zweite Elektrode ist vorzugsweise flächig ausgeführt, insbesondere derart, dass die zweite Elektrode das Mittel zum Bereitstellen des Elektrolyten zumindest teilweise (vorzugsweise vollständig) überdeckt. In dem Fall stellt die zweite Elektrode eine siebte Schicht in dem weiter oben beschriebenen Schichtaufbau dar: Oberfläche, Haftschicht, Elektrodenschicht, Strukturierungsschicht, Folie, Mittel zum Bereitstellen des Elektrolyten und zweite Elektrode. Die Oberfläche oder die Elektrodenschicht stellt dabei die erste Elektrode dar.
  • In einer weiteren bevorzugten Ausführungsform umfasst das Verfahren weiterhin die Verfahrensschritte:
    • d) Entfernen der Folie von der Oberfläche einschließlich der in der Folie eingeschlossenen Vielzahl der Nanodrähte, und
    • e) Aufbringen der Folie auf eine Zieloberfläche, wobei die in der Folie eingeschlossene Vielzahl der Nanodrähte mit der Zieloberfläche verbunden wird.
  • Die angegebenen Verfahrensschritte d) und e) werden vorzugsweise, aber nicht notwendigerweise, in der angegebenen Reihenfolge durchlaufen. Weiterhin ist es bevorzugt, die Verfahrensschritte d) und e) nach Durchlaufen der Verfahrensschritte a) bis c) (ebenfalls vorzugsweise in deren angegebener Reichenfolge) zu durchlaufen.
  • Wie bereits weiter oben beschrieben, kann es von Vorteil sein, die Nanodrähte zunächst auf einer Oberfläche zu wachsen und die Nanodrähte dann zur weiteren Verwendung auf eine andere Oberfläche (hier die Zieloberfläche) zu transferieren. Dazu bietet diese Ausführungsform eine bevorzugte Möglichkeit.
  • In einer weiteren bevorzugten Ausführungsform werden die gewachsenen Nanodrähte zumindest zeitweise durch Aufbringen einer Schutzschicht gegen Oxidieren und/oder Verkleben der Nanodrähte geschützt.
  • Die Schutzschicht kann insbesondere einen Schutzlack umfassen. Bevorzugt ist die Schutzschicht mit einem elektrisch nicht leitenden Material gebildet. Die Schutzschicht kann insbesondere für einen Transport und/oder eine Lagerung der Nanodrähte aufgebracht werden.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird die Folie zumindest teilweise aufgelöst.
  • Vorzugsweise findet das Auflösen der Folie am Ende des Verfahrens statt, d.h. insbesondere nach Schritt c). Das Entfernen der Folie ist allgemein vorteilhaft, weil erst durch das Entfernen der Folie die Nanodrähte freigelegt werden. Bevorzugt wird die Folie vollständig aufgelöst. Damit können für eine spätere Verwendung der Nanodrähte ungewünschte Rückstände der Folie vermieden werden. Die Folie kann thermisch und/oder chemisch entfernt werden. Zum chemischen Entfernen ist es bevorzugt, die Folie einem (insbesondere organischen) Lösungsmittel, einer Lauge und/oder einem Plasma auszusetzen.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens weist die Oberfläche eine Mehrzahl von elektrisch leitenden Bereichen auf. Vor Schritt a) werden die folgenden Verfahrensschritte durchgeführt:
    1. i) Aufbringen einer elektrisch leitenden Haftschicht auf die Oberfläche (insbesondere eines Substrates),
    2. ii) Aufbringen einer elektrisch leitenden Elektrodenschicht auf die Oberfläche,
    3. iii) Aufbringen einer elektrisch isolierenden Strukturierungsschicht auf die elektrisch leitende Elektrodenschicht, und
    4. iv) Freilegen der elektrisch leitenden Bereiche der Oberfläche an den Stellen, an denen die Nanodrähte auf die elektrisch leitenden Bereiche gewachsen werden sollen, wobei eine elektrisch leitende Verbindung zwischen den elektrisch leitenden Bereichen und der elektrisch leitenden Elektrodenschicht erhalten bleibt.
  • Nach Schritt c) werden die folgenden Verfahrensschritte durchgeführt:
    • α) Entfernen der Folie,
    • β) Entfernen der Strukturierungsschicht,
    • γ) Entfernen der Elektrodenschicht und
    • Δ) Entfernen der elektrisch leitenden Haftschicht
  • Mit dieser Ausführungsform können Nanodrähte insbesondere auf Oberflächen mit elektrisch leitenden Strukturen besonders einfach gewachsen werden. Insbesondere kann es sich dabei um sogenannte printed circuit boards (PCB's) oder Silizium-Chips handeln. Diese weisen regelmäßig eine Oberfläche auf, die grundsätzlich elektrisch isolierend ist und auf der beispielsweise Kontaktpunkte und Leiterbahnen als elektrisch leitende Strukturen vorgesehen sind. Solche Kontaktpunkte sind ein Beispiel für die hier beschriebenen elektrisch leitenden Bereiche der zu bewachsenden Oberfläche. Bevorzugt ist, dass die elektrisch leitenden Bereiche der Oberfläche zunächst voneinander elektrisch isoliert sind. Das kann insbesondere durch eine Grundstrukturierungsschicht (die von der weiter vorne beschriebenen Strukturierungsschicht zu unterscheiden ist) erreicht werden, die elektrisch isolierend ausgeführt ist und die Auslassungen an den Stellen der elektrisch leitenden Bereiche aufweist. Um nach dem beschriebenen Verfahren Nanodrähte auf derartigen elektrisch leitenden Bereichen zu wachsen, ist es vorteilhaft, wenn die elektrisch leitenden Bereiche als Elektrode des galvanischen Wachstums verwendet werden können. Daher ist es bevorzugt, dass zumindest für die Dauer des beschriebenen Verfahrens eine elektrisch leitende Verbindung zwischen den zunächst voneinander getrennten elektrisch leitenden Bereichen der Oberfläche hergestellt wird. Das kann grundsätzlich dadurch erfolgen, dass jeder der elektrisch leitenden Bereiche einzeln kontaktiert wird, beispielsweise über eine Nadel. Insbesondere für eine Vielzahl von elektrisch leitenden Bereichen kann dies aber aufwendig sein. Die vorliegende Ausführungsform bietet eine besonders einfache Möglichkeit, auch eine große Zahl von elektrisch leitenden Bereichen miteinander zu verbinden und so deren Kontaktierung erheblich zu vereinfachen.
  • In Schritt i) wird eine Haftschicht aufgebracht. Das ist derart zu verstehen, dass eine Schicht aus einem elektrisch leitenden Material, insbesondere aus einem Metall, vorteilhafterweise Chrom, Titan oder Wolfram beispielsweise mittels CVD (chemical vapor deposition) oder PVD (physical vapor deposition), über die gesamte Grundstrukturierungsschicht einschließlich der Auslassungen ausgebildet wird. Insbesondere ist es bevorzugt, dass die elektrisch leitende Haftschicht in die Auslassungen der Grundstrukturierungsschicht hinein ausgebildet wird und insbesondere auch an Kanten der Auslassungen ausgebildet wird. Damit ist gemeint, dass die elektrisch leitende Haftschicht derart durchgehend ausgebildet wird, dass eine elektrisch leitende Verbindung zwischen den elektrisch leitenden Bereichen, bevorzugt zwischen allen elektrisch leitenden Bereichen, hergestellt wird. Damit können die elektrisch leitenden Bereiche beispielsweise durch Kontaktieren der elektrisch leitenden Haftschicht kontaktiert werden. Bevorzugt erfolgt das Kontaktieren über die in Schritt ii) aufgebrachte Elektrodenschicht. Die elektrisch leitenden Bereiche können so gemeinsam als Elektrode für das galvanische Wachstum der Nanodrähte verwendet werden. Weiterhin sorgt die Haftschicht dafür, dass der anschließende Schichtaufbau mechanisch auf dem Substrat verankert wird und es auch unter Zug und Scherkräften, wie auch Temperaturwechseln nicht zu Ablösungen des Schichtaufbaus von der Oberfläche kommt.
  • In Schritt ii) wird eine elektrisch leitende Elektrodenschicht auf die Haftschicht aufgebracht. Das ist derart zu verstehen, dass eine Schicht aus einem elektrisch leitenden Material, insbesondere aus einem Metall, vorteilhafter weise Kupfer, Gold, Aluminium, Chrom, Titan über die gesamte Haftschicht einschließlich der Auslassungen der Grundstrukturierungsschicht ausgebildet wird. Insbesondere ist es bevorzugt, dass die elektrisch leitende Elektrodenschicht in die Auslassungen hinein ausgebildet wird und insbesondere auch an Kanten der Auslassungen ausgebildet wird. Damit ist gemeint, dass die elektrisch leitende Elektrodenschicht derart durchgehend ausgebildet wird, dass eine elektrisch leitende Verbindung zwischen den elektrisch leitenden Bereichen, bevorzugt zwischen allen elektrisch leitenden Bereichen, hergestellt wird. Damit können die elektrisch leitenden Bereiche insbesondere auch durch Kontaktieren der elektrisch leitenden Elektrodenschicht kontaktiert werden. Die elektrisch leitenden Bereiche können so gemeinsam als Elektrode für das galvanische Wachstum der Nanodrähte verwendet werden.
  • In Schritt iii) wird die Strukturierungsschicht auf die Elektrodenschicht aufgebracht und die Auslassungen aus der Strukturierungsschicht werden in Schritt iv) ausgebildet. Dabei ist es bevorzugt, dass jedem der elektrisch leitenden Bereiche (Kontakte) genau eine Auslassung zugeordnet ist. Insbesondere ist es bevorzugt, dass die elektrisch leitenden Bereiche die jeweils entsprechende Auslassung vollständig überlappen. Die elektrisch leitenden Bereiche sind also bevorzugt größer als die jeweils entsprechende Auslassung der Strukturierungsschicht. Es ist auch möglich, dass ein elektrisch leitender Bereich mehreren Auslassungen zugeordnet ist, so dass also innerhalb dieses elektrisch leitenden Bereichs mehrere Auslassungen vorgesehen sind.
  • Würde das Wachstum der Nanodrähte nach Auftragen der elektrisch leitenden Elektrodenschicht durchgeführt, würden die Nanodrähte auf der elektrisch leitenden Elektrodenschicht wachsen. Durch das Aufbringen der elektrisch isolierenden Strukturierungsschicht in Schritt iii) kann dies unterdrückt werden.
  • Bevorzugt wird die elektrisch isolierende Strukturierungsschicht in Schritt iii) derart auf die elektrisch leitende Elektrodenschicht aufgebracht, dass die elektrisch isolierende Strukturierungsschicht die elektrisch leitende Elektrodenschicht vollständig überdeckt. Auch bei der elektrisch isolierenden Strukturierungsschicht ist es bevorzugt, dass die Kanten der Auslassungen der Elektrodenschicht überdeckt werden. Damit ist gemeint, dass nach Aufbringen der elektrisch isolierenden Strukturierungsschicht vorzugsweise keine Bereiche der elektrisch leitenden Elektrodenschicht freiliegen. Dadurch ist ein Kontaktieren der elektrisch leitenden Elektrodenschicht zunächst nicht möglich.
  • In Schritt iv) werden die Stellen der elektrisch leitenden Bereiche der Elektrodenschicht freigelegt, an denen die Nanodrähte gewachsen werden sollen. Das bedeutet insbesondere, dass die elektrisch isolierende Strukturierungsschicht an diesen Stellen entfernt wird. Das kann insbesondere durch lithografische Verfahren und unter Verwendung von Chemikalien erfolgen, die selektiv nur die elektrisch isolierende Strukturierungsschicht entfernen.
  • Bevorzugt liegt nach Schritt iv) ein Zwischenprodukt (beispielhaft ein SiliziumChip mit darauf angeordnetem Schichtaufbau) vor, das folgendes Umfasst:
    • - eine Oberfläche mit einer Mehrzahl von elektrisch leitenden Bereichen,
    • - eine auf die Oberfläche aufgebrachte durchgängige Haftschicht die eine durchgängige elektrisch leitende Oberfläche als Haftvermittler bereitstellt,
    • - eine auf die Haftschicht aufgebrachte elektrisch leitende Elektrodenschicht, die als erste Elektrode dient (bzw. die die elektrisch leitenden Bereiche miteinander verbindet, die als Elektroden dienen),
    • - eine auf die elektrisch leitende Elektrodenschicht aufgebrachte elektrisch isolierende Strukturierungsschicht, die Auslassungen an den Stellen aufweist, an denen die Nanodrähte gewachsen werden sollen,
    wobei die elektrisch leitende Haftschicht und die elektrisch leitende Elektrodenschicht derart ausgeführt sind, dass die elektrisch leitenden Bereiche der Oberfläche über die elektrisch leitende Schicht elektrisch leitend miteinander verbunden sind, und dass nur die Stellen der elektrisch leitenden Bereiche, an denen die Nanodrähte gewachsen werden sollen, freiliegen.
  • Auf die Haftschicht kann verzichtet werden. Das ist insbesondere dann der Fall, wenn beispielsweise ein PCB verwendet wird, dessen zu bewachsende Bereiche derart vorbereitet sind, dass die zu wachsenden Nanodrähte bereits eine ausreichende mechanische Haftung haben. Die (vorzugsweise) metallischen Nanodrähte können damit direkt auf der bereitgestellten Oberfläche des PCBs gewachsen werden. Die Schritte i) und Δ) entfallen dabei. Entsprechend ist die Ausführungsform des beschriebenen Verfahrens bevorzugt, in der die Oberfläche eine Mehrzahl von elektrisch leitenden Bereichen aufweist und in der vor Schritt a) die folgenden Verfahrensschritte durchgeführt werden:
    • ii) Aufbringen einer elektrisch leitenden Elektrodenschicht auf die Oberfläche,
    • iii) Aufbringen einer elektrisch isolierenden Strukturierungsschicht auf die elektrisch leitende Elektrodenschicht, und
    • iv) Freilegen der elektrisch leitenden Bereiche der Oberfläche an den Stellen, an denen die Nanodrähte auf die elektrisch leitenden Bereiche gewachsen werden sollen, wobei eine elektrisch leitende Verbindung zwischen den elektrisch leitenden Bereichen und der elektrisch leitenden Elektrodenschicht erhalten bleibt,
  • Nach Schritt c) werden die folgenden Verfahrensschritte durchgeführt:
    • α) Entfernen der Folie,
    • β) Entfernen der Strukturierungsschicht, und
    • γ) Entfernen der Elektrodenschicht.
  • Die Beschreibung der Ausführungsform mit Haftschicht gilt hier entsprechend. In diesem Fall liegt nach Schritt iv) bevorzugt ein alternatives Zwischenprodukt (beispielhaft ein PCB mit darauf angeordnetem Schichtaufbau) vor, das folgendes Umfasst:
    • - eine Oberfläche mit einer Mehrzahl von elektrisch leitenden Bereichen,
    • - eine auf die Oberfläche aufgebrachte elektrisch leitende Elektrodenschicht, die als erste Elektrode dient (bzw. die die elektrisch leitenden Bereiche miteinander verbindet, die als Elektroden dienen),
    • - eine auf die elektrisch leitende Elektrodenschicht aufgebrachte elektrisch isolierende Strukturierungsschicht, die Auslassungen an den Stellen aufweist, an denen die Nanodrähte gewachsen werden sollen,
    wobei die elektrisch leitende Elektrodenschicht derart ausgeführt ist, dass die elektrisch leitenden Bereiche der Oberfläche über die elektrisch leitende Schicht elektrisch leitend miteinander verbunden sind, und dass nur die Stellen der elektrisch leitenden Bereiche, an denen die Nanodrähte gewachsen werden sollen, freiliegen.
  • Für das Wachstum der Nanodrähte können die elektrisch leitenden Bereiche der Oberfläche oder der Elektrodenschicht als Elektrode verwendet werden. Weil die elektrisch leitenden Bereiche über die elektrisch leitende Schicht miteinander verbunden sind, kann dabei ein einzelnes Kontaktieren der elektrisch leitenden Elektrodenschicht ausreichen. Dazu ist es bevorzugt, dass die elektrisch isolierende Strukturierungsschicht an mindestens einer Stelle entfernt wird (oder an dieser Stelle gar nicht erst auf die elektrisch leitende Elektrodenschicht aufgebracht wird), so dass die elektrisch leitende Elektrodenschicht an dieser Stelle beispielsweise mit einer Nadel kontaktiert werden kann. Auch kann die elektrisch leitende Elektrodenschicht dadurch kontaktiert werden, dass die elektrisch isolierende Strukturierungsschicht mit einer Nadel durchstoßen wird.
  • Mit dem so durch die Schritte i) bis iv) (bzw. ii) bis iv)) erhaltenen Zwischenprodukt wird bevorzugt das Wachstum der Nanodrähte gemäß den Schritten a) bis c) des beschriebenen Verfahrens durchgeführt. Die Nanodrähte werden dabei in den gemäß Schritt iv) freigelegten Stellen der elektrisch leitenden Bereiche gewachsen. Nachdem die Drähte gewachsen sind, wir die Folie in Schritt α) entfernt. Das kann wie zuvor beschrieben thermisch und/oder chemisch erfolgen. Anschließend werden in den Schritten β) und γ) auch die elektrisch leitende Elektrodenschicht und die elektrisch isolierende Strukturierungsschicht entfernt. Das erfolgt bevorzugt unter Verwendung von Chemikalien, die insbesondere derart ausgewählt sind, dass diese selektiv nur die elektrisch leitende Elektrodenschicht bzw. die elektrisch isolierende Strukturierungsschicht entfernen, während insbesondere die elektrisch leitenden Bereiche der Oberfläche und die Nanodrähte von den Chemikalien nicht angegriffen werden. Alternativ können auch Chemikalien eingesetzt werden die mehrere Schichten gleichzeitig (also insbesondere die Haftschicht, die Elektrodenschicht und/oder die Strukturierungsschicht) entfernen. Das ist insbesondere dadurch möglich, dass vorteilhafterweise die Chemikalien nicht die metallischen Nanodrähte angreifen und/oder dadurch, dass die Schichtdicken so gewählt sind, dass das Auf- oder Ablösen der Schichten schneller erfolgt als ein Auflösen oder Angreifen der Nanodrähte (die insbesondere dicker ausgeführt sein können als die zu entfernenden Schichten). Auf diese besonders bevorzugte Weise kann mit einem Schritt der gesamte Schichtaufbau entfernt und die Nanodrähte freigelegt werden.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird die Folie nach Durchführung der Schritte a) bis c) einschließlich der gewachsenen Nanodrähte entfernt. Anschließend werden die Schritte a) bis c) erneut durchgeführt. Die Schritte α) bis γ) (und gegebenenfalls Δ)) werden nach der erneuten Durchführung der Schritte a) bis c) durchgeführt.
  • Insbesondere durch Unebenheiten der elektrisch leitenden Bereiche kann es beim Wachstum der Nanodrähte vorkommen, dass die Nanodrähte ungleichmäßig hoch wachsen. Damit ist gemeint, dass die von der Oberfläche entfernten Enden der Nanodrähte nach Abschluss des Wachstums in unterschiedlichen Abständen von der Oberfläche angeordnet sind. Mit der vorliegenden Ausführungsform können Nanodrähte erhalten werden, die besonders gleichmäßig hoch gewachsen sind. Dazu kann insbesondere von einem der zuvor beschriebenen Zwischenprodukte ausgegangen werden. Gemäß den Schritten a) bis c) des beschriebenen Verfahrens werden darauf Nanodrähte gewachsen. Bei diesen Nanodrähten handelt es sich nicht um die Nanodrähte, die nach Abschluss des Verfahrens auf der Oberfläche verbleiben und auf deren Wachstum das beschriebene Verfahren gerichtet ist. Stattdessen handelt es sich um hilfsweise gewachsene Nanodrähte. Nach Wachstum der hilfsweise gewachsenen Nanodrähte wird die Folie einschließlich der hilfsweise gewachsenen Nanodrähte wieder entfernt. Das kann beispielsweise durch ein mechanisches Entfernen wie beispielswiese ein Abziehen der Folie erfolgen. Dabei können die hilfsweise gewachsenen Nanodrähte an der Grenzfläche zwischen der Folie und der Oberfläche abbrechen. Das ist insbesondere der Fall, wenn die hilfsweise gewachsenen Nanodrähte besonders dünn ausgeführt sind. Die hilfsweise gewachsenen Nanodrähte können insbesondere dünner sein als die Nanodrähte, die nach Abschluss des Verfahrens auf der Oberfläche verbleiben und auf deren Wachstum das Verfahren gerichtet ist. Durch Wachsen der hilfsweise gewachsenen Nanodrähte und das anschließende Entfernen der Folie einschließlich der hilfsweise gewachsenen Nanodrähte kann eine besonders ebene Fläche erhalten werden, auf der anschließend erneut mittelbar oder unmittelbar Nanodrähte gewachsen werden können. Auf diese Weise können Strukturen bereitgestellt werden, die hier als Bumps bezeichnet werden sollen. Damit ist gemeint, dass insbesondere die Auslassungen in der Grundstrukturierungsschicht mit dem Material der Nanodrähte derart gefüllt werden, dass die Bumps zusammen mit der obersten Schicht des Schichtaufbaus (also insbesondere mit der Strukturierungsschicht) eine durchgehende und ebene Fläche bilden. Vorteilhafter Weise können die Bumps somit zum Höhenausgleich eingesetzt werden und als Kontaktvermittler Verwendung finden. Auf diese Bumps können die Nanodrähte gewachsen werden, die nach Abschluss des Verfahrens auf der Oberfläche verbleiben und auf deren Wachstum das Verfahren gerichtet ist. Auf diese besonders ebene Fläche können diese Nanodrähte besonders gleichmäßig hoch wachsen. Die für diese Ausführungsform beschriebenen zusätzlichen Schritte können zusammenfassend als ein Glätten der Oberfläche beschrieben werden bzw. zum Erzeugen der Bumps verwendet werden.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird nach Abschluss des Wachstums der Vielzahl der Nanodrähte eine Oxidschicht auf den Nanodrähten zumindest teilweise entfernt.
  • Die nach dem beschriebenen Verfahren bereitgestellten Nanodrähte können insbesondere dazu verwendet werden, elektrische Leiter elektrisch und/oder mechanisch miteinander zu verbinden. Insbesondere können zwei Flächen miteinander verbunden werden. Dazu wird bevorzugt auf einer oder auf beiden der zu verbindenden Flächen jeweils eine Vielzahl von Nanodrähten bereitgestellt. Anschließend können die so erhaltenen Nanodrähte durch Aneinanderdrücken der Flächen miteinander in Kontakt gebracht werden. Dabei können die Nanodrähte eine elektrisch, mechanisch und/oder thermisch besonders stabile Verbindung zwischen den zu verbindenden Flächen ausbilden. Auf den Nanodrähten kann sich allerdings eine (natürliche) Oxidschicht bilden, die die mechanischen, elektrischen und/oder thermischen Eigenschaften der Verbindung verschlechtern kann. Durch Entfernen dieser Oxidschicht vor Ausbilden der Verbindung kann folglich die Qualität der Verbindung hinsichtlich der genannten Aspekte verbessert werden. Auch kann ein bei der Ausbildung der Verbindung notwendiger Druck durch Entfernen der Oxidschicht reduziert werden oder es kann ganz auf das Ausüben eines Drucks verzichtet werden. Das Entfernen der Oxidschicht findet vorzugsweise durch Anwendung eines Flußmittels (wie z.B. einer Säure, insbesondere einer reduzierenden Säure, wie Salzsäure (HCl) oder Ameisensäure (CH2O2)) oder durch ein Plasma (z. B. ein Argon-Plasma) statt. Vorzugsweise enthält die verwendete Säure keine Sauerstoff-Atome (die durch chemische Reaktionen freigesetzt werden könnten, was zur erneuten Ausbildung der Oxidschicht beitragen könnte). Besonders bevorzugt trägt das Flußmittel auch zu der Ausbildung der Verbindung bei. Dies kann beispielsweise bei Akrylaten der Fall sein.
  • Die mit dem beschriebenen Verfahren erhaltenen Nanodrähte können insbesondere dazu verwendet werden, Kontaktflächen miteinander zu verbinden. Dazu wird bevorzugt auf einer oder auf allen an der Verbindung beteiligten Kontaktflächen jeweils eine Vielzahl von Nanodrähten nach dem beschriebenen Verfahren bereitgestellt. Durch Zueinanderführen der Kontaktflächen können die Nanodrähte miteinander in Kontakt gebracht werden, wobei die Nanodrähte miteinander verhaken und so eine Verbindung ausbilden. Das Entfernen der Oxidschicht erfolgt bevorzugt nach dem Zueinanderführen der Kontaktflächen. Alternativ oder zusätzlich erfolgt das Entfernen der Oxidschicht vor dem und/oder während des Zueinanderführen(s) der Kontaktflächen. Beispielsweise kann hierdurch eine oder mehrere LED (Light Emitting Diode) mit einem Substrat oder Träger verbunden werden.
  • Vor der Verwendung oder bei der Verwendung der hergestellten Nanodrähte können diese auch einer weiteren Behandlung unterzogen werden. So wird vorteilhafterweise durch eine Verwendung eines reduzierenden Mediums eine potentiell vorhandene Oxidschicht auf den Nanodrähten entfernt. Einer Entfernung einer Oxidschicht kann mittels Ameisensäure und/oder mittels Ultraschall erfolgen. Ein reduzierendes Medium kann auch eine Adhäsion (Verschmelzen der Nanodrähte zu einem im wesentlichen geschlossenen Gefüge) zusätzlich unterstützen, was zu einer Erhöhung der Festigkeit der Verbindung führen kann. Bei dem Medium kann es sich um ein flüssiges oder gasförmiges Medien handeln, welches die verbundenen Nanodrähte durchströmt und so die Oxidschicht entfernt und das Verschmelzen der Nanodrähte unterstützt. Vorzugsweise wird hierzu beispielsweise Ameisensäure verwendet.
  • Das Entfernen der Oxidschicht erfolgt bevorzugt im Vakuum (insbesondere in einer Vakuumkammer) oder unter einer Schutzgasatmosphäre, so dass ein erneutes Bilden einer Oxidschicht durch Luftsauerstoff unterbunden wird. Auch ist es bevorzugt, dass die Nanodrähte nach dem Entfernen der Oxidschicht und insbesondere bis zum Verbinden nicht mit Luft beziehungsweise mit Sauferstoff in Kontakt kommen. Auch das Verbinden der elektrischen Leiter erfolgt bevorzugt im Vakuum oder unter einer Schutzgasatmosphäre.
  • Gemäß einem weiteren Aspekt der Erfindung wird eine Anordnung zum Bereitstellen einer Vielzahl von Nanodrähten vorgestellt, die zumindest umfasst:
    • - eine (vorzugsweise elektrisch leitende) Oberfläche, auf die die Nanodrähte gewachsen werden sollen,
    • - eine auf die Oberfläche aufgelegte Folie, wobei die Folie eine Vielzahl von durchgehenden Poren aufweist, in denen die Nanodrähte gewachsen werden können,
    • - ein auf die Folie aufgelegtes Mittel zum Bereitstellen eines Elektrolyten, und
    • - mindestens eine Elektrode zum galvanischen Wachsen der Vielzahl von Nanodrähten aus dem Elektrolyten.
  • Die weiter oben beschriebenen besonderen Vorteile und Ausgestaltungsmerkmale des Verfahrens sind auf die beschriebene Anordnung anwendbar und übertragbar, und umgekehrt.
  • Als eine unterste Bezugsebene wird die Oberfläche beispielsweise eines Substrates verwendet. Die Oberfläche kann, wie zum Beispiel bei einem printed circuit board (PCB) oder bei einer äquivalenten Oberfläche mit leitenden Strukturen beispielsweise aus Kupfer, Gold oder Aluminium versehen sein. Insbesondere sofern die Oberfläche nicht hinreichend elektrisch leitend ist, wird bevorzugt eine durchgängige elektrisch leitende Schicht derart auf die Oberfläche aufgebracht, dass die elektrisch leitende Schicht als Elektrode für das beschriebene Verfahren verwendet werden kann. Vorzugsweise wird ein Haftvermittler (insbesondere eine Haftschicht) zwischen der Oberfläche und der elektrisch leitenden Elektrodenschicht vorgesehen. Vorzugsweise wird dabei eine durchgängige elektrisch leitende Haftschicht auf der Oberfläche erhalten.
  • Es kann ausreichend sein, lediglich eine Elektrode (beispielsweise eine Gegenelektrode) vorzusehen. Als zweite für das galvanische Wachstum der Nanodrähte benötigte Elektrode wird dann die Oberfläche verwendet, auf die die Nanodrähte gewachsen werden sollen. Ist auf die Oberfläche eine Metallisierung aufgebracht (beispielsweise weil die Oberfläche nicht, nicht durchgängig oder nicht hinreichend, elektrisch leitend ist), kann die Metallisierung (Elektrodenschicht) als die zweite Elektrode dienen. Alternativ ist es bevorzugt, dass zwei Elektroden vorgesehen sind, zwischen denen die zum Wachstum der Nanodrähte benötigte Spannung angelegt werden kann.
  • In einer bevorzugten Ausführungsform umfasst die Anordnung weiterhin eine zwischen der Oberfläche bzw. Elektrodenschicht und der Folie angeordnete Strukturierungsschicht, wobei die Strukturierungsschicht mindestens eine Auslassung aufweist an einer Stelle der Oberfläche, an der die Nanodrähte auf die Oberfläche gewachsen werden sollen.
  • In einer weiteren bevorzugten Ausführungsform umfasst die Anordnung weiterhin eine Vorrichtung zum Bereitstellen der Strukturierungsschicht auf der Oberfläche, auf die die Nanodrähte gewachsen werden sollen.
  • Bei der Vorrichtung zum Bereitstellen der Strukturierungsschicht handelt es sich vorzugsweise um eine Laminiervorrichtung, eine Vakuumbeschichtungsanlage, eine Lackschleuder oder eine Sprüheinrichtung. Mit dieser kann vorzugsweise eine Lackschicht als die Strukturierungsschicht auf die Oberfläche aufgebracht werden.
  • In einer weiteren bevorzugten Ausführungsform umfasst die Anordnung weiterhin eine Referenzelektrode.
  • Die Referenzelektrode ist vorzugsweise innerhalb des Mittels zum Bereitstellen des Elektrolyten angeordnet. Vorzugsweise ist die Referenzelektrode derart über eine Messelektronik mit mindestens einer der für die Elektrolyse vorgesehenen Elektroden verbunden, dass eine elektrochemische Potentialdifferenz zwischen der Referenzelektrode und der für die Elektrolyse vorgesehenen Elektrode einstellbar ist. Dies kann insbesondere unter Verwendung eines Messgeräts, insbesondere eines solchen für eine elektrische Spannung, erfolgen. Der erhaltene Wert ist ein Maß für die elektrochemische Aktivität an der Elektrodenoberfläche. Über den erhaltenen Wert kann insbesondere erkannt werden, wie viel Elektrolyt dem Mittel zum Bereitstellen des Elektrolyten zugeführt werden muss.
  • Die Erfindung und das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele, auf die die Erfindung jedoch nicht begrenzt ist. Insbesondere ist darauf hinzuweisen, dass die Figuren und insbesondere die dargestellten Größenverhältnisse nur schematisch sind. Es zeigen schematisch:
    • 1: eine Querschnittsansicht einer Anordnung wie hier beschrieben, und
    • 2: eine Schnittansicht von oben durch die Strukturierungsschicht der Anordnung aus 1,
    • 3a bis 3i: neun schematische Darstellungen eines Verfahrens zum Bereitstellen einer Vielzahl von Nanodrähten
  • 1 zeigt eine Anordnung 1 zum Bereitstellen einer Vielzahl von Nanodrähten 2. Die Anordnung 1 umfasst einen Körper 18 mit einer Oberfläche 3, auf die die Nanodrähte 2 gewachsen werden sollen. Auf die Oberfläche 3 ist eine Strukturierungsschicht 4 aufgelegt, wobei die Strukturierungsschicht 4 mehrere Auslassungen 7 aufweist (in dieser Darstellung sind zwei Auslassungen 7 zu erkennen). An den Stellen der Auslassungen 7 sollen die Nanodrähte 2 auf die Oberfläche 3 gewachsen werden. Weiterhin ist eine auf die Strukturierungsschicht 4 aufgelegte Folie 5 vorgesehen. Die Folie 5 weist eine Vielzahl von durchgehenden Poren 8 auf, in denen die Nanodrähte 2 gewachsen werden können. Nanodrähte 2 wachsen lediglich in den Poren 8 an den Stellen der Auslassungen 7 der Strukturierungsschicht 4. An den anderen Stellen ist ein galvanisches Wachsen der Nanodrähte 2 unterbunden. Auf die Folie 5 ist ein Schwamm 10 als ein Mittel zum Bereitstellen eines Elektrolyten 6 aufgelegt. Weiterhin ist eine Elektrode 12 vorgesehen, die an dem Schwamm 10 anliegt. Zwischen der Elektrode 12 und der Oberfläche 3, die elektrisch leitend ist, kann mittels einer Spannungsquelle 11 und über Kabel 15 eine Spannung angelegt werden. Mit dieser Spannung kann das galvanische Wachsen der Vielzahl von Nanodrähten 2 realisiert werden. Weiterhin ist eine Referenzelektrode 13 vorgesehen. Zwischen der Referenzelektrode 13 und der Elektrode 12 kann mit einem Messgerät 14 eine elektrischer Potentialdifferenz gemessen werden. Über ein Rohr 16 kann der Elektrolyt dem Schwamm 10 zugeführt werden. Der Schwamm 10 kann mittels einer Feder 9 (hydraulisch, elektromotorisch, pneumatisch) an die Folie 5 gepresst werden. Dabei ist die Feder 9 derart befestigt, dass eine auf den Schwamm 10 einwirkende Kraft einstellbar ist. Dies ist durch den Doppelpfeil angedeutet. Weiterhin eingezeichnet ist eine Heizung 17, mittels derer das Wachstum der Nanodrähte 2 (vollständig oder nur zeitweise) unter Erwärmung stattfinden kann und/oder mittels derer die Folie 5 (zumindest teilweise) aufgelöst werden kann.
  • 2 zeigt die Strukturierungsschicht 4 aus 1 als eine Schnittansicht von oben. Zu erkennen sind hier die Auslassungen 7 mit den Nanodrähten 2, die nur an den Stellen der Auslassungen 7 wachsen können. Die Nanodrähte 2 haben einen kreisförmigen Querschnitt.
  • Die 3a bis 3i zeigen neun schematische Darstellungen eines Verfahrens zum Bereitstellen einer Vielzahl von Nanodrähten. In 3a ist eine Grundoberfläche 23 mit drei elektrisch leitenden Bereichen 19 gezeigt. Auf die Grundoberfläche 23 ist eine Grundstrukturierungsschicht 24 (zum Beispiel ein Lötstopplack) aufgebracht, die für jede der elektrisch leitenden Bereiche 19 jeweils eine Auslassung 7 aufweist (zum Beispiel Kontakt). Die Grundoberfläche 23 und die Grundstrukturierungsschicht 24 bilden gemeinsam eine Oberfläche 3 im Sinne der 1.
  • In 3b ist auf die Grundstrukturierungsschicht 24 eine elektrisch leitende Elektrodenschicht 21 und auf diese eine elektrisch isolierende Strukturierungsschicht 4 aufgebracht.
  • In 3c sind die Stellen der elektrisch leitenden Bereiche 19 freigelegt und alle elektrisch leitenden Bereiche 19 (die insbesondere Kontakte bilden können) miteinander verbunden, an denen Nanodrähte 2 gewachsen werden sollen.
  • In 3d ist eine Folie 5 auf die Strukturierungsschicht 4 aufgelegt, wobei die Folie 5 eine Vielzahl von durchgehenden Poren 8 aufweist, in denen hilfsweise gewachsene Nanodrähte 22 gewachsen werden können.
  • In 3e sind die hilfsweise gewachsenen Nanodrähte 22 zu erkennen, die in den Poren 8 der Folie 5 gewachsen worden sind. Die hilfsweise gewachsenen Nanodrähte 22 werden zusammen mit der Folie 5 entfernt.
  • In 3f ist die Situation nach Entfernen der Folie 5 mit den hilfsweise gewachsenen Nanodrähten 22 gezeigt. Es bleiben elektrisch leitende Bumps 20 übrig. Anschließend wird eine weitere Folie 5 auf die Strukturierungsschicht 4 aufgelegt und Nanodrähte 2 werden gewachsen. Die dabei erhaltenen Nanodrähte 2 sind die Nanodrähte, die nach Abschluss des Verfahrens auf den elektrisch leitenden Bereichen 19 (bzw. auf den Bumps 20) verbleiben und auf deren Wachstum das Verfahren gerichtet ist.
  • 3g zeigt die Nanodrähte 2 mit der Folie 5. Nach Wachstum dieser Nanodrähte 2 kann die Folie 5 entfernt werden, was zu der Darstellung von Fig. 3h führt, bei der durch einen chemischen Prozess neben der Folie 5 auch schon die Strukturierungsschicht 4 entfernt wurde. Schließlich wird die elektrisch leitende Elektrodenschicht 21 entfernt. Damit verbleiben, wie in 3i gezeigt, nur die Nanodrähte 2 und die Bumps 20 auf den elektrisch leitenden Bereichen 19 der Grundoberfläche 23.
  • Bezugszeichenliste
  • 1
    Anordnung
    2
    Nanodraht
    3
    Oberfläche
    4
    Strukturierungsschicht
    5
    Folie
    6
    Mittel zum Bereitstellen eines Elektrolyten
    7
    Auslassung
    8
    Pore
    9
    Feder
    10
    Schwamm
    11
    Spannungsquelle / Stromquelle
    12
    Elektrode (Gegenelektrode)
    13
    Referenzelektrode
    14
    Messgerät
    15
    Kabel
    16
    Rohr
    17
    Heizung
    18
    Körper
    19
    elektrisch leitender Bereich
    20
    elektrisch leitender Bump
    21
    elektrisch leitende Elektrodenschicht
    22
    hilfsweise gewachsene Nanodrähte
    23
    Grundoberfläche
    24
    Grundstrukturierungsschicht

Claims (17)

  1. Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten (2), wobei das Verfahren zumindest die folgenden Verfahrensschritte umfasst: a) Auflegen einer Folie (5) auf eine Oberfläche (3), wobei die Folie (5) eine Vielzahl von durchgehenden Poren (8) aufweist, in denen die Nanodrähte (2) gewachsen werden können, b) Auflegen eines Mittels zum Bereitstellen eines Elektrolyten (6) auf die Folie (5), und c) galvanisches Wachsen der Vielzahl von Nanodrähten (2) aus dem Elektrolyten.
  2. Verfahren nach Anspruch 1, wobei eine Strukturierungsschicht (4) zwischen der Oberfläche (3) und der Folie (5) bereitgestellt wird, wobei die Strukturierungsschicht (4) mindestens eine Auslassung (7) aufweist an einer Stelle der Oberfläche (3), an der die Nanodrähte (2) auf die Oberfläche (3) gewachsen werden sollen.
  3. Verfahren nach einem der vorherigen Ansprüche, wobei das Verfahren zumindest teilweise unter Erwärmung stattfindet.
  4. Verfahren nach einem der vorherigen Ansprüche, wobei der Elektrolyt dem Mittel zum Bereitstellen des Elektrolyten (6) nach Bedarf zugeführt wird.
  5. Verfahren nach einem der vorherigen Ansprüche, wobei das Mittel zum Bereitstellen des Elektrolyten (6) zumindest zeitweise an die Folie (5) gepresst wird.
  6. Verfahren nach einem der vorherigen Ansprüche, wobei das Mittel zum Bereitstellen des Elektrolyten (6) schwammartig ausgeführt ist.
  7. Verfahren nach einem der vorherigen Ansprüche, wobei die durchgehenden Poren (8) der Folie senkrecht zu der Oberfläche (3) ausgeführt sind.
  8. Verfahren nach einem der vorherigen Ansprüche, wobei zum galvanischen Wachsen der Vielzahl von Nanodrähten (2) eine Spannung zwischen der zu bewachsenden Oberfläche (3) und einer an dem Mittel zum Bereitstellen des Elektrolyten (6) anliegenden Elektrode (12) angelegt wird.
  9. Verfahren nach einem der vorherigen Ansprüche, weiterhin umfassend die Verfahrensschritte: d) Entfernen der Folie (5) von der Oberfläche (3) einschließlich der in der Folie eingeschlossenen Vielzahl der Nanodrähte (2), und e) Aufbringen der Folie (5) auf eine Zieloberfläche, wobei die in der Folie (5) eingeschlossene Vielzahl der Nanodrähte (2) mit der Zieloberfläche verbunden wird.
  10. Verfahren nach einem der vorherigen Ansprüche, wobei die Folie (5) zumindest teilweise aufgelöst wird.
  11. Verfahren nach einem der Ansprüche 2 bis 8, wobei die Oberfläche (3) eine Mehrzahl von elektrisch leitenden Bereichen (19) aufweist, wobei vor Schritt a) die folgenden Verfahrensschritte durchgeführt werden: i) Aufbringen einer elektrisch leitenden Haftschicht auf die Oberfläche (3), ii) Aufbringen einer elektrisch leitenden Elektrodenschicht (2) auf die Haftschicht, iii) Aufbringen einer elektrisch isolierenden Strukturierungsschicht (4) auf die elektrisch leitende Elektrodenschicht (21), und iv) Freilegen der elektrisch leitenden Bereiche (19) der Oberfläche (3) an den Stellen, an denen die Nanodrähte (2) auf die elektrisch leitenden Bereiche (19) gewachsen werden sollen, wobei eine elektrisch leitende Verbindung zwischen den elektrisch leitenden Bereichen (19) und der elektrisch leitenden Elektrodenschicht (21) erhalten bleibt, wobei nach Schritt c) die folgenden Verfahrensschritte durchgeführt werden: α) Entfernen der Folie (5), β) Entfernen der Strukturierungsschicht (4), γ) Entfernen der Elektrodenschicht (21), und Δ) Entfernen der elektrisch leitenden Haftschicht.
  12. Verfahren nach Anspruch 11, wobei die Folie (5) nach Durchführung der Schritte a) bis c) einschließlich der gewachsenen Nanodrähte (2) entfernt wird, wobei anschließend die Schritte a) bis c) erneut durchgeführt werden, und wobei die Schritte α) bis γ) nach der erneuten Durchführung der Schritte a) bis c) durchgeführt werden.
  13. Verfahren nach Anspruch 12, wobei nach Abschluss des Wachstums der Vielzahl der Nanodrähte (2) eine Oxidschicht auf den Nanodrähten (2) zumindest teilweise entfernt wird.
  14. Anordnung (1) zum Bereitstellen einer Vielzahl von Nanodrähten (2), umfassend zumindest: - eine Oberfläche (3), auf die die Nanodrähte (2) gewachsen werden sollen, - eine auf die Oberfläche (3) aufgelegte Folie (5), wobei die Folie (5) eine Vielzahl von durchgehenden Poren (8) aufweist, in denen die Nanodrähte (2) gewachsen werden können, - ein auf die Folie (5) aufgelegtes Mittel zum Bereitstellen eines Elektrolyten (6), und - mindestens eine Elektrode (12) zum galvanischen Wachsen der Vielzahl von Nanodrähten (2) aus dem Elektrolyten.
  15. Anordnung nach Anspruch 14, weiterhin umfassend eine zwischen der Oberfläche (3) und der Folie (5) angeordnete Strukturierungsschicht (4), wobei die Strukturierungsschicht (4) mindestens eine Auslassung (7) aufweist an einer Stelle der Oberfläche (3), an der die Nanodrähte (2) auf die Oberfläche (3) gewachsen werden sollen.
  16. Anordnung (1) nach Anspruch 14 oder 15 weiterhin umfassend eine Vorrichtung zum Bereitstellen der Strukturierungsschicht (4) auf der Oberfläche (3), auf die die Nanodrähte (2) gewachsen werden sollen.
  17. Anordnung (1) nach einem der Ansprüche 14 bis 16 weiterhin umfassend eine Referenzelektrode (13).
DE102017104906.1A 2017-03-08 2017-03-08 Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten Withdrawn DE102017104906A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102017104906.1A DE102017104906A1 (de) 2017-03-08 2017-03-08 Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten
EP18712114.0A EP3592696B1 (de) 2017-03-08 2018-03-08 Anordnung und verfahren zum bereitstellen einer vielzahl von nanodrähten
PCT/EP2018/055835 WO2018162681A1 (de) 2017-03-08 2018-03-08 Anordnung und verfahren zum bereitstellen einer vielzahl von nanodrähten
JP2019549394A JP7304290B2 (ja) 2017-03-08 2018-03-08 多数のナノワイヤを提供するための装置および方法
CN201880023895.7A CN110730760B (zh) 2017-03-08 2018-03-08 提供多个纳米线的装置和方法
KR1020197028960A KR102551975B1 (ko) 2017-03-08 2018-03-08 다수의 나노와이어들을 제공하기 위한 시스템 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017104906.1A DE102017104906A1 (de) 2017-03-08 2017-03-08 Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten

Publications (1)

Publication Number Publication Date
DE102017104906A1 true DE102017104906A1 (de) 2018-09-13

Family

ID=61691942

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017104906.1A Withdrawn DE102017104906A1 (de) 2017-03-08 2017-03-08 Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten

Country Status (6)

Country Link
EP (1) EP3592696B1 (de)
JP (1) JP7304290B2 (de)
KR (1) KR102551975B1 (de)
CN (1) CN110730760B (de)
DE (1) DE102017104906A1 (de)
WO (1) WO2018162681A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020107514A1 (de) 2020-03-18 2021-09-23 Nanowired Gmbh Galvanisches Wachstum von Nanodrähten
DE102021105125A1 (de) 2021-03-03 2022-09-08 Nanowired Gmbh Wachstum von Nanodrähten
WO2022184502A1 (de) * 2021-03-03 2022-09-09 Nanowired Gmbh Galvanisches wachsen von nanodrähten auf einem substrat
DE102021120219A1 (de) 2021-08-04 2023-02-09 Audi Aktiengesellschaft Batterieanordnung, Multifunktionsschicht und Verfahren zum Herstellen einer Batterieanordnung
DE102021126435A1 (de) 2021-10-12 2023-04-13 Nanowired Gmbh Wachstum von Nanodrähten

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230036062A (ko) * 2020-07-08 2023-03-14 미쓰이금속광업주식회사 미세 금속 선상체
DE102020118446A1 (de) * 2020-07-13 2022-01-13 Nanowired Gmbh Verbindungselement
WO2023202931A1 (en) 2022-04-21 2023-10-26 Biotronik Se & Co. Kg Energy-reduced and automatable joining by means of nanowiring for contacting electrical and mechanical components of active and monitoring implants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060124467A1 (en) 2003-05-20 2006-06-15 Industrial Technology Research Institute Metal nanodot arrays and fabrication methods thereof
DE102008015333A1 (de) 2008-03-20 2009-10-01 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Nanodraht-Strukturelement
US8299341B2 (en) 2009-05-13 2012-10-30 The California Institute Of Technology Fabrication of vertically aligned metallic nanopillars
US20160251769A1 (en) 2015-02-26 2016-09-01 Northrop Grumman Systems Corporation Thermal interface materials using metal nanowire arrays and sacrificial templates

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366612A (en) * 1993-04-19 1994-11-22 Magma Copper Company Process for making copper foil
WO1998048456A1 (en) * 1997-04-24 1998-10-29 Massachusetts Institute Of Technology Nanowire arrays
JP3046301B1 (ja) 1999-06-08 2000-05-29 三井金属鉱業株式会社 電解銅箔の製造方法、電解銅箔、銅張り積層板およびプリント配線板
CN1155980C (zh) * 2001-11-27 2004-06-30 北京大学 一种场发射阴极及其制造方法和应用
EP1476899B1 (de) * 2002-02-20 2007-03-07 Advanced Micro Devices, Inc. Verfahren zur herstellung von oxidschichten mit unterschiedlicher dicke auf einer substratoberfläche
US7351313B2 (en) * 2002-03-08 2008-04-01 National Institute Of Information And Communications Technology, Incorporated Administrative Agency Production device and production method for conductive nano-wire
US7545010B2 (en) * 2003-08-08 2009-06-09 Canon Kabushiki Kaisha Catalytic sensor structure
CN101124659A (zh) * 2004-07-07 2008-02-13 纳米***公司 获取和集成纳米线的***和方法
KR100821267B1 (ko) 2006-12-28 2008-04-11 연세대학교 산학협력단 압축 응력을 이용한 Bi 나노와이어 제조방법
DE102008058400A1 (de) * 2008-11-21 2010-05-27 Istituto Italiano Di Tecnologia Nanodrähte auf Substratoberflächen, Verfahren zu deren Herstellung sowie deren Verwendung
DE102010053782B4 (de) * 2010-12-08 2013-02-21 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Segmentierte Nanodrähte mit polykristalliner Struktur und Verfahren zu deren Herstellung
WO2013006583A2 (en) * 2011-07-01 2013-01-10 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
KR101341102B1 (ko) * 2012-11-29 2013-12-12 한국표준과학연구원 수직 정렬 나노선을 포함하는 이방성 투명 전기전도성 가요성 박막 구조체 및 그 제조 방법
SE537287C2 (sv) 2013-06-05 2015-03-24 Sol Voltaics Ab En solcellsstruktur och en metod för tillverkning av densamma
US20140374268A1 (en) 2013-06-24 2014-12-25 Agency For Science, Technology And Research Method for forming a composite film
JP6813490B2 (ja) * 2015-08-05 2021-01-13 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH 基板保持器受入れ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060124467A1 (en) 2003-05-20 2006-06-15 Industrial Technology Research Institute Metal nanodot arrays and fabrication methods thereof
DE102008015333A1 (de) 2008-03-20 2009-10-01 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Nanodraht-Strukturelement
US8299341B2 (en) 2009-05-13 2012-10-30 The California Institute Of Technology Fabrication of vertically aligned metallic nanopillars
US20160251769A1 (en) 2015-02-26 2016-09-01 Northrop Grumman Systems Corporation Thermal interface materials using metal nanowire arrays and sacrificial templates

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.M. Stortini et al.: "Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor", Sensors and Actuators B 207, pp. 186-192 (2015)
C. Nick et al.: "Gold nanopillar microelectrodes on low temperature curing polyimide for the interface with electrogenic cells", 2nd IEEE Middle East Conference on Biomedical Engineering, MECBME, 2014, pp. 55-58
F. Roustaie et al.: "In situ synthesis of metallic nanowire arrays for ionization gauge electron sources", J. Vac. Sci. Technol. B 34, 02G103 (2016)
K.T. Kim, S.M. Cho: "A simple method for formation of metal nanowires on flexible polymer film", Materials Letters 60, pp. 352–355 (2006)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020107514A1 (de) 2020-03-18 2021-09-23 Nanowired Gmbh Galvanisches Wachstum von Nanodrähten
DE102021105125A1 (de) 2021-03-03 2022-09-08 Nanowired Gmbh Wachstum von Nanodrähten
WO2022184502A1 (de) * 2021-03-03 2022-09-09 Nanowired Gmbh Galvanisches wachsen von nanodrähten auf einem substrat
DE102021120219A1 (de) 2021-08-04 2023-02-09 Audi Aktiengesellschaft Batterieanordnung, Multifunktionsschicht und Verfahren zum Herstellen einer Batterieanordnung
DE102021126435A1 (de) 2021-10-12 2023-04-13 Nanowired Gmbh Wachstum von Nanodrähten
WO2023061759A1 (de) 2021-10-12 2023-04-20 Nanowired Gmbh Wachstum von nanodrähten

Also Published As

Publication number Publication date
KR20190126355A (ko) 2019-11-11
WO2018162681A1 (de) 2018-09-13
CN110730760B (zh) 2023-11-21
EP3592696B1 (de) 2022-10-05
KR102551975B1 (ko) 2023-07-06
JP7304290B2 (ja) 2023-07-06
EP3592696A1 (de) 2020-01-15
CN110730760A (zh) 2020-01-24
JP2020515712A (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
EP3592696B1 (de) Anordnung und verfahren zum bereitstellen einer vielzahl von nanodrähten
DE102017104905A1 (de) Anordnung und Verfahren zum Bereitstellen einer Vielzahl von Nanodrähten sowie Galvanikkapsel
DE102017104902A1 (de) Anordnung von Halbleiterchips und Verfahren zur Herstellung davon
EP2260125A2 (de) Nanodraht-strukturelement
DE2951287A1 (de) Verfahren zur herstellung von ebenen oberflaechen mit feinsten spitzen im mikrometer-bereich
WO2009006988A1 (de) Kontakt-struktur für euin halbleiter-bauelement sowie verfahren zur herstellung desselben
EP3593102B1 (de) Messanordnung und verfahren zum messen von eigenschaften eines strömenden mediums
DE112012004806T5 (de) Solarzelle und Fertigungsverfahren für Solarzelle
EP3592697B1 (de) Vorrichtung und verfahren zum bereitstellen einer vielzahl von nanodrähten
WO2014032963A1 (de) Verfahren zur herstellung eines dielektrischen elastomerstapelaktors
EP4121582A1 (de) Galvanisches wachstum von nanodrähten
EP0764334A1 (de) Verfahren zur herstellung von bauelementen auf metallfilmbasis
DE4123708A1 (de) Verfahren zum herstellen eines filtermaterials
DE10007435A1 (de) Verfahren zum Galvanisieren eines mit einem elektrisch leitenden Polymer beschichteten Werkstücks
EP2995703B1 (de) Verfahren zur Herstellung von Flächenableitelektroden und Halbzeug zur Durchführung des Verfahrens
DE102018111220B3 (de) Verfahren zum Herstellen einer Atomfalle sowie Atomfalle
EP4347929A1 (de) Verfahren zur herstellung hochgenau lokalisierter breitbandabsorber für 2d- und 3d-oberflächen
DE102021105125A1 (de) Wachstum von Nanodrähten
DE102014221584B4 (de) Elektrochemisches Sintern von Metallpartikelschichten
EP2234166A1 (de) Verfahren zur Herstellung einer Solarzelle und Solarzelle
WO2013091751A2 (de) Elektrisch leitfähiges bauelement, und verfahren zur herstellung eines solchen bauelements
DE102022115912A1 (de) Verfahren zum Herstellen eines elektrischen Bauteils mittels sukzessivem Aufdrucken und Sintern von partikelhaltiger Tinte
DE102013204468A1 (de) Verfahren und Vorrichtung zum Herstellen einer elektrisch leitenden Schicht auf einem Trägermaterial
DE102004052445A1 (de) Nanostrukturträger, Verfahren zu dessen Herstellung sowie dessen Verwendung
WO2002069678A2 (de) Verfahren zur herstellung von leiterplatten

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: NANOWIRED GMBH, DE

Free format text: FORMER OWNERS: BIRLEM, OLAV, 68642 BUERSTADT, DE; TECHNISCHE UNIVERSITAET DARMSTADT, 64289 DARMSTADT, DE

R082 Change of representative

Representative=s name: KNH PATENTANWAELTE NEUMANN HEINE TARUTTIS PART, DE

Representative=s name: KEENWAY PATENTANWAELTE NEUMANN HEINE TARUTTIS , DE

R081 Change of applicant/patentee

Owner name: NANOWIRED GMBH, DE

Free format text: FORMER OWNER: NANOWIRED GMBH, 64283 DARMSTADT, DE

R082 Change of representative

Representative=s name: KNH PATENTANWAELTE NEUMANN HEINE TARUTTIS PART, DE

Representative=s name: KEENWAY PATENTANWAELTE NEUMANN HEINE TARUTTIS , DE

R005 Application deemed withdrawn due to failure to request examination