CN102301436B - 电子部件及其制造方法 - Google Patents

电子部件及其制造方法 Download PDF

Info

Publication number
CN102301436B
CN102301436B CN2010800057457A CN201080005745A CN102301436B CN 102301436 B CN102301436 B CN 102301436B CN 2010800057457 A CN2010800057457 A CN 2010800057457A CN 201080005745 A CN201080005745 A CN 201080005745A CN 102301436 B CN102301436 B CN 102301436B
Authority
CN
China
Prior art keywords
mentioned
via hole
hole conductor
electrode
electronic unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010800057457A
Other languages
English (en)
Other versions
CN102301436A (zh
Inventor
前田智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN102301436A publication Critical patent/CN102301436A/zh
Application granted granted Critical
Publication of CN102301436B publication Critical patent/CN102301436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明提供一种能够防止过孔导体与线圈电极之间的断线的层叠型电子部件及其制造方法。过孔导体(B)连接多个线圈电极(18)并具有一侧的端部(t1)的面积比另一侧的端部(t2)的面积大的形状。将线圈电极(18a)定义为起始端电极,将线圈导体(20)定义为末端电极,将该起始端电极以及该末端电极以外的线圈电极(18b~18e)定义为中间电极。起始端电极借助一侧的端部(t1)与连接于中间电极的过孔导体(B4)连接。

Description

电子部件及其制造方法
技术领域
本发明涉及电子部件及其制造方法,尤其是涉及将绝缘层与线圈电极层叠而构成的电子部件及其制造方法。
背景技术
下面参照附图对内置有线圈的现有电子部件的构造进行说明。图10是现有的电子部件200的透视图。图11是现有的电子部件200的层叠体202的分解立体图。
如图10所示,电子部件200具备:内部含有线圈的长方体形状的层叠体202、在层叠体202的相对置的侧面上形成的两个外部电极212a、212b。
层叠体202由多个线圈电极和多个磁性体层层叠而构成。具体来讲,如下所述。如图11所示,层叠体202通过由强磁性的铁氧体(例如,Ni-Zn-Cu铁氧体或Ni-Zn铁氧体等)制成的多个磁性体层204a~204f、206a~206d层叠而构成。在磁性体层204a~204f中形成有用于构成线圈的线圈电极208a~208f。另外,磁性体层204a~204e中形成有过孔导体B51~B55。过孔导体B51~B55,例如,通过照射激光而形成过孔,对该过孔填充导体而形成。因此,如图10所示,过孔导体B51~B55具有一端的面积相对比较大而另一端的面积相对比较小的形状。
线圈电极208a~208f是具有呈“コ”字形的形状并具有3/4圈的长度的电极。过孔导体B51~B55分别设置于各个线圈电极208a~208e的一端并在上下方向上贯通磁性体层204a~204e。线圈电极208a~208f借助过孔导体B51~B55相互连接,从而构成螺旋状的线圈。而且,在层叠方向的最上面以及最下面形成的线圈电极208a、208f分别设置有引出电极210a、210b。该引出电极210a、210b实现了将线圈与外部电极212a、212b连接的作用。
如上所述构成的现有的电子部件200中,有如下所述的问题,即、线圈电极208f与过孔导体B55之间容易发生断线。
如图11所示,线圈电极208f的长度比线圈电极208a的长度还长。因此,线圈中通过电流的情况下,线圈电极208f上的发热量比线圈电极208a上的发热量多。而且,过孔导体B55的面积小的一侧的端部与线圈电极208f连接。因此,特别是在线圈电极208f与过孔导体B55的连接部分集中地发热。其结果,在线圈电极208f与过孔导体B55之间容易发生断线。
另外,在专利文献1中记载了最上层的线圈导体与最下层的线圈导体具有相同形状的层叠型电子部件。然而,在专利文献1中并未提及关于在过孔导体与线圈导体的连接部分的断线问题。
专利文献1:日本专利特开2005-167130号公报
发明内容
因此,本发明的目的在于提供一种能够防止过孔导体与线圈电极之间的断线的电子部件及其制造方法。
本发明的一种实施方式所涉及的电子部件,其特征在于:
具备:
构成线圈的多个线圈电极;
多个绝缘层,其与上述多个线圈电极一起被层叠而构成层叠体;
两个外部电极,其被设置于上述层叠体的表面;
两个连接部,其连接上述线圈与上述两个外部电极;以及
过孔导体,其连接上述多个线圈电极,并且具有一端部的面积比另一端部的面积大的形状,
在设置于层叠方向的两端的上述线圈电极中,将所连接的上述过孔导体与上述连接部之间的直流电阻值相对大的上述线圈电极定义为起始端电极,将所连接的上述过孔导体与上述连接部之间的直流电阻值相对小的上述线圈电极定义为末端电极,将上述起始端电极以及上述末端电极以外的上述线圈电极定义为中间电极时,
上述起始端电极借助上述一端部与连接于上述中间电极的上述过孔导体连接。
在上述电子部件中也可以是,上述末端电极具有从一圈中减去上述中间电极的圈数而得到的圈数以上的长度,并且借助上述另一端部与连接于上述中间电极的上述过孔导体连接。
在上述电子部件中也可以是,连接上述末端电极与上述中间电极的上述过孔导体在上述绝缘层与上述末端电极一体地形成。
在上述电子部件中也可以是,从层叠方向俯视时,上述末端电极与连接于上述中间电极的上述过孔导体重叠。
在上述电子部件中也可以是,连接上述起始端电极与上述中间电极的上述过孔导体在上述绝缘层与该起始端电极一体地形成。
在上述电子部件中也可以是,在将从上述末端电极朝向上述起始端电极的方向定义为第一方向的情况下,在上述各个过孔导体中,上述一端部位于比上述另一端部更靠近第一方向一侧。
在上述电子部件中也可以是,上述末端电极构成为能够在多处与上述过孔导体连接。
在上述电子部件中也可以是,上述末端电极具有能够与上述过孔导体连接的部分比其他部分粗的形状。
在上述电子部件中也可以是,连接上述末端电极与上述中间电极的过孔导体与该末端电极的两端以外的部分连接。
在上述电子部件中,上述连接部也可以是过孔导体。
在上述电子部件中也可以是,上述连接部是被设置于上述绝缘体上且分别与上述起始端电极或上述末端电极连接的引出电极。
上述电子部件的制造方法的特征在于,包含:
在上述绝缘层上形成上述过孔导体的工序;
在上述绝缘层上形成上述连接部的工序;
在上述绝缘层上形成上述起始端电极以及上述中间电极的工序;
在上述绝缘层上形成上述末端电极的工序;及
将形成有上述起始端电极的上述绝缘层、形成有上述末端电极的上述绝缘层以及形成有上述中间电极的上述绝缘层层叠而形成层叠体,以使上述中间电极位于上述起始端电极与上述末端电极之间的工序。
在上述电子部件的制造方法中也可以是,形成上述过孔导体的工序与形成上述起始端电极以及上述中间电极的工序同时进行。
发明效果
根据本发明,能够防止过孔导体与线圈电极之间的断线。
附图说明
图1是本发明的一种实施方式所涉及的电子部件的外观立体图。
图2是图1中的电子部件的层叠体的分解立体图。
图3是线圈的圈数变化的情况下的电子部件的层叠体的分解立体图。
图4是从y轴方向透视图1中的电子部件的透视图。
图5是现有的电子部件的层叠体的分解立体图。
图6是现有的电子部件的层叠体的分解立体图。
图7是从y轴方向透视现有的电子部件的透视图。
图8是表示实验中在陶瓷生片(green sheet)上制作的线圈电极的图。
图9是表示线圈电极的变形例的图。
图10是现有的电子部件的透视图。
图11是现有的电子部件的层叠体的分解立体图。
具体实施方式
下面,对本发明的一种实施方式所涉及的电子部件及其制造方法进行说明。该电子部件被应用于例如电感器、阻抗器、LC滤波器、LC滤波器阵列。
(电子部件的构成)
首先,参照附图来对本发明的一种实施方式所涉及的电子部件的构成进行说明。图1是本发明的一种实施方式所涉及的电子部件10的外观立体图。图2是图1中的电子部件10的层叠体12的分解立体图。下面,将层叠体12的层叠方向定义为z轴方向、与z轴方向垂直的方向定义为x轴方向以及y轴方向。x轴方向以及y轴方向与层叠体12的边平行。
如图1所示,电子部件10具备层叠体12以及外部电极14a、14b。层叠体12呈长方体形状,内部含有线圈L。外部电极14a、14b设置在层叠体12的z轴方向的两端的面上,并与线圈L连接。
层叠体12由多个线圈电极与多个绝缘层共同层叠而构成。具体来讲,如下所述。如图2所示,层叠体12通过由强磁性的铁氧体(例如,Ni-Zn-Cu铁氧体或Ni-Zn铁氧体等)制成的多个磁性体层16a~16l以从z轴方向的正方向到负方向依次排列的方式层叠而构成。多个磁性体层16a~16l分别是大体上具有相同的面积以及相同的长方形状的绝缘层。磁性体层16d~16i的主面上分别设置有构成线圈L的线圈电极18a~18e、20。而且,磁性体层16a~16l上分别设置有过孔导体B1~B12。另外,也可以使用电介质或绝缘体来代替由铁氧体制成的磁性体层16a~16l。下面,在表示个别的磁性体层16a~16l以及线圈电极18a~18e时,在参照符号之后附带字母,在统称磁性体层16a~16l以及线圈电极18a~18e时,省略在参照符号之后的字母。另外,在表示个别的过孔导体B1~B12时,在B之后附带数字,在统称过孔导体B1~B12时,省略在B之后的数字。
各个线圈电极18、20是由Ag制成的导电性材料,具有将环形切除一部分的形状。在本实施方式中,线圈电极18、20呈“コ”字形。由此,各线圈电极18、20构成具有3/4圈的长度的电极。另外,线圈电极18、20也可以由Pd、Au、Pt等为主要成分的贵金属或这些金属的合金等导电性材料制成。另外,线圈电极18、20也可以是将圆形或椭圆形切去一部分后的形状。下面,对线圈电极18a~18e、20的各自构成进行说明。
线圈电极18a设置于在磁性体层16d~16i中配置于z轴方向上最靠近正方向侧的磁性体层16d上,并称作起始端电极。线圈电极18a具有与线圈电极18b~18e相同的圈数。该线圈电极18a的一端设置有接触部C1而该线圈电极18a的另一端设置有接触部C2。接触部C1经由过孔导体B1~B3与外部电极14a电连接。从而,在z轴方向俯视时,接触部C1设置在与过孔导体B1~B3重叠的位置。另外,为了使接触部C1与过孔导体B3容易连接,接触部C1形成为比线圈电极18a的其他部分粗。为了使接触部C2与过孔导体B4容易连接,接触部C2形成为比线圈电极18a的其他部分粗,并与过孔导体B4一体地形成。
线圈电极18b设置于磁性体层16e上,并称作中间电极。在该线圈电极18b的一端设置有接触部C3而在该线圈电极18b的另一端设置有接触部C4。为了在磁性体层16d和磁性体层16e层叠时,使接触部C3与过孔导体B4容易连接,接触部C3形成为比线圈电极18b的其他部分粗。另外,为了使接触部C4与过孔导体B5容易连接,接触部C4形成为比线圈电极18b的其他部分粗,并与过孔导体B5一体地形成。
线圈电极18c设置于磁性体层16f上,并称作中间电极。在该线圈电极18c的一端设置有接触部C5而在该线圈电极18c的另一端设置有接触部C6。为了在磁性体层16e和磁性体层16f层叠时,使接触部C5与过孔导体B5容易连接,接触部C5形成为比线圈电极18c的其他部分粗。另外,为了使接触部C6与过孔导体B6容易连接,接触部C6形成为比线圈电极18c的其他部分粗,并与过孔导体B6一体地形成。
线圈电极18d设置于磁性体层16g上,并称作中间电极。在该线圈电极18d的一端设置有接触部C7而在该线圈电极18d的另一端设置有接触部C8。为了在磁性体层16f和磁性体层16g层叠时,使接触部C7与过孔导体B6容易连接,接触部C7形成为比线圈电极18d的其他部分粗。另外,为了使接触部C8与过孔导体B7容易连接,接触部C8形成为比线圈电极18d的其他部分粗,并与过孔导体B7一体地形成。
线圈电极18e设置于磁性体层16h上,并称作中间电极。在该线圈电极18e的一端设置有接触部C9而在该线圈电极18e的另一端设置有接触部C10。为了在磁性体层16g和磁性体层16h层叠时,使接触部C9与过孔导体B7容易连接,接触部C9形成为比线圈电极18e的其他部分粗。另外,为了使接触部C10与过孔导体B8容易连接,接触部C10形成为比线圈电极18e的其他部分粗,并与过孔导体B8一体地形成。
线圈电极20设置于在磁性体层16d~16i中配置于z轴方向上最靠近负方向侧的磁性体层16i上,并称作末端电极。线圈电极20具有从一圈中减去中间电极亦即线圈电极18b~18e的圈数而得到的圈数以上的长度(其中,在本实施方式中,线圈电极20的圈数与线圈电极18b~18e的圈数相同)。线圈电极20的一端设置有接触部C11而该线圈电极20的另一端设置有接触部C14。而且,为了能够在多处与过孔导体B连接,线圈电极20具有接触部C12、C13。更具体地来说,线圈电极18呈“コ”字形,能够在其四个角部与过孔导体B连接。由此,线圈电极20在四个角部具有接触部C11~C14,从而能够与设置于这四个角部的过孔导体B连接。
为了在磁性体层16h和磁性体层16i层叠时,使接触部C13与过孔导体B8容易连接,接触部C13形成为比线圈电极20的其他部分粗。接触部C14经由过孔导体B9~B12与外部电极14b电连接。从而,在z轴方向俯视时,接触部C14设置在与过孔导体B9~B12重叠的位置。另外,为了使接触部C14与过孔导体B9容易连接,接触部C14形成为比线圈电极20的其他部分粗,并与过孔导体B9一体地形成。另外,为了使接触部C11、C12与过孔导体B容易连接,接触部C11、C12形成为比线圈电极20的其他部分粗。下面,在表示个别的接触部C1~C14时,在C之后附带数字,而统称接触部C1~C14时,省略在C之后的数字。
如上所述,在电子部件10中是由下述电极构成线圈L的,即、位于z轴方向的正方向侧的一端的起始端电极(线圈电极18a)、位于z轴方向的负方向侧的一端的末端电极(线圈电极20)、以及除了起始端电极和末端电极以外的四种中间电极(线圈电极18b~18e)。并且,在要调整线圈L的圈数时,在末端电极亦即线圈电极20与中间电极亦即线圈电极18e之间***中间电极亦即线圈电极18b~18e之中的适当的线圈电极18即可。具体来讲,如下所述。图3是改变线圈L的圈数的情况下电子部件10的层叠体12的分解立体图。
例如,欲将图2所示的层叠体12的线圈L的圈数只增加一圈的情况下,如图3所示,只要在磁性体层16h与磁性体层16i之间***线圈电极18f以及设置有过孔导体B13的磁性体层16m即可。磁性体层16m、线圈电极18f以及过孔导体B13具有与磁性体层16e、线圈电极18b以及过孔导体B5相同的构造。由此,可改变线圈的圈数。
在如图2所示的没有***磁性体层16m的情况下,接触部C13用于同过孔导体B8的连接。在如图3所示的***磁性体层16m的情况下,接触部C12用于同过孔导体B13的连接。这样,在z轴方向俯视时,线圈电极20与和中间电极亦即线圈电极18e、18f连接的过孔导体B重叠,从而线圈电极20具有能够与线圈电极18e、18f任意一个连接的构成。而且,在z轴方向俯视时,线圈电极20与和中间电极亦即线圈电极18c连接的过孔导体B重叠,从而线圈电极20还具有能够与线圈电极18c连接的构成。
其次,对过孔导体B进行说明。图4是从y轴方向透视电子部件10的透视图。如图2所示,过孔导体B设置为在z轴方向贯通磁性体层16,如图4所示,在从y轴方向看时,过孔导体B具有一侧的端部t1的面积比另一侧的端部t2的面积大的形状。更详细地说就是,位于z轴方向的正方向侧的端部t1的面积比位于z轴方向的负方向侧的端部t2的面积要大。以下说明各过孔导体B的连接关系。
过孔导体B1~B3以在z轴方向上排列在直线上的方式连接。过孔导体B 3的端部t2与线圈电极18a连接。过孔导体B4的端部t1与线圈电极18a连接,过孔导体B4的端部t2与线圈电极18b连接。过孔导体B5的端部t1与线圈电极18b连接,过孔导体B5的端部t2与线圈电极18c连接。过孔导体B6的端部t1与线圈电极18c连接,过孔导体B6的端部t2与线圈电极18d连接。过孔导体B7的端部t1与线圈电极18d连接,过孔导体B7的端部t2与线圈电极18e连接。过孔导体B8的端部t1与线圈电极18e连接,过孔导体B8的端部t2与线圈电极20连接。过孔导体B9~B12以在z轴方向上排列在直线上的方式连接。过孔导体B9的端部t1与线圈电极20连接。由此,所有的过孔导体B1~B12中的端部t1位于比端部t2靠近z轴方向的正方向侧。
在具有上述构成的电子部件10中,如图2以及图3所示,线圈电极20经由不同的接触部C12、C13与每个连接于中间电极亦即线圈电极18e、18f的过孔导体B8、B13连接。所以,若线圈L的圈数发生变化,则与线圈电极20连接的两个过孔导体B之间的距离也发生变化。更详细地说就是,在如图2所示的状态下,与线圈电极20连接的两个过孔导体B8、B9之间的距离相对比较短,而在如图3所示的状态下,与线圈电极20连接的两个过孔导体B8、B9之间的距离相对比较长。而且,因为线圈电极18a与线圈电极20都具有3/4圈的长度,所以与末端电极亦即线圈电极20连接的两个过孔导体B之间的直流电阻值相对较小,而与起始端电极亦即线圈电极18a连接的两个过孔导体B之间的直流电阻值相对较大。
(电子部件的制造方法)
下面参照图1以及图2对电子部件10的制造方法进行说明。下面所说的制造方法是通过片材层叠法来制作一件电子部件10。但是,在该制造方法中也可以使用大张的陶瓷生片来制作母层叠体,再分割为单个的层叠体12。
首先,按如下所述的方法来制作作为磁性体层16的陶瓷生片。按照氧化铁(Fe2O3)48.0mol%、氧化锌(ZnO)25.0mol%、氧化镍(NiO)18.0mol%、氧化铜(CuO)9.0mol%的比例称量的各种材料作为原材料投入球磨机中进行湿式调和。将得到的混合物干燥后粉碎,再将得到的粉末在750℃下预先焙烧1小时。在球磨机中将得到的焙烧粉末进行湿式粉碎后,干燥然后粉碎,得到铁氧体陶瓷粉末。
在该铁氧体陶瓷粉末中加入结合剂(醋酸乙烯树脂、水溶性丙烯等)、可塑剂、湿润材以及分散剂,并在球磨机中进行混合之后,通过减压进行脱泡。将得到的陶瓷料浆用刮片法(doctor-blading)制成片状并干燥,制作期望膜厚(例如35μm)的陶瓷生片。
在构成磁性体层16的陶瓷生片中形成过孔导体B。具体来说,使用激光束在陶瓷生片上形成贯通孔。此处,激光束一边衰减一边通过陶瓷生片的内部。因此,贯通孔具有在激光束照射的一侧的开口部的面积大,而相反侧的开口部的面积小的锥形形状。然后,将Ag、Pd、Cu、Au或这些合金等的导电性膏通过印刷涂敷等方法填充到该贯通孔中。由此,如图4所示,从y轴方向看时,形成了具有一侧的端部t1的面积比另一侧的端部t2的面积大的形状的过孔导体B。
其次,将Ag、Pd、Cu、Au或这些合金等作为主要成分的导电性膏通过丝网印刷法或光刻法等方法涂敷于构成磁性体层16d~16h的陶瓷生片上,从而形成起始端电极以及中间电极亦即线圈电极18a~18e。具体来说,在构成磁性体层16d~16h的陶瓷生片上,过孔导体B的端部t1侧的主面上形成线圈电极18,使得接触部C与过孔导体B重叠。另外,也可以将线圈电极18以及过孔导体B同时形成于陶瓷生片上。
其次,将Ag、Pd、Cu、Au或这些合金等作为主要成分的导电性膏通过丝网印刷法或光刻法等方法涂敷于构成磁性体层16i的陶瓷生片上,从而形成末端电极亦即线圈电极20。具体来说,在构成磁性体层16i的陶瓷生片中,在过孔导体B9的端部t1侧的主面形成线圈电极20,使得接触部C14与过孔导体B9重叠。另外,线圈电极20以及过孔导体B9也可以同时形成于陶瓷生片上。
然后,将各个陶瓷生片层叠而形成为未焙烧的层叠体12。此时,层叠体12形成为,线圈电极18b~18e(中间电极)位于线圈电极18a(起始端电极)与线圈电极20(末端电极)之间,并且线圈电极20经由端部t2与连接于线圈电极18e的过孔导体B8连接,并且连接于线圈电极18a的过孔导体B3、B4之间的直流电阻值比连接于线圈电极20的过孔导体B8、B9之间的直流电阻值大。具体来说,先配置构成磁性体层16l的陶瓷生片。接着,在构成磁性体层16l的陶瓷生片上进行对构成磁性体层16k的陶瓷生片的配置以及暂时压接。之后,对构成磁性体层16j、16i、16h、16g、16f、16e、16d、16c、16b、16a的陶瓷生片按照相同的顺序进行暂时压接。由此,形成未焙烧的层叠体12。通过等静压机等对该未焙烧的层叠体12实施正式压接。
接着,对层叠体12进行脱黏合剂处理以及焙烧。例如,焙烧温度为900℃。由此,可得到焙烧后的层叠体12。例如通过浸渍法等方法在层叠体12的表面上涂敷主要成分为银的电极膏并进行焙烧,从而形成作为外部电极14a、14b的银电极。
最后,在作为外部电极14a、14b的银电极的表面上实施镀镍/镀锌。通过以上工序,完成图1所示的电子部件10。
(效果)
根据电子部件10能够防止过孔导体B4与线圈电极18a之间的断线。具体来说,在电子部件10中,因为线圈电极18a形成为比线圈电极20长,线圈L中通过电流的情况下,线圈电极18a比线圈电极20更强地发热。特别是在线圈电极18a与过孔导体B4的连接部分集中发热。
因此,如图4所示,在电子部件10中,过孔导体B4的端部t1与线圈电极18a连接。该端部t1具有比端部t2更大的面积。因此,在电子部件10中,线圈电极18a与过孔导体B4的连接部分的直流电阻值减小,抑制了在该连接部分集中发热。其结果,抑制了在线圈电极18a与过孔电极B4的边界部分发生断线。
本申请的发明者为了使上述效果更加明确,进行下述的静电气放电试验来评价断线发生率。试验中,使用第1试验品以及第2试验品。第1试验品相当于本实施方式所涉及的电子部件10。具体来说,使用如图2以及图3所示的电子部件10。另外,第2试验品使用将如图2以及图3所示的电子部件10中的过孔导体B在z轴方向的朝向翻转的部件。另外,第1试验品以及第2试验品的详细情况如下所述。
尺寸:1.00mm×0.50mm×0.50mm
磁性体层的材质:Ni-Cu-Zn系铁氧体
外部电极的材质:在银电极上镀Ni-Sn
线圈电极的材质:银
线圈电极的长度:3/4圈
线圈的圈数:10圈
制造方法:片材层叠法
分别制作多个第1试验品以及第2试验品,其中满足Rdc≥平均+3σ的条件(其中,所谓的平均是多个Rdc的平均值)的分别抽出10个,对分别为100个的第1试验品以及第2试验品,在正负方向上间隔0.1秒各施加30kV的电压30次。由此得到的结果如表1所示。
[表1]
  第1试验品   第2试验品
  断线发生率   0%(0/200)   11%(22/200)
如上所述,第2试验品中的一部分发生了断线而第1试验品中完全没有发生断线。从而可以理解本实施方式所涉及的电子部件10中的能够抑制断线发生的情况。
另外,在电子部件10中,连接起始端电极亦即线圈电极18a与中间电极亦即线圈电极18b的过孔导体B4在制造工序中是与线圈电极18a同时形成的,从而与线圈电极18a一体地形成。因此,使线圈电极18a与过孔导体B4的连接变得牢固,从而在线圈电极18a与过孔导体B4的连接部分不容易发生断线。
另外,根据电子部件10及其制造方法,如以下所述,无需重新设计过孔导体B的位置也能够改变线圈L的圈数。图5以及图6是现有的电子部件110的层叠体112的分解立体图。图7是在y轴方向透视电子部件110的透视图。下面,将层叠体112的层叠方向定义为z轴,与z轴方向垂直的方向定义为x轴方向以及y轴方向。x轴方向以及y轴方向与层叠体112的边平行。
如图1所示,电子部件110具备内部含有线圈的长方体形状的层叠体112和设置在层叠体112的z轴方向的两端面上的两个外部电极114a、114b。
层叠体112由多个线圈电极与多个磁性体层层叠而构成。具体来讲,如以下所述。如图5所示,层叠体112通过由强磁性的铁氧体(例如,Ni-Zn-Cu铁氧体或Ni-Zn铁氧体等)制成的多个磁性体层116a~116l以从z轴方向的负方向到正方向依次排列的方式层叠而形成。在磁性体层116d~116i上设置有构成线圈的线圈电极118a~118e、120。另外,在磁性体层116a~116l上设置有过孔导体b1~b12。
线圈电极118a~118e、120呈“コ”字形,是具有3/4圈长度的线状电极。过孔导体b5~b8分别设置为在各个线圈电极118b~118e的一端,在z轴方向上贯通磁性体层116e~116h。另外,过孔导体b9设置为在位于线圈电极120的左下方的角部,在z轴方向上贯通磁性体层116i。由此,线圈电极118a~118e、120由过孔导体b5~b9相互连接,从而构成螺旋状的线圈。
而且,过孔导体b1~b4分别设置为在z轴方向上贯通磁性体层116a~116d,使线圈电极118a与外部电极114a电连接。另外,过孔导体b10~b12分别设置为在z轴方向上贯通磁性体层116j~116l,使线圈电极120和外部电极114b电连接。
如上所述构成的现有的电子部件110中,如下所述,能够改变线圈的圈数。图6是在改变线圈的圈数时的层叠体112的分解立体图。
欲将图5所示的层叠体112的线圈的圈数增加1圈的情况下,如图6所示,在磁性体层116h与磁性体层116i之间***设置有线圈电极118f以及过孔导体b13的磁性体层116m即可。线圈电极118f以及过孔导体b13具有与线圈电极118b以及过孔导体b5相同的构造。由此,能够改变线圈的圈数。另外,欲将层叠体112的线圈的圈数从图6的状态再增加1圈的情况下,只要在磁性体层116m与磁性体层116i之间***具有与磁性体层116f相同构造的磁性体层116即可。
但是,如图5以及图6所示,在电子部件110中,若改变线圈的圈数,则位于线圈电极120的z轴方向的负方向侧的线圈电极118的端部的位置发生变化。从而,为了连接位于线圈电极120的z轴方向的负方向侧的线圈电极118与线圈电极120,必须改变过孔导体b9的位置。即、在电子部件110中改变线圈的圈数时,需要重新设计过孔导体b9的位置。
对此,在如图2所示的电子部件10中,末端电极亦即线圈电极20设置于层叠方向的最下侧。在该线圈电极20的正上方设置的线圈电极18根据线圈L的圈数变化。因此,若线圈L的圈数发生变化,则该线圈电极18的端部的位置发生变化。
然而,线圈电极18与线圈电极20通过与线圈电极18一体地形成的过孔导体B来连接。因此,在线圈L的圈数发生变化从而使线圈电极18的端部的位置变化的情况下,过孔导体B的位置也和线圈电极18的端部的位置一起发生变化。但是,设置于线圈电极20的正上方的线圈电极18具有与线圈电极18b~18e相同的构造。因此,在电子部件10中,即使线圈电极18的端部的位置以及过孔导体B的位置发生变化,也无需重新设计过孔导体B的位置。另外,过孔导体B与线圈电极18一体地形成是指,在制造工序中,过孔导体B8与线圈电极18e同时形成的状态。
进而,在电子部件10中,在z轴方向俯视时,末端电极亦即线圈电极20与和中间电极亦即线圈电极18b~18e连接的过孔导体B重叠。因此,即使因线圈L的圈数发生变化而使与线圈电极20连接的过孔导体B的位置变化,也可以使用接触部C11~C14任意一个来连接线圈电极20与过孔导体B。其结果,在电子部件10中,改变线圈L的圈数时,无需重新设计线圈电极20。即、在电子部件10中,末端电极亦即线圈电极20只准备一种即可。
但是,如图2所示,线圈电极20没有必要一定具有与连接于线圈电极18b~18e的过孔导体B重叠的长度(3/4圈)。线圈电极20只要具有从1圈减去中间电极亦即线圈电极18a~18e的圈数而得到的圈数以上的长度即可。由此,线圈电极20至少在2处能够与过孔导体B连接。更具体地来说,在线圈电极20具有1/4圈长度的情况下,如图2所示,线圈电极20能够与过孔导体B8、B9连接。另外,在线圈电极20具有1/2圈长度的情况下,如图3所示,线圈电极20能够与过孔导体B9、B13连接。但是在这种情况下,若改变线圈L的长度,则需要重新设计线圈电极20。
另外,根据本发明所涉及的电子部件10,如下所述,能够抑制与线圈电极20连接的过孔导体B9形成不良的发生。更详细地说,在图5以及图6所示的现有的电子部件110中,在线圈电极120的中途设置有过孔导体b9。
然而,在如图5以及图6所示的线圈电极120的中途设置有过孔导体b9的线圈导体120中,可能产生过孔导体b9的形成不良。具体来说,在如图5以及图6所示的线圈导体120中,因为过孔导体b9是在线圈电极120的中途形成,线圈电极120的布线从过孔导体b9向两个方向延伸。因此,在通过丝网印刷法来形成线圈导体120的情况下,导电性膏被用于线圈电极120的布线形成,而无法为过孔导体b9供给足够的导电性膏。其结果,在如图5以及图6所示的线圈导体120中,过孔导体b9有可能产生形成不良。
对此,在本实施方式所涉及的电子部件10中,如图2所示,因为过孔导体B9形成于线圈电极20的端部,线圈电极20的布线从过孔导体B9仅向一个方向延伸。因此,在通过丝网印刷法来形成线圈电极20的情况下,导电性膏被用于线圈电极20的布线的形成,还被用于过孔导体B9的形成。其结果,在电子部件10中,不易发生过孔导体B9形成不良的问题。
本申请的发明者为了使上述效果更加明确,进行下述的实验来评价过孔导体的形成不良率。图8是表示在试验中的陶瓷生片上制作的线圈电极20的图。
如图8所示,在实验中,在90mm×90mm的陶瓷生片上通过丝网印刷形成了19044个线圈电极,该陶瓷生片在过孔导体Ba~Bd的位置上分别具有贯通孔。而且,在19044个线圈电极中有一个过孔导体发生形成不良,就认为是在该陶瓷生片上发生过孔导体形成不良。对200片陶瓷生片执行该操作。实验结果如表2所示。
[表2]
  过孔导体的位置   Ba   Bb
  过孔导体的形成不良率   0%(0/200)   15%(30/200)
  Bc   Bd
  17%(34/200)   0%(0/200)
如表2所示,位于线圈电极20的端部的过孔导体Ba、Bd的形成不良率为0%。位于线圈电极20的中途的过孔导体Bb、Bc的形成不良率为15%以及17%。从而,可以理解为在过孔导体设置于线圈电极的端部的情况下比设置于线圈电极中途的情况下能够降低过孔导体的形成不良率。即、在电子部件10中,可以理解为因为过孔导体B9设置于线圈电极20的端部,所以不易发生过孔导体B9的形成不良。
(其他的实施方式)
另外,本发明所涉及的电子部件不限定于上述各个实施方式,可在其要旨范围内变更。例如虽然在图2中,接触部C形成为比线圈电极18、20的其他部分粗,但是接触部C并不一定要粗。例如,在线圈电极18、20的线宽足够宽的情况下,接触部C也可以形成为不比线圈电极18、20的其他部分粗。
此处,对使用图9的线圈电极20的情况进行说明。图9的线圈电极20与图2的线圈电极20不同,没有明确的接触部C。因此,很难只看线圈电极20单体来判别线圈电极20构成为能够与过孔导体B8在多处连接。
但是,可以说在线圈电极20的连接有过孔导体B9的端部的反向侧的端部以外的部分(例如图9的点M、N)连接过孔导体B8的情况下,从连接有过孔导体B8的点到没有连接过孔导体B9的一侧的端部之间可连接过孔导体B8。因此,在留下未连接过孔导体B9的一侧的端部而将过孔导体B8连接到线圈电极20的情况下,认为线圈电极20构成为能够在多处与过孔导体B8连接。
另外,在电子部件10中,虽然使用3/4圈的线圈电极18,但是也可以使用例如5/6圈的线圈电极18或7/8圈的线圈电极18。
另外,在电子部件10的制造方法中,虽然通过片材层叠法来制作电子部件10,但该电子部件10的制造方法不限于此。例如,电子部件10也可以采用印刷法制作。
另外,如图2所示,在电子部件10中,通过将线圈电极18a形成为比线圈电极20长,从而使从过孔导体B3到过孔导体B4的第1直流电阻比从过孔导体B8到过孔导体B9的第2直流电阻大。但是,使第1直流电阻比第2直流电阻大的方法不限于此。例如,也可以通过调整线圈电极18a与线圈电极20的线宽或厚度来实现。
另外,在电子部件10中,线圈L的两端分别通过过孔导体B与外部电极14a、14b连接。但是,线圈L的任意一侧的端部也可以在磁性体层16上通过和线圈导体18连接的引出部与外部电极14a或外部电极14b连接。
产业上应用的可能性
本发明可用于电子部件及其制造方法,特别是在防止过孔导体与线圈电极之间的断线的方面上尤为优良。符号说明:
B1~B3...过孔导体
C1~C16...接触部
L...线圈
t1、t2...端部
10...电子部件
12...层叠体
14a、14b...外部电极
16a~16m...磁性体层
18a~18f、20...线圈电极

Claims (26)

1.一种电子部件,其特征在于:
具备:
构成线圈的多个线圈电极;
多个绝缘层,其与上述多个线圈电极一起被层叠而构成层叠体;
两个外部电极,其被设置于上述层叠体的表面;
两个连接部,其连接上述线圈与上述两个外部电极;以及
过孔导体,其连接上述多个线圈电极,并且具有一端部的面积比另一端部的面积大的形状,
在设置于层叠方向的两端的上述线圈电极中,将所连接的上述过孔导体与上述连接部之间的直流电阻值相对大的上述线圈电极定义为起始端电极,将所连接的上述过孔导体与上述连接部之间的直流电阻值相对小的上述线圈电极定义为末端电极,将上述起始端电极以及上述末端电极以外的上述线圈电极定义为中间电极时,
上述起始端电极借助上述一端部与连接于上述中间电极的上述过孔导体连接。
2.根据权利要求1所述的电子部件,其特征在于:
上述末端电极具有从一圈中减去上述中间电极的圈数而得到的圈数以上的长度,并且借助上述另一端部与连接于上述中间电极的上述过孔导体连接。
3.根据权利要求1或2所述的电子部件,其特征在于:
连接上述末端电极与上述中间电极的上述过孔导体在上述绝缘层与上述末端电极一体地形成。
4.根据权利要求1或2所述的电子部件,其特征在于:
从层叠方向俯视时,上述末端电极与连接于上述中间电极的上述过孔导体重叠。
5.根据权利要求1或2所述的电子部件,其特征在于:
连接上述起始端电极与上述中间电极的上述过孔导体在上述绝缘层与该起始端电极一体地形成。
6.根据权利要求1或2所述的电子部件,其特征在于:
在将从上述末端电极朝向上述起始端电极的方向定义为第一方向的情况下,在上述各个过孔导体中,上述一端部位于比上述另一端部更靠近第一方向一侧。
7.根据权利要求1或2所述的电子部件,其特征在于:
上述末端电极构成为能够在多处与上述过孔导体连接。
8.根据权利要求5所述的电子部件,其特征在于:
上述末端电极构成为能够在多处与上述过孔导体连接。
9.根据权利要求7所述的电子部件,其特征在于:
上述末端电极具有能够与上述过孔导体连接的部分比其他部分粗的形状。
10.根据权利要求8所述的电子部件,其特征在于:
上述末端电极具有能够与上述过孔导体连接的部分比其他部分粗的形状。
11.根据权利要求7所述的电子部件,其特征在于:
连接上述末端电极与上述中间电极的过孔导体与该末端电极的两端以外的部分连接。
12.根据权利要求8所述的电子部件,其特征在于:
连接上述末端电极与上述中间电极的过孔导体与该末端电极的两端以外的部分连接。
13.根据权利要求9所述的电子部件,其特征在于:
连接上述末端电极与上述中间电极的过孔导体与该末端电极的两端以外的部分连接。
14.根据权利要求10所述的电子部件,其特征在于:
连接上述末端电极与上述中间电极的过孔导体与该末端电极的两端以外的部分连接。
15.根据权利要求1或2所述的电子部件,其特征在于:
上述连接部是过孔导体。
16.根据权利要求11所述的电子部件,其特征在于:
上述连接部是过孔导体。
17.根据权利要求12所述的电子部件,其特征在于:
上述连接部是过孔导体。
18.根据权利要求13所述的电子部件,其特征在于:
上述连接部是过孔导体。
19.根据权利要求14所述的电子部件,其特征在于:
上述连接部是过孔导体。
20.根据权利要求1或2所述的电子部件,其特征在于:
上述连接部是被设置于上述绝缘层上且分别与上述起始端电极或上述末端电极连接的引出电极。
21.根据权利要求11所述的电子部件,其特征在于:
上述连接部是被设置于上述绝缘层上且分别与上述起始端电极或上述末端电极连接的引出电极。
22.根据权利要求12所述的电子部件,其特征在于:
上述连接部是被设置于上述绝缘层上且分别与上述起始端电极或上述末端电极连接的引出电极。
23.根据权利要求13所述的电子部件,其特征在于:
上述连接部是被设置于上述绝缘层上且分别与上述起始端电极或上述末端电极连接的引出电极。
24.根据权利要求14所述的电子部件,其特征在于:
上述连接部是被设置于上述绝缘层上且分别与上述起始端电极或上述末端电极连接的引出电极。
25.一种电子部件的制造方法,是权利要求1所述的电子部件的制造方法,其特征在于:
包含:
在上述绝缘层上形成上述过孔导体的工序;
在上述绝缘层上形成上述连接部的工序;
在上述绝缘层上形成上述起始端电极以及上述中间电极的工序;
在上述绝缘层上形成上述末端电极的工序;及
将形成有上述起始端电极的上述绝缘层、形成有上述末端电极的上述绝缘层以及形成有上述中间电极的上述绝缘层层叠而形成层叠体,以使上述中间电极位于上述起始端电极与上述末端电极之间的工序。
26.根据权利要求25所述的电子部件的制造方法,其特征在于:
形成上述过孔导体的工序与形成上述起始端电极以及上述中间电极的工序同时进行。
CN2010800057457A 2009-01-30 2010-01-08 电子部件及其制造方法 Active CN102301436B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-020074 2009-01-30
JP2009020074 2009-01-30
PCT/JP2010/050143 WO2010087220A1 (ja) 2009-01-30 2010-01-08 電子部品及びその製造方法

Publications (2)

Publication Number Publication Date
CN102301436A CN102301436A (zh) 2011-12-28
CN102301436B true CN102301436B (zh) 2013-12-25

Family

ID=42395482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800057457A Active CN102301436B (zh) 2009-01-30 2010-01-08 电子部件及其制造方法

Country Status (4)

Country Link
JP (1) JP5703754B2 (zh)
KR (1) KR101266307B1 (zh)
CN (1) CN102301436B (zh)
WO (1) WO2010087220A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195876B2 (ja) 2010-11-10 2013-05-15 Tdk株式会社 コイル部品及びその製造方法
JP5206775B2 (ja) 2010-11-26 2013-06-12 Tdk株式会社 電子部品
JP2016171115A (ja) * 2015-03-11 2016-09-23 スミダコーポレーション株式会社 磁性素子および磁性素子の製造方法
JP7259545B2 (ja) * 2019-05-24 2023-04-18 株式会社村田製作所 積層型コイル部品
JP7215327B2 (ja) 2019-05-24 2023-01-31 株式会社村田製作所 積層型コイル部品
JP7475946B2 (ja) * 2020-04-21 2024-04-30 株式会社村田製作所 積層型コイル部品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178237C (zh) * 2001-04-06 2004-12-01 株式会社村田制作所 叠层陶瓷电子元件的制造方法以及叠层电感器的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209514B2 (ja) * 1991-12-28 2001-09-17 太陽誘電株式会社 積層チップインダクタの製造方法
JPH0799116A (ja) * 1993-09-29 1995-04-11 Matsushita Electric Ind Co Ltd 多層セラミック電子部品及びその製造方法
JP3788074B2 (ja) * 1998-11-10 2006-06-21 株式会社村田製作所 チップ型コイルおよびその製造方法
JP3571247B2 (ja) * 1999-03-31 2004-09-29 太陽誘電株式会社 積層電子部品
JP2002064274A (ja) * 2000-08-21 2002-02-28 Toppan Printing Co Ltd ビアホール構造とその形成方法およびこれを用いた多層配線基板
JP4651930B2 (ja) * 2002-12-04 2011-03-16 Tdk株式会社 電子部品
JP4211591B2 (ja) * 2003-12-05 2009-01-21 株式会社村田製作所 積層型電子部品の製造方法および積層型電子部品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178237C (zh) * 2001-04-06 2004-12-01 株式会社村田制作所 叠层陶瓷电子元件的制造方法以及叠层电感器的制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2000-150241A 2000.05.30
JP特开平11-150034A 1999.06.02
JP特开平7-99116A 1995.04.11

Also Published As

Publication number Publication date
WO2010087220A1 (ja) 2010-08-05
JP5703754B2 (ja) 2015-04-22
KR101266307B1 (ko) 2013-05-22
KR20110089201A (ko) 2011-08-04
CN102301436A (zh) 2011-12-28
JPWO2010087220A1 (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
CN102301436B (zh) 电子部件及其制造方法
JP5994933B2 (ja) 電子部品
US9972432B2 (en) Laminated coil component, module component, and method of manufacturing laminated coil component
CN101765893B (zh) 片状线圈元器件
CN101615499B (zh) 电子组件及其制造方法
US8188828B2 (en) Multilayer electronic component and electronic component module including the same
CN101572161B (zh) 层叠型电子元器件及其制造方法
US9142344B2 (en) Electronic component
CN101981635B (zh) 电子元器件
CN102804292A (zh) 电子元器件及其制造方法
CN102810382A (zh) 片式线圈元件
CN103069514A (zh) 电子部件及其制造方法
KR20080101771A (ko) 페라이트 페이스트, 및 적층형 세라믹 부품의 제조방법
US11908607B2 (en) Multilayer coil component
CN102543407A (zh) 层压电感器及其制造方法
US8143989B2 (en) Multilayer inductor
US8207810B2 (en) Multilayer electronic component
US20200373065A1 (en) Multilayer coil component
US20210202163A1 (en) Multilayer coil component
CN113053620A (zh) 层叠线圈部件
WO2014181756A1 (ja) 電子部品
CN107527708A (zh) 电子部件
CN113053621B (zh) 层叠线圈部件以及设计方法
US20230096644A1 (en) Coil component
JPH05198439A (ja) 積層型インダクタおよびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant