CN100472739C - 铜互连布线和形成铜互连布线的方法 - Google Patents

铜互连布线和形成铜互连布线的方法 Download PDF

Info

Publication number
CN100472739C
CN100472739C CNB2005800461897A CN200580046189A CN100472739C CN 100472739 C CN100472739 C CN 100472739C CN B2005800461897 A CNB2005800461897 A CN B2005800461897A CN 200580046189 A CN200580046189 A CN 200580046189A CN 100472739 C CN100472739 C CN 100472739C
Authority
CN
China
Prior art keywords
cluster ion
gas
ion beam
cap
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005800461897A
Other languages
English (en)
Other versions
CN101107699A (zh
Inventor
罗伯特·M·杰弗肯
约翰·J·豪特拉
史蒂文·R·谢尔曼
亚瑟·J·勒恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEL Epion Inc
Original Assignee
TEL Epion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEL Epion Inc filed Critical TEL Epion Inc
Publication of CN101107699A publication Critical patent/CN101107699A/zh
Application granted granted Critical
Publication of CN100472739C publication Critical patent/CN100472739C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76867Barrier, adhesion or liner layers characterized by methods of formation other than PVD, CVD or deposition from a liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76865Selective removal of parts of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0812Ionized cluster beam [ICB] sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了用在互连结构中的铜互连布线层(602)的表面上的一层或多层帽封层(614),以及通过应用气体团簇离子束处理而形成用于集成电路的改善的集成互连结构的方法。本发明具有降低铜扩散并且提高电迁移寿命的结果,并且避免了选择性金属帽封技术的使用和其附带的产量问题。

Description

铜互连布线和形成铜互连布线的方法
相关申请的交叉引用
该申请要求2004年11月8日提交的题为“Copper Interconnect Wiringand Method of Forming Thereof”的美国临时申请No.60/625,831的优先权,该申请的内容通过引用结合于此。
技术领域
本发明一般地涉及铜互连布线层的表面上的帽封层以及用于通过应用气体团簇离子束(gas-cluster ion-beam,GCIB)处理来形成用于半导体集成电路的互连结构的改进方法。
背景技术
半导体按“摩尔法则”不断缩小尺寸而密度更高并且性能更强,已经提供了工业和我们的社会生产力方面的极大进步。然而,这一发展带来的问题是需要在越来越小的互连线路中承载越来越高的电流。当这种小电线中的电流密度和温度变得过高时,互连线路可以由于被称为电迁移的现象而失效。发生在高电流密度互连线路中的所谓的“电子风”(electronwind)的效应导致金属原子被从其原始晶格位置扫出,从而导致线路中开路的发生,或者在这些扩散的金属原子聚集的区域处发生挤压短路。铜作为替代铝的布线材料的引入提供了电迁移寿命方面的极大提高,然而,互连布线的不断缩小表明在未来还将需要额外的铜电迁移寿命的提高。
与铝互连不同(铝互连由于铝原子沿晶粒边界的扩散而失效),铜互连电迁移失效模式由沿着表面和界面的扩散控制。具体而言,对于传统的铜布线互连方案,铜线路的顶面一般具有上覆的电介质帽封层,其必须具有良好的扩散阻挡性能以防止铜迁移到周围的电介质中。两种最常用的电介质帽封材料是氮化硅和氮化硅碳,其传统上是利用等离子体增强化学气相沉积(PECVD)技术沉积的。然而,这些PECVD沉积的帽封材料与铜形成有缺陷的界面,这导致沿铜线路的顶面的铜迁移增强,并因此导致更高的电迁移失效率。铜线路结构的其他表面一般具有与阻挡层或双层(一般是金属性的,例如TaN/Ta、TaN/Ru或Ru)的界面,其形成了与铜的强界面以限制铜的扩散,并因此抑制电迁移效应。我们将这种阻挡层或双层称为“阻挡层”。
已经尝试通过利用选择性沉积的金属帽帽封铜线路的顶面来改善铜布线的电迁移。事实上,当顶部的铜界面已经由选择性钨或选择性磷化钴钨(CoWP)金属层帽封时,铜电迁移寿命方面的极大提高已经见诸于报道。然而,使用选择性金属帽封解决方案的所有方法都可能在相邻的绝缘体表面上沉积一定的金属,因此导致相邻金属线之间不希望发生的泄漏或短路。本发明使用气体团簇离子束处理来解决许多这些问题。
图1示出了常用在铜双镶嵌集成工艺中的现有技术氮化硅帽封的铜互连的布线方案300的示意图。其包括第一铜线路层302、第二铜线路层304和连接这两个铜层的铜过孔结构306。这两个线路层302和304以及过孔结构306的侧壁和底部都衬有阻挡层312。阻挡层312提供了优异的扩散阻挡性能,这防止了铜扩散到相邻的绝缘体结构中,并且还提供了与铜的优异的低扩散界面,这抑制了沿这些界面的电迁移。第一级间(inter-level)电介质层308和第二级间电介质层310提供了铜线路之间的绝缘。第一铜线路层302的顶面和第二铜线路层304的顶面各自分别覆盖有绝缘阻挡膜314和316,这种绝缘阻挡膜一般是由氮化硅或氮化硅碳组成的。这些绝缘阻挡膜314和316传统上利用PECVD沉积,并且其与暴露的铜表面形成的界面在一定程度上是有缺陷的,并且提供了用于供铜原子迁移的快速扩散路径。在该现有技术布线方案中,几乎所有的不希望出现的材料移动都是沿着这些界面在铜电迁移期间发生的。在与此类似的传统的双镶嵌铜互连中,在每个互连级处,在级间电介质层中形成了沟槽和过孔并且随后沉积了铜以形成互连线路和过孔之后,接着一般进行利用化学机械抛光(CMP)技术执行的平坦化步骤。阻蚀剂被用在CMP和CMP后刷洗清洁工艺中,并且这些阻蚀剂和其他污染物必须在帽封层的沉积之前利用现场清洁从铜表面去除。使用场外清洁工艺将使铜表面易于受到腐蚀和氧化。PECVD反应器一般不被配置为在绝缘体帽封层沉积之前对铜表面执行有效的现场清洁。尽管未在图1中示出,但是布线方案300一般形成在包含需要电气互连(以完成集成电路)的有源和/或无源元件的半导体衬底上。
图2示出了现有技术的选择性金属帽封的铜互连的布线方案400。其包括第一铜线路层402、第二铜线路层404和连接这两个铜层的铜过孔结构406。这两个线路层402和404以及过孔结构406的侧壁和底部都衬有阻挡层412。阻挡层412提供了优异的扩散阻挡性能,这防止了铜扩散到相邻的绝缘体结构中,并且还提供了与铜的优异的低扩散界面,这抑制了沿这些界面的电迁移。第一级间电介质层408和第二级间电介质层410提供铜线路之间的绝缘。第一铜线路层402的顶面和第二铜线路层404的顶面各自分别由选择性沉积的金属层414和416帽封,所述金属层一般由分别利用化学气相沉积(CVD)或无电技术沉积的选择性钨或选择性CoWP组成。在该传统的双镶嵌铜互连中,在每个互连级处,在级间电介质层中形成了沟槽和过孔并且随后沉积了铜以形成互连线路和过孔之后,接着进行一般利用化学机械抛光(CMP)技术执行的平坦化步骤。阻蚀剂被用在CMP和CMP后刷洗清洁工艺中,并且这些阻蚀剂和其他污染物必须在帽封层的沉积之前被从铜表面去除。当铜层的顶部铜界面已经由钨或CoWP金属层帽封时,在铜电迁移寿命方面的巨大提高已经见诸于报道。然而,使用选择性金属帽封解决方案的所有方法都有可能例如在相邻的绝缘体表面上沉积了不想要的金属418,并因此可能导致相邻金属线之间的电泄漏或短路。尽管选择性金属沉积技术提供了非常大的电迁移改善方面的希望,但是它们还未广泛地实现在制造中,这是因为由于不想要的金属的沉积而引起的半导体芯片的产量损失的高概率。尽管未在图2中示出,但是布线方案400一般形成在包含需要电气互连(以完成集成电路)的有源和/或无源元件的半导体衬底上。使用气体团簇离子束来处理表面是本领域中已知的(例如见Deguchi等人的美国专利5,814,194)。这里使用的术语“气体团簇”是材料的纳米尺度的聚集体,所述材料在标准的温度和压强条件下是气相的。这种气体团簇一般由几个到数千个分子的聚集体构成,这些分子松散键合以形成气体团簇。气体团簇可以通过电子轰击或其他方式被离子化,从而允许其形成为具有可控能量的定向束。这些离子一般各自承载q·e的正电荷(其中e是电子电荷,q是代表气体团簇离子的电荷状态的从1到若干数的整数)。非离子化的气体团簇也可以存在于气体团簇离子束内。较大尺度的气体团簇离子通常是最有用的,因为其能够每气体团簇离子承载相当的能量,同时每分子仍只具有适度能量。气体团簇在撞击后分解,其中每个个体分子只承载总气体团簇离子能量的一小部分。因此,大的气体团簇离子的撞击效果是相当可观的,但是局限于非常浅的表面区域。这使得气体团簇离子对于多种表面修饰工艺都是有效的,而不会产生传统的单体离子束处理的较深亚表面损伤特性。用于产生和加速这种GCIB的手段在先前引用的参考文件(US 5,814,194)中有所描述。当前可用的气体团簇离子源产生具有宽分布尺度N的气体团簇离子(其中N=每个气体团簇离子中的分子数,在如同氩之类的单原子气体的情况下,单原子气体的原子将被称为分子,并且这种单原子气体的离子化原子将被称为分子离子,或简称为单体离子,这在整篇说明书中都是如此)。许多有用的表面处理效应可以通过利用GCIB轰击表面来实现。这些处理效应包括但不一定限于清洁、平滑、刻蚀、掺杂和膜形成或生长。Allen等人的美国专利6,537,606教导了使用GCIB来对初始不均匀的薄膜进行修正性刻蚀以提高其空间均匀性的技术。美国6,537,606的全部内容通过引用结合于此。
在有能量的气体团簇撞击在固态目标的表面上之后,进入目标表面的团簇原子的渗透一般是非常浅的,这是因为渗透深度受限于每个个体构成原子的低能量,并且主要取决于在气体团簇离子撞击期间发生的瞬时热效应。然后,气体团簇在撞击时离解,于是个别气体原子变得自由以反弹并可能从目标表面逃出。除了由逃出的个别气体原子带走的能量外,在撞击之前有能量的团簇的总能量沉积在目标表面上的撞击区中。目标撞击区的尺寸取决于团簇的能量,但是在撞击团簇的横截面尺寸的量级上,并且很小,例如对于由1000个原子构成的团簇而言直径大约30埃。由于由团簇承载的总能量中的大部分沉积到目标上的小撞击区中,因此在撞击点处的目标材料内发生强烈的热瞬态。热瞬态随着能量通过传导到目标中的更深处从撞击区损耗而快速消散。热瞬态的持续时间由目标材料的传导率确定,但是一般小于10-6秒。
接近气体团簇撞击点处,目标表面的一定体积可能瞬间达到好几百到数千Kelvin度的温度。例如,承载10keV总能量的气体团簇的撞击已被估计能够在高度搅动的、近似于半球形的整个区域中产生高达约2000Kelvin度的瞬间温度,该区域延伸到表面下约100埃的地方。这种高热瞬态有利于工件和气体团簇离子束成份的混合和反应,从而导致电迁移寿命的提高。
在有能量的气体团簇撞击点下方的目标体积内的高温瞬态出现后,受影响的区域快速冷却。某些气体团簇成份在这一过程期间逃离,而其他保持下来并且变为结合在表面中。原始表面材料的一部分也可以通过溅射或相似效应而去除。通常,气体团簇的更具挥发性和惰性的成份更有可能逃离,而挥发性较低和更具化学反应性的成份更有可能结合在表面中。尽管实际的工艺可能复杂的多,但是为了方便起见,将气体团簇撞击点和周围受影响的区域认为是“熔化区”(melt zone),其中气体团簇原子可能短暂地与衬底表面相互作用并混合,并且气体团簇材料或者逃离表面,或者熔入到表面中到达受影响区域的深度。术语“熔入”(infusion)被发明人用来指与“注入”(implantation)相区别的一种工艺,“注入”是一种产生完全不同结果的完全不同的工艺。有能量的气体团簇离子中的稀有气体(例如氩和氙,其是挥发性的并且非反应性的)有很高的概率从受影响区域逃离,而诸如碳、硼、氟、硫、氮、氧、锗和硅之类的材料(其是挥发性较低的和/或更有可能形成化学键的)更有可能留在受影响区域中,从而结合在衬底表面中。
作为示例而非限制,诸如氩和氙之类的稀有惰性气体可以与包含挥发性较低和更具反应性的元素的气体混合以形成混合团簇。这种气体团簇可以利用现有的气体团簇离子束处理设备形成(下文中将描述),这是利用合适的源气体混合物作为用于气体团簇离子束生成的源气体,或者通过将两种或更多种气体(或气体混合物)馈送到气体团簇离子发生源并允许其在源中进行混合而实现的。在最近的公开中,Borland等人(“USJ andstrained-Si formation using infusion doping and desposition”,Solid StateTechnology,2004年5月,53页)已经表明GCIB熔入可以产生多个渐变的(graded)表面层,其从衬底材料平滑地转变到表面上的沉积层。
发明内容
因此,本发明的一个目的是提供如下方法,所述方法用于在互连结构中帽封铜线路,以减轻对不希望出现的电迁移效应的易受影响性,而无需使用选择性金属沉积帽。
本发明的又一目的是提供用于有效地在互连结构中帽封铜互连,而不会影响相邻电介质材料的绝缘或泄漏性能的方法。
本发明的另一目的是提供如下方法,所述方法用于为具有高工艺产量的电路形成多级铜互连并降低由于电迁移效应造成的易失效性。
本发明的又一目的是提供用于集成电路的改善的帽封铜互连层,其特征在于高工艺产量和低的易电迁移失效性。
为实现上述目的,本发明的一个方面提供了一种在包括一个或多个铜互连表面和一个或多个电介质表面的结构上形成帽封结构的方法,包括以下步骤:将所述结构置于低压室中;在所述低压室内形成加速的帽封气体团簇离子束;以及将所述加速的帽封气体团簇离子束引导到所述一个或多个铜互连表面和所述一个或多个电介质表面中的至少一个上,以在所述加速的帽封气体团簇离子束被引导到其上的一个或多个表面上形成至少一个帽封结构。
本发明的另一个方面提供了一种在具有一个或多个铜互连表面和覆盖电介质材料的一个或多个阻挡层表面的结构上形成帽封结构的方法,包括以下步骤:将所述结构置于低压室中;在所述低压室内形成加速的刻蚀和帽封气体团簇离子束;以及将所述加速的刻蚀和帽封气体团簇离子束引导到所述一个或多个铜互连表面和所述一个或多个阻挡层表面中的至少一个上,以在所述加速的刻蚀和帽封气体团簇离子束被引导到其上的一个或多个铜互连表面上形成帽封结构,并刻蚀掉所述加速的刻蚀和帽封气体团簇离子束被引导到其上的一个或多个阻挡层表面以暴露下面的电介质材料。
本发明的还有一个方面提供了一种在具有一个或多个铜互连表面和覆盖电介质材料的一个或多个阻挡层表面的结构上形成帽封结构的方法,包括以下步骤:将所述结构置于低压室中;在所述低压室内形成加速的刻蚀气体团簇离子束;将所述加速的刻蚀气体团簇离子束引导到所述一个或多个阻挡层表面上,以便刻蚀掉所述刻蚀气体团簇离子束被引导到其上的一个或多个阻挡层表面以暴露下面的所述电介质材料;在所述低压室内形成加速的帽封气体团簇离子束;以及将所述加速的帽封气体团簇离子束引导到所述一个或多个铜互连表面上,以便在其上形成一个或多个帽封结构。
附图说明
为了更好地理解本发明以及其其他和进一步的目标,参考附图和具体实施方式,其中:
图1是示出了现有技术的氮化硅帽封铜互连布线方案的示意图;
图2是示出了现有技术的选择性金属帽封铜互连布线方案的示意图;
图3是示出了现有技术的GCIB处理装置的基本元件的示意图;
图4A、4B、4C、4D和4E是示出了根据本发明第一实施例通过GCIB熔入进行的铜互连帽封工艺的示意图;
图5A、5B、5C、5D、5E、5F、5G、5H、5I、5J、5K和5L是示出了根据本发明第二实施例利用GCIB熔入和沉积进行的铜互连帽封工艺的示意图;以及
图6A、6B、6C、6D、6E、6F和6G是示出了根据本发明第三实施例利用GCIB熔入和沉积进行的铜互连帽封工艺的示意图。
具体实施方式
图3示出了现有技术已知形式的GCIB处理装置100的典型配置的基本元件的示意图,其可以描述如下:真空容器102被划分为三个连通室,源室104、离子化/加速室106和处理室108。这三个室分别被真空泵***146a、146b和146c抽到合适的工作压强。存储在第一气体存储汽缸111中的第一可压缩源气体112(例如,氩或氮或预混气体混合物)在压强下通过第一气体截止阀115以及第一气体计量阀113和气体馈送管114,进入停滞室116。存储在可选的第二气体存储汽缸230中的可选第二可压缩源气体232(例如,二氧化碳、氧气或预混气体混合物)在压强下通过第二气体截止阀236和第二气体计量阀234进入。当这两个气体源都被使用时,它们在气体馈送管114和停滞室116中混合。停滞室116中的气体或气体混合物通过适当形状的喷嘴110被注射到基本的低压真空中。得到超声波气体喷流118。由喷流膨胀导致的冷却使得气体喷流118的一部分冷凝为气体团簇,每个气体团簇由数个到数千个弱键合原子或分子构成。气体漏孔120从气体团簇喷流中部分分离还未被冷凝为气体团簇喷流的气体分子,以便最小化下游区域中的压强,在下游区域中较高的压强是有害的(例如,离子化器122、高压电极126和处理室108)。合适的可压缩源气体112包括但不一定限于氩、氮、二氧化碳、氧以及其他气体和/或气体混合物。
在形成了包含气体团簇的超声波气体喷流118后,气体团簇被在离子化器122中离子化。离子化器122一般是电子撞击离子化器,其从一个或多个白炽灯丝124中产生热电子,并加速和引导这些电子,使其与穿过离子化器122的气体喷流118中的气体团簇碰撞。电子撞击从气体团簇中驱逐出电子,使得气体团簇的一部分变为正离子化。某些气体团簇可能被驱逐出多于一个电子,并且可能变为多离子化。一组适当偏置的高电压电极126从离子化器中提取出气体团簇离子,形成束,然后将其加速到期望能量(一般加速电势从数百V到数十kV),并对其聚焦以形成GCIB 128。灯丝电源136提供灯丝电压Vf以加热离子化器灯丝124。阳极电源134提供阳极电压VA以加速从灯丝124发射的热电子,以使其照射包含气体团簇的气体喷流118从而产生离子。提取电源138提供提取电压VE以偏置高电压电极,从而从离子化器122的离子化区域中提取出离子并形成GCIB128。加速器电源140提供加速电压VAcc以相对于离子化器122偏置高电压电极,以便使总GCIB加速电势等于VAcc。一个或多个透镜电源(例如示为142和144)可以被提供用来利用聚焦电压(例如VL1和VL2)偏置高电压电极,以聚焦GCIB 128。
工件152可以是要由GCIB处理处理的半导体晶片或其他工件,其被夹持在工件夹持器150上,工件夹持器150可以放置在GCIB 128的路径中。由于大多数应用期望大工件的处理并且获得空间均匀的结果,因此扫描***是合乎需要的,以均匀地扫描大面积的GCIB 128从而产生空间均一的结果。
GCIB 128是静止的,具有GCIB轴129,并且工件152通过GCIB 128被机械扫描以将GCIB 128的效果分布在工件152的整个表面上。
X扫描致动器202提供沿X扫描运动208的方向(进出纸平面)的工件夹持器150的线性运动。Y扫描致动器204提供沿Y扫描运动210的方向的工件夹持器150的线性运动,Y扫描运动210一般垂直于X扫描运动208。X扫描和Y扫描运动的组合使由工件夹持器150夹持的工件152以类光栅扫描运动穿过GCIB 128运动,从而导致GCIB 128对工件152的表面进行均匀(或者以其他方式被编程的)照射,以处理工件152。工件夹持器150以相对于GCIB 128的轴的某一角度放置工件152,以使得GCIB128相对于工件152的表面具有某一束入射角206。该束入射角206可以是90度或某一其他角度,但是一般是90度或接近90度。在Y扫描期间,工件152和工件夹持器150从图示位置移动到备用位置“A”,这两个位置分别由标号152A和150A指示。注意,在这两个位置之间的移动中,工件152通过GCIB 128被扫描,并且在两个极端位置处,完全移出GCIB 128的路径(过扫描)。尽管未在图3中明确示出,但是沿(一般)垂直的X扫描运动208的方向(进出纸平面)执行类似的扫描和过扫描。
束流传感器218被放置在GCIB 128的路径中工件夹持器150的外部,以便在工件夹持器150被扫描到GCIB 128的路径之外时拦截GCIB128的样本。束流传感器218一般是法拉第帽等等,其是封闭的(除了束进入开口以外),并且一般利用电绝缘配件212附着到真空容器102的壁上。
可以是基于微计算机的控制器的控制器220通过电缆216连接到X扫描致动器202和Y扫描致动器204,并且控制X扫描致动器202和Y扫描致动器204以便将工件152放入/放出GCIB 128并相对于GCIB 128均匀地扫描工件152以实现GCIB 128对工件152的期望处理。控制器220利用导线214接收由束流传感器218收集的样本束流,从而监视GCIB并控制工件152所接收的GCIB剂量,这是通过在已传输了预定的期望剂量时从GCIB 128中移走工件152而实现的。
图4A是示出了根据本发明第一实施例利用GCIB熔入帽封的铜互连的布线方案500的示意图(以示例而非限制性方式示出了两个铜线路层互连级)。该示意图示出了衬底501,衬底501支撑第一铜线路层502、第二铜线路层504和连接这两个铜层的铜过孔结构506,其中的每一个都可以利用传统技术形成。衬底501一般是包含需要电气互连的有源和/或无源元件(可能包括较低互连级)的半导体衬底。这两个铜线路层502和504以及过孔结构506的侧壁和底部都衬有TaN/Ta或其他传统的阻挡层512,这种阻挡层可以利用传统技术形成。第一级间电介质层508和第二级间电介质层510提供铜线路层和其他组件之间的电绝缘,并且可以利用传统技术形成。第一铜线路层502的顶面和第一级间电介质层508的顶面以及第二铜线路层504的顶面和第二级间电介质层510的顶面都通过GCIB处理被帽封,以形成帽封膜514、516和518。优选地,在每个互连级的顶面执行独立的GCIB帽封工艺。在传统的双镶嵌铜互连中,在级间电介质层中形成了沟槽和过孔并且随后沉积了铜以形成互连线路和过孔之后,一般利用化学机械抛光(CMP)技术对暴露的铜和级间电介质层材料表面执行平坦化步骤。阻蚀剂被用在要在CMP技术和CMP后刷洗清洁工艺中被抛光的表面上,并且优选地紧接在帽封层形成之前利用现场清洁从铜和电介质表面中(和其他污染物一起)去除(这里所用的“现场”意味着清洁发生在其中执行帽封沉积的相同的减压气氛中,而无需在清洁和帽封步骤之间返回到大气压强,并且降低了在清洁步骤和帽封步骤之间重新污染清洁后的表面的机会)。PECVD反应器一般并不被配置为在绝缘体帽封层沉积之前执行有效的铜表面的现场清洁。与PECVD***不同,GCIB处理***(例如处理装置100)很容易并且一般被配置为现场实现顺序的清洁和帽封。在清洁了暴露的铜和级间电介质表面之后(其可以通过如下所述的GCIB处理来执行),优选地现场GCIB熔入工艺被用于帽封平坦化后的表面(同时帽封铜和暴露的级间电介质)。
图4B示出了布线方案500的初步阶段500B。在图示阶段中,一个互连级已形成在衬底501上。该互连级包括已经利用传统技术沉积在衬底上的第一级间电介质508。传统的沟槽和过孔已经形成在第一级间电介质508中,并且已经衬有传统的阻挡层512。铜已经利用传统技术沉积在沟槽和过孔中。该结构的上表面已经利用传统工艺平坦化和清洁。第一铜线路层502和第一级间电介质层508的上表面具有残留污染物503。在这一阶段,以及在每个后续互连级的相应阶段(假定多于一个互连级),可以执行GCIB清洁工艺。GCIB清洁包括利用由气体Ar、N2、NH3或H2中的任何一种或其混合物的分子组成的GCIB团簇离子照射要清洁的表面,并且使用优选地在从约3kV到约50kV范围内的束加速电势VAcc,其中总气体团簇离子剂量在从约5×1013到约5×1016离子/cm2的范围内。本领域技术人员将认识到,本发明并不局限于这些示例性气体,而是可以利用从铜表面去除CMP后残留物、氧化铜和其他污染物的其他气体或气体混合物。优选地(尽管不是本发明必需的),该GCIB清洁工艺是现场清洁工艺。
图4C示出了在GCIB清洁步骤后的布线方案500的阶段500C。第一铜线路层502和第一级间电介质层508的上表面已被清洁掉污染物,并且准备用于帽封步骤。在这一阶段以及在每个后续互连级的相应阶段(假定多于一个互连级),执行GCIB帽封工艺。GCIB帽封工艺包括利用由反应性元素构成的GCIB照射第一铜线路层502和/或第一级间电介质层508的上表面,这些反应性元素在熔入到原先暴露的电介质和/或铜表面中时形成了绝缘材料。具有例如由C、N、O、Si、B或Ge或其混合物构成的气体团簇离子元素的GCIB是合适的,并且可以在铜上形成渐变帽封膜,例如Si3N4、SiCN、CuCO3和BN。也可以采用在熔入到铜和/或相邻绝缘体中时形成合适的电介质材料的其他元素和组合。可以采用诸如CH4、SiH4、NH3、N2、CO2、B2H6、GeH4和其混合物之类的源气体。这些气体可以用于以其纯净形式或者通过将其与诸如Ar或Xe之类的惰性气体混合而形成团簇离子。参考图3的GCIB处理装置100,可以使用在从约3kV到约50kV的范围内的束加速电势VAcc,其中总气体团簇离子剂量在从约1×1014到约1×1017离子/cm2的范围内,以实现熔入。
图4D示出了在GCIB帽封步骤后的布线方案500的阶段500D。在铜表面和/或相邻的级间电介质表面上,GCIB工艺的撞击能量和热瞬态特性熔入暴露于GCIB的铜线路和/或相邻的级间电介质结构的顶面,从而分别形成帽封层514和516。帽封层514和516可以各自可选地另外包括充当电介质阻挡膜的上层部分。在形成工艺的初始部分期间,混合的铜/GCIB物质组分的渐变层514A被熔入到铜表面中。该混合层提供了任何随后沉积的电介质阻挡膜514B和下层铜之间的渐变界面,从而限制了表面处的铜扩散并且提高了电迁移的寿命。尽管随后沉积的电介质阻挡层514B可以是利用传统PECVD沉积的独立、额外的膜,但是优选地其是作为GCIB帽封熔入步骤的继续由GCIB沉积的,这仅仅继续帽封GCIB照射工艺,该工艺首先创建混合的渐变层,直到工艺从熔入工艺前进到(伴随着剂量增大)纯粹沉积工艺为止,从而在铜的熔入表面处的混合层的上方沉积了电介质材料。该初始的熔入混合渐变层514A用作帽封层,并且随着GCIB照射的继续,电介质材料随后的额外沉积形成了沉积的电介质阻挡膜514B。这形成了由于混合渐变层而与铜互连集成的电介质膜,从而得到了包括较长的电迁移寿命在内的改善界面性能。形成帽封层514的同一(或另一)帽封GCIB优选地在级间电介质508上形成帽封层516。与帽封层514相似,帽封层516可以是双层(bi-layer)。帽封层516最初在表面处形成混合电介质/GCIB物质组分的混合渐变层,并且随着GCIB处理的继续或者额外的独立(例如PECVD)沉积也可以包括沉积的电介质阻挡膜。例如,如果电介质阻挡膜514B不是利用延长的GCIB工艺形成的,或者如果需要特别厚的电介质阻挡膜514B,则熔入的帽封层514A或帽封层516可以可选地利用传统的绝缘层(例如PECVD的Si3N4、SiCN或SiC)掩盖,以提供电介质阻挡膜用于额外的铜扩散阻挡或过孔刻蚀停止性能。在帽封步骤和任何电介质阻挡膜的形成后,如果需要可以利用传统技术添加额外的互连级。
图4E示出了在GCIB帽封(包括电介质阻挡)的第一互连级上添加了第二互连级后布线方案500的阶段500E。在这一阶段,第二互连级已经形成在被帽封的层514和516上。第二互连级由第二级间电介质510构成,第二级间电介质510已经利用传统技术沉积在被帽封的层514和516上。沟槽和过孔已形成在第二级间电介质510中,沟槽和过孔已经衬有阻挡层512,并且铜已经利用传统技术沉积在沟槽和过孔中。该结构的上表面已经利用诸如CMP之类的传统工艺被平坦化和清洁。第二铜线路层504和第二级间电介质层510的上表面被示为具有残留污染物505。在第二互连级(如果有的话)和后续的更高互连级(如果有的话)处,如上所述将GCIB清洁和GCIB熔入步骤应用于布线方案500,从而形成(例如)诸如图4A中所示的帽封膜518。相应地,按需要可以形成两级或多级互连结构。
因此,所述技术提供了减少的电迁移,并避免了与选择性金属帽封工艺相关联的不希望出现的副作用。在电介质表面上,熔入层和电介质保持绝缘,并且极薄的熔入层对层的总介电常数和层间电容的影响可以忽略。
图5A是示出了根据本发明第二实施例利用GCIB熔入和沉积帽封的铜互连的布线方案600的示意图(以示例而非限制性方式示出了两个铜线路层互连级)。该示意图示出了衬底601,衬底601支撑第一铜线路层602、第二铜线路层604和连接这两个铜层的铜过孔结构606,其中的每一个都可以利用传统技术形成。衬底601一般是包含需要电气互连的有源和/或无源元件(可能包括更低互连级)的半导体衬底。这两个铜线路层602和604以及过孔结构606的侧壁和底部都衬有TaN/Ta或其他阻挡层612,这种阻挡层可以利用传统技术形成。第一级间电介质层608和第二级间电介质层610提供铜线路层之间的电绝缘,并且可以利用传统技术形成。通常希望级间电介质层608和610可以是多孔的以增强其介电性能。在这种情况下,级间电介质层可以可选地在其上沉积有硬掩模层,例如分别是第一硬掩模层609和第二硬掩模层611,其各自由诸如SiO2、SiC或Si3N4之类的材料构成,并且可以利用传统技术沉积。第一铜线路层602、第一级间电介质层608的顶面(或者可选地,如果存在的话,第一硬掩模层609的顶面)、第二铜线路层604和第二级间电介质层610的顶面(或者可选地,如果存在的话,第二硬掩模层611的顶面)都通过GCIB处理帽封以形成帽封膜614、616、618和620。该第二实施例与第一实施例的区别在于,组成GCIB气体团簇离子的元素被选择使得熔入的物质在铜表面(铜帽封膜614和618)上保持导体特性。然而,熔入元素也被选择使得当熔入到每个互连级的电介质区域中的级间电介质和/或电介质硬掩模材料(级间电介质或硬掩模帽封膜616和620)的表面中时该相同的元素形成绝缘膜。增强的电介质扩散阻挡(阻挡膜622用于第一互连级,阻挡膜624用于第二互连级)优选地是通过GCIB沉积形成的,但是也可以利用传统技术形成。这些阻挡膜还增强了GCIB熔入帽封的过孔刻蚀停止性能和扩散阻挡性能。
GCIB熔入工艺优选地应用在每个互连级的顶面处以形成铜和级间电介质帽封。如上所述,在铜互连和级间电介质的CMP平坦化后,优选地使用GCIB现场清洁。图5G图示了其中级间电介质层608和610在其顶面上没有硬掩模层609和611的布线方案600G。下面将对用于构造布线方案600G的工艺给出描述。
图5B示出了布线方案600G的初步阶段600B。建立在衬底601上的互连级由传统沉积的第一级间电介质608构成,其中沟槽和过孔已经形成并且衬有阻挡层612。铜已经利用传统技术沉积在沟槽和过孔中。该结构的上表面已被平坦化和清洁。第一铜线路层602和第一级间电介质层608的上表面被示为具有残留污染物603。在这一阶段和每个后续互连级(假定多于一个互连级)的每个阶段的顶面处,如上所述可以执行GCIB清洁工艺。优选地(尽管不是本发明必需的),该GCIB清洁工艺可以是现场清洁工艺。
图5C示出了在布线方案600G的构造中GCIB清洁步骤后的中间阶段600C。第一铜线路层602和第一级间电介质层608的上表面已被清洁掉污染物,并且准备用于帽封步骤。GCIB帽封工艺现在可应用于这一阶段和每个后续互连级(假定多于一个互连级)的每个阶段的清洁顶面。(优选地现场)GCIB熔入工艺被用于同时(或者通过独立的帽封GCIB)帽封平坦化后的表面(铜和/或暴露的级间电介质)。GCIB帽封工艺包括利用由反应性元素构成的GCIB照射第一铜线路层602和第一级间电介质层608的上表面,这些反应性元素在其熔入到铜表面中时形成导电材料,但是在其熔入到级间电介质表面中时形成电绝缘材料。另外,这些导电元素被选择以便不具有在铜中的高固态可溶性,以避免对其导电率的不利影响。非限制性地,具有包括元素B或Ti的气体团簇离子的GCIB是合适的,并且与适当的电介质硬掩模材料相组合以形成绝缘氧化物、碳化物或氮化物,电介质硬掩模材料例如但不限于SiO2、SiC、SiCN、SiCOH等。包含B和Ti的某些合适的源气体包括但不限于B2H6、TiCl4、四二乙氨基钛(TDEAT)和四二甲氨基钛(TDMAT)。这些气体可以按其纯净形式使用,或者与诸如Ar或Xe之类的惰性气体混合使用。在电介质表面上,这种熔入例如形成了TiO2和硼硅酸盐玻璃的渐变膜,而在铜表面上,其例如形成了硼和钛的渐变膜。参考图3的GCIB装置100,可以使用优选地在从约3kV到约50kV的范围内的束加速电势VAcc,并且总气体团簇离子剂量在从约1×1014到约1×1017离子/cm2的范围内。在铜和电介质表面上,GCIB熔入工艺的撞击能量产生了瞬时高温区,这种瞬时高温区有利于熔入物质与现有电介质或电介质硬掩模层的反应,以形成新的绝缘(在级间电介质或硬掩模上)材料并还在铜线路表面上形成熔入导电膜,从而限制铜界面的扩散并提高电迁移寿命。因此,单个GCIB帽封熔入步骤在第一铜线路层602上形成了导电帽封膜614,在第一级间电介质层608上形成了电绝缘帽封膜616。
图5D示出了在布线方案600G的构造中在GCIB帽封步骤后的阶段600D。GCIB工艺可以在这一阶段和每个后续互连级的每个阶段的顶面处执行,以形成电介质扩散阻挡膜。电介质扩散阻挡膜622优选地由氮化硅碳构成,但是可以是氮化硅、碳化硅和其他电介质膜。传统上,其可以通过PECVD沉积,但是优选地其是通过利用由进行反应以沉积绝缘材料的元素形成的GCIB照射要在其上沉积阻挡膜622的帽封膜(614和616)的表面而沉积的。具有气体团簇离子元素(例如C、N和Si或其混合物)的GCIB是合适的,并且可以在铜上沉积扩散阻挡膜,例如Si3N4、SiCN和SiC。诸如C、N和Si之类的源气体包括但不限于CH4、SiH4、NH3和N2。这些气体可以用于利用纯净气体或通过与诸如Ar或Xe之类的惰性气体相组合来形成用于沉积的气体团簇离子。使用优选地在从约3kV到约50kV的范围内的束加速电势VAcc,其中总气体团簇离子剂量在从约1×1014到约1×1017离子/cm2的范围内。
图5E示出了在布线方案600G的构造中在阻挡膜622的沉积后的阶段600E。图5F示出了在布线方案600G的构造中的阶段600F,其反映了在GCIB帽封(包括电介质阻挡膜)的第一互连级和阻挡膜622上添加第二互连级。第二互连级由沉积在阻挡膜622上的第二级间电介质610构成,其中沟槽和过孔已经形成并且衬有阻挡层612。铜已经利用传统技术沉积在沟槽和过孔中。该结构的上表面已经利用传统工艺被平坦化和清洁。第二铜线路层604和第二级间电介质层610的上表面被示为具有残留污染物626。在第二互连级和后续更高互连级(如果有的话)的顶面处,可以如上所述应用GCIB清洁以及GCIB熔入和GCIBGCIB沉积步骤,以构造布线方案600G。这些处理步骤形成了帽封膜618、620和阻挡膜624。相应地,按需要可以形成图5G的两互连级结构或多级互连结构。
图5H示出了在构造如图5A完整所示的布线方案600(具有硬掩模层609和611)的过程中的初步阶段600H。建立在衬底601上的第一互连级由利用传统技术沉积在衬底上的第一级间电介质608构成。利用传统技术形成的硬掩模层609覆盖了第一级间电介质608的顶面。沟槽和过孔已经形成在第一级间电介质608中,并且衬有阻挡层612,并且铜已经沉积在沟槽和过孔中。该结构的上表面已经利用传统的清洁工艺被平坦化和清洁。第一铜线路层602和硬掩模层609的上表面被示为具有残留污染物605。在这一阶段和每个后续互连级的相应阶段的顶面处,如上所述优选地执行GCIB清洁工艺。优选地(尽管不是本发明必需的),该GCIB清洁工艺是现场清洁工艺。
图5I示出了在构造(图5A的)布线方案600的过程中在GCIB清洁步骤后的阶段600I。第一铜线路层602和硬掩模层609的上表面已被清洁掉污染物,并且准备用于帽封步骤。在这一阶段和每个后续互连级的相应阶段的顶面处,如上所述可以执行GCIB帽封工艺以形成帽封层614和616。在该实施例中,帽封层616形成在硬掩模层609上,而不是直接形成在第一级间电介质层608上。
图5J示出了在构造布线方案600的过程中在形成帽封层614和616的步骤后的阶段600J。如上所述,GCIB工艺可以应用于这一阶段和每个后续互连级的每个相应阶段的顶面处,以在帽封层614和616上形成电介质扩散阻挡膜622。
图5K示出了在构造布线方案600的过程中在阻挡膜622的沉积后的阶段600K。
图5L示出了在构造布线方案600的过程中在GCIB帽封(包括电介质阻挡膜)的第一互连级上添加了第二互连级后的阶段600L。在这一阶段,第二互连级已形成在阻挡膜622上。第二互连级由已经利用传统技术沉积在阻挡膜622上的第二级间电介质610构成。利用传统技术形成的硬掩模层611覆盖了第二级间电介质610的顶面。传统的沟槽和过孔已经形成在第二级间电介质610中,这些沟槽和过孔衬有传统的阻挡层612,并且铜已经利用传统技术沉积在沟槽和过孔中。该结构的上表面已经利用传统工艺被平坦化和清洁。第二铜线路层604和硬掩模层611的上表面被示为具有残留污染物613。在第二互连级(如果有的话)以及在后续的更高互连级(如果有的话),如上所述将GCIB清洁以及GCIB熔入和GCIB沉积步骤用于布线方案600,从而形成(例如)帽封膜618和620并形成阻挡膜624。相应地,按需要可以形成图5A的两互连级结构或多级互连结构。
因此,所公开的技术降低了电迁移,并避免了与选择性金属帽封工艺相关联的不希望出现的副作用。在电介质表面上,电介质在帽封后保持绝缘,并且极薄的熔入层对于介电常数的影响可以忽略。
图6A是根据本发明第三实施例利用GCIB熔入帽封的铜互连的布线方案700的示意图(以示例而非限制性方式示出了两个铜线路层互连级)。该示意图示出了衬底701,衬底701支撑第一铜线路层702、第二铜线路层704和连接这两个铜层的铜过孔结构706,其中的每一个都可以利用传统技术形成。衬底701一般是包含需要电气互连的有源和/或无源元件(可能包括更低互连级)的半导体衬底。这两个铜线路层702和704以及过孔结构706的侧壁和底部都衬有阻挡层712,阻挡层712可以利用传统技术形成。第一级间电介质层708和第二级间电介质层710提供铜线路之间的电绝缘,并且可以利用传统技术形成。第一级间电介质层708具有上表面709,第二级间电介质层711具有上表面710。如下面更详细地说明的,在每个铜线路互连级,按照传统方式沉积的阻挡层712最初覆盖了级间电介质层708和710的上表面709和711。在本发明的该实施例中,下文中将描述的GCIB处理从上表面709和711中去除了阻挡层712的材料,因此,其并不出现在图6A中所示的完整结构的表面上。第一铜线路层702的顶面和第二铜线路层704的顶面通过GCIB处理帽封以形成熔入的帽封膜713和715。熔入的铜帽封膜713和715以及相邻的级间电介质层708和710可以额外地分别利用电介质阻挡膜714和716帽封,以提供改善的铜扩散性能和过孔刻蚀停止性能。电介质阻挡膜714和716优选地是氮化硅碳,但是也可以是氮化硅或碳化硅或其他合适的电介质,并且可以利用PECVD通过传统方式沉积,但是优选地通过GCIB沉积施加。
图6B示出了在构造布线方案700的过程中的初步阶段700B。在图示阶段中,一个互连级已经形成在衬底701上。该互连级由已沉积在衬底上的第一级间电介质708构成。沟槽和过孔已经形成在第一级间电介质708中,并且衬有阻挡层712。铜已经沉积在沟槽和过孔中。阻挡层712最初覆盖了级间电介质层708的上表面709。铜过载(overburden)已经通过传统CMP去除,从而停止在阻挡层712的材料上。另外,利用传统的CMP工艺条件(被选择为优选地以比阻挡层材料高得多的速率去除铜),例如利用相比于阻挡材料选择性去除铜的高选择性浆料,铜略微凹陷低于阻挡层712的顶面,如图所示。该表面已经利用传统工艺清洁。第一铜线路层702和阻挡层712的上表面被示为具有残留污染物703。在这一阶段和每个后续互连级的每个阶段的顶面处可以应用如上所述的GCIB清洁工艺。
图6C示出了构造布线方案700的过程中在GCIB清洁步骤后的阶段700C。第一铜线路层702和阻挡层712的上表面已被清洁掉污染物,并且准备用于帽封步骤。现在可以应用GCIB帽封工艺。(优选地现场)GCIB刻蚀和熔入帽封工艺被用于同时帽封第一铜线路层702的表面和刻蚀掉阻挡层712,阻挡层712上覆于上表面709上。GCIB刻蚀和帽封工艺包括利用由反应性元素构成的GCIB照射第一铜线路层702和第一级间电介质层708的上表面,反应性元素在熔入到铜表面中时形成帽封材料,但是刻蚀阻挡层712的材料。GCIB照射刻蚀掉上表面709上暴露的阻挡层712的材料同时将帽封物质熔入到第一铜线路层702中,形成了帽封膜713。包含元素氟和/或硫在内的源气体(包括但不限于SF6、CF4、C4F8或NF3)被用于形成GCIB。这些气体可以用于利用纯净气体或者通过与N2或与诸如Ar或Xe之类的惰性气体相混合来形成气体团簇离子以进行熔入。这种熔入形成了铜帽封膜,例如CuF2。使用优选地在从约10kV到约50kV的范围内的束加速电势VAcc,并且可以使用在从约200sccm到约3000sccm的范围内的喷嘴气体流。例如,用于刻蚀阻挡层材料同时形成铜帽封膜的优选工艺使用流率为700sccm的N2中10%NF3的源气体混合物。GCIB刻蚀和熔入工艺一直进行,直到所有的阻挡层材料都被去除为止,这导致第一级间电介质层708的相对未改变的上表面709,还得到已经熔入有帽封膜713的铜表面。由于在大部分工艺期间上表面709被阻挡层712的材料与GCIB屏蔽,因此对上表面709的影响很小。
图6D示出了在构造布线方案700的过程中在GCIB刻蚀和帽封步骤后的阶段700D。第一铜线路层702的上表面已经被帽封层713帽封,并且阻挡层712已被刻蚀掉,从而暴露了第一级间电介质层708的上表面709。该结构准备用于形成电介质阻挡膜。现在可以执行GCIB工艺以便利用与如上所述用于沉积阻挡膜622相同的方法在帽封层713和第一级间电介质层708的上表面709上形成电介质扩散阻挡膜714。
图6E示出了在构造布线方案700的过程中在形成电介质扩散阻挡膜714后的阶段700E。
图6F示出了在构造布线方案700的过程中在GCIB帽封(包括电介质阻挡膜)的第一互连级上添加第二互连级后的阶段700F。在这一阶段,第二互连级已经形成在阻挡膜714上。第二互连级由已沉积在阻挡膜714上的第二级间电介质710构成。沟槽和过孔已经形成在第二级间电介质710中,并且衬有阻挡层712。铜已经利用传统技术沉积在沟槽和过孔中。阻挡层712最初覆盖了级间电介质层710的上表面。铜过载已经通过传统CMP去除,从而停止在阻挡层712的材料上。另外,利用传统的CMP工艺条件(被选择为优选地以比阻挡层材料高得多的速率去除铜),例如利用相比于阻挡材料选择性去除铜的高选择性浆料,铜略微凹陷低于阻挡层712的顶面,如图所示。该表面已经利用传统工艺清洁。第二铜线路层704和阻挡层712的上表面被示为具有残留污染物717。在第二互连级(如果有的话)和后续的更高互连级(如果有的话),如以上针对布线方案700中的第一互连级所述,应用GCIB清洁以及GCIB(刻蚀和熔入帽封)和GCIB沉积步骤,从而形成(例如)帽封膜715和阻挡膜716。相应地,按需要可以构造图6A的两互连级结构或多级互连结构。
在上述布线方案700中的CMP铜过载去除后,如果暴露的阻挡层材料具有不希望出现的空间不均匀的厚度,则可选地(但是优选地)以补偿性方式使GCIB刻蚀空间不均匀。通过首先利用传统的金属膜制图仪(例如,Rudolph Technologies 
Figure C200580046189D0028104346QIETU
-II金属膜测量***,可以从USA,NJ07836 Flanders,One Rudolph Road的Rudolph Technologies Inc.购得)对工件晶片的整个表面上的阻挡层厚度制图,则可以如上所述使得阻挡层刻蚀成为补偿性刻蚀,这导致在阻挡层材料较厚处产生较大的刻蚀,而在阻挡层材料较薄处产生较小的刻蚀,从而使得由于阻挡层材料的初始厚度而本该被过刻蚀的区域中的下层级间电介质的去除最小化。这种空间补偿性刻蚀是利用所测得的阻挡层厚度图与在Allen等人的美国专利No.6,537,606(’606专利)中教导的技术相结合而实现的,该专利的内容通过引用结合于此。气体团簇离子束处理设备,例如配备有根据在’606专利中公开的技术根据测量图工作的自动补偿性刻蚀能力的Epion CorporationnFusionTM GCIB处理***(Epion Corporation,Billerica,MA),可以购得。
在本发明的该实施例中,优选地如上所述,阻挡层刻蚀和铜帽封都是在一个步骤中利用GCIB处理执行的,以同时执行这两者。还可以(在某些情形中可能有用)将阻挡层刻蚀和铜帽封处理作为分离的GCIB处理步骤利用对于每一步有不同特性的GCIB加以执行。在这种情况下,在达到图6C中所示的阶段时,最初位于级间电介质层708的上表面709上的阻挡层材料在GCIB帽封步骤之前通过GCIB刻蚀工艺去除。在GCIB刻蚀步骤后,该结构表现为图6G中所示,并且准备用于铜线路层和级间电介质层帽封,其是利用前文中在本发明的各种实施例中描述的GCIB帽封工艺执行的。在每个互连级,优选的刻蚀步骤是利用GCIB团簇离子照射要清洁的表面,GCIB团簇离子是由包含元素氟的一种或多种源气体形成的,这些气体包括但不限于SF6、CF4、C4F8或NF3。这些气体可以用于利用纯净气体或通过与N2或与诸如Ar或Xe之类的惰性气体相混合来形成气体团簇离子,以进行刻蚀。使用优选地在从约10kV到约50kV的范围内的束加速电势VAcc,并且可以使用在从约200sccm到约3000sccm的范围内的喷嘴气体流。例如,用于刻蚀阻挡层材料的优选工艺使用流率为700sccm的N2中10% NF3的源气体混合物。在需要时,GCIB刻蚀步骤可以是前文中所述的补偿性刻蚀步骤,以补偿阻挡层材料厚度的初始空间不均匀性。
尽管已经参考各种实施例描述了本发明,但是应当认识到,本发明也能够具有在本发明精神内的广泛的多种进一步和其他的实施例。例如,本领域技术人员将很清楚,本发明并不限于双镶嵌集成方案,而是可以同样地适用于其他铜互连方案。另外,尽管本发明是针对包括各种化合物(例如Si3N4、SiC、SiCN、BN、CuF2、TiO2、CuCO3、B、Ti、氮化硅、碳化硅、氮化硅碳、氮化硼、氟化铜、二氧化钛、碳酸铜、硼、钛和硼硅酸盐玻璃)的熔入和沉积的膜或层描述的,但是本领域技术人员将会理解,在实施本发明时形成的许多膜和层是渐变的,并且即使在最纯净的形式,它们也不具有化学分子式或名称暗示的精确化学当量,而是具有近似的化学当量,并且可以额外包括氢和/或其他杂质,这对于用在相似应用中的膜来说是正常的。

Claims (59)

1.一种在包括一个或多个铜互连表面和一个或多个电介质表面的结构上形成帽封结构的方法,包括以下步骤:
将所述结构置于低压室中;
在所述低压室内形成加速的帽封气体团簇离子束;以及
将所述加速的帽封气体团簇离子束引导到所述一个或多个铜互连表面和所述一个或多个电介质表面中的至少一个上,以在所述加速的帽封气体团簇离子束被引导到其上的一个或多个表面上形成至少一个帽封结构。
2.如权利要求1所述的方法,还包括在所述帽封气体团簇离子束形成和引导步骤之前的以下步骤:
在所述低压室内形成加速的清洁气体团簇离子束;以及
将所述加速的清洁气体团簇离子束引导到所述一个或多个铜互连表面和所述一个或多个电介质表面上,以清洁所述加速的清洁气体团簇离子束被引导到其上的一个或多个表面上。
3.如权利要求2所述的方法,其中形成加速的清洁气体团簇离子束还包括由选自由Ar、N2、NH3和H2构成的组中的至少一种气体的分子生成气体团簇离子。
4.如权利要求2所述的方法,其中形成所述加速的清洁气体团簇离子束还包括利用在从3kV到50kV的范围内的加速电势加速清洁气体团簇离子束气体团簇离子。
5.如权利要求2所述的方法,其中引导所述加速的清洁气体团簇离子束导致在从5×1013到5×1016气体团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互连表面和所述一个或多个电介质表面中的至少一个。
6.如权利要求1所述的方法,其中所述一个或多个电介质表面包括级间电介质层的一部分。
7.如权利要求1所述的方法,其中所述一个或多个电介质表面包括位于多孔级间电介质层的至少一部分上的硬掩模层的一部分。
8.如权利要求1所述的方法,其中:
形成所述加速的帽封气体团簇离子束还包括由如下元素生成气体团簇离子,这些元素在熔入到铜表面中时反应形成电绝缘材料,在熔入到电介质表面中时反应形成电绝缘材料;并且
所形成的至少一个帽封结构是电绝缘帽封结构。
9.如权利要求8所述的方法,其中所述元素由选自由C、N、O、Si、B和Ge构成的组中的至少一种元素构成。
10.如权利要求8所述的方法,其中形成所述加速的帽封气体团簇离子束还包括由惰性气体分子生成气体团簇离子。
11.如权利要求8所述的方法,其中形成所述加速的帽封气体团簇离子束还包括利用在从3kV到50kV的范围内的加速电势加速所生成的气体团簇离子。
12.如权利要求8所述的方法,其中所述引导所述加速的帽封气体团簇离子束的步骤导致在从1×1014到1×1017气体团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互连表面和所述一个或多个电介质表面中的至少一个。
13.如权利要求8所述的方法,还包括形成位于所形成的至少一个帽封结构上的至少一个绝缘层的步骤。
14.如权利要求13所述的方法,其中所述形成至少一个绝缘层的步骤采用了PECVD沉积工艺。
15.如权利要求13所述的方法,其中所形成的至少一个绝缘层由选自由碳化硅、氮化硅和氮化硅碳构成的组中的一种材料构成。
16.如权利要求1所述的方法,其中:
形成所述加速的帽封气体团簇离子束还包括由如下元素生成气体团簇离子,这些元素在熔入到铜表面中时反应形成导电材料,在熔入到电介质表面中时反应形成电绝缘材料;并且
所形成的至少一个帽封结构包括所述铜互连部分的被照射区域上的导电帽封结构和所述电介质部分的被照射区域上的电绝缘帽封结构中的至少一个。
17.如权利要求16所述的方法,其中所述元素由来自由B和Ti构成的组中的至少一种元素构成。
18.如权利要求17所述的方法,其中所述气体团簇离子还包括惰性气体分子。
19.如权利要求16所述的方法,还包括形成在所形成的至少一个帽封结构上的至少一层电介质扩散阻挡膜的步骤。
20.如权利要求19所述的方法,其中所述形成至少一层电介质扩散阻挡膜的步骤采用了PECVD沉积工艺。
21.如权利要求19所述的方法,其中所述形成至少一层电介质扩散阻挡膜的步骤采用了气体团簇离子束沉积工艺。
22.如权利要求19所述的方法,其中所形成的至少一层电介质扩散阻挡膜由选自由碳化硅、氮化硅和氮化硅碳构成的组中的一种材料构成。
23.如权利要求16所述的方法,其中形成所述加速的帽封气体团簇离子束还包括利用在从3kV到50kV的范围内的加速电势加速所生成的气体团簇离子。
24.如权利要求16所述的方法,其中所述引导所述加速的帽封气体团簇离子束的步骤导致在从1×1014到1×1017气体团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互连表面和所述一个或多个电介质表面中的至少一个。
25.一种在具有一个或多个铜互连表面和覆盖电介质材料的一个或多个阻挡层表面的结构上形成帽封结构的方法,包括以下步骤:
将所述结构置于低压室中;
在所述低压室内形成加速的刻蚀和帽封气体团簇离子束;以及
将所述加速的刻蚀和帽封气体团簇离子束引导到所述一个或多个铜互连表面和所述一个或多个阻挡层表面中的至少一个上,以在所述加速的刻蚀和帽封气体团簇离子束被引导到其上的一个或多个铜互连表面上形成帽封结构,并刻蚀掉所述加速的刻蚀和帽封气体团簇离子束被引导到其上的一个或多个阻挡层表面以暴露下面的电介质材料。
26.如权利要求25所述的方法,还包括以下步骤:
测量作为衬底表面上的位置的函数的一个或多个阻挡层的厚度,其各自对应于所述一个或多个阻挡层表面之一;以及
生成关于所述衬底表面上所述一个或多个阻挡层厚度的图;
其中所述引导步骤还包括补偿所述一个或多个测得的阻挡层厚度以便去除最小量的暴露电介质材料。
27.如权利要求25所述的方法,其中形成所述加速的刻蚀和帽封气体团簇离子束还包括由包括选自由F和S构成的组中的至少一种元素的气体生成气体团簇离子。
28.如权利要求25所述的方法,其中形成所述加速的刻蚀和帽封气体团簇离子束还包括由包括选自由F、S、Ar、Xe和N构成的组中的至少一种元素的气体生成气体团簇离子。
29.如权利要求25所述的方法,其中形成所述加速的刻蚀和帽封气体团簇离子束包括:
由以200sccm到3000sccm的喷嘴气体流率流动的源气体生成气体团簇离子;以及
利用在从10kV到50kV的范围内的加速电势加速所述气体团簇离子。
30.如权利要求25所述的方法,还包括在所述刻蚀和帽封气体团簇离子束形成和引导步骤之前的以下步骤:
在所述低压室内形成加速的清洁气体团簇离子束;以及
将所述加速的清洁气体团簇离子束引导到所述一个或多个铜互连表面和所述一个或多个阻挡层表面中的至少一个上,以便清洁所述加速的清洁气体团簇离子束被引导到其上的至少一个表面。
31.如权利要求30所述的方法,其中形成所述加速的清洁气体团簇离子束包括由包括选自由Ar、N2、NH3和H2构成的组中的至少一种气体的一种或多种气体生成气体团簇离子。
32.如权利要求31所述的方法,其中形成所述加速的清洁气体团簇离子束还包括利用在从3kV到50kV的范围内的加速电势加速所生成的气体团簇离子。
33.如权利要求30所述的方法,其中引导所述加速的清洁气体团簇离子束导致在从5×1013到5×1016气体团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互连表面和所述一个或多个阻挡层表面中的至少一个。
34.一种在具有一个或多个铜互连表面和覆盖电介质材料的一个或多个阻挡层表面的结构上形成帽封结构的方法,包括以下步骤:
将所述结构置于低压室中;
在所述低压室内形成加速的刻蚀气体团簇离子束;
将所述加速的刻蚀气体团簇离子束引导到所述一个或多个阻挡层表面上,以便刻蚀掉所述刻蚀气体团簇离子束被引导到其上的一个或多个阻挡层表面以暴露下面的所述电介质材料;
在所述低压室内形成加速的帽封气体团簇离子束;以及
将所述加速的帽封气体团簇离子束引导到所述一个或多个铜互连表面上,以便在其上形成一个或多个帽封结构。
35.如权利要求34所述的方法,还包括以下步骤:
测量作为所述衬底表面上的位置的函数一个或多个阻挡层的厚度,其各自与所述一个或多个阻挡层表面之一相关联;以及
生成关于所述衬底表面上阻挡层厚度的图;
其中所述引导所述加速的刻蚀气体团簇离子束的步骤还包括补偿所述一个或多个测得的阻挡层厚度,以便去除最小量的暴露电介质材料。
36.如权利要求34所述的方法,其中所述加速的帽封气体团簇离子束由选自由C、N、O、Si、B、Ge、Ti、S和F构成的组中的至少一种元素构成。
37.如权利要求34所述的方法,其中所述加速的帽封气体团簇离子束由选自包含C、N、O、Si、B、Ge和Ti的组中的至少一种元素构成。
38.如权利要求36所述的方法,其中所述加速的帽封气体团簇离子束气体团簇离子还包括选自由Ar和Xe构成的组中的至少一种气体。
39.如权利要求37所述的方法,其中所述加速的帽封气体团簇离子束气体团簇离子还包括选自由Ar和Xe构成的组中的至少一种气体。
40.如权利要求34所述的方法,其中:
形成所述加速的帽封气体团簇离子束包括利用在从3kV到50kV的范围内的加速电势加速帽封气体团簇离子束气体团簇离子;并且
所述引导所述加速的帽封气体团簇离子束的步骤导致在从1×1014到1×1017气体团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互连表面中的至少一个。
41.如权利要求34所述的方法,还包括在所述刻蚀和/或帽封气体团簇离子束的形成和引导步骤之前的以下步骤:
在所述低压室内形成加速的清洁气体团簇离子束;
将所述加速的清洁气体团簇离子束引导到所述一个或多个铜互连表面和一个或多个阻挡层表面中的至少一个上,以便清洁所述加速的清洁气体团簇离子束被引导到其上的至少一个表面。
42.如权利要求41所述的方法,其中所述加速的清洁气体团簇离子束由在由Ar、N2、NH3和H2构成的组中的至少一种气体分子构成。
43.如权利要求41所述的方法,其中:
形成所述加速的清洁气体团簇离子束包括利用在从3kV到50kV的范围内的加速电势加速清洁气体团簇离子束气体团簇离子;并且
所述引导所述清洁气体团簇离子束的步骤导致在从5×1013到5×1016气体团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互连表面和所述一个或多个阻挡层表面中的至少一个,以便清洁所述加速的清洁气体团簇离子束被引导到其上的至少一个表面。
44.如权利要求34所述的方法,其中形成所述加速的刻蚀气体团簇离子束包括以下步骤:
由以200sccm到3000sccm的喷嘴气体流率流动的源气体生成气体团簇离子;以及
利用在从10kV到50kV的范围内的加速电势加速所述气体团簇离子。
45.一种在其表面上包括气体团簇离子束熔入的帽封结构的铜互连。
46.如权利要求45所述的铜互连,其中所述帽封结构是所述表面上的薄膜。
47.如权利要求46所述的铜互连,其中所述薄膜是导电的。
48.如权利要求46所述的铜互连,其中所述薄膜是电介质膜。
49.如权利要求46所述的铜互连,其中所述薄膜由选自由C、N、O、Si、B、Ge、Ti、F和S构成的组中的一种或多种元素构成。
50.如权利要求46所述的铜互连,其中所述薄膜由选自由氧化物、碳化物和氮化物构成的组中的至少一种材料构成。
51.如权利要求46所述的铜互连,其中所述薄膜由选自由Si3N4、SiCN、BN、CuF2、TiO2、CuCO3、B、Ti和硼硅酸盐玻璃构成的组中的材料构成。
52.如权利要求45所述的铜互连,还包括上覆的电介质扩散阻挡膜。
53.如权利要求52所述的铜互连,其中所述电介质扩散阻挡膜由选自由Si3N4、SiCN和SiC构成的组中的材料构成。
54.一种在其表面上包括气体团簇离子束熔入的薄膜帽封结构的级间电介质层。
55.如权利要求54所述的级间电介质层,其中所述薄膜由选自由C、N、O、Si、B、Ge、Ti、F和S构成的组中的一种或多种元素构成。
56.一种在其表面上包括气体团簇离子束熔入的薄膜帽封结构的硬掩模层。
57.如权利要求56所述的硬掩模层,其中所述薄膜由选自由B和Ti构成的组中的一种或多种元素构成。
58.如权利要求54所述的级间电介质层,还包括上覆的由选自由Si3N4、SiCN和SiC构成的组中的材料构成的电介质扩散阻挡膜。
59.如权利要求56所述的硬掩模层,还包括上覆的由选自由Si3N4、SiCN和SiC构成的组中的材料构成的电介质扩散阻挡膜。
CNB2005800461897A 2004-11-08 2005-11-08 铜互连布线和形成铜互连布线的方法 Expired - Fee Related CN100472739C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62583104P 2004-11-08 2004-11-08
US60/625,831 2004-11-08

Publications (2)

Publication Number Publication Date
CN101107699A CN101107699A (zh) 2008-01-16
CN100472739C true CN100472739C (zh) 2009-03-25

Family

ID=36337136

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800461897A Expired - Fee Related CN100472739C (zh) 2004-11-08 2005-11-08 铜互连布线和形成铜互连布线的方法

Country Status (6)

Country Link
US (1) US7291558B2 (zh)
EP (1) EP1815507A4 (zh)
JP (1) JP2008519458A (zh)
KR (1) KR101184529B1 (zh)
CN (1) CN100472739C (zh)
WO (1) WO2006052958A2 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410890B2 (en) * 2002-12-12 2008-08-12 Tel Epion Inc. Formation of doped regions and/or ultra-shallow junctions in semiconductor materials by gas-cluster ion irradiation
JP4783561B2 (ja) * 2004-09-27 2011-09-28 株式会社アルバック 銅配線の形成方法
US7799683B2 (en) * 2004-11-08 2010-09-21 Tel Epion, Inc. Copper interconnect wiring and method and apparatus for forming thereof
JP4963349B2 (ja) * 2005-01-14 2012-06-27 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US7405152B2 (en) * 2005-01-31 2008-07-29 International Business Machines Corporation Reducing wire erosion during damascene processing
US7504135B2 (en) * 2005-02-03 2009-03-17 Samsung Electronics Co., Ltd Method of fabricating a manganese diffusion barrier
US7915735B2 (en) * 2005-08-05 2011-03-29 Micron Technology, Inc. Selective metal deposition over dielectric layers
US7709344B2 (en) * 2005-11-22 2010-05-04 International Business Machines Corporation Integrated circuit fabrication process using gas cluster ion beam etching
CN101563760B (zh) * 2006-10-30 2011-12-21 日本航空电子工业株式会社 利用气体团簇离子束的固体表面平坦化方法及固体表面平坦化设备
US8143157B2 (en) 2006-11-29 2012-03-27 Nxp B.V. Fabrication of a diffusion barrier cap on copper containing conductive elements
WO2008074672A1 (en) * 2006-12-20 2008-06-26 Nxp B.V. Improving adhesion of diffusion barrier on cu containing interconnect element
US7977791B2 (en) * 2007-07-09 2011-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Selective formation of boron-containing metal cap pre-layer
JP5006134B2 (ja) * 2007-08-09 2012-08-22 東京エレクトロン株式会社 ドライクリーニング方法
US8192805B2 (en) * 2007-09-27 2012-06-05 Tel Epion Inc. Method to improve electrical leakage performance and to minimize electromigration in semiconductor devices
US7981483B2 (en) * 2007-09-27 2011-07-19 Tel Epion Inc. Method to improve electrical leakage performance and to minimize electromigration in semiconductor devices
US8372489B2 (en) * 2007-09-28 2013-02-12 Tel Epion Inc. Method for directional deposition using a gas cluster ion beam
US7754588B2 (en) 2007-09-28 2010-07-13 Tel Epion Inc. Method to improve a copper/dielectric interface in semiconductor devices
US7772110B2 (en) * 2007-09-28 2010-08-10 Tokyo Electron Limited Electrical contacts for integrated circuits and methods of forming using gas cluster ion beam processing
US7794798B2 (en) * 2007-09-29 2010-09-14 Tel Epion Inc. Method for depositing films using gas cluster ion beam processing
US20090233004A1 (en) * 2008-03-17 2009-09-17 Tel Epion Inc. Method and system for depositing silicon carbide film using a gas cluster ion beam
US7871929B2 (en) * 2008-07-30 2011-01-18 Tel Epion Inc. Method of forming semiconductor devices containing metal cap layers
US7776743B2 (en) * 2008-07-30 2010-08-17 Tel Epion Inc. Method of forming semiconductor devices containing metal cap layers
US8202435B2 (en) * 2008-08-01 2012-06-19 Tel Epion Inc. Method for selectively etching areas of a substrate using a gas cluster ion beam
US7867891B2 (en) * 2008-12-10 2011-01-11 Intel Corporation Dual metal interconnects for improved gap-fill, reliability, and reduced capacitance
TWI423389B (zh) * 2008-12-18 2014-01-11 Tel Epion Inc 用以改善半導體裝置之漏電性能及將半導體裝置中之電遷移減至最小的方法
US8981322B2 (en) * 2009-02-04 2015-03-17 Tel Epion Inc. Multiple nozzle gas cluster ion beam system
US8226835B2 (en) * 2009-03-06 2012-07-24 Tel Epion Inc. Ultra-thin film formation using gas cluster ion beam processing
US8362596B2 (en) * 2009-07-14 2013-01-29 International Business Machines Corporation Engineered interconnect dielectric caps having compressive stress and interconnect structures containing same
US8237136B2 (en) * 2009-10-08 2012-08-07 Tel Epion Inc. Method and system for tilting a substrate during gas cluster ion beam processing
US8048788B2 (en) * 2009-10-08 2011-11-01 Tel Epion Inc. Method for treating non-planar structures using gas cluster ion beam processing
US20110084214A1 (en) * 2009-10-08 2011-04-14 Tel Epion Inc. Gas cluster ion beam processing method for preparing an isolation layer in non-planar gate structures
WO2011050073A1 (en) 2009-10-23 2011-04-28 President And Fellows Of Harvard College Self-aligned barrier and capping layers for interconnects
US20110127673A1 (en) * 2009-12-01 2011-06-02 International Business Machines Corporation Wiring structure and method
US8173980B2 (en) 2010-05-05 2012-05-08 Tel Epion Inc. Gas cluster ion beam system with cleaning apparatus
US8338806B2 (en) * 2010-05-05 2012-12-25 Tel Epion Inc. Gas cluster ion beam system with rapid gas switching apparatus
US8912658B2 (en) 2010-10-29 2014-12-16 International Business Machines Corporation Interconnect structure with enhanced reliability
CN102487038B (zh) * 2010-12-03 2013-12-04 中芯国际集成电路制造(北京)有限公司 铜互连结构及其形成方法
JP5417367B2 (ja) * 2011-03-22 2014-02-12 株式会社東芝 磁気メモリの製造方法
US8569888B2 (en) 2011-05-24 2013-10-29 International Business Machines Corporation Wiring structure and method of forming the structure
US8754508B2 (en) * 2012-08-29 2014-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Structure to increase resistance to electromigration
CN104299958B (zh) * 2013-07-16 2018-11-16 中芯国际集成电路制造(上海)有限公司 互连结构及互连结构的形成方法
US9123879B2 (en) 2013-09-09 2015-09-01 Masahiko Nakayama Magnetoresistive element and method of manufacturing the same
US9385304B2 (en) 2013-09-10 2016-07-05 Kabushiki Kaisha Toshiba Magnetic memory and method of manufacturing the same
US9368717B2 (en) 2013-09-10 2016-06-14 Kabushiki Kaisha Toshiba Magnetoresistive element and method for manufacturing the same
US9231196B2 (en) 2013-09-10 2016-01-05 Kuniaki SUGIURA Magnetoresistive element and method of manufacturing the same
CN103839604A (zh) 2014-02-26 2014-06-04 京东方科技集团股份有限公司 导电膜及其制备方法、阵列基板
US9540725B2 (en) 2014-05-14 2017-01-10 Tel Epion Inc. Method and apparatus for beam deflection in a gas cluster ion beam system
US20150340611A1 (en) * 2014-05-21 2015-11-26 Sony Corporation Method for a dry exhumation without oxidation of a cell and source line
KR102592471B1 (ko) * 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법
CN109801897B (zh) * 2017-11-16 2021-03-16 长鑫存储技术有限公司 芯片堆栈立体封装结构及其制造方法
US10651083B2 (en) 2018-03-05 2020-05-12 International Business Machines Corporation Graded interconnect cap
US11069526B2 (en) 2018-06-27 2021-07-20 Taiwan Semiconductor Manufacturing Co., Ltd. Using a self-assembly layer to facilitate selective formation of an etching stop layer
US11776901B2 (en) * 2021-03-10 2023-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. Via landing on first and second barrier layers to reduce cleaning time of conductive structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290732A (en) * 1991-02-11 1994-03-01 Microelectronics And Computer Technology Corporation Process for making semiconductor electrode bumps by metal cluster ion deposition and etching
CN1202983A (zh) * 1995-11-28 1998-12-23 株式会社日立制作所 半导体器件及其制造方法以及装配基板
CN1328699A (zh) * 1999-05-12 2001-12-26 皇家菲利浦电子有限公司 提高集成电路中互连金属化性能的方法和组合物
CN1409869A (zh) * 1999-12-10 2003-04-09 壳箱有限公司 生产封装集成电路装置的方法及所生产的封装集成电路装置
CN2585416Y (zh) * 2001-10-25 2003-11-05 精工爱普生株式会社 半导体芯片与布线基板、半导体晶片、半导体装置、线路基板以及电子机器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702427A (en) 1971-02-22 1972-11-07 Fairchild Camera Instr Co Electromigration resistant metallization for integrated circuits, structure and process
JP3386175B2 (ja) * 1993-03-22 2003-03-17 科学技術振興事業団 ガスクラスターイオン援用による化合物薄膜の形成方法
US5488013A (en) 1993-12-20 1996-01-30 International Business Machines Corporation Method of forming transverse diffusion barrier interconnect structure
US5814194A (en) * 1994-10-20 1998-09-29 Matsushita Electric Industrial Co., Ltd Substrate surface treatment method
JP3318186B2 (ja) * 1995-05-19 2002-08-26 科学技術振興事業団 ガスクラスターの形成方法と薄膜形成方法
JPH10189590A (ja) * 1996-12-24 1998-07-21 Mitsubishi Electric Corp 半導体装置及びその製造方法
US6154188A (en) 1997-04-30 2000-11-28 Candescent Technologies Corporation Integrated metallization for displays
US6448708B1 (en) 1997-09-17 2002-09-10 Candescent Intellectual Property Services, Inc. Dual-layer metal for flat panel display
SG70654A1 (en) 1997-09-30 2000-02-22 Ibm Copper stud structure with refractory metal liner
JPH11330033A (ja) * 1998-05-12 1999-11-30 Fraser Scient Inc エネルギーを有するクラスタ・ビームを使用して汚染表面を洗浄する方法および装置
US5990493A (en) * 1998-05-14 1999-11-23 Advanced Micro Devices, Inc. Diamond etch stop rendered conductive by a gas cluster ion beam implant of titanium
US6271595B1 (en) * 1999-01-14 2001-08-07 International Business Machines Corporation Method for improving adhesion to copper
US6331227B1 (en) * 1999-12-14 2001-12-18 Epion Corporation Enhanced etching/smoothing of dielectric surfaces
WO2002005315A2 (en) 2000-07-10 2002-01-17 Epion Corporation System and method for improving thin films by gas cluster ion be am processing
US6680514B1 (en) 2000-12-20 2004-01-20 International Business Machines Corporation Contact capping local interconnect
JP4535629B2 (ja) * 2001-02-21 2010-09-01 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP4350337B2 (ja) * 2001-04-27 2009-10-21 富士通マイクロエレクトロニクス株式会社 半導体装置
WO2003048407A1 (en) 2001-10-11 2003-06-12 Epion Corporation Gcib processing to improve interconnection vias and improved interconnection via
US7115511B2 (en) 2002-11-08 2006-10-03 Epion Corporation GCIB processing of integrated circuit interconnect structures
US20040229452A1 (en) * 2003-05-15 2004-11-18 Johnston Steven W. Densifying a relatively porous material
JP3819381B2 (ja) * 2003-07-07 2006-09-06 株式会社半導体理工学研究センター 多層配線構造の製造方法
CN100437912C (zh) * 2003-08-25 2008-11-26 松下电器产业株式会社 杂质导入层的形成方法和器件的制造方法
US7253098B2 (en) * 2004-08-27 2007-08-07 International Business Machines Corporation Maintaining uniform CMP hard mask thickness
US7405152B2 (en) * 2005-01-31 2008-07-29 International Business Machines Corporation Reducing wire erosion during damascene processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290732A (en) * 1991-02-11 1994-03-01 Microelectronics And Computer Technology Corporation Process for making semiconductor electrode bumps by metal cluster ion deposition and etching
CN1202983A (zh) * 1995-11-28 1998-12-23 株式会社日立制作所 半导体器件及其制造方法以及装配基板
CN1328699A (zh) * 1999-05-12 2001-12-26 皇家菲利浦电子有限公司 提高集成电路中互连金属化性能的方法和组合物
CN1409869A (zh) * 1999-12-10 2003-04-09 壳箱有限公司 生产封装集成电路装置的方法及所生产的封装集成电路装置
CN2585416Y (zh) * 2001-10-25 2003-11-05 精工爱普生株式会社 半导体芯片与布线基板、半导体晶片、半导体装置、线路基板以及电子机器

Also Published As

Publication number Publication date
WO2006052958A2 (en) 2006-05-18
US7291558B2 (en) 2007-11-06
CN101107699A (zh) 2008-01-16
JP2008519458A (ja) 2008-06-05
KR101184529B1 (ko) 2012-09-20
EP1815507A4 (en) 2010-10-06
WO2006052958A3 (en) 2007-04-12
EP1815507A2 (en) 2007-08-08
KR20070085814A (ko) 2007-08-27
US20060105570A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
CN100472739C (zh) 铜互连布线和形成铜互连布线的方法
US7838423B2 (en) Method of forming capping structures on one or more material layer surfaces
US20070184656A1 (en) GCIB Cluster Tool Apparatus and Method of Operation
US7776743B2 (en) Method of forming semiconductor devices containing metal cap layers
US6812147B2 (en) GCIB processing to improve interconnection vias and improved interconnection via
US7754588B2 (en) Method to improve a copper/dielectric interface in semiconductor devices
KR100652334B1 (ko) 캡층을 갖는 반도체 상호연결 구조물 상에 금속층을피착하는 방법
US20050272237A1 (en) Dual damascene integration structure and method for forming improved dual damascene integration structure
US20050266681A1 (en) Formation of low resistance via contacts in interconnect structures
JP5539883B2 (ja) 半導体デバイスにおける電気漏れ特性の改善及びエレクトロマイグレーションの抑制を行う方法
US7871929B2 (en) Method of forming semiconductor devices containing metal cap layers
EP1565933A2 (en) Gcib processing of integrated circuit interconnect structures
US8192805B2 (en) Method to improve electrical leakage performance and to minimize electromigration in semiconductor devices
CN101416291B (zh) 铜互连布线形成方法
CN112151442A (zh) 一种铜互连布线层上覆盖结构的方法
TWI423389B (zh) 用以改善半導體裝置之漏電性能及將半導體裝置中之電遷移減至最小的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090325

Termination date: 20151108

EXPY Termination of patent right or utility model