CN101276880A - 存储单元及其制造方法 - Google Patents

存储单元及其制造方法 Download PDF

Info

Publication number
CN101276880A
CN101276880A CNA2008100019784A CN200810001978A CN101276880A CN 101276880 A CN101276880 A CN 101276880A CN A2008100019784 A CNA2008100019784 A CN A2008100019784A CN 200810001978 A CN200810001978 A CN 200810001978A CN 101276880 A CN101276880 A CN 101276880A
Authority
CN
China
Prior art keywords
hole
phase
change material
insulating layer
insulating barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100019784A
Other languages
English (en)
Other versions
CN100587994C (zh
Inventor
龙翔澜
林仲汉
马修·J.·布雷维什
阿里间德罗·G.·施罗特
埃里克·A.·约瑟夫
罗格·W.·齐克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN101276880A publication Critical patent/CN101276880A/zh
Application granted granted Critical
Publication of CN100587994C publication Critical patent/CN100587994C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

存储单元及制造存储单元的方法,其包括沉积于基片上的绝缘材料、形成于绝缘材料内的底电极、沉积于底电极上并且其中的至少一个充当中间绝缘层的多个绝缘层。通孔被限定于中间绝缘层上的绝缘层内。沟道与牺牲分隔件一起产生,用于刻蚀。孔被限定在中间绝缘层内。除去中间绝缘层上的所有绝缘层,用相变材料填充整个残留的孔。在相变材料上形成上电极。

Description

存储单元及其制造方法
技术领域
本发明涉及计算机存储器,更具体而言涉及非易失性相变化存储器件。
背景技术
计算机存储器分两个大组别:非易失性存储器和易失性存储器。恒定输入能量以保留信息对于非易失性存储器不是必要的,但对于易失性存储器是必需的。非易失性存储器件的实例是只读存储器、闪存电可擦写只读存储器、铁电随机存储器、磁随机存储器和相变存储器。易失性存储器件的实例包括动态随机存储器(DRAM)和静态随机存储器(SRAM)。本发明涉及相变存储器。在相变存储器中,信息被存储在可以被处理成不同相的材料中。上述相的每一个显示出可以用于存储信息的不同电特性。非晶和晶体相通常是用于位存储的两相(1’s和0’s),这是由于他们在电阻方面具有可探测的差别。具体而言,非晶相具有比晶体相更高的电阻。
玻璃硫属化物是通常被用作相变材料的一组材料。该组材料包含硫族元素(周期表族16/VIA)和正电性较大的元素。硒(Se)和碲(Te)是用于在生成相变存储单元时产生玻璃硫属化物的族中的两种最普通的半导体。这样的一个实例是Ge2Sb2Te5(GST)、SbTe和In2Se3。然而,有些相变材料不使用硫族元素,诸如GeSb。因此,各种材料可以用在相变材料单元中,只要它们保留分开的非晶和晶体状态。
相变材料中的非晶和晶体相是可逆的。如图1中所示,这是通过形成与绝缘材料106排列成行的通孔104而达到的。下电极102(也称为源)形成于相变材料107的下方,上电极101(也称为漏)形成于相变材料107的上方。这允许电脉冲在将电力从源102施加到漏101上时穿越相变材料。由于欧姆加热,相变材料107改变其相。拖尾边缘处具有快速过渡的相对强度较高、持续时间较短的电流脉冲导致相变材料107快速熔化和冷却。相变材料107不具有形成有序晶体的时间,因此产生了非晶固相。强度相对较低、持续时间较长的脉冲允许相变材料107加热并缓慢冷却,因此结晶成晶体相。调整脉冲强度和持续时间以产生用于存储单元中多位存储的不同的电阻是可能的。
通过施加强度不足以编程的脉冲对相变单元进行读,即改变材料107的相。那么,该脉冲的电阻可以被读作“1”或“0”。承载更大电阻的非晶相通常被用于表示二进制数0。承载较低电阻的晶体相可以用于表示二进制数1。在具有不同电阻的单元中,相可以用于表示,例如,″00″、″01″、″10″和″11″。
发明内容
本发明一个代表性的方面是形成存储单元的方法。形成存储单元的方法开始于标准的制程前端(FEOL)晶片,即通常在基片上形成多个绝缘层。底电极形成于绝缘层的至少一个内。通孔通过刻蚀穿过位于底电极上绝缘层的至少一个而被限定。通孔和底电极通过至少一个中间绝缘层被分开。牺牲分隔件形成于中间绝缘层上的通孔内。具有比通孔直径小的直径的沟道被限定在牺牲分隔件壁内。在牺牲分隔件下方和底电极上方的中间绝缘层内产生孔,使得沟道穿过中间绝缘层延续到底电极。然后,去除牺牲分隔件并将相变材料沉积到孔内部,将整个孔填满。最后,将上电极沉积到相变材料上。
本发明的另一个代表性的方面是存储单元。存储单元包括基片、形成于基片上的绝缘层、形成于绝缘层内的底电极、底电极上方的绝缘层内的孔、形成于孔内的相变材料,相变材料将整个孔填满,并且上电极形成于相变材料上。
本发明的另一个代表性的方面是包括具有至少一个存储单元的一个或多个存储单元的集成电路,存储单元包括基片、形成于基片上的绝缘层、形成于绝缘层内的底电极、底电极上方的绝缘层内的孔、形成于孔内的相变材料,相变材料将整个孔填满,并且上电极形成于相变材料上。另外,可以对上电极进行构图,以用于位线连接。
附图说明
图1是本发明的存储单元的横切面图。
图2是具有绝缘层的FEOL晶片的横切面图。
图3是绝缘层内的通孔和底切的产生的横切面图。
图4是示出绝缘材料沉积到通孔内的横切面图。
图5是牺牲分隔件的产生的横切面图。
图6是孔的产生的横切面图。
图7A和7B是示出绝缘层的去除的横切面图。
图8A和8B是示出相变材料和上电极的沉积的横切面图。
具体实施方式
此处参照本发明的实施例对本发明进行描述。对图1-8的参照贯穿整个本发明的描述。在参照附图时,对全文中所显示的相似的结构和元件,用相似的参考号表示。
图1示出了由本发明所设计的代表性的存储单元102的横切面图。代表性的存储单元102包括绝缘层104、底电极106、中间绝缘层108、包括相变材料110的中间绝缘层内的孔114、上电极112。存储单元102通常形成于具有金属氧化物场效应晶体管(MOSFETs)(未显示)的基片上。可以结合本发明使用本领域技术人员所知的其他开关器件,诸如结式FETs和双极结式晶体管。
图2中显示了具有绝缘层沉积的起始制程前端(FEOL)晶片的代表性实施例。代表性FEOL晶片包括绝缘层104。绝缘层104可以包括但不限于二氧化硅(SiO2)。底电极106可以是但不限于氮化钛(TiN)、钨(W),银(Ag),金(Au),或铝(Al)。
在本发明的特殊实施例中,绝缘层104和底电极106的厚度大于50nm。底电极的尺寸是这样的:其直径比孔114(见图1)的直径加上用于覆盖(overlay)的公差大,以便形成充分的电接触。在特殊实施例中,底电极106的直径为至少80nm。
沉积在起始FEOL晶片上的绝缘层为中间绝缘层108、二氧化硅层202、以及上绝缘层204。中间绝缘层108可以包括但不限于氮化硅(SiNx)。二氧化硅层202也可以包括但不限于非晶硅/多晶硅(Si)或对中间绝缘层108来说可以被选择性地去除的任何材料。上绝缘层204也可以包括氮化硅。绝缘材料SiO2和SiNx可以顺序地或分别地形成于一个等离子增强的化学气相沉积(PECVD)腔内。在本发明的特殊实施例中,中间绝缘层108大约为30nm厚,二氧化硅层202大约为250nm厚,上绝缘层204大约为30nm厚。本发明还考虑到替代的绝缘材料可以用于本发明的绝缘层104,诸如碳氧化硅(SiOC)。中间绝缘层108和上绝缘层204也可以包括替代的绝缘材料。替代的绝缘材料的一个实例是前面提到的SiO2和SiNx、氧化铝(Al2O3)、五氧化钽(Ta2O5),等等。另外,SiO2层202可以包括多晶硅/非晶硅。
在具有绝缘层沉积的起始FEOL晶片的替代实施例中,晶片包括二氧化硅绝缘层104、底电极106、中间绝缘层108、二氧化硅层202和上绝缘层204。底电极106可以是但不限于氮化钽或钨。中间绝缘层108可以包括但不限于SiNx。二氧化硅层202可以包括但不限于二氧化硅,并可以包含可以对中间绝缘层来说可以被选择性地去除的任何材料。上绝缘层204可以包括但不限于氮化硅。
从图2开始并转向图3,通孔302被刻蚀入二氧化硅层202和上绝缘层204。通孔302止于中间绝缘层108。可以通过首先在上绝缘层204和硅层202上利用光刻胶(未显示)形成光刻掩模来限定通孔302。对光刻胶进行构图使得底电极106上的区域暴露于进行中的刻蚀。然后,利用各向异性反应离子刻蚀(RIE)工艺进行刻蚀。然后,将光刻胶从上绝缘层204的表面剥离。可以通过进行稀释HF湿法刻蚀形成底切304,在该方法中,HF刻蚀二氧化硅要比刻蚀氮化硅或非晶硅快。在本发明的特殊实施例中,通孔302直径大约为200nm,高度约为250nm。底切量304大约为每侧15nm。
图4示出了保形绝缘层402的沉积和形成于其内的腔404。在本发明的一个实施例中,非晶硅被用作保形绝缘层402。可以通过化学气相沉积(CVD)沉积保形绝缘层402。保形绝缘层402的厚度应当大于通孔302的半径,以在其内产生腔404。二氧化硅层202内的底切304的大小与形成于保形绝缘层402内的腔404的大小相关联。腔404的直径大约为二氧化硅层202的底切304的大小的2倍。例如,30nm底切产生60nm直径的腔404。此外,假设二氧化硅层厚度202大于或等于最小值Hmin,腔404的直径将不依赖于通孔302的直径。从数学角度来讲,该值可以用等式1来表示,同时描述了腔尺寸低于三角夹断的点。 H min = r + ( 2 r - Δ ) Δ 等式1这里,Hmin是二氧化硅层的厚度202,Δ是底切304的大小(腔直径的一半),以及r是通孔302的半径。然而,在另一个实施例中,可以通过通孔302的外形调整腔404的直径。具体而言,如果受控锥角出现在通孔内,根据等式2腔直径将会降低,这里δ是有效降低尺寸。 θ = tan - 1 [ ( Δ - δ ) ( 2 r - ( Δ - δ ) ) δ ] 等式2
在图5中,通过各向异性选择性反应离子刻蚀限定牺牲分隔件502。刻蚀去除位于腔404上方和下方的所有保形绝缘材料(见图4)并止于中间绝缘层108上。另外,刻蚀去除上绝缘层204(见图4)。在上述过程中在牺牲分隔件502内产生沟道504。沟道允许进一步的刻蚀集中在位于底电极106上的中间绝缘层108的小区域上。
图6显示了限定孔114的工艺步骤。可以通过选择性和各向异性反应性离子刻蚀工艺(为保持牺牲分隔件临界尺寸)或通过磷酸湿法刻蚀(如果尺寸不是临界的)限定中间绝缘层108内的孔114。磷酸刻蚀牺牲分隔件502内的沟道504,进入中间绝缘层108,止于底电极106。因此,如果使用磷酸湿法刻蚀,上绝缘层204也被除去。所得到的孔114的半径是沟道504的半径并且基本上小于通孔302的半径(见图4)。并且,孔半径从头到尾基本上是一致的。所产生的孔114的高度即中间绝缘层108的厚度。另外,孔114的表面基本上是平面的,并且垂直于中间绝缘层108的侧面。在本发明的特殊实施例中,孔114的直径大约为30nm,高度大约为30nm。
图7A中所示出的是牺牲分隔件502(见图6)和二氧化硅层202的去除。在该代表性实施例中,稀释HF被用于刻蚀二氧化硅层202。利用稀释氢氧化钾(KOH)刻蚀牺牲分隔件502。在替代实施例中,KOH被用于将非晶硅从牺牲分隔件502刻蚀掉。稀释HF被用于将SiO2从二氧化硅层202刻蚀掉。残留的表面是中间绝缘层的表面和位于孔114底部的底电极106的顶表面。为了保证表面为平面,可以进行化学机械抛光(CMP)。另外,CMP将去除中间绝缘层108上的过量的绝缘材料。
在图7B中所示出的另一个替代实施例中,保留了二氧化硅层202。KOH被用于去除牺牲分隔件502,省略了稀释HF步骤。在二氧化硅层202内产生了沟道202H。
在图8A中,相变材料110沉积于中间绝缘层108的上方并填充了整个孔114。相变材料110可以包括硫族化合物。硫族化合物包括硫族元素(周期表族16/族VIA)和正电性较大的元素。相变材料的一个实例是GeSb和SbTe。然后,在相变材料110上形成上电极112。上电极112可以包括但不限于银(Ag),金(Au),钨(W),或铝(Al)。
在该代表性实施例中,相变区116是改变相的相变材料110的区域。中间绝缘层108上方残留的相变材料110充当电流的导电通道。该电流从底电极106流向相变区116,穿过相变材料110到达上电极112。本发明还考虑到可以利用CMP除去中间绝缘层108上方且远离孔114的相变材料110和上电极112。
在图8B中,相变材料110A被沉积到沟道202H中、二氧化硅层202内以及孔114中。相变材料110A填充整个沟道202H和孔114。孔内的相变材料为相变区116。在该替代实施例中,相变材料110A不需要如下所解释的附加的刻蚀。
返回到图1,对中间绝缘层108和上电极112上方的所完成的存储单元102的相变材料110进行构图,用于位线连接。这可以通过利用光刻胶形成光刻掩膜、利用掩模在暴露的区域上进行反应离子刻蚀,然后将光刻胶从存储单元102剥离而实现。可以利用反应性离子刻蚀或离子刻蚀工艺刻蚀上电极112和相变材料110。
为了对存储单元112进行编程,将从底电极106处开始电脉冲施加到相变区116,进入中间绝缘层108上方的相变材料110,并最后到达上电极112。由电阻产生的欧姆加热对相变区116内的相变材料110进行加热并改变其电阻特性。短、强的电脉冲导致相变区116加热并快速冷却,产生非晶相。长、较弱的电脉冲导致相变区116加热并缓慢冷却,从而允许相变区116进行结晶。非晶和晶体相分别显示出较高和较低的电阻特性。可以通过利用或者太弱或者太短而不能改变相变区116内的相的电脉冲读特定单元的电阻而对所存储的数据进行检索。
通过在阵列中制造单元以形成排和列,实现单元的集成电路的制造。然后,在MOSFET内的FET栅极处将上述单元连接在一起,产生“字”线。同样被用作上电极112的布线,以垂直FET栅极链接的方式被连接在一起,产生“位”线。这允许通过映射每一个单元的“字”和“位”线坐标,对每个单元单独地进行读或编程。
为说明和描述的目的,已经给出了本发明的描述,目的不是彻底的或受限于以所披露的形式下的本发明。对于本领域的技术人员来说,在不偏离本发明的范畴和精神实质的情况下,许多修改和变更将是显而易见的。选择和描述实施例,为的是最好地解释本发明的原则和实际应用,以及使本领域的其他技术人员能够从具有适合于所设计的特定用处的各种修改的各种实施例理解本发明。已经因此详细描述了本申请的本发明并参照其实施例,在不偏离追加的权利要求中所限定的本发明的范畴的情况下,将会显而易见的是许多修改和变更是可能的。
此处所用的术语仅是为了描述特定实施例的目的,并不是为了限定本发明。如此处所使用的,单数形式“a”、“an”和“the”目的也是为了包括复数形式,除非上下文清楚地表示。将会进一步理解的是当在本说明书中使用时,术语“包括”和/或“由……构成”对所述的特征、整数、步骤、操作、元件和/或部件的存在进行了具体化,但不排除一个或多个其他的特征、整数、步骤、操作、元件、部件和/或其组合的存在或添加。
所有装置或步骤对应的结构、材料、行为和的等效物外加以下权利要求中的功能元件,其目的是结合具体所要求的其他所声明的元件,将用于实施功能的任何结构、材料或行为包括进来。已经给出了本发明的描述,用于说明和描述目的,但目的不是彻底的或受限于以所披露的形式下的本发明。对于本领域的技术人员来说,在不偏离本发明的范畴和精神实质的情况下,许多修改和变更将是显而易见的。选择和描述实施例,为的是最好地解释本发明的原则和实际应用,以及使本领域的其他技术人员能够从具有适合于所设计的特定用处的各种修改的各种实施例理解本发明。
已经因此详细描述了本申请的本发明并参照其实施例,在不偏离追加的权利要求中所限定的本发明的范畴的情况下,将会显而易见的是许多修改和变更是可能的。

Claims (18)

1.一种形成存储单元的方法,该方法包括:
在基片上方形成多个绝缘层;
在绝缘层的至少一个内形成底电极;
限定通过位于底电极上方的绝缘层中的至少一个的通孔,通孔与底电极通过至少一个中间绝缘层被分开;
在中间绝缘层上方的通孔内形成牺牲分隔件,牺牲分隔件包括直径小于通孔直径的沟道;
限定通过位于牺牲分隔件下方和底电极上方的中间绝缘层的孔,使得沟道通过中间绝缘层延续到底电极;
除去牺牲分隔件;
将相变材料沉积在该孔内,相变材料填充整个孔;以及
在相变材料上方形成上电极。
2.权利要求1的方法,进一步包括在绝缘层的至少一个内形成底切,底切限定位于通孔上方的垂悬物。
3.权利要求1的方法,其中形成牺牲分隔件包括:
在通孔内沉积牺牲分隔件层,牺牲分隔件层的保形沉积使得通过牺牲分隔件层来形成腔;以及
刻蚀牺牲分隔件层,使得位于腔下方的区域在牺牲分隔件内形成脊。
4.权利要求1的方法,其中孔是管形的。
5.权利要求1的方法,其中孔的表面基本上是平面的。
6.权利要求1的方法,其中限定孔的中间绝缘层的侧壁基本上垂直于中间绝缘层的上表面。
7.权利要求1的方法,其中限定孔的中间绝缘层的侧壁的直径基本上小于通孔的直径。
8.权利要求1的方法,进一步包括:
在形成相变材料之前,除去位于中间绝缘层上方的所有牺牲层。
9.一种存储单元,包括:
基片;
形成于基片上方的绝缘层;
形成于绝缘层内的底电极;
底电极上方的绝缘层内的孔;
形成于该孔内的相变材料,相变材料填充整个孔;以及
形成于相变材料上方的上电极。
10.权利要求9的方法,其中孔是管形的。
11.权利要求10的方法,其中孔的表面基本上是平面的。
12.权利要求9的方法,其中限定孔的中间绝缘层的侧壁基本上垂直于中间绝缘层的上表面。
13.权利要求9的方法,其中对相变材料和上电极被构图用于位线连接。
14.权利要求9的方法,其中限定孔的中间绝缘层的侧壁的直径基本上小于通孔的直径。
15.一种集成电路,包括一个或多个存储单元,存储单元中的至少一个包括:
基片;
形成于基片上方的绝缘层;
形成于绝缘层内的底电极;
底电极上方的绝缘层内的孔;
形成于该孔内的相变材料,相变材料填充整个孔;以及
形成于相变材料上方的上电极。
16.权利要求15的集成电路,其中孔是管形的。
17.权利要求15的集成电路,其中孔基本上是平面的。
18.权利要求15的集成电路,其中对相变材料和上电极被构图用于位线连接。
CN200810001978A 2007-01-07 2008-01-04 存储单元及其制造方法 Active CN100587994C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/620,671 2007-01-07
US11/620,671 US20080164453A1 (en) 2007-01-07 2007-01-07 Uniform critical dimension size pore for pcram application

Publications (2)

Publication Number Publication Date
CN101276880A true CN101276880A (zh) 2008-10-01
CN100587994C CN100587994C (zh) 2010-02-03

Family

ID=39593485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810001978A Active CN100587994C (zh) 2007-01-07 2008-01-04 存储单元及其制造方法

Country Status (3)

Country Link
US (2) US20080164453A1 (zh)
CN (1) CN100587994C (zh)
TW (1) TWI462160B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148329A (zh) * 2011-01-24 2011-08-10 中国科学院上海微***与信息技术研究所 一种电阻转换存储器结构及其制造方法
CN102468436A (zh) * 2010-11-19 2012-05-23 中芯国际集成电路制造(北京)有限公司 一种相变存储器及其制造方法
CN103119709A (zh) * 2010-08-31 2013-05-22 美光科技公司 相变存储器结构及方法
CN103187525A (zh) * 2011-12-31 2013-07-03 中芯国际集成电路制造(上海)有限公司 相变存储器中的相变电阻及其形成方法
CN104051619A (zh) * 2013-03-13 2014-09-17 旺宏电子股份有限公司 具有相变元件的存储器单元及其形成方法
CN111537300A (zh) * 2020-04-29 2020-08-14 华东师范大学 用于透射电镜原位电学测试的限制型存储单元制备方法

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7903447B2 (en) 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7619311B2 (en) 2007-02-02 2009-11-17 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7956344B2 (en) 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US7812333B2 (en) * 2007-06-28 2010-10-12 Qimonda North America Corp. Integrated circuit including resistivity changing material having a planarized surface
US7932167B2 (en) * 2007-06-29 2011-04-26 International Business Machines Corporation Phase change memory cell with vertical transistor
US7777215B2 (en) 2007-07-20 2010-08-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US7729161B2 (en) 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US8178386B2 (en) * 2007-09-14 2012-05-15 Macronix International Co., Ltd. Phase change memory cell array with self-converged bottom electrode and method for manufacturing
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US20090230375A1 (en) * 2008-03-17 2009-09-17 Taiwan Semiconductor Manufacturing Company, Ltd. Phase Change Memory Device
US8084842B2 (en) 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7791057B2 (en) 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8415651B2 (en) 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
FR2934711B1 (fr) * 2008-07-29 2011-03-11 Commissariat Energie Atomique Dispositif memoire et memoire cbram a fiablilite amelioree.
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7719913B2 (en) 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US7897954B2 (en) 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US8036014B2 (en) 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8907316B2 (en) 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8664689B2 (en) 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US9190609B2 (en) * 2010-05-21 2015-11-17 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US20130334699A1 (en) * 2012-06-19 2013-12-19 Chien-Li Kuo Semiconductor device and fabricating method thereof
CN103515355A (zh) * 2012-06-29 2014-01-15 联华电子股份有限公司 半导体元件与其制作方法
WO2014070682A1 (en) 2012-10-30 2014-05-08 Advaned Technology Materials, Inc. Double self-aligned phase change memory device structure
TWI549229B (zh) 2014-01-24 2016-09-11 旺宏電子股份有限公司 應用於系統單晶片之記憶體裝置內的多相變化材料
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
DE102018107038B4 (de) 2017-11-09 2022-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Verfahren zur herstellung einer durchkontaktierungsstruktur

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331708A (en) * 1980-11-04 1982-05-25 Texas Instruments Incorporated Method of fabricating narrow deep grooves in silicon
US6420725B1 (en) * 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5789277A (en) * 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) * 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5952671A (en) * 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
KR100382729B1 (ko) * 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
DE10128482A1 (de) * 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6511862B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6764894B2 (en) * 2001-08-31 2004-07-20 Ovonyx, Inc. Elevated pore phase-change memory
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
EP1318552A1 (en) * 2001-12-05 2003-06-11 STMicroelectronics S.r.l. Small area contact region, high efficiency phase change memory cell and fabrication method thereof
US6849868B2 (en) * 2002-03-14 2005-02-01 Micron Technology, Inc. Methods and apparatus for resistance variable material cells
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6855975B2 (en) * 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
KR100448893B1 (ko) * 2002-08-23 2004-09-16 삼성전자주식회사 상전이 기억 소자 구조 및 그 제조 방법
US7049623B2 (en) * 2002-12-13 2006-05-23 Ovonyx, Inc. Vertical elevated pore phase change memory
US6791102B2 (en) * 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US20050018526A1 (en) * 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
US7038231B2 (en) * 2004-04-30 2006-05-02 International Business Machines Corporation Non-planarized, self-aligned, non-volatile phase-change memory array and method of formation
KR100567067B1 (ko) * 2004-06-30 2006-04-04 주식회사 하이닉스반도체 상변화 기억 소자 및 그 제조방법
CN100397561C (zh) * 2004-08-06 2008-06-25 中国科学院上海微***与信息技术研究所 一种纳米相变存储器器件单元的制备方法
DE102004054558A1 (de) * 2004-11-11 2006-05-24 Infineon Technologies Ag Verfahren zur Herstellung einer resistiv schaltenden Speicherzelle, hergestellte Speicherzelle sowie daraus aufgebautes Speicherbauelement
KR100827653B1 (ko) * 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
EP1844501A1 (en) 2005-01-25 2007-10-17 Nxp B.V. Fabrication of a phase-change resistor using a backend process
US20060169968A1 (en) * 2005-02-01 2006-08-03 Thomas Happ Pillar phase change memory cell
US7214958B2 (en) * 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
JP4860248B2 (ja) * 2005-11-26 2012-01-25 エルピーダメモリ株式会社 相変化メモリ装置および相変化メモリ装置の製造方法
US7351648B2 (en) * 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7812334B2 (en) * 2006-04-04 2010-10-12 Micron Technology, Inc. Phase change memory elements using self-aligned phase change material layers and methods of making and using same
US7514705B2 (en) * 2006-04-25 2009-04-07 International Business Machines Corporation Phase change memory cell with limited switchable volume
US7772581B2 (en) * 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
US20080090400A1 (en) * 2006-10-17 2008-04-17 Cheek Roger W Self-aligned in-contact phase change memory device
US7476587B2 (en) * 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119709A (zh) * 2010-08-31 2013-05-22 美光科技公司 相变存储器结构及方法
CN102468436A (zh) * 2010-11-19 2012-05-23 中芯国际集成电路制造(北京)有限公司 一种相变存储器及其制造方法
CN102148329A (zh) * 2011-01-24 2011-08-10 中国科学院上海微***与信息技术研究所 一种电阻转换存储器结构及其制造方法
CN102148329B (zh) * 2011-01-24 2013-11-27 中国科学院上海微***与信息技术研究所 一种电阻转换存储器结构及其制造方法
CN103187525A (zh) * 2011-12-31 2013-07-03 中芯国际集成电路制造(上海)有限公司 相变存储器中的相变电阻及其形成方法
CN103187525B (zh) * 2011-12-31 2016-03-16 中芯国际集成电路制造(上海)有限公司 相变存储器中的相变电阻及其形成方法
CN104051619A (zh) * 2013-03-13 2014-09-17 旺宏电子股份有限公司 具有相变元件的存储器单元及其形成方法
CN104051619B (zh) * 2013-03-13 2017-07-04 旺宏电子股份有限公司 具有相变元件的存储器单元及其形成方法
CN111537300A (zh) * 2020-04-29 2020-08-14 华东师范大学 用于透射电镜原位电学测试的限制型存储单元制备方法

Also Published As

Publication number Publication date
CN100587994C (zh) 2010-02-03
TW200845154A (en) 2008-11-16
TWI462160B (zh) 2014-11-21
US9166165B2 (en) 2015-10-20
US20140154862A1 (en) 2014-06-05
US20080164453A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
CN100587994C (zh) 存储单元及其制造方法
US10522757B2 (en) Dual resistive-material regions for phase change memory devices
US7901980B2 (en) Self-aligned in-contact phase change memory device
US8030634B2 (en) Memory array with diode driver and method for fabricating the same
TWI397997B (zh) 具有改善結構穩定性之記憶胞
US7989251B2 (en) Variable resistance memory device having reduced bottom contact area and method of forming the same
US7875492B2 (en) Integrated circuit including a memory fabricated using self-aligned processing
US7495946B2 (en) Phase change memory fabricated using self-aligned processing
TWI497706B (zh) 具有自動對準底電極和二極體存取裝置之蕈狀記憶胞
US8023310B2 (en) Nonvolatile memory cell including carbon storage element formed on a silicide layer
US20080191187A1 (en) Method for manufacturing a phase change memory device with pillar bottom electrode
US20090095951A1 (en) Memory Device With Low Reset Current
US9064794B2 (en) Integrated circuit including vertical diode
US9219231B2 (en) Phase change memory cells with surfactant layers
TW200947695A (en) Memory cell having a buried phase change region and method for fabricating the same
KR101456808B1 (ko) 상변화 메모리 구조 및 방법
US20170271587A1 (en) Capped electrode contact for rram cells and memory cell arrays
US7545019B2 (en) Integrated circuit including logic portion and memory portion
US20130099188A1 (en) Phase-change memory device having multi-level cell and a method of manufacturing the same
US20160072059A1 (en) Phase-change memory device having phase-change region divided into multi layers and operating method thereof
US8084759B2 (en) Integrated circuit including doped semiconductor line having conductive cladding
US10833267B2 (en) Structure and method to form phase change memory cell with self- align top electrode contact
US20060115909A1 (en) Method for manufacturing a resistively switching memory cell, manufactured memory cell, and memory device based thereon
US20230189672A1 (en) Pcm cell with nanoheater surrounded with airgaps

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant