BR112015009446B1 - Sistema para mudança de um ângulo de um osso de um sujeito - Google Patents

Sistema para mudança de um ângulo de um osso de um sujeito Download PDF

Info

Publication number
BR112015009446B1
BR112015009446B1 BR112015009446-5A BR112015009446A BR112015009446B1 BR 112015009446 B1 BR112015009446 B1 BR 112015009446B1 BR 112015009446 A BR112015009446 A BR 112015009446A BR 112015009446 B1 BR112015009446 B1 BR 112015009446B1
Authority
BR
Brazil
Prior art keywords
bone
tibia
slice
cavity
adjustable
Prior art date
Application number
BR112015009446-5A
Other languages
English (en)
Other versions
BR112015009446A2 (pt
Inventor
David Skinlo
Thomas B. Buford
Ephraim Akyuz
Thomas Weisel
Roger Pisarnwongs
Adam G. Beckett
Jeffrey Lee Gilbert
Frank Yan Liu
Urs Weber
Edmund J. Roschak
Blair Walker
Scott Pool
Original Assignee
Nuvasive Specialized Orthopedics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvasive Specialized Orthopedics, Inc. filed Critical Nuvasive Specialized Orthopedics, Inc.
Publication of BR112015009446A2 publication Critical patent/BR112015009446A2/pt
Publication of BR112015009446B1 publication Critical patent/BR112015009446B1/pt

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8095Wedge osteotomy devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1675Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • A61B17/7216Intramedullary pins, nails or other devices for bone lengthening or compression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8004Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8023Variable length plates adjustable in both directions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8061Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/885Tools for expanding or compacting bones or discs or cavities therein
    • A61B17/8852Tools for expanding or compacting bones or discs or cavities therein capable of being assembled or enlarged, or changing shape, inside the bone or disc
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8872Instruments for putting said fixation devices against or away from the bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7014Longitudinal elements, e.g. rods with means for adjusting the distance between two screws or hooks
    • A61B17/7016Longitudinal elements, e.g. rods with means for adjusting the distance between two screws or hooks electric or electromagnetic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7014Longitudinal elements, e.g. rods with means for adjusting the distance between two screws or hooks
    • A61B17/7017Longitudinal elements, e.g. rods with means for adjusting the distance between two screws or hooks pneumatic or hydraulic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00212Electrical control of surgical instruments using remote controls
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • A61B2017/00402Piezo electric actuators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00411Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like actuated by application of energy from an energy source outside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00539Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated hydraulically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00982General structural features
    • A61B2017/00991Telescopic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/564Methods for bone or joint treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B2017/681Alignment, compression, or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/389Tibial components

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

sistema para mudança de um ângulo de um osso de um sujeito. de acordo com algumas concretizações, são fornecidos sistemas e métodos para alterar um ângulo de um tíbia de um sujeito que tem artrite. um sistema para alterar um ângulo de uma tíbia de um sujeito com osteoartrite de joelho inclui: um implante ajustável de forma não invasiva que compreende um atuador ajustável configurado para ser colocado dentro de uma cavidade longitudinal, no interior da tíbia, e tendo um invólucro exterior e um eixo interno, telescopicamente dispostos no invólucro exterior, o invólucro exterior configurado para acoplar a uma primeira parte da tíbia, e o eixo interior configurado para acoplar a uma segunda porção da tíbia, a segunda porção da tíbia separada, pelo menos parcialmente, a partir do primeiro porção da tíbia por uma osteotomia; e um elemento de acionamento que compreende um íman permanente e configurado para ser remotamente operável para deslocar telescopicamente o eixo interno em relação ao invólucro exterior.

Description

Campo da Invenção
[0001] O campo da invenção se refere, de uma forma geral, a dispositivos médicos para o tratamento de osteoartrite do joelho.
Antecedentes da Invenção
[0002] Osteoartrite de joelho é uma doença degenerativa da articulação do joelho que afeta um grande número de pacientes, principalmente, com idade superior a 40. A prevalência desta doença tem aumentado significativamente ao longo das últimas décadas, atribuída parcialmente, mas não completamente, ao crescente envelhecimento da população, bem como o aumento da obesidade. O aumento pode também ser devido ao aumento de pessoas altamente ativas no seio da população. Osteoartrite de joelho é causada, principalmente, por estresse a longo prazo sobre o joelho que degrada a cartilagem que cobre as superfícies articulares dos ossos na articulação do joelho. Muitas vezes, o problema torna-se pior após um evento especial, trauma, mas também pode ser um processo hereditário. Os sintomas incluem dor, rigidez, redução da amplitude de movimento, inchaço, deformação, fraqueza muscular e vários outros. Osteoartrite pode incluir um ou mais dos três compartimentos do joelho: o compartimento medial da articulação tibiofemoral, o compartimento lateral da articulação tibiofemoral, e a articulação patelo-femoral. Em casos graves, a substituição parcial ou total do joelho é efetuada de modo a substituir as porções doentes com novas superfícies do rolamento de peso para o joelho, geralmente feitas de materiais plásticos da classe de implantes ou metais. Essas operações envolvem dor pós-operatória significativa e necessitam de terapia física substancial. O período de recuperação pode durar semanas ou meses. Existem várias possíveis complicações da cirurgia, incluindo trombose venosa profunda, perda de movimento, infecção e fratura óssea. Após a recuperação, os pacientes cirúrgicos que receberam uni-compartimental ou substituição total do joelho devem reduzir significativamente a sua atividade, a remoção de funcionamento e esportes de alta energia completamente do seu estilo de vida.
[0003] Por estas razões, os cirurgiões estão tentando intervir precocemente, a fim de retardar ou mesmo impedir, a cirurgia de substituição do joelho. Cirurgias de osteotomia podem ser realizadas no fémur ou tíbia, a fim de alterar o ângulo entre o fémur e a tíbia, e, assim, ajustar as tensões sobre as diferentes partes da articulação do joelho. Na fatia fechada ou osteotomia de fatia fechada, uma fatia de ângulo de osso é removida, e as restantes superfícies são fundidas em conjunto, a criação de um novo ângulo de osso melhorada. Em osteotomia de fatia aberta é feita um corte no osso e as fatias de corte são abertas, criando um novo ângulo. Enxerto de osso é muitas vezes utilizado para preencher o espaço de novo em forma de fatia aberta, e frequentemente, uma placa é ligada ao osso com parafusos de osso. A obtenção de um ângulo correto, durante qualquer um destes tipos de osteotomia é quase sempre abaixo do ideal, e mesmo que o resultado seja próximo do que era desejado, pode haver uma perda subsequente do ângulo de correção. Algumas outras complicações experimentadas com esta técnica incluem a falha de não união e material.
SUMÁRIO DA INVENÇÃO
[0004] Em uma primeira concretização da invenção, um sistema para modificar um ângulo de um osso de um sujeito inclui um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposto no invólucro exterior, um conjunto magnético configurado para ajustar o comprimento do atuador ajustável durante o movimento axial do eixo interior e invólucro exterior em relação um ao outro, um primeiro suporte configurado para acoplamento com o invólucro exterior, e uma segunda peça de suporte configurada para acoplamento com o eixo interno, em que a aplicação de um campo magnético em movimento externamente ao sujeito movendo o conjunto de campo magnético, de tal modo que o eixo interior e o invólucro exterior movimentam-se em relação um ao outro.
[0005] Em uma outra concretização da invenção, um sistema para modificar um ângulo de um osso de um sujeito inclui um conjunto magnético, que tem um ímã polarizado radialmente acoplado a um eixo que tem roscas externas, e um bloco que possui roscas internas e acoplado ao eixo, em que o movimento de rotação do ímã polarizado radialmente faz com que o eixo a girar e mover-se axialmente em relação ao bloco. O sistema inclui ainda uma interface osso superior e uma interface osso inferior tendo uma distância ajustável, em que o movimento axial do eixo em um primeiro sentido faz com que a distância aumente.
[0006] Em uma outra concretização da invenção, um sistema para modificar um ângulo de um osso de um sujeito inclui uma tesoura de montagem que tem um primeiro e segundo braços de tesoura rotativamente acopladas através de uma dobradiça, os primeiro e segundo braços de tesoura acoplada, respectivamente, a parte superior e interfaces de osso inferiores configurado para mover um em relação ao outro. O sistema inclui ainda um conjunto magnético oco contendo um fuso rosqueado móvel axialmente disposto no mesmo, em que o conjunto magnético oco está configurado para girar em resposta a um campo magnético em movimento e em que o referido traduções de rotação em movimento axial do parafuso de avanço. O sistema inclui ainda um conjunto de roquete acoplado a uma extremidade do fuso rosqueado e na outra extremidade a um dos primeiro e segundo braços de tesoura, o conjunto de roquete compreendendo uma lingueta configurada para engatar os dentes dispostos em uma das interfaces osso superior e inferior, e em que o movimento axial do parafuso de avanço, avança a lingueta ao longo dos dentes e move as interfaces osso superior e inferior afastados um do outro.
[0007] Em uma outra concretização da invenção, um método de preparação de uma tíbia para o implante de um implante de deslocamento inclui fazer uma primeira incisão na pele de um paciente em uma localização adjacente do platô tibial da tíbia do paciente, criando um primeiro cavidade na tíbia através da remoção de material do osso ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto, a colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo alongado e principal configurado para escavar a tíbia assimetricamente em relação ao primeiro eixo, a criação de uma segunda cavidade na tíbia com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado da tíbia, e removendo o dispositivo de escavação.
[0008] Em uma outra concretização da invenção, um método de implantação de um sistema ajustável de forma não invasiva para alterar um ângulo da tíbia de um paciente inclui a criação de uma osteotomia entre uma primeira porção e uma segunda porção da tíbia, fazendo uma primeira incisão na pele de um paciente em uma localização do platô tibial da tíbia do paciente adjacente, criando uma primeira cavidade, na tíbia, ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto, colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação configurado para escavar a tíbia assimetricamente em relação ao primeiro eixo, a criação de uma segunda cavidade na tíbia com o dispositivo de escavação, em que a segunda cavidade se estende substancialmente para um lado da tíbia, a colocação de um implante ajustável de forma não invasiva através da primeira cavidade e, pelo menos, parcialmente para dentro da segunda cavidade, o implante ajustável de forma não invasiva que compreende um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposta no invólucro exterior, o acoplamento do invólucro exterior para a primeira porção da tíbia, e acoplando o eixo interior para a segunda porção da tíbia. Em algumas concretizações, o implante também pode ser modificado de forma invasiva, tal como minimamente invasivo.
[0009] Em uma outra concretização da invenção, um método para preparar um osso para a implantação de um implante inclui fazer uma primeira incisão na pele de um paciente, a criação de uma primeira cavidade no osso através da remoção de material de osso ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto, a colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo alongado e principal configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo, a escavação dispositivo que compreende ainda um braço articulado que tem uma primeira extremidade e uma segunda extremidade, o braço inclui uma superfície de compactação, criando uma segunda cavidade no osso, com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado de o osso, e a remoção do dispositivo de escavação.
[0010] Em uma outra concretização da invenção, um método para preparar um osso para a implantação de um implante inclui fazer uma primeira incisão na pele de um paciente, a criação de uma primeira cavidade no osso através da remoção de material de osso ao longo de um primeiro eixo que se prolonga em em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto, a colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo alongado e principal configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo, a escavação dispositivo que compreende ainda um braço articulado que tem uma primeira extremidade e uma segunda extremidade, incluindo o braço uma superfície abrasiva, a criação de uma segunda cavidade no osso, com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado de o osso, e a remoção do dispositivo de escavação.
[0011] Em uma outra concretização da invenção, um método para preparar um osso para a implantação de um implante inclui fazer uma primeira incisão na pele de um paciente, a criação de uma primeira cavidade no osso através da remoção de material de osso ao longo de um primeiro eixo que se prolonga em em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto, a colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo alongado e principal configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo, a escavação dispositivo que compreende ainda uma ferramenta de corte rotativa configurado para ser movido substancialmente em direção a um lado do osso, enquanto a ferramenta de corte rotativa está a ser rodada, a criação de uma segunda cavidade no osso, com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado do osso, e a remoção do dispositivo de escavação.
[0012] Em uma outra concretização da invenção, um sistema para modificar um ângulo de um osso de um paciente inclui um implante ajustável de forma não invasiva que compreende um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposto no invólucro exterior, o alojamento exterior configurado para acoplar a uma primeira parte do osso, e o eixo interior configurado para acoplar a uma segunda porção de osso, um elemento de accionamento configurado para mover o eixo interior relativamente ao invólucro exterior, e um dispositivo de escavação incluindo um corpo principal alongado configurado para inserir dentro de uma primeira cavidade do osso ao longo de um primeiro eixo, o dispositivo de escavação configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo para criar uma segunda cavidade que comunica com a primeira cavidade, em que o atuador é configurado ajustável para ser acoplado ao osso, pelo menos, parcialmente no interior da segunda cavidade.
[0013] Em uma outra concretização da invenção, um método para alterar um ângulo ósseo inclui a criação de uma osteotomia entre uma primeira porção e uma segunda porção de uma tíbia de um paciente; criando uma cavidade na tíbia, retirando o material ósseo ao longo de um eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto; a colocação de um implante ajustável não-invasiva para a cavidade, o implante ajustável de forma não invasiva que compreende um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposto no invólucro exterior, e um elemento de accionamento configurado para ser remotamente operável para deslocar o telescopicamente eixo interno em relação ao invólucro exterior; acoplar um do invólucro exterior ou interior do eixo para a primeira porção da tíbia; acoplar a outra do invólucro exterior ou interior do eixo para a segunda porção da tíbia; e remotamente a operação do elemento de acionamento para deslocar telescopicamente o eixo interno em relação ao invólucro exterior, alterando, assim, um ângulo entre a primeira porção e a segunda porção da tíbia.
[0014] Em uma outra concretização da invenção, um sistema para modificar um ângulo de uma tíbia de um sujeito com osteoartrite do joelho inclui um implante ajustável de forma não invasiva que compreende um atuador ajustável configurado para ser colocado dentro de uma cavidade longitudinal, no interior da tíbia, e tendo um invólucro exterior e um eixo interior, telescopicamente disposta no invólucro exterior, o alojamento exterior configurado para acoplar a uma primeira parte da tíbia, e o eixo interior configurado para acoplar a uma segunda porção da tíbia, a segunda porção de tíbia separados pelo menos parcialmente a partir da primeira porção da tíbia por uma osteotomia; e um elemento de accionamento que compreende um íman permanente e configurado para ser remotamente operável para deslocar telescopicamente o eixo interno em relação ao invólucro exterior.
[0015] Em uma outra concretizaçãoda invenção, um sistema para modificar um ângulo de um osso de um paciente inclui um implante ajustável de forma não invasiva que compreende um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposta no invólucro exterior, o invólucro exterior associado com um primeiro furo de ancoragem, e o eixo interior associado com um segundo furo de ancoragem, o primeiro furo de ancoragem configurado para transmitir um primeiro fixador para acoplamento do atuador ajustável de uma primeira parte do osso e o segundo furo de ancoragem configurado para passar um segundo fixador para acoplamento do atuador ajustável com uma segunda parte do osso, a segunda parte do osso separadas, pelo menos parcialmente, a partir da primeira porção de osso por osteotomia; um elemento de accionamento configurado para ser remotamente operável para deslocar telescopicamente o eixo interno em relação ao invólucro exterior; e em que o implante ajustável de forma não invasiva é configurado para ser angularmente sem restrições em relação a pelo menos uma da primeira porção de osso, ou a segunda parte do osso quando acoplado a ambos a primeira parte e a segunda parte do osso.
BREVE DESCRIÇÃO DOS DESENHOS
[0016] A FIG. 1 ilustra o alinhamento desejado de uma articulação do joelho em relação a um fémur e tíbia.
[0017] A FIG. 2 ilustra uma articulação do joelho com desalinhamento e associados a osteoartrose de compartimento medial.
[0018] A FIG. 3 ilustra uma técnica de fatia de abertura em uma tíbia.
[0019] A FIG. 4 ilustra uma técnica de fatia de abertura, com enxerto ósseo e uma placa anexada.
[0020] A FIG. 5 ilustra um dispositivo de osteotomia de fatia ajustável de forma não invasiva colocado em uma tíbia de acordo com uma primeira concretização da presente invenção colocada em uma tíbia.
[0021] A FIG. 6 ilustra uma vista do dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 5.
[0022] A FIG. 7 ilustra uma vista detalhada do grampo inferior do dispositivo em osteotomia em fatiaajustável de forma não invasiva das FIGS. 5 e 6.
[0023] A FIG. 8 ilustra uma concretização de um implante magneticamente ajustável.
[0024] A FIG. 9 ilustra um dispositivo de osteotomia de fatia ajustável de forma não invasiva com base em um elemento de mola de acordo com uma segunda concretizaçãoda presente invenção.
[0025] A FIG. 10 ilustra um dispositivo de osteotomia de fatia ajustável de forma não invasiva com base em um ascensor ligado de acordo com uma terceira concretizaçãoda presente invenção.
[0026] A FIG. 11 ilustra o dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 9 a ser inserido em uma abertura de fatia em uma tíbia.
[0027] A FIG. 12 ilustra um dispositivo de osteotomia fatia ajustável de forma não invasiva com base em uma tomada de tesoura de acordo com uma quarta concretizaçãoda presente invenção.
[0028] A FIG. 13 ilustra o dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 12 com a interface do osso superior removida para mostrar o mecanismo de tomada de corte.
[0029] A FIG. 14 ilustra uma vista em corte do dispositivo de osteotomia fatia ajustável de forma não invasiva das FIGS. 12 e 13.
[0030] A FIG. 15 ilustra uma vista em perspectiva de um dispositivo de ajuste externo.
[0031] A FIG. 16 ilustra uma vista explodida de uma peça de mão magnético do dispositivo de ajuste externo da FIG. 15.
[0032] A FIG. 17 ilustra um dispositivo de osteotomia fatia ajustável de forma não invasiva de acordo com uma quinta concretização da presente invenção.
[0033] A FIG. 18 ilustra uma vista em corte do dispositivo de osteotomia fatia ajustável de forma não invasiva da FIG. 17.
[0034] A FIG. 19 ilustra uma vista explodida do dispositivo de osteotomia fatia ajustável de forma não invasiva da FIG. 17.
[0035] Figs. 20 a 27 ilustram um método de implantação e do funcionamento de um dispositivo de osteotomia fatia ajustável não-invasiva para a manutenção ou o ajuste de um ângulo de fatia de uma osteotomia abertura da tíbia de um paciente.
[0036] A FIG. 28 ilustra eixos de distração em uma tíbia.
[0037] Figs. 29 a 31 ilustram um método de implantação e do funcionamento de um dispositivo de osteotomia fatia ajustável não-invasiva para a manutenção ou o ajuste de um ângulo de um fecho osteotomia em fatiada tíbia de um paciente.
[0038] A FIG. 32 ilustra um sistema para a escavação de material ósseo de acordo com uma primeira concretizaçãoda presente invenção.
[0039] A FIG. 33 ilustra uma rotação de ferramenta de corte do sistema da FIG. 32.
[0040] A FIG. 34 ilustra uma vista lateral da ferramenta de corte rotativa da FIG. 33.
[0041] A FIG. 35 ilustra uma vista em corte da ferramenta de corte rotativa da FIG. 34, tomada ao longo da linha 35-35.
[0042] A FIG. 36 ilustra uma unidade de acionamento do sistema da FIG. 32 com revestimento removido.
[0043] A FIG. 37 ilustra o sistema da FIG. 32 em lugar dentro de uma tíbia.
[0044] A FIG. 38 ilustra o sistema da FIG. 32 após a remoção de material osséo da tíbia.
[0045] A FIG. 39 ilustra um sistema para a escavação de material ósseo de acordo com uma segunda concretização da presente invenção em posição no interior da tíbia.
[0046] A FIG. 40 ilustra o sistema da FIG. 39 em uma configuração expandida no interior da tíbia.
[0047] A FIG. 41 ilustra uma vista de extremidade de um braço com uma superfície abrasiva, como parte de um dispositivo de escavação do sistema da FIG. 39.
[0048] A FIG. 42 ilustra um sistema para a escavação de material ósseo de acordo com uma terceira concretização da presente invenção em posição no interior da tíbia.
[0049] A FIG. 43 ilustra o sistema da FIG. 42 em uma configuração expandida no interior da tíbia.
[0050] A FIG. 44 ilustra uma vista de extremidade de um braço com uma superfície de compactação, como parte de um dispositivo de escavação do sistema da FIG. 42.
[0051] A FIG. 45A ilustra um dispositivo em osteotomia em fatiaajustável de forma não invasiva de acordo com uma sexta concretizaçãoda presente invenção.
[0052] A FIG. 45B ilustra o dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 45 A em uma vista em perspectiva.
[0053] A FIG. 46 ilustra uma vista detalhada do dispositivo de osteotomia fatia ajustável de forma não invasiva da FIG. 45B tomada de dentro círculo 46.
[0054] A FIG. 47 ilustra o dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 45A em uma primeira posição distração.
[0055] A FIG. 48 ilustra o dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 45A em uma segunda posição distração.
[0056] A FIG. 49 ilustra uma vista em corte do dispositivo de osteotomia fatia ajustável de forma não invasiva da FIG. 45 A em uma primeira posição distração.
[0057] A FIG. 50 ilustra uma vista em corte do dispositivo de osteotomia fatia ajustável de forma não invasiva da FIG. 45 A em uma segunda posição distracção.
[0058] A FIG. 51 ilustra uma bucha do dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 45 A.
[0059] Figs. 52 a 55 ilustram um método de implantação e de funcionamento do dispositivo em osteotomia em fatiaajustável de forma não invasiva da FIG. 45A para a manutenção ou o ajuste de um ângulo de uma osteotomia de fatia aberta da tíbia de um paciente.
[0060] Figs. 56A a 56D ilustram configurações de parafusos de osso para o dispositivo em osteotomia de fatia ajustável de forma não invasiva da FIG. 45A.
[0061] A FIG. A figura 57 apresenta um dispositivo em osteotomia de fatia ajustável de forma não invasiva de acordo com uma sétima concretizaçãoda presente invenção.
[0062] A FIG. 58 ilustra uma âncora de osso para utilização com o dispositivo em osteotomia de fatia ajustável de forma não invasiva da FIG. 57.
[0063] Figs. 59 a 61 ilustram um método de implantação e de funcionamento do dispositivo em osteotomia de fatia ajustável de forma não invasiva da FIG. 57 para a manutenção ou o ajuste de um ângulo de fatia de uma osteotomia abertura da tíbia de um paciente.
[0064] A FIG. 62 ilustra um dispositivo de osteotomia de fatia ajustável de forma não invasiva de acordo com uma oitava concretizaçãoda presente invenção em uma primeira posição distracção.
[0065] A FIG. 63 ilustra o dispositivo de osteotomia em fatia ajustável de forma não invasiva da FIG. 62 em uma segunda posição de distração.
[0066] A FIG. 64A ilustra um atuador magnético ajustável de um dispositivo em osteotomia em fatia ajustável de forma não invasiva de acordo com uma concretização da presente invenção durante a remoção de um conjunto magnético.
[0067] A FIG. 64B ilustra o atuador magneticamente ajustável da FIG. 64A após a remoção de um conjunto magnético.
[0068] A FIG. 64C ilustra a FIG atuador magneticamente ajustável da FIG. 64A após a substituição de uma tampa de compartimento do atuador.
[0069] A FIG. 65 A ilustra um atuador magnético ajustável de um dispositivo em osteotomia em fatia ajustável de forma não invasiva de acordo com uma concretizaçãoda presente invenção, antes da remoção de um íman permanente radialmente polarizado.
[0070] A FIG. 65B ilustra o atuador magneticamente ajustável da FIG. 65A durante a remoção do ímã permanente radialmente-polarizado.
[0071] A FIG. 65C ilustra o atuador magneticamente ajustável da FIG. 64 A, depois de remoção do íman permanente radialmente polarizado e substituição de uma tampa da caixa magnético.
[0072] A FIG. 65D ilustra o atuador magneticamente ajustável da FIG. 64 A, após a substituição de uma tampa de compartimento do atuador.
[0073] Figs. 66 a 69 ilustram esquematicamente várias concretizações de fontes alternativas de um elemento de acionamento de um dispositivo de osteotomia fatia ajustável de forma não invasiva.
DESCRIÇÃO DETALHADA DAS CONCRETIZAÇÕES ILUSTRADAS
[0074] A FIG. 1 ilustra um alinhamento padrão de um fémur 100, e uma tíbia 102 uma articulação de joelho 104, em que a articulação do quadril (na cabeça fémur 108), uma articulação de joelho 104 e uma articulação do tornozelo (na linha média da tíbia distal 110) são orientadas ao longo de uma única linha 112. A fíbula 106 é mostrada ao lado da tíbia 102. A articulação do joelho 104 da FIG. 2 é mostrada em um estado artrítico, em que um compartimento medial 114 foi comprometido, fazendo com que a linha 112 a passar medialmente fora do centro da articulação do joelho 104.
[0075] A FIG. 3 ilustra uma osteotomia em fatia aberta 118 formada por meio de corte ao longo de uma linha de corte 120, e um ângulo de fatia aberta da FIG. 4 ilustra a configuração final desta fatia aberta pela colocação de material de enxerto ósseo no interior da abertura 122 osteotomia em fatia 118, e, em seguida, a colocação de uma placa 124, que é então fixada à tíbia 102 com parafusos tibiais 126.
[0076] A FIG. 5 ilustra uma tíbia 102 com um dispositivo não-invasivo de osteotomia fatia ajustável 128 implantado. O O dispositivo de osteotomia de fatia ajustável de forma não invasiva 128 é mostrado sem a tíbia 102 na FIG. 6. O dispositivo de osteotomia de fatia ajustável de forma não invasiva 128 inclui um atuador 142 que compreende um invólucro exterior 130 e uma haste interna 132 acoplada telescopicamente dentro do invólucro exterior 130 para o ajuste longitudinal não-invasiva. Para implantar o O dispositivo de osteotomia de fatia ajustável de forma não invasiva 128, um orifício 138 é perfurado na tíbia 102, e, em seguida, é feito um corte ao longo da linha de corte 120. O atuador 142 é então inserido, a extremidade distal 140 em primeiro lugar, para dentro do buraco 138. Uma abertura 144 de fatia é aberto o suficiente para ser capaz de inserir um elemento de suporte inferior 136 e um suporte superior 134. O suporte inferior 136, como visto na FIG. 7, tem uma abertura 146 e um diâmetro interno 148 que permitem que ele seja encaixado sobre uma ranhura circunferencial 150 em torno do alojamento exterior 130. O suporte inferior 136 é então fixado à tíbia 102 na porção inferior 152 da abertura 144 por fatia colocação de parafusos de osso (não representados) através dos orifícios 154. suporte superior 134 é, então, caiu no lugar e fixado a uma extremidade proximal 156 do atuador 142, apertando um parafuso de aperto 158 que alinha através de um furo rosqueado no eixo interior 132 do atuador 142. O suporte superior 134 é então fixado à tíbia 102 na porção superior 162 da abertura da fatia 144 colocando parafusos de osso (não mostrados) através dos orifícios 164.
[0077] A FIG. 8 ilustra um atuador magnético ajustável 142 que pode ser utilizado nas concretizações das Figs. 5-7, ou de outras concretizações aqui descritas. Um eixo interior 132, que tem uma extremidade 160, é telescopicamente ajustável dentro de um alojamento exterior 130 através da utilização de um conjunto magnético 166 nela contida. O conjunto magnético 166 compreende um radialmente polarizado, ímã cilíndrico 168 que se envolve com um ou mais estágios de engrenagens planetárias 170. A engrenagem planetária encena a saída 170 para um parafuso de avanço 172. Em algumas modalidades, o palco da engrenagem final 170 pode ser preso à parafuso de avanço 172 com um pino de alta resistência, por exemplo, um pino construído a partir de aço inoxidável série 400. O eixo interno 132 contém uma cavidade 174 na qual se encontra ligado uma porca 176 que tem uma rosca fêmea que interage com a rosca macho do parafuso de avanço 172. Um rolamento radial 178 e um rolamento de impulso 180 permitem que o conjunto magnético 166 para operar com relativamente baixa atrito. Um anel de vedação 182 é mantido dentro de uma ranhura circunferencial no interior da parede do invólucro exterior 130, e o diâmetro interno do anel de vedação 182 veda dinamicamente o diâmetro exterior do eixo interior 132.
[0078] Voltando à FIG. 5, o dispositivo de osteotomia de fatia ajustável de forma não invasiva 128 é usado para abrir gradualmente a abertura 144 da fatia ao longo do tempo. Através da aplicação de um campo magnético em movimento a partir de uma localização relativa externo ao paciente, por exemplo, depois de o paciente ter recuperado da cirurgia, o atuador 142 da FIG. 6 pode ser gradualmente aumentado (por exemplo, cerca de um (1) mm por dia), permitindo a abertura de fatia 144 para atingir o ângulo desejado, o que pode ser testado por ter o paciente realizar estudos de movimento diferentes (pisando, torneamento, etc.), até que a condição mais confortável é atingida. Alongamento gradual pode permitir a possibilidade de Ilizarov osteogênese, em que novas formas materiais óssea na abertura de fatia como ele é aberto. Nesse modo, de um enxerto ósseo pode ser desnecessário. Após o ângulo de abertura da fatia 144 desejado é atingido, o material de osso recentemente crescido pode ser permitido para consolidar. Se, durante o processo, o alongamento tem sido demasiado rápida, ou osso novo não tem suficientemente consolidada, um campo magnético em movimento pode ser aplicado em uma direção oposta encurtando assim o atuador 142 para aumentar a compressão e criar uma boa dimensão para a formação de calos. Depois de confirmar que a formação do calo suficiente tenha ocorrido, o alongamento pode ser retomado com a mesma velocidade, ou a uma velocidade diferente. Uma vez concluído o alongamento é suficientemente, e osso consolidada é estável, pode ser desejável remover todo o dispositivo de osteotomia de fatia ajustável não-invasiva 128, ou simplesmente o conjunto magnético 166.
[0079] A FIG. 9 ilustra um dispositivo de osteotomia de fatia ajustável de forma não invasiva 184 em conjunto magnético compreendendo um íman 192, incluindo, por exemplo, um íman cilíndrico radialmente polarizado 186, que está acoplado a um parafuso de acionamento 188. Como íman cilíndrico radialmente polarizado radialmente 186 está ligado por uma aplicado externamente campo magnético em movimento, o parafuso de accionamento 188 gira dentro de um bloco 190 tendo uma rosca fêmea, fazendo com que o conjunto do parafuso de accionamento 188 e ímã 192 para ser movido em uma direção axial em primeiro lugar (A). À medida que o conjunto magnético 192 move-se axialmente que empurra uma memória de formato curvo (por exemplo, super elástico Nitinol®) placa de mola 194 no ponto de ligação 196. Um rolamento de encosto 198 no ponto de ligação 196 permite a rotação contínua do íman cilíndrica radialmente 186 como polarizado a força aumenta. Como uma curva interior 200 da mola de prato 194 é pressionado de Nitinol na primeira direção axial (A), a largura (W) da mola de prato 194 aumenta o Nitinol. Um recorte 202 na primavera placa Nitinol 194 oferece espaço para o ímã cilíndrico radialmente polarizado 186 para ligar e para se mover na direção primeira axial (A).
[0080] A FIG. 10 ilustra um dispositivo de osteotomia de fatia ajustável de forma não invasiva 216 similar ao dispositivo de osteotomia de fatia ajustável de forma não invasiva 184 da FIG. 9, exceto que a mola da placa de nitinol 194 da FIG. 9 é substituída por um ascensor de ligação 204. O ascensor 204 compreende uma placa inferior 206 e uma placa superior 208, que estão ligados a um bloco 190 por meio de pinos 210, que permitem a cada placa 206 e 208 para aumentar a angulação ao longo das setas (B). As placas 206 e 208 estão ligadas a placas interiores 212 e 214 por meio de pinos 210. A estrutura articulada de placas interiores 212, 214 é empurrado para a frente de uma forma semelhante como o Nitinol placa de mola 194 é empurrada na direção axial primeiro (A) na fig. 9.
[0081] A FIG. 11 ilustra um dispositivo de osteomia de fatia ajustável de forma não invasiva 184 que está sendo colocado em uma abertura de fatia 144 em uma tíbia 102. O dispositivo de osteomia de fatia ajustável de forma não invasiva 216 da FIG. 10 pode ser inserido na mesma maneira.
[0082] As Figs. 12 a 14 ilustram um dispositivo de osteomia de fatia ajustável de forma não invasiva 218 com base em uma tesoura manual. O dispositivo de osteomia de fatia ajustável de forma não invasiva 218 compreende um invólucro principal 220 que tem uma interface osso inferior 222 e uma interface osso superior 224, a interface 224 osso superior que pode ser ajustada com respeito ao invólucro principal 220 e o osso inferior da interface 222. A FIG . 13 mostra um dispositivo de osteomia de fatia ajustável de forma não invasiva 218 com a interface osso superior 224 removido para melhor apreciar os componentes internos. Um conjunto de tesoura 225 compreende uma primeira tesoura 226 e uma segunda tesoura 228, que pode ser acoplada por meio de um pino central 230 de uma forma articulada. Braços distais 234 e 238 226 de tesoura e 228 podem ser acoplados às extremidades distais da interface osso inferior 222 e 224 de interface do osso superior por um braço 240. Os pinos 232 da segunda tesoura 228 é acoplado a uma interligação 242 de um campo magnético montagem 244 com um pino 240. Um conjunto magnético oco 246 tem roscas internas 247 que se engatam roscas externas 249 de um parafuso de avanço 248 que está ligado à interconexão 242. O conjunto magnético oco 246 pode compreender um íman polarizado radialmente oco. A interligação 242 inclui uma lingueta 251, que é capaz de engatar os dentes 253 de uma placa de roquete 255. Como aplicado externamente em movimento faz com que o campo magnético do íman 246 a rodar, o parafuso de avanço 248 e a interligação 242 são movidos em uma primeira direção axial (A), fazendo com que a montagem 225 uma tesoura para abrir- se, e, assim, aumentar a distância (D) entre a interface osso inferior 222 e a interface do osso superior 224. Um braço 236 da primeira tesoura 226 é capaz de deslizar dentro de um canal 257 em a interface do osso superior 224. A lingueta 251 e os dentes 253 da placa 255 de roquete formar um uma maneira de roquete, permitindo que a distância (D) a ser aumentado, mas não diminuiu.
[0083] A FIG. 15 ilustra um dispositivo de ajuste externo 1180 que é utilizado para ajustar de forma não invasiva dos dispositivos e sistemas aqui descritos. O dispositivo de ajuste externo 1180 compreende uma peça magnética manual 1178, uma caixa de controle 1176 e uma fonte de alimentação 1174. O controle de caixa de 1 176 inclui um painel de controle de um 182 com um ou mais controles (botões, chaves e tátil, movimento, áudio ou sensores de luz) e um monitor 1 184. O display 1184 pode ser visual, auditiva, tátil, etc., ou uma combinação das características acima mencionadas. O dispositivo de ajuste externo 1180 pode conter software que permite a programação pelo médico.
[0084] A FIG. 16 mostra em melhores detalhes a peça mangnética manual 1178 do dispositivo de ajuste externo 1 180. Como visto na FIG. 16, existem uma pluralidade de, por exemplo, dois (2), os imans 1186 tendo uma forma cilíndrica (também, outras formas são possíveis). Os ímans 1186 podem ser feita a partir de ímãs de terras raras, e pode em algumas concretizações ser radialmente polarizados. Os ímãs 1186 estão ligados ou não garantidos dentro de copos magnéticos 1187. Os copos magnéticos 1 187 incluem um eixo de 1198, que está ligado a uma primeira marcha ímã 1212 e uma segunda marcha ímã 1214, respectivamente. A orientação dos pólos de cada um dos dois ímans 186 são mantidos em relação ao outro por meio do sistema de mudanças (por utilização de engrenagem central 1210, que engrena com a primeira roda dentada tanto íman 1212 e segunda engrenagem íman 1214). Em uma concretização, o pólo norte de um dos ímãs 1186 gira sincronizadamente com o pólo sul do outro íman 1186, em posições correspondentes do relógio ao longo de uma rotação completa. A configuração tem sido conhecida para proporcionar uma entrega melhorada do binário, por exemplo, íma cilíndrico 168 ou 246. Exemplos de métodos e concretizações de dispositivos de regulação externos que podem ser utilizados para ajustar a forma não invasiva fatia ajustável dispositivo de osteotomia 218, ou outra concretizações da presente invenção, estão descritos na na patente norte-americana N° US 8,382,756, a divulgação da qual é aqui incorporada por referência na sua totalidade, e no pedido de patente serial No. US 13/172,598 que foi publicado com o número de publicação US 2012/0004494 Al, a divulgação da qual é aqui incorporada por referência na sua totalidade.
[0085] Os componentes da peça magnética manual 1178 são mantidas juntas entre a placa de íman 1 190 e uma placa frontal 1 192. A maior parte dos componentes são protegidos por uma tampa 1216. Os ímans 1 186 girar dentro de um íman estático cobrir 188, de modo que a peça magnética manual 1178 pode ser colocada diretamente no paciente, enquanto não transmitir qualquer movimento para as superfícies externas do paciente. Antes de se distrair o dispositivo intramedular alongamento 1110, o operador coloca a peça magnética manual 1178 através do paciente perto do local do íman cilíndrico 1134. Um suporte isolador de íman 194 que está interposta entre os dois ímãs 1186 contém uma janela de visualização 1196, para auxiliar na colocação. Por exemplo, uma marca feita na pele do paciente no local apropriado, com um marcador indelével pode ser visto através da janela de visualização 1196. Para realizar uma distracção, o operador detém a peça magnética manual 1178 por suas alças de 1200 e deprime um interruptor distral 1228, fazendo o motor 1202 dirigir em um primeiro sentido. O motor 1202 tem uma caixa de engrenagens 1206 que faz com que a velocidade de rotação de uma engrenagem de saída 1204 para ser diferente da velocidade de rotação do motor 1202 (por exemplo, uma velocidade mais lenta). A engrenagem de saída 1204, em seguida, vira uma engrenagem de redução 1208 que engrena com a engrenagem do centro de 1210, fazendo-o girar a uma velocidade de rotação diferente do que a engrenagem de redução 1208. A engrenagem do centro 1210 malhas tanto com a primeira marcha ímã 1212 e a engrenagem segundo ímã 1214 transformando-os a uma taxa que é idêntica a outra. Dependendo da parte do corpo onde os ímãs 1186 do dispositivo de ajuste externo 1180 estão localizadas, deseja-se que esta taxa seja controlado, para minimizar a densidade da corrente induzida resultante transmitido pelo íman 1 186 e 1 134 íman cilíndrico embora o tecidos e fluidos do corpo. Por exemplo, uma velocidade de rotação do íman 60 RPM ou menos é contemplado embora outras velocidades possam ser utilizadas, tais como 35 RPM ou menos. A qualquer momento, a distração pode ser reduzida, pressionando o interruptor de retração 1230, o que pode ser desejável se o paciente sente dor, ou dormência na área segurando o aparelho.
[0086] As Figs. 17 a 19 ilustram um dispositivo de osteomia de fatia ajustável de forma não invasiva 300 compreendendo um atuador magnético ajustável 342 que tem uma primeira extremidade 326 e uma segunda extremidade 328. Um eixo interior 332 que tem uma cavidade 374 está acoplada telescopicamente dentro de um invólucro exterior 330, que compreende uma strutura de distração 312 e uma caixa de engrenagens 306. Pelo menos um orifício transversal 305 passa através de uma tampa de extremidade 302 localizado na primeira extremidade 326 do atuador magneticamente ajustável 342. A tampa de extremidade 302 pode ser fixada de forma estanque para a caixa de engrenagens 306 por uma união de soldagem circunferencial 390. Uma segunda união de soldagem 392 protege de forma estanque o invólucro de distração 312 na caixa da engrenagem 306. Um ou mais furos transversais 364 passe através do eixo interno 332. O um ou mais furos transversais 364 e o pelo menos um furo transversal 305 permite passagem de, pelo menos, um parafuso de bloqueio. Algumas concretizações utilizam apenas um orifício transversal 364 e um furo transversal 305, de modo a melhor permitir que o jogo de rotação entre o atuador magneticamente ajustável 342 e os parafusos de aperto como o atuador magneticamente ajustável 342 é ajustado. Uma ou mais ranhuras longitudinais 372 na superfície exterior do eixo interior 332 engatar de um modo codificado com saliências 375 em um anel anti-rotação 373 que engata dentro de rebaixos extremidade do invólucro 312 distracção a uma borda plana 384 do anti- rotação anel 373. Um ou mais guia de aletas 383 no anel anti- rotação 373 pode manter o anel anti-rotação 373 rotativamente estático dentro de cortes de 391 na estrutura de distração 312.
[0087] O conteúdo do atuador magneticamente ajustável 342 são protegidos dos fluidos corporais por uma ou mais juntas tóricas 334 que residem dentro das ranhuras circunferenciais 382 no eixo interno 332, a vedação dinâmica ao longo da superfície interna do invólucro 312. O interior do eixo de distração 332 é acionado axialmente em relação ao invólucro exterior 330 por um parafuso de avanço 348 que está ligado por um íman cilíndrico polarizado radialmente 368. O íma cilíndrico radialmente polarizado 368 está ligado dentro de um primeiro alojamento de íman 308 e um segundo alojamento 310 e o ímã é rotativamente realizado em um pino 336 em uma das extremidades por um rolamento radial 378, que envolve diretamente o rebaixo 304 da tampa 302. A segunda habitação ímã 310 saídas em uma primeira etapa 367 de três estágios de engrenagens planetárias 370. As engrenagens planetárias 387 de a engrenagem planetária de três fases 370 por sua vez, dentro de dentes interior 321 no interior da caixa de engrenagens 306. A primeira fase 367 sai para uma segunda fase 369, e a segunda fase 369 sai para uma terceira etapa 371. A terceira fase 371 é acoplada ao fuso rosqueado 348 por um pino de travamento 385, que passa através dos furos 352 em ambas as saídas da terceira fase 371 e no parafuso de avanço 348. Um acoplador de parafuso de avanço 339 é também mantido ao parafuso de avanço 348 do pino 385, o qual passa através de um orifício 359. O parafuso guia 348 rosqueado engata uma porca 376 que está ligado no interior da cavidade 374 da haste interna 332. Cada fase de engrenagens planetárias 370 incorpora uma proporção de engrenagem 4:1, produzindo uma relação de transmissão total de 64:1, assim 64 voltas do íma cilíndrico radialmente polarizado 368 causa uma única volta do parafuso de chumbo 348. Um rolamento de encosto 380, realiza-se vagamente na direção axial entre bordas na caixa de engrenagens 306. O engate de parafuso de chumbo 339 inclui uma saliência 355, que é semelhante a uma borda oposta (não representada) na base do fuso rosqueado 348. Se o eixo interno 332 é retraído para o comprimento mínimo, a borda na base do parafuso de avanço 348 confina com o ressalto 355 do parafuso de avanço acoplador, assegurando que o parafuso de avanço 348 não pode ser prensado contra a porca com muito alta, de um binário. O rolamento de encosto 380 é realizado entre uma borda 393 na caixa de engrenagens 306 e uma inserção 395 no final da caixa de engrenagens 306. O rolamento de encosto 380 serve para proteger o íma cilíndrico radialmente polarizado 368, a a engrenagem planetária encena 370, os invólucros de ímas308 e 310, bem como o rolamento radial 378 de danos devido à compressão. Um membro de manutenção 346 compreendendo um arco fina de material magnético, tal como aço inoxidável "série 400 ', está ligado dentro da caixa de engrenagens 306, adjacente ao ímã cilíndrico polarizado radialmente 368, e pode atrair um pólo do íma cilíndrico radialmente polarizado 368, a fim de minimizar a possibilidade do íma cilíndrico radialmente polarizado 368 virar quando não está sendo ajustado pelo dispositivo de ajuste externo 1180, por exemplo, durante o movimento do paciente.
[0088] O dispositivo de osteomia de fatia ajustável de forma não invasiva 300 tem a capacidade para aumentar ou diminuir o seu comprimento, pelo menos, cerca de três milímetros de cada direção, em uma concretização, e cerca de nove milímetros de cada direção em outra forma de realização. O dispositivo de osteomia de fatia ajustável de forma não invasiva 300 pode alcançar uma força de distração de 240 quilos quando a peça magnética manual 1178 do dispositivo de ajuste externo 1180 é colocada para que os ímãs 1186 sejam cerca de meia polegada a partir do íma cilíndrico radialmente polarizado 368. A maioria dos componentes do dispositivo de osteomia de fatia ajustável de forma não invasiva pode ser feito a partir de titânio ou ligas de titânio, tais como titânio-6A1-4V, cromo, cobalto, aço inoxidável ou outras ligas. Quando implantada, o dispositivo de osteomia de fatia ajustável de forma não invasiva 300 pode ser inserido manualmente ou pode ser ligado a uma ferramenta de inserção (por exemplo uma guia de perfuração). Uma interface 366 compreende uma rosca interior 397 está localizado na tampa de extremidade 302 para acoplamento reversível com as roscas macho de uma ferramenta de inserção. Alternativamente, estas funcionalidades podem estar localizadas sobre a extremidade 360 da haste interna 332. Além disso, um tirante destacável pode ser ligado a qualquer das extremidades do dispositivo de osteomia de fatia ajustável de forma não invasiva 300, de modo que podem ser facilmente removida, se colocado de forma incorreta.
[0089] As Figs. 20 a 27 ilustram um método de implantação e operação de um dispositivo de osteomia de fatia ajustável de forma não invasiva 125 para alterar um ângulo da tíbia de um paciente. Na FIG. 20, uma vista frontal da articulação do joelho direito 104 de um paciente com osteoartrite do joelho é mostrada, incluindo o fêmur 100, tíbia 102 e fíbula 106. O dispositivo de osteomia de fatia ajustável de forma não invasiva 125 pode ser colocado para o lado da tíbia medial 102 (longe do perónio 106). O osso da tíbia 102 é, assim, preparado para permitir uma colocação não central do dispositivo de osteomia de fatia ajustável de forma não invasiva. É feita uma incisão na pele com um lado medial da tíbia 102 e uma osteotomia fatia aberta 118 é feita em relação a um ponto de articulação 107, através da criação de um primeiro corte 103, por exemplo, com uma serra oscilante, e abrindo a abertura osteotomia em fatia1 18, como pode ser visto na FIG. 21. Um local típico para o ponto de articulação 107 pode ser descrito pelas distâncias X e Y na FIG. 20. Em algumas concretizações, X = 10 mm e Y = 15 mm. No ponto de articulação, é comum fazer-se um pequeno furo de perfuração e colocar um pino vértice, por exemplo, um pino de ponta com um diâmetro de cerca de 3 mm a cerca de 4 mm. A osteotomia em fatia aberta 118 agora separa uma primeira parte 119 e a segunda parte 121 da tíbia 102.
[0090] Como pode ser visto na FIG. 22, é feita uma incisão na pele, uma broca 111 é colocado no centro do platô tibial 101 e uma primeira cavidade 109 tendo um primeiro eixo 1 17 é perfurado a partir do platô tibial 101 para dentro do canal medular da tíbia 102. Pode ser desejado durante este passo de perfuração para colocar uma fatia temporária 123 na fatia aberta osteotomia 1 18, a fim de manter a estabilidade. Um diâmetro da broca de cerca de 12 mm ou menos, ou mais preferivelmente cerca de 10 mm ou menos é utilizado para criar a primeira cavidade 109. As FIGS. 23 e 24 ilustram os passos para a criação de um generalizadas segundo uma cavidade 15. Várias concretizações são representados aqui por um dispositivo de escavação 113, o qual é inserido na primeira cavidade 109 através da abertura no prato tibial 101. A segunda cavidade 115 é então formada para um lado da primeira cavidade 109, neste caso, o lado medial. Como mostrado na FIG. 25, após o dispositivo de escavação 1 13 ter sido removida, um dispositivo de osteomia de fatia ajustável de forma não invasiva 125 tendo um invólucro exterior 129 e um eixo interior 127 é inserido na primeira cavidade 109. Na FIG. 25, o dispositivo de osteomia de fatia ajustável de forma não invasiva 125 é mostrado com o eixo interior 127 virado para superiormente (para cima) sobre o paciente, mas pode, em certos casos para o implante do dispositivo de osteomia de fatia ajustável de forma não invasiva 125 com o eixo 127 interno enfrentando inferiormente (para baixo). Primeiro orifício transversal 135 e segundo orifício transversal 137 no dispositivo de osteomia de fatia ajustável de forma não invasiva 125 são configurados para o posicionamento das âncoras ósseas, por exemplo, parafusos de fixação.
[0091] Na fig. 26, o dispositivo de osteomia de fatia ajustável de forma não invasiva 125 é então colocado dentro da segunda cavidade 115 e fixado com um primeiro meio de ancoragem 131 do primeiro furo transversal 135 e uma segunda âncora 133 através do segundo orifício transversal 137. Com base em cálculos feitos a partir de imagens pré- cirurgia e / ou cirurgia de raios X ou outras imagens, um ângulo de fatia (i é definida entre a primeira porção 19 e uma segunda porção 121 da tíbia. Após a recuperação pós-cirúrgica, o paciente pode retornar para uma sessão de imagem dinâmico (por de raios-x exemplo) durante o qual o paciente fica, e mesmo se move a articulação de joelho 104, a fim de melhor confirmar se o ângulo de fatia i é permite a conformação óptima da articulação do joelho 104. Se, por exemplo, neste momento, for desejado aumentar o ângulo de fatia i, a peça magnética manual 1178 do dispositivo de ajuste externo 1180 da Fig. 15 é então colocada sobre a articulação do joelho do paciente 104 e é operado de modo que a haste interna 127 é distraído a partir do invólucro exterior 129, para aumentar a um ângulo de fatia um maior 2 (FIG. 27). Pode ser desejado para, pelo menos, uma das âncoras (por exemplo segunda âncora 133) para ter uma folga suficiente no orifício transversal (por exemplo, o segundo furo transversal 137), de modo que qualquer angulação que ocorre, enquanto o dispositivo de osteomia de fatia ajustável de forma não invasiva 125 está distraído, não vai colocar um momento de flexão adicionais sobre o dispositivo de osteomia de fatia ajustável de forma não invasiva 125. A sessão de imagem dinâmica pode ser feito em um tempo após a cirurgia, quando o inchaço diminuiu, mas antes da consolidação óssea é significativo. Este período pode ser de aproximadamente uma a duas semanas após a cirurgia. Se for realizado um ajustamento (aumento ou diminuição), uma sessão adicional de imagem dinâmico pode ser realizado, por exemplo, uma semana mais tarde. O dispositivo de osteomia de fatia ajustável de forma não invasiva 125 é fornecido, de modo que ele pode ser alongado ou encurtado ou, em outras palavras, de modo que o ângulo de osteomia de fatia aberta 118 possa ser posteriormente aumentado ou diminuído, dependendo da determinação da desejada correção.
[0092] Uma forma alternativa de quantificar a quantidade de abertura da fatia de abertura osteotomia 1 18, é medir, por exemplo, através de radiografias, a lacuna G1, G2 na borda medial 181 da osteomia de fatia aberta 118. Na faixa típica do ângulo de osteomia de fatia aberta 118, e a faixa típica de tamanhos tíbia 102 de pacientes, a diferença G1, G2 , em milímetros tende a aproximar o ângulo de fatia (X1, 2 em graus. Por exemplo, G1 (mm) ~ 1(°); G2 (mm) ~ 2 (°). Espera- se que, assumindo que seja necessária correção, alongamento produtiva será feita a uma taxa na faixa de cerca de 2 mm de intervalo (G) aumentam por dia, ou menos lacunas aumenta a taxa (GIR), pode ser definida como a mudança no gap em milímetros por dia. Uma consideração na determinação da taxa de aumento do gap (GIR) para usar é a tolerância à dor do paciente. Alguns pacientes podem tolerar uma quantidade maior de dor, por exemplo, a dor provocada pelo alongamento do tecido mole, e, assim, uma taxa de aumento do intervalo superior (GIR). Outra consideração é a quantidade de crescimento de osso que pode ocorrer. Um método para avaliar a quantidade de crescimento ósseo é através de radiografia. O aumento da taxa gap preferido (GIR) é aquela em que o crescimento ósseo está ocorrendo dentro da fatia aberta osteotomia 118, mas a consolidação precoce do osso não está ocorrendo (consolidação que iria "congelar" a mobilidade da fatia aberta osteotomia 118, tornando-o incapaz de ser aberto mais). Pode ser desejável implantar o propositadamente de forma não invasiva dispositivo osteotomia fatia ajustável 125 com uma folga inicial subdimensionado (G0), de modo que um intervalo ideal (G1) pode ser gradualmente alcançado através de ajustes não-invasivos. Está contemplado que, durante o período de ajustamento, um total de um a vinte ou mais procedimentos de ajustamento pode ser realizado, para uma quantidade total de cerca de 1 mm a cerca de 20 mm de aumento de lacuna (G), tal como durante um período de ajustamento de um mês ou menos. Normalmente, o período de adaptação pode se estender por aproximadamente dez dias, envolvem cerca de dez procedimentos de ajuste e envolvem um montante total de cerca de 5 mm a lacuna aumento de cerca de 12 mm.
[0093] Ao localizar o dispositivo de osteomia de fatia ajustável de forma não invasiva 125 medialmente, na tíbia, em vez de perto da linha central, um momento maior pode ser colocado sobre a primeira porção 119 e uma segunda porção 121 para abrir a fatia de abertura 118 em osteotomia relação ao ponto de articulação 107. Além disso, para uma força de distracção especial aplicado pela forma não invasiva fatia ajustável dispositivo de osteotomia 125, uma maior quantidade de distracção pode ser alcançado. Na FIG. 28, três diferentes eixos de distração (A, B, C) são mostrados, que representa três posições possíveis da forma do dispositivo de osteomia de fatia ajustável de forma não invasiva 125. O eixo de distração A é de aproximadamente a linha média na tíbia 102, enquanto eixo distração B é de cerca de 11° ângular da linha média, e o eixo distração C é de cerca de 22° angular da linha média. O comprimento Dd do ponto de articulação 107 ao eixo de distração B pode ser cerca de 32% maior do que o comprimento Db do ponto de articulação 107 em relação ao eixo de distração A. Mais significativamente, o comprimento Dc do ponto de articulação 107 ao eixo de distração C pode ser de aproximadamente 60% maior do que o o comprimento a partir do ponto de articulação 107 em relação ao eixo de distração A. A força de distração do dispositivo de osteomia de fatia ajustável de forma não invasiva 125 é necessário para ultrapassar uma série de resistências dispostas ao longo da tíbia devido ao efeito de amarração do tecido mole. A colocação do dispositivo de osteomia de fatia ajustável de forma não invasiva 125 ao longo do eixo C e, portanto, na segunda cavidade 115 (FIG. 27) pode permitir uma distração mais eficaz da osteomia de fatia aberta 118.
[0094] As Figs. 29 a 31 ilustram um método de implantação e operação de um dispositivo de osteomia de fatia ajustável de forma não invasiva 125 para alterar um ângulo da tíbia de um paciente, mas ao contrário da osteomia de fatia aberta 118 mostrado nas FIGS. 20 a 27, uma osteomia de em fatia fechada 141 é mostrada. Na FIG. 29, o primeiro corte 103 é feita, mas na FIG. 30 um segundo corte 105 é feita e uma fatia de osso é removido. O segundo corte 105 remove propositadamente ligeiramente mais osso do que o necessário para otimizar o ângulo de correção, e como mostrado na FIG. 31, o a osteotomia em fatia fechada 141 é deixado com uma ligeira folga, permitindo-lhe ser ajustada posteriormente em qualquer direção (para aumentar ou diminuir o ângulo de seguida). O método de implantação continua seguindo as etapas restantes descritas nas FIGS. 22 a 26, e o ângulo de osteomia de fatia fechado 141 pode ser aumentado ou diminuído, conforme descrito na FIG. 27.
[0095] As Figs. 32 a 36 ilustram um primeiro sistema para a escavação de material ósseo 400. O sistema para a escavação de materiais osso 400 é configurado para criar uma segunda cavidade 15 de um modo geral como descrito nas FIGS. 22 a 24. Uma unidade de acionamento 404 está acoplado a uma ferramenta de corte rotativa 402 por meio de um trem de acionamento flexível 408. A ferramenta de corte rotativa 402 é uma concretizaçãodo dispositivo de escavação 1 13, conforme apresentada na FIG. 23, mas podem também servir como a broca 111 da FIG. 22. A ferramenta de corte rotativa 402, como representado nas FIGS. 32 a 35, estende-se entre uma primeira extremidade 444 e a segunda extremidade 446 (como mostrado na FIG 34.), e compreende um alargador distal 412 que está acoplado a um alargador proximal 410. Como mostrado na FIG. 35, o alargador distal 412 inclui uma porção de pequeno diâmetro 440, que insere dentro do alargador proximal 410. Um elemento de engate circunferencial 434 é mantido axialmente entre o alargador distal 412 e o alargador proximal 410, e inclui vários recortes 435 (FIG. 34) dispostos em torno da sua circunferência, formando uma polia. O alargador distal 412, alargador proximal 410 e o membro de engajamento circunferencial 434 são realizadas em conjunto com os pinos 437, que são passados através de furos 436, e que garante que todos os componentes girar em uníssono. Um parafuso de fixação 438 é preso dentro de uma rosca fêmea de superfície interna do alargador proximal 410. O alargador distal 412 inclui adicionalmente um cone 442 e uma ponta romba 414. O diâmetro exterior da ferramenta de corte rotativa 402 pode ser de cerca de 12 mm ou menos, e, mais especificamente, cerca de 10 mm ou menos. O diâmetro exterior do escareador proximal 410 pode ser de cerca de 9 mm e o diâmetro exterior do escareador distal pode afunilar de cerca de 9 mm a cerca de 6,35 mm na ponta romba 414. A unidade de acionamento 404, como se vê melhor nas Figs. 32 e 36 compreende uma caixa de transmissão 416 coberta por uma placa de cobertura roldana 418 e uma placa de cobertura da unidade 420. Vários parafusos 421 prendem a placa de cobertura da unidade 420 para a caixa de transmissão 416, e quatro parafusos 426 segurar a placa de cobertura polia 418 ao caixa de accionamento 416. A caixa de accionamento 416 não está representado na FIG. 36, a fim de mostrar mais detalhe dos componentes internos. Na FIG. 32, um fixador 406 é acoplado por meio de parafusos 424 para um identificador de placa de montagem 422 que por sua vez é removivelmente ligados à caixa de acionamento 416 (por exemplo, por meio de parafusos ou de uma pinça).
[0096] Um eixo 428 (Fig. 36) que tem uma extremidade chaveta 430, está configurado para acoplamento amovível a um motor de perfuração elétrico 468 (Figs. 37 e 38). Uma grande polia 450 está ligada ao eixo 428 com um parafuso de ajuste 451, de modo que a rotação do eixo 428 pela unidade de broca elétrica 468 provoca a rotação da polia grande 450. O eixo 428 e grande polia 450 são mantidos entre dois rolamentos de esferas 448 (inferior do rolamento de esferas não visível), e uma anilha de calço 464 e anilha de onda 466 estão localizados em ambos os lados da polia grande 450, a fim de controlar a quantidade de folga axial. Uma roda de rolo 452 está rotativamente ligado à extremidade de uma lâmina de roda de rolamento 456 com um pino 454. O rolo 456 roda corrediça é capaz de deslizar axialmente no interior da caixa de accionamento 416 e unidade placa de cobertura 420 com o afrouxamento de um parafuso de orelhas 432, cujo eixo de rosca se envolve com roscas internas 462 no slide roda do rolo 456. A roda de declice do rolo 456 podem ser garantidos por apertar o parafuso 432 para que ele não deslize durante o uso. A fenda longitudinal 460 na roda deslizante rolo 456 controla o montante total de deslizamento axial, fornecendo uma primeira extremidade 461 e uma segunda extremidade 463 que se encostam uma paragem 458.
[0097] O trem de acionamento flexível 408 compreende uma pequena correia dentada, por exemplo, uma largura de Kevlar® cerca de 3 mm ou de fibra de vidro reforçada correia de poliuretano tendo um binário de deslizamento superior a 10 polegadas-onças quando usado com o grande polia 450 ou o engate circunferencial membro 434. Um exemplo potencial de torque para a derrapagem é de 13 polegadas-onça. Os dentes do trem de accionamento flexível pode ser localizado em um passo de dois milímetros. A FIG. 37 mostra a unidade de acionamento 404 do sistema de escavação de material ósseo 400 acoplado ao motor de perfuração eléctrico 468. O motor de perfuração elétrico 468 inclui um alojamento de motor 476, uma pega 470 e uma bateria 472. A pega pode incluir qualquer número de Interfaces conhecidos na arte para virar o aparelho de broca eléctrica 468 ligado ou desligado, ou controlando a velocidade. Em algumas concretizações, a unidade 468 berbequim pode ligar directamente a uma fonte de alimentação padrão, em vez de ter a bateria 472. A extremidade chaveta 430 do eixo 428 está acoplado a um acoplador do eixo 474 da unidade de broca elétrica 468.
[0098] Na fig. 37, a primeira cavidade 109 tendo sido criado, o trem de acionamento flexível 408 é inserido através da incisão medial e no aberto osteotomia em fatia1 18, entre a primeira porção de 1 19 e a segunda parte 121 da tíbia. A ferramenta de corte rotativa 402 é então colocada para baixo da primeira cavidade 109 da tíbia 102, de modo, a quantidade desejada que o trem de acionamento flexível 408 em volta em torno do elemento de engate circunferencial 434 da ferramenta de corte rotativa 402. Com o parafuso de polegar 432 solta de tensão na unidade flexível trem 408 é ajustado e em seguida, aperte o polegar 432 é apertada. Nesta tensão desejada, os dentes do trem de acionamento flexível 408 deve relacionar-se bem dentro dos recortes 435 (fig. 34) do membro de engate circunferencial 434 e o rolo 452 roda deve rotativamente contacto a superfície exterior do elemento de engate circunferencial 434, a sua estabilização. A unidade furadeira elétrica 468 é operada, fazendo com que a polia grande 450 da FIG. 36 para rodar o trem de accionamento flexível 408, e assim rodar a ferramenta de corte de rotação 402 através de engate com o elemento de engate circunferencial 434 (FIG. 34). A grande polia 450 pode ser o dobro do diâmetro do membro de engate circunferencial 434, provocando, portanto, a ferramenta de corte rotativa 402 ao girar-se a metade da velocidade da saída da unidade de perfuração eléctrico 468. Outros rácios também estão dentro do âmbito do presente invenção. Pode ser desejável para controlar a velocidade de rotação da ferramenta de corte rotativa 402, a fim de minimizar o aquecimento do osso que circunda o material cortado osso sendo, e, assim, limita os danos ao osso, que possa impedir o crescimento normal durante o processo de cura. Embora a ferramenta de corte rotativa 402 é rodada por a unidade de accionamento 404, O punho 406 é puxado fazendo com que a ferramenta de corte rotativa 402 para cortar uma segunda cavidade 1 15 seguinte caminho 477 (FIG. 38). O alargador proximal 410 cortes dentro primeira parte 119 da tíbia 102 e o alargador distal 412 cortes no interior da segunda parte 121 da tíbia 102. Após a segunda cavidade 1 15 é criado, o parafuso 432 é solta e tensão sobre a flexível trem de acionamento 408 é pelo menos parcialmente reduzida. A ferramenta de corte rotativa 402 é então removida e o trem de acionamento flexível 408 é puxado para fora da osteotomia de fatia aberta 118. Uma linha de corda pode estar ligada à ferramenta de corte rotativa 402, por exemplo, através do parafuso de tampa 438, e para aplicar tensão, assim, facilitando a remoção. Uma junta articulada pode ainda ser incluída entre a linha de tirante e a ferramenta de corte rotativa 408, a fim de manter a linha de corda de serem torcidas.
[0099] As FIGS. 39 a 41 ilustram um segundo sistema para a escavação de material ósseo 500. O sistema para a escavação de material de osso compreende um dispositivo de escavação 502 tendo um eixo exterior oco 508. O eixo exterior oco 508 tem uma extremidade distai 507 e uma extremidade proximal 509 e está ligado a um eixo exterior manual 510 que é configurado para ser realizada com uma só mão para estabilizar ou para mover o dispositivo de escavação 502. Um elemento de ajuste 512 tendo uma extremidade com rosca 516 está ligado a um identificador de ajuste 514. A extremidade com rosca 516 engata por enroscamento as roscas internas (não mostrado) dentro do eixo exterior oco 508, e rodando o elemento de ajustamento 512 pela manipulação da alavanca de ajustamento 514 move o elemento de ajuste 512 de modo axial em relação ao eixo exterior oco 508. O eixo exterior oco 508 tem um corte afastado secção 151 adjacente a um braço articulável 504. A extremidade rosqueada 516 é acoplada ao braço 504 por meio de uma ligação 520. A ligação 520 liga-se ao braço 504 em um primeiro ponto de articulação 518, e a ligação 520 liga-se a extremidade rosqueada 516 de o elemento de ajuste 512 em um segundo ponto de articulação 521 (como se vê na fig. 40). A rotação do manípulo de ajustamento 514 em uma direção de rotação R, em relação ao eixo exterior oco 508 e 510 de eixo exterior tratar as causas do componente de ajustamento 512 mover-se em direção D em relação ao eixo exterior oco 508, e faz com que o braço 504 para expandir no caminho E em relação ao eixo exterior oco 508.
[0100] O braço 504 compreende uma superfície abrasiva 506 para a remoção de material ósseo. Como visto na FIG. 41, o braço 504 pode ser um membro alongado, que tem uma secção transversal semi-cilíndrico, e a superfície abrasiva 506 pode compreender uma raspagem, coberta com várias projeções afiadas 513. A FIG. 39 mostra o dispositivo de escavação 502 colocado dentro de uma primeira cavidade 109 feita dentro de uma tíbia 102. A fim de criar uma segunda cavidade 115 para um lado da primeira cavidade 109, a apertos do operador para manipular o eixo exterior 510 com uma mão e o ajustamento lidar 514 com a outra mão, e começa a mover o sistema de escavação de material ósseo 500 em um movimento para trás e para a frente 522, enquanto lentamente se transformando o identificador de ajuste 514 no sentido de rotação R. Como o material do osso é removido, o braço 504 é capaz de ser expandido cada vez mais ao longo do trajeto E (FIG. 40), como a alça de ajuste 514 está ligado no sentido de rotação R e o sistema para escavação de material ósseo 500 é movido em um movimento de vaivém 522. A culminação desta etapa é visto na FIG. 40, com a segunda cavidade 115 criado na primeira porção de 119 e a segunda porção 121 da tíbia 102. No final desta etapa, o identificador de ajuste está ligado em um sentido de rotação oposto do sentido de rotação R, permitindo assim que o braço 504 entrar em colapso, e o dispositivo de escavação 502 para ser removido da tíbia 102.
[0101] As FIGS. 42 a 44 ilustram um terceiro sistema para a escavação de material ósseo 600. O sistema para a escavação de material ósseo 600 compreende um dispositivo de escavação 602 tendo um eixo exterior oco 608. O eixo exterior oco 608 tem uma extremidade distai 607 e uma extremidade proximal 609 e está ligado a um eixo exterior manual 610 que é configurado para ser realizada com uma só mão para estabilizar ou para mover o dispositivo de escavação 602. Um elemento de ajuste 612 tendo uma extremidade com rosca 616 está ligado a um identificador de ajuste 614. A extremidade rosqueada 616 por enroscamento se encaixar na rosca interna (não mostrada) dentro do eixo exterior oco 608, e rodando o elemento de ajustamento 612 pela manipulação da alavanca de ajustamento 614 move o elemento de ajuste 612 de modo axial em relação ao eixo exterior oco 608. O eixo exterior oco 608 tem um corte distância secção 611 adjacente a um braço articulável 604. A extremidade rosqueada 616 é acoplada ao braço 604 por meio de uma ligação 620. A ligação 620 liga-se ao braço 604 em um primeiro ponto pivot 618, e o elo 620 conecta-se à extremidade rosqueada 616 do elemento de ajuste 612 de um segundo ponto de articulação 621. A rotação do manípulo de ajustamento 614 em uma direção de rotação R, em relação ao eixo exterior oco 608 e 610 de eixo exterior tratar as causas do componente de ajustamento 612 mover-se em direção D em relação ao oco eixo exterior 608, e faz com que o braço 604 para expandir em caminho de E em relação ao eixo exterior oco 608, como visto na FIG. 43.
[0102] Como pode ser visto na FIG. 44, o braço 604 compreende uma superfície de compactação 606 para compactação de osso esponjoso. O braço 604 pode ser um membro alongado, que tem uma ou tubular de secção transversal parcialmente tubular, e a superfície de compactação 606 podem incluir um bordo de ataque 690 para cortar um caminho através do osso esponjoso e uma primeira superfície inclinada 692 que se estende desde o bordo de ataque 690. A primeira superfície inclinada 692 serve para compactar o osso esponjoso, mas também permite que algum osso esponjoso passado deslizante como o osso esponjoso se move para fora do caminho. Do mesmo modo, uma segunda superfície inclinada 694 com um ângulo diferente do da primeira superfície em ângulo 692 pode ser configurado como parte da superfície de compactação 606. A FIG. 42 mostra o dispositivo de escavação 602 colocado dentro de uma primeira cavidade 109 feita dentro de uma tíbia 102. A fim de criar uma segunda cavidade 115 para um lado da primeira cavidade 109, a apertos operador manipular o eixo exterior 610 com uma mão e o ajustamento lidar 614 com a outra mão, e começa a girar lentamente a alça de ajuste 614 no sentido de rotação R. osso esponjoso é compactada como o braço 604 é expandido cada vez mais ao longo do trajecto E ligando o identificador de ajuste 614 no sentido de rotação R. A culminação deste passo é visto na FIG. 43, com a segunda cavidade 115 criada na segunda porção 121 da tíbia 102. O dispositivo de escavação 602 pode ser movido superiormente na tíbia 102 e a compactação pode ser completada dentro da primeira porção 119 da tíbia 102. Ao completar o passo de compactação, o identificador de ajuste que está ligado em um sentido de rotação oposto do sentido de rotação R, permite, assim, que o braço 604 entre em colapso, e o dispositivo de escavação 602 seja removido da tíbia 102.
[0103] Figs. 45A a 50 ilustram um dispositivo de osteotomia fatia ajustável de forma não invasiva 700. O dispositivo não-invasivo osteotomia fatia ajustável 700 tem uma primeira extremidade 726 e uma segunda extremidade 728, como mostrado na FIG. 45 A, e é de construção semelhante à forma não invasiva dispositivo em fatia ajustável osteotomia 300 das FIGS. 17 a 19. No entanto, a primeira extremidade 726 do dispositivo de osteomia de fatia ajustável de forma não invasiva 700 compreende uma curva Herzog 780, em que a primeira extremidade 726 projeta o ângulo . Em algumas concretizações, o ângulo pode variar entre cerca de 5° e cerca de 20°, ou mais especificamente, entre cerca de 8° a 12°, ou cerca de 10°, em relação ao eixo central 782 do dispositivo de osteomia de fatia ajustável de forma não invasiva 700. Um atuador magneticamente ajustável 742 compreende um eixo interior 732, telescopicamente disposto dentro de um alojamento exterior 730, o invólucro exterior 730 que compreende ainda um alojamento distracção 712 e uma caixa de engrenagens 706. Primeiro orifício transversal 735, segundo orifício transversal 743, terceiro furo transversal 737 e quarto furo transversal 739 são dimensionados para a passagem da âncora de osso, por exemplo, parafusos de fixação que têm diâmetros de cerca de 3,0 mm a cerca de 5,5 mm e, mais especificamente, cerca de 4,0 mm a cerca de 5,0 mm. Em algumas concretizações, o diâmetro do invólucro exterior 730 é entre cerca de 7,0 mm e cerca de 9,5 mm e, mais especificamente, cerca de 8,5 mm. O diâmetro do eixo interno 732 podem também afunilar-se para cerca de 8,5 mm na parte do eixo interno 732, contendo o segundo orifício transversal 743 e terceiro furo transversal 737. Este valor é maior do que a porção de pequeno diâmetro 784 da haste interna 732, o que encurta dentro do invólucro exterior 730, e, assim, este aumento do diâmetro permite que o segundo orifício transversal 743 e terceiro orifício transversal 737, por sua vez para ser construído com diâmetros maiores, permitindo o uso de parafusos de osso mais fortes, de maior diâmetro. Da mesma forma, o diâmetro da primeira extremidade 726 podem afunilar-se para cerca de 10,7 mm de forma a permitir que os parafusos ósseos para ainda maiores para ser usado. Em um dispositivo de osteomia de fatia ajustável de forma não invasiva 700 que tem uma carcaça 730 diâmetro exterior de cerca de 8,5 mm, afilando-se até cerca de 10,7 mm na primeira extremidade 726, e com um eixo interno 732 que afunila para cima a cerca de 8,5 mm, é contemplado que os parafusos ósseos com um diâmetro de cerca de 4,0 milímetros sejam colocados através do segundo orifício transversal 743 e o terceiro orifício transversal 737, ao passo que os parafusos ósseos com um diâmetro de cerca de 5,0 milímetros sejam colocados através do primeiro orifício transversal 735 e o quarto furo transversal 739. Um comprimento exemplar do dispositivo de forma não invasiva osteotomia fatia ajustável 700 das extensões da primeira extremidade 726 para a segunda extremidade 728 é cerca de 150 mm.
[0104] Como pode ser visto em mais detalhe na FIG. 46, uma interface 766 na primeira extremidade 726 do dispositivo de osteomia de fatia ajustável de forma não invasiva 700 inclui rosca interna 797 para engate reversível com as roscas macho de uma ferramenta de inserção. Exemplos de métodos e concretizações de instrumentos que podem ser utilizados para o implante do dispositivo de osteomia de fatia ajustável de forma não invasiva 700, ou outras concretizações da presente invenção, estão descritos na patente US N° 8,449,543, a divulgação da qual é aqui incorporada por referência na sua totalidade. O quarto furo transversal 739 compreende uma construção dinâmica que permite algum movimento entre uma âncora de osso e o dispositivo de osteomia de fatia ajustável de forma não invasiva 700, quando o dispositivo de osteomia de fatia ajustável de forma não invasiva 700 está implantado e sendo ajustado de forma não invasiva. Um casquilho 751, com diâmetros exteriores e interiores substancialmente cilíndricos reside dentro do quarto furo transversal 739 e tem um diâmetro interior 753 configurado para passar suavemente o eixo de um parafuso de bloqueio, por exemplo, um parafuso de aperto com um diâmetro de cerca de 5,0 mm. Em algumas concretizações, o casquilho 751 pode ser construído de materiais metálicos, tais como titânio-6A1-4V. Em outras concretizações, o casquilho 751 pode ser construído de PEEK. A bucha 751 pode ser angularmente irrestrita, sendo, assim, capaz de balançar ou pivotear dentro do quarto buraco transversal 739.
[0105] A FIG. 47 mostra o dispositivo de osteomia de fatia ajustável de forma não invasiva 700, em um primeiro estado, não distraído. O eixo interior 732 é substancialmente retraído no interior do invólucro exterior 730. A FIG. 48 mostra o dispositivo de osteomia de fatia ajustável de forma não invasiva 700 em um estado parcialmente distraído, com uma porção do eixo interno 732 que se estende a partir do invólucro exterior 730 (por exemplo, depois de ter sido distraído magneticamente). Além disso, as Figs. 47 e 48 mostram duas posições diferentes possíveis para um parafuso ósseo 755, tendo uma cabeça 757, uma haste 759 e uma porção rosqueada 761 para engatar o osso cortical. O parafuso ósseo 755 é descrito para balançar ou girar o tronco ao longo de um percurso arqueado geral 763. A bucha 751 pode geralmente balançar dentro do quarto buraco transversal 739, ou a bucha 751 pode realmente pivotear em cima de um eixo. Por exemplo, os pinos podem estender-se transversalmente em relação ao diâmetro exterior do casquilho 751 aproximadamente no ponto central do seu comprimento, e anexar em furos ou recessos formados transversalmente dentro do quarto furo transversal 739. As palavras "pivotear" e "balançar", conforme aqui usado, são geralmente destinados a indicar um movimento que não tem um ponto de rotação central. "Angularmente irrestrita", tal como aqui utilizado, pretende designar qualquer liberdade de movimentos da bucha 751 que permite angulação, não necessariamente em um único plano, o parafuso ósseo 755, em relação ao dispositivo de osteomia de fatia ajustável de forma não invasiva 700. "Angularmente irrestrito", tal como aqui utilizado, destina-se a incluir tanto oscilar e balançar.
[0106] As Figs. 49 e 50 ilustram vistas em corte da bucha 751 movendo-se de uma forma angularmente constrangido dentro do quarto furo transversal 739. Como visto na FIG. 51, a bucha 751 compreende duas extensões de grande diâmetro de 765, 770 e dois de pequeno diâmetro extensões 767, 768, separadas por uma área de transição 769. Em algumas concretizações, uma fenda longitudinal 771 ao longo de um dos lados do casquilho 751 pode estar presente, para permitir que os parafusos ósseos 755 tendo uma certa quantidade de variação de diâmetro externo para se ajustar dentro do diâmetro interno 753. Na FIG. 49, o casquilho 751 não atingiu os seus graus contra o quarto furo transversal 739. Em contraste, a FIG. 50 mostra uma ampliação de grande diâmetro 765 encostando um primeiro ponto 773 dentro do quarto furo transversal 739, e o outro ramal de grande diâmetro 770 encostando um segundo ponto 775 dentro do quarto furo transversal 739. Além disso, esta fenda longitudinal 771, ou alternativamente, externo contorna sobre o casquilho 751, pode caber dentro de contornos correspondentes à quarta orifício transversal 739, de modo que o casquilho 751 não possa rodar em torno do seu eixo cilíndrico (em relação ao quarto furo transversal 739), mas ainda é capaz de balançar ou de articular. O dimensionamento das duas extensões de grande diâmetro 765, 770 e duas extensões de diâmetro pequeno 767, 768 podem ser controlados, por exemplo, de modo que o casquilho 751 é capaz de balançar ou rodar em torno de 15 ° em uma direção, mas em cerca de 0 ° a outra direção. Estes cerca de 15°, por exemplo, pode ser escolhido para corresponder à quantidade total da abertura da fatia aberta osteotomia 1 18 em um paciente em particular. A extensão desta angulação pode ser controlado em diferentes modelos da bucha 751. Por exemplo, cerca de 15 ° em cada direção, a cerca de 0 ° no outro sentido; cerca de 10 ° em uma direção, cerca de 5 ° em outra direção; cerca de 20 ° em uma direção, a cerca de 0 ° em outra direção; e cerca de 10 ° em uma direção, a cerca de 10 ° em outra direção.
[0107] As Figs. 52 a 55 ilustram um método de implantação e de funcionamento do dispositivo de osteomia de fatia ajustável de forma não invasiva 700 das FIGS. 45A-51 para a manutenção ou o ajuste de um ângulo de fatia de uma osteotomia abertura da tíbia de um paciente. Na FIG. 52, uma primeira cavidade 109, que se prolonga a partir de um primeiro ponto da tíbia 102 no prato tibial 101, é feito. Em algumas concretizações, a primeira cavidade 109 pode ser feita como mostrado nas FIGS. 20-22. Na FIG. 53, o dispositivo de osteomia de fatia ajustável de forma não invasiva 700 é inserido na primeira cavidade 109, o eixo interior 732 em primeiro lugar, seguido do invólucro exterior 730. Na Figura 54, o dispositivo de osteomia de fatia ajustável de forma não invasiva 700 é fixado a primeira porção 119 da tíbia 102 com um primeiro parafuso ósseo 755, que é passada através do quarto furo transversal 739 da FIG. 45B, e um segundo parafuso ósseo 777 passa através do primeiro orifício transversal 735, da FIG. 45B. Nesta concretização, apenas o quarto furo transversal 739 tem a bucha 751 nele incorporado. Um terceiro parafuso ósseo 779 e um quarto parafuso ósseo 781 são passados através do segundo orifício transversal 743, na FIG. 45B, e o terceiro orifício transversal 737, na FIG. 45B, respectivamente, e fixado à segunda porção 121 da tíbia 102. O dispositivo de osteomia de fatia ajustável de forma não invasiva 700 está seguro dentro da tíbia 102, de modo que a a curva Herzog 780, da FIG. 45A, aponta anteriormente (por exemplo, para o tendão patelar). A FIG. 55 ilustra o dispositivo dispositivo de osteomia de fatia ajustável de forma não invasiva 700, depois de ter sido distraído ao longo de um ou mais distrações não invasivas, ao longo de um período de um ou mais dias. O ângulo da osteotomia de fatia aberta 118 foi aumentado como o eixo interior 732 que foi deslocada para fora do invólucro exterior 730. O parafuso ósseo 755 foi capaz de alterar o seu ângulo em relação ao dispositivo de osteomia de fatia ajustável de forma não invasiva 700, por exemplo, agitando ou articulando o casquilho 751 da FIG. 49 dentro do quarto furo transversal 739.
[0108] As Figs. 56A a 56D ilustram quatro configurações possíveis dos parafusos ósseos para fixar a primeira extremidade 726 do dispositivo de osteomia de fatia ajustável de forma não invasiva 700 para a primeira porção 119 da tíbia 102 com o primeiro parafuso ósseo 755 e o segundo parafuso ósseo 777. As porções medial 800, laterais 802, anterior 804 e posterior 806 da tíbia 102 são denotadas. A porção medial 800 e a porção lateral 802 nas FIGS. 56A a 56D é esquerda para a direita, respectivamente, em cada figura, enquanto nas Figs. 52 a 55, medial estava à direita e lateral estava do lado esquerdo. Na configuração da fig. 56A, o primeiro parafuso ósseo 755 é fixada unicorticalmente (através, do córtex da tíbia 102 em apenas um dos lados) e forma um ângulo B de ~ 10 ° com o eixo lateral-medial 810. O segundo parafuso ósseo 777 é fixada bicorticalmente (através, do córtex da tíbia 102 em ambos os lados) e forma um ângulo A de ~ 20 ° com o eixo anterior-posterior 808. Na configuração da fig. 56B, o primeiro parafuso ósseo 755 é fixada unicorticalmente e faz um ângulo B de ~ 10 ° (no sentido oposto do que na FIG. 56A) com o eixo lateral-medial 810. O segundo parafuso ósseo 777 é fixado bicorticalmente e forma um ângulo A de ~ 20 ° com o eixo anterior-posterior 808. Na configuração da fig. 56C, o primeiro parafuso ósseo 755 e o segundo parafuso ósseo 777 são ambos garantidos bicorticalmente. O primeiro parafuso ósseo 755 é fixado a um ângulo D de ~ 45° com o eixo anterior-posterior 808, e segundo parafuso ósseo 777 é fixada a um ângulo de A ~ 20 ° com o eixo anterior-posterior 808. Na configuração da Fig . 56D, o primeiro parafuso ósseo 755 e o segundo parafuso ósseo 777 são ambos garantidos bicorticalmente. O primeiro parafuso ósseo 755 é fixado a um ângulo de D ~ 45 ° com o eixo anterior-posterior 808, e o segundo parafuso ósseo 777 é fixado a um ângulo E de ~ 45 ° com o eixo anterior-posterior 808.
[0109] Embora não mostrado nas FIGS. 56A a 56D, o terceiro parafuso ósseo 779 e o quarto parafuso ósseo 781 podem ser fixados em várias orientações. Embora mostrado nas FIGS. 54 e 55, orientados ligeiramente inclinados em relação ao plano ântero-posterior, eles também podem ser colocados em outras orientações, por exemplo, um ângulo de aproximadamente 35 ° em relação ao plano lateral-medial.
[0110] A figura 57 ilustra um dispositivo de osteomia de fatia ajustável de forma não invasiva 900. O dispositivo dispositivo de osteomia de fatia ajustável de forma não invasiva 900 compreende um atuador magnético ajustável 942 tem uma primeira extremidade 926 e uma segunda extremidade 928, e é semelhante em construção para o dispositivo de osteomia de fatia ajustável de forma não invasiva 300 das Figuras. 17 a 19. A segunda extremidade 928 inclui um eixo interno 932 que tem uma porção de pequeno diâmetro 984 que é telescopicamente e disposto axialmente distratável dentro de um alojamento exterior 930. O invólucro exterior 930 compreende um alojamento de distração 912 e uma caixa de engrenagens 906. Uma primeira placa 950 estende-se desde o alojamento exterior 930 e é configurada para ser colocada na proximidade de uma superfície externa de um osso, por exemplo, a segunda porção 121 de uma tíbia 102 mostrado na FIG. 59. Um ou mais orifícios de fixação 952 é formado no primeiro prato 950, e configurado para interface com os correspondentes parafusos ósseos. Um parafuso para osso 954 é mostrado na FIG. 58, e inclui uma ligação rosqueada, a cabeça cônica 956 e um eixo rosqueado 958, um par de cavidade chaveada 960 com um instrumento motriz (não mostrado). A primeira placa 950 possui um lado de interface óssea 962 e um lado de interface não osso 964. Uma segunda placa 966, que tem um lado interface osso 968 e um lado de interface não osso 970, estende-se desde o eixo interior 932. O segundo prato 966 é acoplado ao eixo interior 932 por uma tampa 972, e fixada com um parafuso de fixação 974. Um ou mais furos de ancoragem 976 são dispostas sobre a segunda placa 966, e configurado para a interface com os parafusos ósseos correspondentes, por exemplo, parafuso ósseo 954. Furo de âncora 978 é mostrada tendo uma conicidade rosqueada 980, para fazer a interface com a cabeça afunilada 956 do parafuso ósseo 954.
[0111] As Figs. 59 a 61 ilustram um método de implantação e de funcionamento do dispositivo de osteomia de fatia ajustável de forma não invasiva da FIG. 57 para a manutenção ou o ajuste de um ângulo da osteotomia de fatia abertura da tíbia de um paciente. Na FIG. 59, uma osteomia de fatia de abertura 118 é feito na tíbia 102. Na FIG. 60, o dispositivo de osteomia de fatia ajustável de forma não invasiva 900 é colocado através de uma incisão e é fixado à tíbia 102 por acoplamento do primeiro prato 950 à segunda porção 121 da tíbia 102 e o acoplamento da segunda placa 966 para a primeira porção de 119 da tíbia, por exemplo, com parafusos ósseos 954. A FIG. 61 ilustra a tíbia 102 após o dispositivo de osteomia de fatia ajustável de forma não invasiva 900 tem sido distraído de forma não invasiva, por exemplo, com o dispositivo de ajuste externo 1180.
[0112] As figs 62 e 63 ilustram um dispositivo de osteomia de fatia ajustável de forma não invasiva 1000. O dispositivo de osteomia de fatia ajustável de forma não invasiva 1000 compreende um atuador magnético ajustável 1042 que tem uma primeira extremidade 1026 e uma segunda extremidade 1028, e é de construção semelhante ao dispositivo de osteomia de fatia ajustável de forma não invasiva 300 das FIGS. 17 a 19, e o dispositivo de osteomia de fatia ajustável de forma não invasiva 900 da FIG. 57. O atuador magneticamente ajustável 1042 compreende um invólucro exterior 1030 e um eixo interno 1032 telescopicamente disposto no interior do invólucro exterior 1030. Como o dispositivo de osteomia de fatia ajustável de forma não invasiva 900 da FIG. 57, o dispositivo de osteomia de fatia ajustável de forma não invasiva 1000 tem uma primeira placa 1050 se prolongando a partir do invólucro exterior 1030. Uma segunda placa 1066 é fixada ao eixo interior 1032 por uma tampa 1072. A segunda placa 1066 é acoplada de forma rotativa na tampa 1072 ao ponto de articulação 1091, permitindo, assim, a segunda placa 1066 a rodar a partir da posição na FIG. 62 para a posição na FIG. 63 ao longo da seta 1081, por exemplo, como o eixo interno 1032 é distraído a partir da posição na FIG. 62 para a posição na FIG. 63. Isto permite que a primeira porção 119 da tíbia 102 seja movida para além da segunda porção 121 da tíbia 102, e abrindo, assim, a osteotomia de fatia aberta 118, mas sem criar grandes momentos de flexão (aumento de atrito e força e afins) sobre o movimento do eixo interno 1032 dentro do invólucro exterior 1030. Desta forma, o torque fornecido pelo acoplamento magnético do dispositivo de ajuste externo 1180 da FIG. 15 vai ser suficiente para distrair o atuador magneticamente ajustável 1042. A capacidade de rotação da segunda placa 1066 com relação ao resto do dispositivo de osteomia de fatia ajustável de forma não invasiva 900 é análogo ao do movimento sem restrições angularmente do casquilho 751 e o parafuso ósseo 755 em relação ao dispositivo de osteomia de fatia ajustável de forma não invasiva 700 das FIGS. 45A a 50.
[0113] O uso do dispositivo de osteomia de fatia ajustável de forma não invasiva 900 ou o dispositivo de osteomia de fatia ajustável de forma não invasiva 1000, que não requerem qualquer remoção de osso em platô tibial 101, pode ser preferido em certos doentes nos quais está desejado para manter a articulação do joelho 104 em tão original uma condição possível. Isso pode incluir doentes mais jovens, os pacientes que podem ser capazes de evitar a substituição do joelho depois parcial ou total, ou pacientes com deformidades no joelho 104. Pode também incluir pequenos pacientes que têm dispositivos intramedulares não vai caber bem.
[0114] As Figs. 64A a 64C ilustram um atuador magnético ajustável 1504 que pode ser utilizado com qualquer das concretizações da presente invenção, e que permite a remoção temporária ou permanente de um conjunto magnético rotativo 1542. Os pacientes submetidos a imagiologia por ressonância magnética (MRI) podem requerer o íma permanente radialmente polarizado 1,502 seja removido antes da ressonância magnética, a fim de evitar um artefacto de imagem que podem ser causada pelo íman permanente radialmente polarizado 1502. Além disso, existe um risco de que um íman permanente radialmente polarizado implantado -1502 possa ser desmagnetizado sobre um scanner de ressonância magnética. Em algumas concretizações, uma tampa da caixa do atuador 1588 tem uma rosca macho 1599 que engata com uma rosca fêmea 1597 do invólucro exterior 1505 do atuador magneticamente ajustável 1504. Em outras concretizações, uma pressão / de interface de Desencaixe pode ser utilizado. Uma porção de diâmetro liso 1595 da tampa da caixa do atuador 1588 é selada no interior de um anel de vedação 1593, o qual é mantido dentro de uma ranhura circunferencial no invólucro exterior 1505. Se em um momento posterior para a implantação do atuador magneticamente ajustável 1504 se pretendesse remover o conjunto magnético rotativo 1542, deixando o resto do implante intacto, uma pequena incisão pode ser feita na pele do sujeito na proximidade com a tampa da caixa do atuador de 1588, e a tampa do invólucro de acionamento 1588 pode ser desenrosqueada. O conjunto magnético rotativo 1542 pode então ser removido, como mostrado na FIG. 64 A. As FIGS. 64B e 64C mostram os passos subsequentes de substituição da tampa da caixa do atuador 1588 para o atuador magneticamente ajustável 1504, mais uma vez, selando-o com o anel de vedação 1593. A incisão pode então ser fechada, e o paciente pode ser submetido à ressonância MRI típico. Se desejado, após a exploração de MRI, o conjunto magnético 1542 pode ser substituído seguindo um método inverso.
[0115] As Figs. 65A a 65D ilustram um atuador magnético ajustável 1604 que pode ser utilizado com qualquer das concretizações da presente invenção, e que permite, vantajosamente, para a remoção temporária ou permanente do íman permanente radialmente polarizado 1602. Uma tampa da caixa do atuador 1688 e atribui separa-se o atuador magneticamente ajustável 1604 do mesmo modo como no atuador magneticamente ajustável 1504 das FIGS. 64A a 64C. O íman permanente radialmente polarizado 1602 tem duas porções radiais 1687 e duas porções planas 1685. As duas porções planas 1685 ajuste dentro de paredes planas 1683 de uma habitação magnética 1640, que permite a rotação do íma permanente radialmente polarizado 1602 para transmitir diretamente o torque sobre o invólucro magnético 1640 sem a necessidade de qualquer adesivo ou epóxi. Uma tampa da caixa magnética 1681 com um anel de vedação 1679 é acoplável para e removível do invólucro magnética 1640. Se uma ressonância magnética do sujeito é desejado e que tenha sido determinado que o íman permanente radialmente polarizado 1602 deve ser removido, uma pequena incisão é feita na pele do sujeito na proximidade com a tampa da caixa do atuador de 1688, e a tampa do invólucro de accionamento 1688 é removido. Em seguida, a tampa da caixa magnética 1681 é removida do alojamento magnético 1640. Um tirante 1677 estende-se através de um furo longitudinal (não mostrado) no íman permanente radialmente polarizado-1602, que se prolonga em uma extremidade, de modo que possa ser agarrado, por exemplo, por meio de fórceps ou hemostatos. A barra de tração 1677 pode ter uma base plana 1675 na extremidade oposta, de modo que quando ele é puxado, ele pode arrastar o iman permanente radialmente polarizado 1602 com ele. O ímã permanente radialmente polarizado 1602 pode ser permanente ou temporariamente removido (FIG. 65B) (caminho de remoção 1691) e da tampa da caixa magnética 1681 substituída (FIG. 65C). A tampa do compartimento do atuador 1688 pode ser substituída (FIG. 65D). A incisão é então fechada, e o sujeito pode ser submetido a ressonância MRI típica. Se desejado, após a ressonância magnética, o ímã permanente radialmente polarizado-1602 pode ser substituído, seguindo um método inverso. Em alternativa, a tampa da caixa magnética 1681 ou a tampa da caixa do atuador 1688 pode ser substituída por uma tampa em forma alternativa, que vai guiar para uma estrutura de chaveta no interior do atuador de íman 1604, mantendo, assim, os mecanismos internos de viragem, e mantendo quantidade particular do objecto de ajustamento alterem enquanto o sujeito anda, corre ou alonga-se.
[0116] Ao longo das concretizações apresentadas, um ímã permanente radialmente polarizado 168 (por exemplo, da FIG. 8), como parte de um conjunto magnético (por exemplo, 166), é utilizado um elemento de condução para criar remotamente o movimento em um dispositivo de osteomia de fatia ajustável de forma não invasiva. As FIGS. 66 a 69 mostram, esquematicamente, quatro concretizações alternativas, em que outros tipos de transferência de energia são utilizadas em vez de imans permanentes.
[0117] A FIG. 66 ilustra um dispositivo de osteomia de fatia ajustável de forma não invasiva 1300 que compreende um implante 1306 tendo uma primeira porção do implante 1302 e uma segunda porção do implante 1304, a segunda porção do implante 1304 pode se deslocar de forma não invasiva em relação à primeira porção de implante 1302. A primeira porção de implante 1302 é presa a uma primeira porção do osso 197 e a segunda porção de implante 1304 é presa a uma segunda porção de osso 199 dentro de um paciente 191. Um motor 1308 é operável para fazer com que a primeira porção do implante 1302 e a segunda porção do implante 1304 se deslocam em relação uma a outra. Um dispositivo de ajuste externo 1310 tem um painel de controle 1312 para a entrada de um operador, um display 1314 e um transmissor 1316. O transmissor 1316 envia um sinal de controle 1318 através da pele 195 do paciente 191 para um receptor 1320. O receptor implantado 1320 comunica com o motor 1308 através de um condutor 1322. O motor 1308 pode ser alimentado por uma bateria implantável, ou pode ser alimentado ou carregado pelo acoplamento indutivo.
[0118] A FIG. 67 ilustra um dispositivo de osteomia de fatia ajustável de forma não invasiva 1400 que compreende um implante 1406 tendo uma primeira porção do implante 1402 e uma segunda porção do implante 1404, a segunda porção do implante 1404 pode deslocar-se de forma não invasiva em relação à primeira porção de implante 1402. A primeira porção de implante 1402 é presa a uma primeira porção do osso 197 e a segunda porção de implante 1404 é presa a uma segunda porção de osso 199 dentro de um paciente 191. Um motor ultrassônico 1408 é operável para fazer com que a primeira porção de implante 1402 e a segunda porção de implante 1404 se deslocam em relação uma a outra. Um dispositivo de ajuste externo 1410 tem um painel de controle 1412 para a entrada de um operador, um display 1414 e um transdutor ultrassônico 1416, o qual está acoplado à pele 195 do paciente 191. O transdutor ultrassônico 1416 produz ondas de ultrassons 1418, que passam através da pele 195 do paciente 191 e operam o motor ultrassônico 1408.
[0119] A FIG. 68 ilustra um dispositivo de osteomia de fatia ajustável de forma não invasiva 1700 que compreende um implante 1706 tendo uma primeira porção do implante 1702 e uma segunda porção do implante 1704, a segunda porção do implante 1704 pode deslocar-se de forma não invasiva em relação à primeira porção de implante 1702. A primeira porção de implante 1702 é presa a uma primeira porção do osso 197 e a segunda porção de implante 1704 é presa a uma segunda porção de osso 199 dentro de um paciente 191. Um atuador 1708 com memória de forma é operável para fazer com que a primeira porção de implante 1702 e a segunda porção de implante 1704 deslocam-se em relação uma a outra. Um dispositivo de ajuste externo 1710 tem um painel de controle 1712 para a entrada de um operador, um dislay 1714 e um transmissor 1716. O transmissor 1716 envia um sinal de controle 1718 através da pele 195 do paciente 191 para um receptor 1720. O receptor implantado 1720 comunica com o atuador de memória de forma 1708 através de um condutor 1722. O atuador de memória de forma 1708 pode ser alimentado por uma bateria implantável, ou pode ser alimentado ou carregado pelo acoplamento indutivo.
[0120] A FIG. 69 ilustra um dispositivo de osteomia de fatia ajustável de forma não invasiva 1800 que compreende um implante 1806 tendo uma primeira porção do implante 1802 e uma segunda porção do implante 1804, a segunda porção do implante 1804 pode deslocar-se de forma não invasiva em relação à primeira porção de implante 1802. A primeira porção de implante 1802 é presa a uma primeira porção do osso 197 e a segunda porção de implante 1804 é presa a uma segunda porção de osso 199 dentro de um paciente 191. Uma bomba hidráulica 1808 é operável para fazer com que a primeira porção de implante 1802 e a segunda porção de implante 1804 se deslocam em relação uma a outra. Um dispositivo de ajuste externo 1810 tem um painel de controle 1812 para a entrada de um operador, um display 1814 e um transmissor 1816. O transmissor 1816 envia um sinal de controle 1818 através da pele 195 do paciente 191 para um receptor 1820. O receptor implantado 1820 comunica com a bomba hidráulica 1808 através de um condutor 1822. A bomba hidráulica 1808 pode ser alimentada por uma bateria implantável, ou pode ser alimentada ou carregada pelo acoplamento indutivo. A bomba hidráulica 1808 pode alternativamente ser substituída por uma bomba pneumática.
[0121] Em uma concretização, um sistema de mudança em um ângulo de um osso de um sujeito inclui um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposto no invólucro exterior; um conjunto magnético configurado para ajustar o comprimento do atuador ajustável durante o movimento axial do eixo interior e invólucro exterior em relação ao outro; um primeiro suporte configurado para acoplamento com o invólucro exterior; um segundo suporte configurado para acoplamento com o eixo interior; e em que a aplicação de um campo magnético em movimento externamente ao sujeito que move o conjunto magnético, de tal modo que o eixo interior e o invólucro exterior movimentam-se em relação um ao outro.
[0122] Em uma outra concretização, um sistema de mudança em um ângulo de um osso de um sujeito inclui um conjunto magnético compreendendo um íman radialmente polarizado acoplado a um eixo que tem roscas externas; um bloco que possui roscas internas e acoplado ao eixo, em que o movimento de rotação do ímã radialmente polarizado faz com que o eixo gire e mova-se axialmente em relação ao bloco; uma interface de osso superior e uma interface de osso inferior tendo uma distância ajustável; e em que o movimento axial do eixo em um primeiro sentido faz com que a distância aumente. As interfaces do osso superior e inferior podem ser formadas como parte de uma mola de prato. As interfaces de osso superior e inferior podem ser formadas como parte de uma pluralidade de placas interligadas.
[0123] Em uma outra concretização, um sistema de mudança em um ângulo de um osso de um sujeito inclui uma montagem de uma tesoura que compreende um primeiro e segundo braços de tesoura rotativamente acoplados através de uma dobradiça, os primeiro e segundo braços de tesoura acoplada, respectivamente, a interfaces superior e inferior do osso configuradas para mover um em relação ao outro; um conjunto magnético oco contendo um fuso rosqueado móvel axialmente disposta no mesmo, em que o conjunto magnético oco está configurada para rodar em resposta a um campo magnético em movimento e em que a referida tradução de rotação em movimento axial do parafuso de guia; um conjunto de roquete acoplado em uma extremidade ao parafuso de chumbo e na outra extremidade a um dos primeiro e segundo braços de tesoura, o conjunto de roquete compreendendo uma lingueta configurada para engatar os dentes dispostos em uma das interfaces osso superior e inferior; e em que o movimento axial do parafuso de avanço, avança a lingueta ao longo dos dentes e move as interfaces osso superior e inferior afastados um do outro
[0124] Em uma outra concretização, um método de preparação de uma tíbia para a implantação de um implante de deslocamento inclui fazer uma primeira incisão na pele de um paciente em uma localização adjacente do platô tibial da tíbia do paciente; criação de uma primeira cavidade, na tíbia, através da remoção de material de osso ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto; colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo principal alongado e configurado para escavar a tíbia assimetricamente em relação ao primeiro eixo; a criação de uma segunda cavidade na tíbia com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado da tíbia; e a remoção do dispositivo de escavação. A segunda cavidade pode estender-se lateralmente substancialmente no paciente. A segunda cavidade pode estender-se substancialmente medialmente no paciente. O método pode ainda incluir a compactação de uma parte do osso trabecular da tíbia na criação de um segundo passo de cavidade. O dispositivo de escavação pode compreender um braço articulado que tem uma primeira extremidade e uma segunda extremidade, o braço inclui uma superfície de compactação. A superfície de compactação pode incluir um bordo de ataque e pelo menos uma superfície em ângulo. O braço pode ser ajustável em relação ao corpo principal alongado. A primeira extremidade do braço pode ser acoplada de modo articulado ao corpo principal alongada e a segunda extremidade do braço pode ser ajustado para uma pluralidade de distâncias a partir do corpo principal alongado. O dispositivo de escavação pode ser acoplado a um elemento de ajuste configurado para mover a segunda extremidade do braço em, pelo menos, uma da pluralidade de distâncias a partir do corpo alongado. A criação de um segundo passo de cavidade pode compreender ainda o ajuste do componente de ajustamento para mover a segunda extremidade do braço ao longo de pelo menos vários de entre a pluralidade de distâncias a partir do corpo principal alongado, de tal modo que a superfície de compactação compacta o osso esponjoso contra o osso cortical. A criação de uma segunda etapa de cavidade pode incluir a remoção de material ósseo da tíbia. O dispositivo de escavação pode compreender um braço articulado que tem uma primeira extremidade e uma segunda extremidade, incluindo o braço uma superfície abrasiva. A superfície abrasiva pode compreender uma raspagem. O braço pode ser ajustável em relação ao corpo principal alongado. A primeira extremidade do braço pode ser acoplada de modo articulado ao corpo principal alongada e a segunda extremidade do braço pode ser ajustado para uma pluralidade de distâncias a partir do corpo principal alongado. O dispositivo de escavação pode ser acoplado a um elemento de ajuste configurado para mover a segunda extremidade do braço em, pelo menos, uma da pluralidade de distâncias a partir do corpo principal alongado. A criação de uma segunda etapa de cavidade pode ainda compreender o deslocamento do aparelho de escavação longitudinalmente ao longo de um percurso bidirecional que corresponde aproximadamente ao primeiro eixo e ajustar o elemento de ajuste para mover a segunda extremidade do braço de pelo menos um da pluralidade de distâncias do corpo principal alongado, tais que a superfície abrasiva remove o material do osso. O corpo principal alongado pode compreender uma ferramenta de corte rotativa tendo uma primeira extremidade, uma segunda extremidade, uma zona de corte que se estende, pelo menos parcialmente, entre a primeira e a segunda extremidade, e um elemento de engate circunferencial e o dispositivo de escavação pode ainda compreender uma unidade de tracção flexível configurada para engatar o elemento de engate circunferencial. O passo de colocar um dispositivo de escavação pode ainda compreender a criação de uma via através do osso cortical em pelo menos um lado da tíbia, inserindo a unidade de tracção flexível através de uma via de, e acoplando o trem de accionamento flexível para a ferramenta de corte rotativa, de modo que o movimento do trem de accionamento flexível provoca a rotação da ferramenta de corte rotativa. A criação de um segundo passo de cavidade pode ainda compreender deslocar o elemento de engate circunferencial da ferramenta de corte de rotação substancialmente para um lado da tíbia, enquanto a ferramenta de corte rotativa está a ser rodado pelo trem de accionamento flexível. O trem de acionamento flexível pode ser movido por unidade de acionamento. A ferramenta de corte rotativo pode ser usado para criar a primeira cavidade. A ferramenta de corte de rotação pode compreender um alargador. A primeira extremidade da ferramenta de corte de rotação pode compreender uma ponta romba. A segunda extremidade da ferramenta de corte rotativa pode ser acoplada a um grupo de ancoragem de recuperação que se prolonga a partir da primeira incisão. O tirante de recuperação pode ser acoplado à ferramenta de corte rotativa por uma articulação giratória. O passo de remoção pode compreender a remoção da ferramenta de corte de rotação, aplicando tensão ao tirante de recuperação a partir de um local externo ao paciente. O método pode ainda compreender o passo de criação de uma osteotomia entre uma primeira porção e uma segunda porção da tíbia, em que o trem de acionamento flexível prolonga-se através da osteotomia.
[0125] Em uma outra concretização, um método de implantação de um sistema ajustável de forma não invasiva para alterar um ângulo da tíbia de um paciente inclui a criação de uma osteotomia entre uma primeira porção e uma segunda porção da tíbia; fazendo uma primeira incisão na pele do paciente em um local adjacente do platô tibial da tíbia do paciente; criação de uma primeira cavidade, na tíbia, ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto; colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação configurado para escavar a tíbia assimetricamente em relação ao primeiro eixo; a criação de uma segunda cavidade na tíbia com o dispositivo de escavação, em que a segunda cavidade se estende substancialmente para um lado da tíbia; a colocação de um implante ajustável de forma não invasiva através da primeira cavidade e, pelo menos, parcialmente para dentro da segunda cavidade, o implante ajustável de forma não invasiva que compreende um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposta no invólucro exterior; acoplamento do invólucro exterior, para a primeira porção da tíbia; e acoplamento da haste interna para a segunda porção da tíbia. A primeira parte pode ser superior à osteotomia e a segunda porção pode ser abaixo da osteotomia. A primeira porção pode ser abaixo da osteotomia e a segunda porção pode estar acima da osteotomia. A segunda cavidade pode comunicar com a primeira cavidade. O método pode ainda compreender o passo de forma não invasiva causando o eixo interno para se mover em relação ao invólucro exterior. O implante ajustável de forma não invasiva pode compreender um elemento de acionamento configurado para mover o eixo interior relativamente ao invólucro exterior. O elemento de acionamento pode ser selecionado a partir do grupo que compreende: um íman permanente, um motor acoplado indutivamente, um motor acionado ultrassonicamente, uma bomba hidráulica por via subcutânea, uma bomba pneumática subcutânea, e um atuador com memória de forma orientada.
[0126] Em uma outra concretização, um método para preparar um osso para a implantação de um implante inclui fazer uma primeira incisão na pele de um paciente; criação de uma primeira cavidade no osso, retirar o material ósseo ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto a um segundo ponto; colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo principal alongado e configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo, o dispositivo de escavação, que compreende ainda um braço articulado que tem uma primeira extremidade e uma segunda extremidade, o braço incluindo uma superfície de compactação; a criação de uma segunda cavidade no osso, com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado do osso; e a remoção do dispositivo de escavação.
[0127] Em uma outra concretização, um método para preparar um osso para a implantação de um implante inclui fazer uma primeira incisão na pele de um paciente; criação de uma primeira cavidade no osso, retirando o material ósseo ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto a um segundo ponto; colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo principal alongado e configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo, o dispositivo de escavação, que compreende ainda um braço articulado que tem uma primeira extremidade e uma segunda extremidade, o braço incluindo uma superfície abrasiva; a criação de uma segunda cavidade no osso, com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado do osso; e a remoção do dispositivo de escavação.
[0128] Em uma outra concretização, um método para preparar um osso para a implantação de um implante inclui fazer uma primeira incisão na pele de um paciente; criação de uma primeira cavidade no osso, retirar o material ósseo ao longo de um primeiro eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto a um segundo ponto; colocação de um dispositivo de escavação no interior da primeira cavidade, o dispositivo de escavação incluindo um corpo principal alongado e configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo, o dispositivo de escavação, que compreende ainda uma ferramenta de corte rotativa configurado para ser movido substancialmente em direção a um lado da osso, enquanto a ferramenta de corte rotativa está a ser rodado; a criação de uma segunda cavidade no osso, com o dispositivo de escavação, em que a segunda cavidade comunica com a primeira cavidade e se estende substancialmente para um lado do osso; e a remoção do dispositivo de escavação.
[0129] Em uma outra concretização, um sistema de mudança em um ângulo de um osso de um paciente inclui um implante não invasiva é ajustável, compreendendo um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposto na caixa exterior, a caixa exterior configurado para acoplar a uma primeira parte do osso, e o eixo interno configurado para acoplar a uma segunda parte do osso; um elemento de accionamento configurado para mover o eixo interior em relação à caixa exterior; e um dispositivo de escavação incluindo um corpo alongado principal configurado para inserir dentro de uma primeira cavidade do osso ao longo de um primeiro eixo, o dispositivo de escavação configurado para escavar o osso de forma assimétrica em relação ao primeiro eixo para criar uma segunda cavidade que comunica com a primeira cavidade, em que o atuador ajustável está configurado para ser acoplado ao osso, pelo menos, parcialmente no interior da segunda cavidade. O elemento de accionamento pode ser seleccionado a partir do grupo que compreende: um íman permanente, um motor acoplado indutivamente, um motor acionado ultrassonicamente, uma bomba subcutânea, e um atuador com memória de forma orientada. O dispositivo de escavação pode ser configurado para compactar osso esponjoso. O dispositivo de escavação pode compreender um braço articulado que tem uma primeira extremidade e uma segunda extremidade, incluindo o braço uma superfície abrasiva. A superfície abrasiva pode compreender uma raspagem. O dispositivo de escavação pode compreender uma ferramenta de corte rotativa tendo uma primeira extremidade, uma segunda extremidade, uma zona de corte que se estende, pelo menos parcialmente, entre a primeira e a segunda extremidade, e um elemento de engate circunferencial, e o dispositivo de escavação pode ainda compreender uma unidade de tracção flexível configurada para engatar o elemento de engate circunferencial.
[0130] Em uma outra concretização, um sistema de mudança em um ângulo de um osso de um paciente inclui um implante de forma não invasivo é ajustável, compreendendo um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposto na caixa exterior, a caixa exterior configurado para acoplar a uma primeira parte do osso, e o eixo interior configurado para acoplar a uma segunda parte do osso; e um elemento de acionamento configurado para mover o eixo interior relativamente ao invólucro exterior, em que o elemento de condução é selecionado a partir do grupo que compreende: um íman permanente, um motor acoplado indutivamente, um motor acionado ultrassonicamente, uma bomba hidráulica por via subcutânea, um pneumático subcutânea bomba, e um atuador com memória de forma orientada. O elemento de condução pode compreender um ímã permanente.
[0131] Em uma outra concretização, um sistema de mudança em um ângulo de uma tíbia de um sujeito com osteoartrite do joelho inclui um implante ajustável de forma não invasiva que compreende um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposta no invólucro exterior, o invólucro exterior tendo um primeiro furo transversal, e o eixo interior tendo um segundo furo transversal; um elemento de acionamento configurado para mover o eixo interior relativamente ao invólucro exterior, em que o elemento de condução é selecionado a partir do grupo que compreende: um íman permanente, um motor acoplado indutivamente, um motor acionado ultrassonicamente, uma bomba hidráulica por via subcutânea, uma bomba pneumática subcutânea , e um atuador com memória de forma orientada; uma primeira ancoragem configurado para colocar através do primeiro furo transversal e para acoplar a uma primeira porção da tíbia; e um segundo fixador configurado para colocar através do segundo orifício transversal e para acoplar a uma segunda porção da tíbia, em que pelo menos um dos primeiro e segundo fixador de ancoragem está configurado para ser articulável em relação ao implante ajustável de forma não invasiva, quando acoplado quer para a primeira porção ou a segunda porção da tíbia. O elemento de condução pode compreender um ímã permanente.
[0132] Em uma outra concretização, um método de modificar um ângulo ósseo inclui a criação de uma osteotomia entre uma primeira porção e uma segunda porção de uma tíbia de um paciente; criar uma cavidade na tíbia, retirando o material ósseo ao longo de um eixo que se prolonga em uma direção substancialmente longitudinal a partir de um primeiro ponto no platô tibial para um segundo ponto; a colocação de um implante não-invasivo ajustável para a cavidade, o implante ajustável de forma não invasiva que compreende um atuador ajustável tendo um invólucro exterior e um eixo interior, telescopicamente disposto no invólucro exterior, e um elemento de acionamento configurado para ser remotamente operável para deslocar o telescopicamente eixo interno em relação ao invólucro exterior; acoplar um do invólucro exterior ou interior do eixo para a primeira porção da tíbia; acoplar a outra do invólucro exterior ou interior do eixo para a segunda porção da tíbia; e remotamente a operação do elemento de acionamento para deslocar telescopicamente o eixo interno em relação ao invólucro exterior, alterando, assim, um ângulo entre a primeira porção e a segunda porção da tíbia.
[0133] Enquanto concretizações da presente invenção tenham sido mostradas e descritas, várias modificações podem ser feitas sem sair do escopo da presente invenção. Qualquer das concretizações do dispositivo de osteomia de fatia ajustável de forma não invasiva pode ser utilizado para distracção gradual (osteogênese de llizarov) ou para a correção de um ângulo agudo incorreto. O implante pode ele próprio ser usado como qualquer um dos elementos do dispositivo de escavação, por exemplo, a porção externa do implante pode ter características que permitem que ele seja utilizado como um alargador, raspagem ou compactador de osso. Como alternativa, o ajustamento remoto descrito acima pode ser substituída por um controle manual de qualquer parte implantado, por exemplo, o manual de pressão por parte do paciente ou prestador de cuidados de um botão colocado sob a pele. A invenção, portanto, não deve ser limitada, exceto pelas reivindicações seguintes e seus equivalentes.
[0134] É contemplado que várias combinações ou subcombinações das características e aspectos específicos das concretizações descritas acima podem ser feitas e ainda cair dentro de uma ou mais das invenções. Além disso, a divulgação aqui de qualquer característica especial, aspecto, o método, a propriedade, característica, qualidade, atributo, componente, ou semelhante em ligação com uma concretização pode ser utilizado em todas as outras concretizações aqui apresentadas. Por conseguinte, deve ser entendido que várias características e aspectos das concretizações descritas podem ser combinadas com ou substituído por uma outra, a fim de formar diferentes modos das invenções divulgadas. Assim, pretende-se que o escopo das presentes invenções aqui descritas não deve ser limitado pelas concretizações particulares reveladas descritas acima. Além disso, embora a invenção seja susceptível de várias modificações e formas alternativas, exemplos específicos da mesma tem sido representado nos desenhos e são aqui descritos em detalhes. Deve ser entendido, no entanto, que a invenção não é para ser limitada às formas particulares ou métodos descritos, mas pelo contrário, a invenção cobre todas as modificações, equivalentes e alternativas que se enquadrem no espírito e escopo das várias concretizações descrito e das reivindicações anexas. Quaisquer métodos aqui descritos não precisam ser realizadas na ordem recitados. Os métodos aqui divulgados incluem certas ações tomadas por um profissional; no entanto, elas também podem incluir qualquer instrução de terceiros dessas ações, de forma expressa ou implicitamente. Por exemplo, ações como "a inserção de um alargador de osso para a primeira parte de’ incluir "instruindo a inserção de um alargador de osso para a primeira parcela". Os intervalos aqui revelados também englobam toda e qualquer sobreposição, de sub-intervalos, e suas combinações. Linguagem como "até", "pelo menos", "maior que", "menor do que", "entre", e similares inclui o número recitado. Números precedidos de um termo como "aproximadamente", "sobre", e "substancialmente" aqui utilizado incluem os números recitados, e também representam um montante próximo ao valor afirmado que ainda exerce uma função desejada ou consegue um resultado desejado. Por exemplo, os termos "cerca de", "aproximadamente" e "substancialmente" pode referir-se a uma quantidade que é, em menos do que 10% de, dentro de menos de 5% de, em menos de 1% de, dentro de menos do que 0,1% de, e dentro de menos do que 0,01% da quantidade indicada.

Claims (5)

1. Sistema para mudança de um ângulo de um osso de um sujeito, o sistema que compreende: um implante ajustável de forma não invasiva (700) que compreende um atuador ajustável (742) tendo uma invólucro exterior (730) e um eixo interior (732), telescopicamente disposto no invólucro exterior (730), o invólucro exterior (730) associado com um primeiro furo de ancoragem (739), e o eixo interior (732) associado com um segundo furo de ancoragem (743), o primeiro furo de ancoragem (739) configurado para transmitir um primeiro fixador (755) para acoplamento do atuador ajustável (742) de uma primeira parte do osso e o segundo furo de ancoragem (743) configurado para transmitir um segundo fixador (779) para acoplamento do atuador ajustável (742) com uma segunda parte do osso, a segunda parte do osso separada, pelo menos parcialmente, da primeira porção do osso por uma osteotomia; um elemento de acionamento configurado para ser remotamente operável para deslocar telescopicamente o eixo interno (732) em relação ao invólucro exterior (730); e em que o implante ajustável de forma não invasiva (700) é configurado para ser angularmente sem restrições em relação apelo menos uma da primeira porção do osso ou da segunda parte do osso quando acoplado a ambas a primeira parte e a segunda parte do osso; caracterizadopelo fato de o eixo interno (732) é afunilado tendo um primeiro diâmetro menor adjacente ao invólucro externo (730) até um segundo diâmetro maior distal ao invólucro externo (730).
2. Sistema, de acordo com a reivindicação 1, caracterizadopelo fato de que o elemento de acionamento compreende um ímã permanente.
3. Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de que o elemento de acionamento compreende um motor indutivamente acoplado.
4. Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de que o elemento de acionamento compreende um motor acionado ultrassonicamente.
5. Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de que o elemento de acionamento compreende uma bomba hidráulica subcutânea.
BR112015009446-5A 2012-10-29 2013-10-28 Sistema para mudança de um ângulo de um osso de um sujeito BR112015009446B1 (pt)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261719887P 2012-10-29 2012-10-29
US61/719,887 2012-10-29
US201361868535P 2013-08-21 2013-08-21
US61/868,535 2013-08-21
PCT/US2013/067142 WO2014070681A1 (en) 2012-10-29 2013-10-28 Adjustable devices for treating arthritis of the knee

Publications (2)

Publication Number Publication Date
BR112015009446A2 BR112015009446A2 (pt) 2017-07-04
BR112015009446B1 true BR112015009446B1 (pt) 2021-07-20

Family

ID=50627977

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112015009446-5A BR112015009446B1 (pt) 2012-10-29 2013-10-28 Sistema para mudança de um ângulo de um osso de um sujeito

Country Status (9)

Country Link
US (6) US10130405B2 (pt)
EP (2) EP3760147B1 (pt)
CN (1) CN104902854B (pt)
AU (1) AU2013338218B2 (pt)
BR (1) BR112015009446B1 (pt)
CA (1) CA2889769A1 (pt)
IN (1) IN2015DN03762A (pt)
RU (2) RU2017126066A (pt)
WO (1) WO2014070681A1 (pt)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105943145B (zh) * 2008-10-31 2020-09-08 伊姆普兰蒂卡专利有限公司 利用无线能量传输进行骨调整的装置与方法
EP3760147B1 (en) 2012-10-29 2022-11-30 NuVasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US9179938B2 (en) * 2013-03-08 2015-11-10 Ellipse Technologies, Inc. Distraction devices and method of assembling the same
EP3102138B1 (en) * 2014-02-07 2019-07-17 Brainlab AG Detachable tracking reference array
CN111345867A (zh) 2014-04-28 2020-06-30 诺威适骨科专科公司 遥控装置
WO2016175893A1 (en) * 2015-04-28 2016-11-03 Ellipse Technologies, Inc. System for informational magnetic feedback in adjustable implants
US9931138B2 (en) * 2014-10-15 2018-04-03 Globus Medical, Inc. Orthopedic extendable rods
EP4005515A1 (en) * 2014-12-26 2022-06-01 NuVasive Specialized Orthopedics, Inc. Systems for distraction
US10070928B2 (en) * 2015-07-01 2018-09-11 Mako Surgical Corp. Implant placement planning
US11006977B2 (en) * 2015-10-05 2021-05-18 Global Medical Inc Growing rod for treating spinal deformities and method for using same
CN113425401A (zh) * 2015-10-16 2021-09-24 诺威适骨科专科公司 用于治疗膝关节炎的可调式装置
CN105380734B (zh) * 2015-11-30 2017-03-29 北京爱康宜诚医疗器材股份有限公司 膝关节假体
EP3386405B1 (en) 2015-12-10 2023-11-01 NuVasive Specialized Orthopedics, Inc. External adjustment device for distraction device
ES2805657T3 (es) 2016-01-28 2021-02-15 Nuvasive Specialized Orthopedics Inc Sistemas para transporte óseo
WO2017139548A1 (en) 2016-02-10 2017-08-17 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
WO2017172717A1 (en) * 2016-03-29 2017-10-05 Biomet Manufacturing, Llc Modular bone model
RU2621949C1 (ru) * 2016-06-02 2017-06-08 Общество с ограниченной ответственностью "Медико-инженерный центр сплавов с памятью формы" Комбинированный имплантат и инструменты для его установки
CN108420475A (zh) * 2018-03-20 2018-08-21 河北医科大学第三医院 一种膝关节炎胫骨截骨后渐进式撑开器
CN108784814A (zh) * 2018-08-08 2018-11-13 河北医科大学第三医院 一种膝关节炎胫骨截骨后组合式垫高器
CN110115628B (zh) * 2019-05-14 2020-06-19 影为医疗科技(上海)有限公司 一种个性化胫骨高位截骨角度匹配模板的模型的构建方法
WO2022015898A1 (en) * 2020-07-17 2022-01-20 Nuvasive Specialized Orthopedics, Inc. Extramedullary device and system
CN114587556B (zh) * 2022-03-28 2023-03-10 中南大学湘雅医院 胫骨截骨术用固定支撑件

Family Cites Families (851)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1599538A (en) 1919-12-06 1926-09-14 Mintrop Ludger Geological testing method
US2702031A (en) 1953-09-25 1955-02-15 Wenger Herman Leslie Method and apparatus for treatment of scoliosis
US3111945A (en) 1961-01-05 1963-11-26 Solbrig Charles R Von Bone band and process of applying the same
US3377576A (en) 1965-05-03 1968-04-09 Metcom Inc Gallium-wetted movable electrode switch
US3397928A (en) 1965-11-08 1968-08-20 Edward M. Galle Seal means for drill bit bearings
SE344275B (pt) 1966-02-10 1972-04-10 R Gruenert
US3372476A (en) 1967-04-05 1968-03-12 Amp Inc Method of making permanent connections between interfitting parts
USRE28907E (en) 1967-06-05 1976-07-20 Self-tapping threaded bushings
FR1556730A (pt) 1967-06-05 1969-02-07
US3866510A (en) 1967-06-05 1975-02-18 Carl B H Eibes Self-tapping threaded bushings
US3512901A (en) 1967-07-28 1970-05-19 Carrier Corp Magnetically coupled pump with slip detection means
US3527220A (en) 1968-06-28 1970-09-08 Fairchild Hiller Corp Implantable drug administrator
FR2086747A5 (pt) 1970-04-07 1971-12-31 Cotton De Bennetot M
US3726279A (en) 1970-10-08 1973-04-10 Carolina Medical Electronics I Hemostatic vascular cuff
US3810259A (en) 1971-01-25 1974-05-14 Fairchild Industries Implantable urinary control apparatus
US3750194A (en) 1971-03-16 1973-08-07 Fairchild Industries Apparatus and method for reversibly closing a natural or implanted body passage
US3840018A (en) 1973-01-31 1974-10-08 M Heifetz Clamp for occluding tubular conduits in the human body
DE2314573C2 (de) 1973-03-23 1986-12-18 Werner Dipl.-Ing. 8000 München Kraus Gerät zur Förderung von Heilungsprozessen
GB1467248A (en) 1973-07-30 1977-03-16 Horstmann Magnetics Ltd Electric motors
CH581988A5 (pt) 1974-04-09 1976-11-30 Messerschmitt Boelkow Blohm
US3900025A (en) 1974-04-24 1975-08-19 Jr Walter P Barnes Apparatus for distracting or compressing longitudinal bone segments
FI53062C (pt) 1975-05-30 1978-02-10 Erkki Einari Nissinen
US4010758A (en) 1975-09-03 1977-03-08 Medtronic, Inc. Bipolar body tissue electrode
US4068821A (en) 1976-09-13 1978-01-17 Acf Industries, Incorporated Valve seat ring having a corner groove to receive an elastic seal ring
SU715082A1 (ru) 1977-01-24 1980-02-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Хирургический сшивающий аппарат
US4118805A (en) 1977-02-28 1978-10-10 Codman & Shurtleff, Inc. Artificial sphincter
SU707580A1 (ru) * 1977-08-11 1980-01-05 Крымский Государственный Медицинский Институт Устройство дл фиксации костных отломков
CH625384B (fr) 1977-12-20 Ebauches Electroniques Sa Dispositif de detection de la non rotation de moteurs pas a pas pour piece d'horlogerie et de rattrapage des pas perdus.
US4222374A (en) 1978-06-16 1980-09-16 Metal Bellows Corporation Septum locating apparatus
US4286584A (en) 1978-06-16 1981-09-01 Infusaid Corporation Septum locating apparatus
US4235246A (en) 1979-02-05 1980-11-25 Arco Medical Products Company Epicardial heart lead and assembly and method for optimal fixation of same for cardiac pacing
US4256094A (en) 1979-06-18 1981-03-17 Kapp John P Arterial pressure control system
US4357946A (en) 1980-03-24 1982-11-09 Medtronic, Inc. Epicardial pacing lead with stylet controlled helical fixation screw
DE3035670A1 (de) 1980-09-22 1982-04-29 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur infusion von fluessigkeiten in den menschlichen oder tierischen koerper
US4386603A (en) 1981-03-23 1983-06-07 Mayfield Jack K Distraction device for spinal distraction systems
US4448191A (en) 1981-07-07 1984-05-15 Rodnyansky Lazar I Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature
FR2514250A1 (fr) 1981-10-08 1983-04-15 Artus Piece a main a moteur integre
SU1029958A1 (ru) * 1981-10-27 1983-07-23 Крымский Медицинский Институт Устройство дл удлинени кости
FR2523232B1 (fr) 1982-03-09 1985-09-20 Thomson Csf Colonne telescopique a tubes cylindriques
CH648723GA3 (pt) 1982-09-10 1985-04-15
DE3340596A1 (de) 1982-11-16 1984-05-24 Tokyo Electric Co., Ltd., Tokyo Matrixdrucker
IL67773A (en) 1983-01-28 1985-02-28 Antebi E Tie for tying live tissue and an instrument for performing said tying operation
DE3306657C2 (de) 1983-02-25 1986-12-11 Fa. Heinrich C. Ulrich, 7900 Ulm Implantat zur Wirbelsäulenkorrektur mit einem Distraktionsstab
US4501266A (en) 1983-03-04 1985-02-26 Biomet, Inc. Knee distraction device
US4595007A (en) 1983-03-14 1986-06-17 Ethicon, Inc. Split ring type tissue fastener
FR2551350B1 (fr) 1983-09-02 1985-10-25 Buffet Jacques Dispositif d'injection de fluide, apte a etre implante
US4522501A (en) 1984-04-06 1985-06-11 Northern Telecom Limited Monitoring magnetically permeable particles in admixture with a fluid carrier
US4573454A (en) 1984-05-17 1986-03-04 Hoffman Gregory A Spinal fixation apparatus
SE448812B (sv) 1985-02-01 1987-03-23 Astra Meditec Ab Kirurgisk anordning for ombindning av magsecken hos en patient
DE8515687U1 (de) 1985-05-29 1985-10-24 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Distraktionsgerät für die Verlängerungsosteotomie
US4592339A (en) 1985-06-12 1986-06-03 Mentor Corporation Gastric banding device
US4642257A (en) 1985-06-13 1987-02-10 Michael Chase Magnetic occluding device
US4696288A (en) 1985-08-14 1987-09-29 Kuzmak Lubomyr I Calibrating apparatus and method of using same for gastric banding surgery
US4931055A (en) 1986-05-30 1990-06-05 John Bumpus Distraction rods
US4700091A (en) 1986-08-22 1987-10-13 Timex Corporation Bipolar stepping motor rotor with drive pinion and method of manufacture
SE460301B (sv) 1986-10-15 1989-09-25 Sandvik Ab Skarvstaang foer slaaende bergborrmaskin
US4760837A (en) 1987-02-19 1988-08-02 Inamed Development Company Apparatus for verifying the position of needle tip within the injection reservoir of an implantable medical device
DE8704134U1 (de) 1987-03-19 1987-07-16 Zielke, Klaus, Dr.med., 3590 Bad Wildungen Als Distraktions- und Kompressionsstab ausgestaltetes Implantat
DE3711091A1 (de) 1987-04-02 1988-10-13 Kluger Patrick Vorrichtung zum einrichten einer wirbelsaeule mit geschaedigten wirbelkoerpern
DE3728686A1 (de) 1987-08-27 1989-03-09 Draenert Klaus Vorspannbares chirurgisches netzwerk
EP0359793A4 (en) 1988-02-03 1990-10-10 Inc. Biomet Variable length fixation device
US4940467A (en) 1988-02-03 1990-07-10 Tronzo Raymond G Variable length fixation device
FR2632514B1 (fr) 1988-06-09 1990-10-12 Medinov Sarl Clou centro-medullaire progressif
US4998013A (en) 1988-12-27 1991-03-05 Hewlett-Packard Company Optical encoder with inactive photodetectors
US4904861A (en) 1988-12-27 1990-02-27 Hewlett-Packard Company Optical encoder using sufficient inactive photodetectors to make leakage current equal throughout
US4973331A (en) 1989-03-08 1990-11-27 Autogenesis Corporation Automatic compression-distraction-torsion method and apparatus
US5180380A (en) 1989-03-08 1993-01-19 Autogenesis Corporation Automatic compression-distraction-torsion method and apparatus
JPH0620466B2 (ja) 1989-03-31 1994-03-23 有限会社田中医科器械製作所 脊柱変形矯正固定装置
US5092889A (en) 1989-04-14 1992-03-03 Campbell Robert M Jr Expandable vertical prosthetic rib
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
US5053047A (en) 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US5025183A (en) * 1989-05-17 1991-06-18 The United States Of America As Represented By The Secretary Of The Air Force Electromagnetic actuator driver apparatus with pivot axis
DE3921972C2 (de) 1989-07-04 1994-06-09 Rainer Dr Med Baumgart Marknagel
US5176618A (en) 1989-08-10 1993-01-05 George Freedman System for preventing closure of passageways
US4978323A (en) 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
IT1236172B (it) 1989-11-30 1993-01-11 Franco Mingozzi Fissatore esterno per il trattamento delle fratture delle ossa lunghe degli arti.
US5142407A (en) 1989-12-22 1992-08-25 Donnelly Corporation Method of reducing leakage current in electrochemichromic solutions and solutions based thereon
SE464558B (sv) 1990-03-22 1991-05-13 Hepar Ab Implanterbar anordning foer avstaengning av en kanal i en levande varelses kropp
US5030235A (en) 1990-04-20 1991-07-09 Campbell Robert M Jr Prosthetic first rib
US5290289A (en) 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US5156605A (en) * 1990-07-06 1992-10-20 Autogenesis Corporation Automatic internal compression-distraction-method and apparatus
US5074868A (en) 1990-08-03 1991-12-24 Inamed Development Company Reversible stoma-adjustable gastric band
US5133716A (en) 1990-11-07 1992-07-28 Codespi Corporation Device for correction of spinal deformities
US5226429A (en) 1991-06-20 1993-07-13 Inamed Development Co. Laparoscopic gastric band and method
US5360407A (en) 1991-08-29 1994-11-01 C. R. Bard, Inc. Implantable dual access port with tactile ridge for position sensing
US5399168A (en) 1991-08-29 1995-03-21 C. R. Bard, Inc. Implantable plural fluid cavity port
JP3068683B2 (ja) 1991-10-21 2000-07-24 マグネット製造株式会社 非磁性金属分離装置
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
ES2134265T3 (es) 1992-06-08 1999-10-01 Robert M Campbell Jr Instrumentacion de carro costal segmental.
DE4221692A1 (de) 1992-07-02 1994-01-05 Siemens Ag Verfahren und Vorrichtung zur Ermittlung eines Gemischanteils eines Gasgemisches
US5437266A (en) 1992-07-02 1995-08-01 Mcpherson; William Coil screw surgical retractor
US5676651A (en) 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5381943A (en) 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5466261A (en) 1992-11-19 1995-11-14 Wright Medical Technology, Inc. Non-invasive expandable prosthesis for growing children
US5306275A (en) 1992-12-31 1994-04-26 Bryan Donald W Lumbar spine fixation apparatus and method
US5498262A (en) 1992-12-31 1996-03-12 Bryan; Donald W. Spinal fixation apparatus and method
US5336223A (en) 1993-02-04 1994-08-09 Rogers Charles L Telescoping spinal fixator
US5356424A (en) 1993-02-05 1994-10-18 American Cyanamid Co. Laparoscopic suturing device
US5626579A (en) 1993-02-12 1997-05-06 The Cleveland Clinic Foundation Bone transport and lengthening system
US5429638A (en) 1993-02-12 1995-07-04 The Cleveland Clinic Foundation Bone transport and lengthening system
US5356411A (en) 1993-02-18 1994-10-18 Spievack Alan R Bone transporter
US5449368A (en) 1993-02-18 1995-09-12 Kuzmak; Lubomyr I. Laparoscopic adjustable gastric banding device and method for implantation and removal thereof
US5536269A (en) 1993-02-18 1996-07-16 Genesis Orthopedics Bone and tissue lengthening device
US5516335A (en) 1993-03-24 1996-05-14 Hospital For Joint Diseases Orthopaedic Institute Intramedullary nail for femoral lengthening
US5364396A (en) 1993-03-29 1994-11-15 Robinson Randolph C Distraction method and apparatus
US5334202A (en) 1993-04-06 1994-08-02 Carter Michael A Portable bone distraction apparatus
US5527309A (en) 1993-04-21 1996-06-18 The Trustees Of Columbia University In The City Of New York Pelvo-femoral fixator
US5403322A (en) 1993-07-08 1995-04-04 Smith & Nephew Richards Inc. Drill guide and method for avoiding intramedullary nails in the placement of bone pins
FR2709246B1 (fr) 1993-08-27 1995-09-29 Martin Jean Raymond Orthèse vertébrale implantée dynamique.
US5468030A (en) 1994-01-04 1995-11-21 Caterpillar Inc. Tube clamp and coupling
AU1011595A (en) 1994-01-13 1995-07-20 Ethicon Inc. Spiral surgical tack
US5762599A (en) 1994-05-02 1998-06-09 Influence Medical Technologies, Ltd. Magnetically-coupled implantable medical devices
WO1998008454A1 (en) 1994-05-25 1998-03-05 Jackson Roger P Apparatus and method for spinal fixation and correction of spinal deformities
US7255851B2 (en) 1994-07-01 2007-08-14 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
US6217847B1 (en) 1994-07-01 2001-04-17 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
DE69507955T2 (de) 1994-07-11 1999-08-12 Dacomed Corp Prosthetische verschlusseinrichtung
US5620445A (en) 1994-07-15 1997-04-15 Brosnahan; Robert Modular intramedullary nail
US5509888A (en) 1994-07-26 1996-04-23 Conceptek Corporation Controller valve device and method
IT1268313B1 (it) 1994-07-28 1997-02-27 Orthofix Srl Attrezzatura meccanica per il centraggio di fori ciechi per viti ossee di chiodi intramidollari
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5573012A (en) 1994-08-09 1996-11-12 The Regents Of The University Of California Body monitoring and imaging apparatus and method
US5549610A (en) 1994-10-31 1996-08-27 Smith & Nephew Richards Inc. Femoral intramedullary nail
JPH10508524A (ja) 1994-11-16 1998-08-25 スーベイラン,アルノー,アンドレ 2つの物体を互いに相対移動させる装置
US5659217A (en) 1995-02-10 1997-08-19 Petersen; Christian C. Permanent magnet d.c. motor having a radially-disposed working flux gap
US5874796A (en) 1995-02-10 1999-02-23 Petersen; Christian C. Permanent magnet D.C. motor having a radially-disposed working flux gap
FR2730406B1 (fr) 1995-02-13 1997-08-14 Medinov Sa Dispositif d'allongement perfectionne d'os longs
US5575790A (en) 1995-03-28 1996-11-19 Rensselaer Polytechnic Institute Shape memory alloy internal linear actuator for use in orthopedic correction
US5536296A (en) 1995-05-03 1996-07-16 Alumax Inc. Process for treating molten aluminum with chlorine gas and sulfur hexafluoride to remove impurities
US5626613A (en) 1995-05-04 1997-05-06 Arthrex, Inc. Corkscrew suture anchor and driver
US5628888A (en) 1996-03-28 1997-05-13 Rscecat, Usa, Inc. Apparatus for electrochemical treatment of water and/or water solutions
US5662683A (en) 1995-08-22 1997-09-02 Ortho Helix Limited Open helical organic tissue anchor and method of facilitating healing
JP3338944B2 (ja) 1995-08-25 2002-10-28 有限会社田中医科器械製作所 脊柱変形の矯正装置
US5771903A (en) 1995-09-22 1998-06-30 Kirk Promotions Limited Surgical method for reducing the food intake of a patient
US6102922A (en) 1995-09-22 2000-08-15 Kirk Promotions Limited Surgical method and device for reducing the food intake of patient
EP0865258B1 (en) 1995-12-01 2000-06-21 David A. Walker Telescopic bone plate for use in bone lengthening by distraction osteogenesis
US5672177A (en) 1996-01-31 1997-09-30 The General Hospital Corporation Implantable bone distraction device
WO1998050309A1 (en) 1996-03-27 1998-11-12 Bakhir Vitold M Apparatus for electrochemical treatment of water and/or water solutions
US5704938A (en) 1996-03-27 1998-01-06 Volunteers For Medical Engineering Implantable bone lengthening apparatus using a drive gear mechanism
US5985110A (en) 1996-03-28 1999-11-16 Bakhir; Vitold M. Apparatus for electrochemical treatment of water and/or water solutions
US5704939A (en) * 1996-04-09 1998-01-06 Justin; Daniel F. Intramedullary skeletal distractor and method
US5979456A (en) 1996-04-22 1999-11-09 Magovern; George J. Apparatus and method for reversibly reshaping a body part
US5954915A (en) 1996-05-24 1999-09-21 Voorwood Company Surface finishing apparatus
DE69728540T2 (de) 1996-06-17 2005-02-24 Becton Dickinson And Co. Medizinischer tubus zum einführen und detektieren im körper eines patienten
US5700263A (en) 1996-06-17 1997-12-23 Schendel; Stephen A. Bone distraction apparatus
DE19626230A1 (de) 1996-06-29 1998-01-02 Inst Physikalische Hochtech Ev Vorrichtung zur Bestimmung der Lage eines magnetischen Markers
US6835207B2 (en) 1996-07-22 2004-12-28 Fred Zacouto Skeletal implant
US6500110B1 (en) 1996-08-15 2002-12-31 Neotonus, Inc. Magnetic nerve stimulation seat device
US5810815A (en) 1996-09-20 1998-09-22 Morales; Jose A. Surgical apparatus for use in the treatment of spinal deformities
US5830221A (en) 1996-09-20 1998-11-03 United States Surgical Corporation Coil fastener applier
US6058323A (en) 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
US5743910A (en) 1996-11-14 1998-04-28 Xomed Surgical Products, Inc. Orthopedic prosthesis removal instrument
DE19652608C1 (de) 1996-12-18 1998-08-27 Eska Implants Gmbh & Co Prophylaxe-Implantat gegen Frakturen osteoporotisch befallener Knochensegmente
NL1004873C2 (nl) 1996-12-23 1998-06-24 Univ Twente Inrichting voor het onderling verplaatsen van twee objecten.
DE19700225A1 (de) 1997-01-07 1998-07-09 Augustin Prof Dr Betz Distraktionsvorrichtung zum Auseinanderbewegen zweier Teile eines Knochens
IT1293934B1 (it) 1997-01-21 1999-03-11 Orthofix Srl Chiodo endomidollare per il trattamento delle fratture dell'anca
US5997490A (en) 1997-02-12 1999-12-07 Exogen, Inc. Method and system for therapeutically treating bone fractures and osteoporosis
US5827286A (en) * 1997-02-14 1998-10-27 Incavo; Stephen J. Incrementally adjustable tibial osteotomy fixation device and method
DE19708279C2 (de) 1997-02-28 1999-10-14 Rainer Baumgart Distraktionssystem für einen Röhrenknochen
US6034296A (en) 1997-03-11 2000-03-07 Elvin; Niell Implantable bone strain telemetry sensing system and method
US6033412A (en) 1997-04-03 2000-03-07 Losken; H. Wolfgang Automated implantable bone distractor for incremental bone adjustment
FR2761876B1 (fr) 1997-04-09 1999-08-06 Materiel Orthopedique En Abreg Instrumentation d'osteosynthese lombaire pour la correction du spondylolisthesis par voie posterieure
US5938669A (en) 1997-05-07 1999-08-17 Klasamed S.A. Adjustable gastric banding device for contracting a patient's stomach
DE19751733A1 (de) 1997-06-09 1998-12-10 Arnold Dipl Ing Dr Med Pier Laparoskopisch einsetzbares Magenband
GB9713018D0 (en) 1997-06-20 1997-08-27 Secr Defence Optical fibre bend sensor
DE69827680D1 (de) 1997-07-16 2004-12-23 Syngenta Ltd Zusammensetzungen aus Tetrazolinone-Herbizide und Antidote dafür
DE19741757A1 (de) 1997-09-22 1999-03-25 Sachse Hans E Hydraulisches, implantierbares Knochenexpansionsgerät
US6138681A (en) 1997-10-13 2000-10-31 Light Sciences Limited Partnership Alignment of external medical device relative to implanted medical device
DE19745654A1 (de) 1997-10-16 1999-04-22 Hans Peter Prof Dr Med Zenner Vorrichtung zur subkutanen Infusion und deren Verwendung
GB9723194D0 (en) 1997-11-03 1998-01-07 Isis Innovation Electromechanical transducer
FR2771280B1 (fr) 1997-11-26 2001-01-26 Albert P Alby Dispositif de liaison vertebrale resilient
US5935127A (en) 1997-12-17 1999-08-10 Biomet, Inc. Apparatus and method for treatment of a fracture in a long bone
US6336929B1 (en) 1998-01-05 2002-01-08 Orthodyne, Inc. Intramedullary skeletal distractor and method
KR20010033867A (ko) 1998-01-05 2001-04-25 오르토다인 인코포레이티드 골수내 골격 신장 장치 및 방법
US5945762A (en) 1998-02-10 1999-08-31 Light Sciences Limited Partnership Movable magnet transmitter for inducing electrical current in an implanted coil
US6331744B1 (en) 1998-02-10 2001-12-18 Light Sciences Corporation Contactless energy transfer apparatus
US7468060B2 (en) 1998-02-19 2008-12-23 Respiratory Diagnostic, Inc. Systems and methods for treating obesity and other gastrointestinal conditions
DE19807663A1 (de) 1998-02-24 1999-09-09 Baur Verbindungsmittel zum lösbaren Verbinden eines ersten Bauteils und eines zweiten Bauteils und Verfahren zum Lösen einer Verbindung eines ersten Bauteils und eines zweiten Bauteils
US6343568B1 (en) 1998-03-25 2002-02-05 Mcclasky David R. Non-rotating telescoping pole
US6009837A (en) 1998-03-25 2000-01-04 Mcclasky; David R. Purple martin birdhouse and telescoping pole
GB9806999D0 (en) 1998-04-02 1998-06-03 Univ Birmingham Distraction device
US6074341A (en) 1998-06-09 2000-06-13 Timm Medical Technologies, Inc. Vessel occlusive apparatus and method
US6283156B1 (en) 1998-06-17 2001-09-04 Halliburton Energy Services, Inc. Expandable O-ring seal, method of sealing and apparatus having such seals
DE29811479U1 (de) 1998-06-26 1998-09-03 orto MAQUET GmbH & Co. KG, 76437 Rastatt Plattenanordnung zur Osteosynthese
DE19829523A1 (de) 1998-07-02 2000-01-05 Michael Butsch Distraktionsvorrichtung zum Auseinanderbewegen eines ein- oder zweiteiligen, ggf. getrennten Knochens
US6126660A (en) 1998-07-29 2000-10-03 Sofamor Danek Holdings, Inc. Spinal compression and distraction devices and surgical methods
US6067991A (en) 1998-08-13 2000-05-30 Forsell; Peter Mechanical food intake restriction device
US6460543B1 (en) 1998-08-13 2002-10-08 Obtech Medical Ag Non-injection port food intake restriction device
US6210347B1 (en) 1998-08-13 2001-04-03 Peter Forsell Remote control food intake restriction device
FR2783153B1 (fr) 1998-09-14 2000-12-01 Jerome Dargent Dispositif de constriction gastrique
US6494879B2 (en) 1998-10-15 2002-12-17 Scimed Life Systems, Inc. Treating urinary retention
DE19856062A1 (de) 1998-12-04 2000-06-15 Wittenstein Gmbh & Co Kg Distraktionsvorrichtung
US6139316A (en) 1999-01-26 2000-10-31 Sachdeva; Rohit C. L. Device for bone distraction and tooth movement
US6315784B1 (en) 1999-02-03 2001-11-13 Zarija Djurovic Surgical suturing unit
DE19906423A1 (de) 1999-02-16 2000-08-17 Wittenstein Gmbh & Co Kg Aktiver Marknagel zur Distraktion von Knochenteilen
IL129032A (en) 1999-03-17 2006-12-31 Moshe Dudai Stomach strap
US6296645B1 (en) 1999-04-09 2001-10-02 Depuy Orthopaedics, Inc. Intramedullary nail with non-metal spacers
US6162223A (en) 1999-04-09 2000-12-19 Smith & Nephew, Inc. Dynamic wrist fixation apparatus for early joint motion in distal radius fractures
US6299613B1 (en) 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
US6296643B1 (en) 1999-04-23 2001-10-02 Sdgi Holdings, Inc. Device for the correction of spinal deformities through vertebral body tethering without fusion
US6325805B1 (en) 1999-04-23 2001-12-04 Sdgi Holdings, Inc. Shape memory alloy staple
US7008425B2 (en) 1999-05-27 2006-03-07 Jonathan Phillips Pediatric intramedullary nail and method
FR2794357B1 (fr) 1999-06-01 2001-09-14 Frederic Fortin Dispositif de distraction pour les os d'enfants possedant des moyens d'accrochage et de reglage permettant de suivre leur croissance
US6221074B1 (en) 1999-06-10 2001-04-24 Orthodyne, Inc. Femoral intramedullary rod system
US7018380B2 (en) 1999-06-10 2006-03-28 Cole J Dean Femoral intramedullary rod system
US6358283B1 (en) 1999-06-21 2002-03-19 Hoegfors Christian Implantable device for lengthening and correcting malpositions of skeletal bones
WO2000079671A1 (en) 1999-06-21 2000-12-28 Fisher & Paykel Limited Linear motor
US7160312B2 (en) 1999-06-25 2007-01-09 Usgi Medical, Inc. Implantable artificial partition and methods of use
AU5884400A (en) 1999-06-25 2001-01-31 Vahid Saadat Apparatus and methods for treating tissue
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US20050192629A1 (en) 1999-06-25 2005-09-01 Usgi Medical Inc. Methods and apparatus for creating and regulating a gastric stoma
US6587719B1 (en) 1999-07-01 2003-07-01 Cyberonics, Inc. Treatment of obesity by bilateral vagus nerve stimulation
US6409175B1 (en) 1999-07-13 2002-06-25 Grant Prideco, Inc. Expandable joint connector
EP1072282A1 (en) 1999-07-19 2001-01-31 EndoArt S.A. Flow control device
AUPQ202699A0 (en) 1999-08-04 1999-08-26 University Of Melbourne, The Prosthetic device for incontinence
FR2797181B1 (fr) 1999-08-05 2002-05-03 Richard Cancel Dispositif telecommande de bande gastrique pour former une ouverture restreinte de stoma dans l'estomac
US6234956B1 (en) 1999-08-11 2001-05-22 Hongping He Magnetic actuation urethral valve
US6454699B1 (en) 2000-02-11 2002-09-24 Obtech Medical Ag Food intake restriction with controlled wireless energy supply
CN1250168C (zh) 1999-08-12 2006-04-12 波滕西亚医疗公司 在病人的胃或食道内形成人造口的装置
US6453907B1 (en) 1999-08-12 2002-09-24 Obtech Medical Ag Food intake restriction with energy transfer device
US6454698B1 (en) 1999-08-12 2002-09-24 Obtech Medical Ag Anal incontinence treatment with energy transfer device
US6503189B1 (en) 1999-08-12 2003-01-07 Obtech Medical Ag Controlled anal incontinence disease treatment
MXPA02001220A (es) 1999-08-12 2004-05-21 Blomberg Axel Aparato de implante medico con transmision inalambrica de energia.
US6454701B1 (en) 1999-08-12 2002-09-24 Obtech Medical Ag Heartburn and reflux disease treatment apparatus with energy transfer device
US6471635B1 (en) 2000-02-10 2002-10-29 Obtech Medical Ag Anal incontinence disease treatment with controlled wireless energy supply
US6464628B1 (en) 1999-08-12 2002-10-15 Obtech Medical Ag Mechanical anal incontinence
US6482145B1 (en) 2000-02-14 2002-11-19 Obtech Medical Ag Hydraulic anal incontinence treatment
US6673079B1 (en) 1999-08-16 2004-01-06 Washington University Device for lengthening and reshaping bone by distraction osteogenesis
FR2799118B1 (fr) 1999-10-01 2002-07-12 Medical Innovation Dev Implant gastrique reglable
WO2001024697A1 (en) 1999-10-06 2001-04-12 Orthodyne, Inc. Device and method for measuring skeletal distraction
US6926719B2 (en) 1999-10-21 2005-08-09 Gary W. Sohngen Modular intramedullary nail
US6626917B1 (en) 1999-10-26 2003-09-30 H. Randall Craig Helical suture instrument
US6573706B2 (en) 1999-11-18 2003-06-03 Intellijoint Systems Ltd. Method and apparatus for distance based detection of wear and the like in joints
IT1315260B1 (it) 1999-12-07 2003-02-03 Valerio Cigaina Bendaggio gastrico rimovibile
US20030208212A1 (en) 1999-12-07 2003-11-06 Valerio Cigaina Removable gastric band
FR2802406B1 (fr) 1999-12-21 2002-12-13 Rc Medical Anneau de gastroplastie a fermeture pneumatique
FR2802407B1 (fr) 1999-12-21 2002-12-13 Rc Medical Anneau de gastroplastie desserrable
US6702732B1 (en) 1999-12-22 2004-03-09 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6386083B1 (en) 1999-12-23 2002-05-14 Ber-Fong Hwang Vertically movable foam sponge cutting apparatus
US7507252B2 (en) 2000-01-31 2009-03-24 Edwards Lifesciences Ag Adjustable transluminal annuloplasty system
US6527702B2 (en) 2000-02-01 2003-03-04 Abbeymoor Medical, Inc. Urinary flow control device and method
US6508820B2 (en) 2000-02-03 2003-01-21 Joel Patrick Bales Intramedullary interlock screw
US6454700B1 (en) 2000-02-09 2002-09-24 Obtech Medical Ag Heartburn and reflux disease treatment apparatus with wireless energy supply
CN1291701C (zh) 2000-02-10 2006-12-27 波滕西亚医疗公司 机械阳萎治疗设备
DE60136183D1 (de) 2000-02-10 2008-11-27 Obtech Medical Ag Geregelte vorrichtung zur behandlung von sodbrennen und sauren aufstossen
WO2001045487A2 (en) 2000-02-10 2001-06-28 Potencia Medical Ag Anal incontinence treatment apparatus with wireless energy supply
US6463935B1 (en) 2000-02-10 2002-10-15 Obtech Medical Ag Controlled heartburn and reflux disease treatment
US6470892B1 (en) 2000-02-10 2002-10-29 Obtech Medical Ag Mechanical heartburn and reflux treatment
ES2311905T3 (es) 2000-02-10 2009-02-16 Potencia Medical Ag Aparato para el tratamiento de la incontinencia anal con fuente de alimentacion de energia controlada.
US6450946B1 (en) 2000-02-11 2002-09-17 Obtech Medical Ag Food intake restriction with wireless energy transfer
US6709385B2 (en) 2000-02-11 2004-03-23 Obtech Medical Ag Urinary incontinence treatment apparatus
AU2001232583A1 (en) 2000-02-14 2001-07-24 Potencia Medical Ag Hydraulic urinary incontinence treatment apparatus
US6475136B1 (en) 2000-02-14 2002-11-05 Obtech Medical Ag Hydraulic heartburn and reflux treatment
US7601171B2 (en) 2003-10-23 2009-10-13 Trans1 Inc. Spinal motion preservation assemblies
US20070260270A1 (en) 2000-02-16 2007-11-08 Trans1 Inc. Cutter for preparing intervertebral disc space
US7776068B2 (en) 2003-10-23 2010-08-17 Trans1 Inc. Spinal motion preservation assemblies
US7938836B2 (en) 2003-10-23 2011-05-10 Trans1, Inc. Driver assembly for simultaneous axial delivery of spinal implants
FR2805451B1 (fr) 2000-02-29 2002-04-19 Arnaud Andre Soubeiran Dispositif perfectionne pour deplacer deux corps l'un par rapport a l'autre, en particulier pour la realisation de systemes implantables dans le corps humain
US20030220644A1 (en) 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
CA2402504A1 (en) 2000-03-10 2001-09-20 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6423061B1 (en) 2000-03-14 2002-07-23 Amei Technologies Inc. High tibial osteotomy method and apparatus
US6309391B1 (en) 2000-03-15 2001-10-30 Sdgi Holding, Inc. Multidirectional pivoting bone screw and fixation system
GB0009107D0 (en) 2000-04-13 2000-05-31 Univ London Surgical distraction device
US6510345B1 (en) 2000-04-24 2003-01-21 Medtronic, Inc. System and method of bridging a transreceiver coil of an implantable medical device during non-communication periods
US7241300B2 (en) 2000-04-29 2007-07-10 Medtronic, Inc, Components, systems and methods for forming anastomoses using magnetism or other coupling means
US8518062B2 (en) 2000-04-29 2013-08-27 Medtronic, Inc. Devices and methods for forming magnetic anastomoses between vessels
US20020072758A1 (en) 2000-12-13 2002-06-13 Reo Michael L. Processes for producing anastomotic components having magnetic properties
US7232449B2 (en) 2000-04-29 2007-06-19 Medtronic, Inc. Components, systems and methods for forming anastomoses using magnetism or other coupling means
US20050080439A1 (en) 2000-04-29 2005-04-14 Carson Dean F. Devices and methods for forming magnetic anastomoses and ports in vessels
US6802847B1 (en) 2000-04-29 2004-10-12 Ventrica, Inc. Devices and methods for forming magnetic anastomoses and ports in vessels
US6656135B2 (en) 2000-05-01 2003-12-02 Southwest Research Institute Passive and wireless displacement measuring device
HU223454B1 (hu) 2000-07-21 2004-07-28 László Bodó Feszítésbeállító ín és szalag, rekonstrukcióhoz vagy pótláshoz, valamint bevezetőcső a feszítésbeállító beültetéséhez
US7114501B2 (en) 2000-08-14 2006-10-03 Spine Wave, Inc. Transverse cavity device and method
US6554831B1 (en) 2000-09-01 2003-04-29 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
FR2813786B1 (fr) 2000-09-11 2003-03-14 Medical Innovation Dev Procede et dispositif de commande du gonflement d'une enveloppe prothetique gonflable et prothese en faisant application
US6432040B1 (en) 2000-09-14 2002-08-13 Nizam N. Meah Implantable esophageal sphincter apparatus for gastroesophageal reflux disease and method
DE10142544B4 (de) 2000-09-15 2010-05-27 Heidelberger Druckmaschinen Ag Zahnradgetriebestufe mit Verspannmoment
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US8956407B2 (en) 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
WO2004030568A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US7691144B2 (en) 2003-10-01 2010-04-06 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US6527701B1 (en) 2000-09-29 2003-03-04 Precision Medical Devices, Inc. Body fluid flow control device
US7011621B2 (en) 2000-09-29 2006-03-14 Precision Medical Devices, Inc. Body fluid flow control method and device
US6537196B1 (en) 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
DE10054236A1 (de) 2000-11-02 2002-07-25 Okin Ges Fuer Antriebstechnik Teleskoparm
DE10055519A1 (de) 2000-11-09 2002-06-06 Wittenstein Gmbh & Co Kg Distraktionsvorrichtung
US6582313B2 (en) 2000-12-22 2003-06-24 Delphi Technologies, Inc. Constant velocity stroking joint having recirculating spline balls
US6609025B2 (en) 2001-01-02 2003-08-19 Cyberonics, Inc. Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation
JP3910020B2 (ja) 2001-03-08 2007-04-25 敏行 ▲高▼木 人工括約筋
GB0106588D0 (en) 2001-03-16 2001-05-09 Finsbury Dev Ltd Tissue distracter
US6802844B2 (en) 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
SE523852C2 (sv) 2001-04-10 2004-05-25 Azad Al-Najjar Hjärtprotes
US7787958B2 (en) 2001-04-13 2010-08-31 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
US6565573B1 (en) 2001-04-16 2003-05-20 Smith & Nephew, Inc. Orthopedic screw and method of use
FR2823663B1 (fr) 2001-04-18 2004-01-02 Cousin Biotech Dispositif de traitement de l'obesite morbide
WO2002085190A2 (en) 2001-04-24 2002-10-31 Kim Young D Magnetic pellets and system for assisting ventricular contraction
EP1395186A1 (en) 2001-05-23 2004-03-10 Yona Kosashvili Magnetically-actuable intramedullary device
EP1260188B1 (de) 2001-05-25 2014-09-17 Zimmer GmbH Oberschenkel-Marknagel zum Einbringen am Kniegelenk
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US6558400B2 (en) 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US7083629B2 (en) 2001-05-30 2006-08-01 Satiety, Inc. Overtube apparatus for insertion into a body
FR2825264B1 (fr) 2001-06-01 2004-04-02 Surgical Diffusion Anneau pour gastroplastie
US7041105B2 (en) 2001-06-06 2006-05-09 Sdgi Holdings, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US6511490B2 (en) 2001-06-22 2003-01-28 Antoine Jean Henri Robert Gastric banding device and method
SE0102313D0 (sv) 2001-06-28 2001-06-28 Obtech Medical Ag Intestine dysfunction treatment apparatus
CA2351978C (en) 2001-06-28 2006-03-14 Halliburton Energy Services, Inc. Drilling direction control device
US6627206B2 (en) 2001-07-25 2003-09-30 Greg A. Lloyd Method and apparatus for treating obesity and for delivering time-released medicaments
FR2827756B1 (fr) 2001-07-25 2005-01-14 Patrick Rat Lacs perfectionne et applicateurs associes utilisables en chirurgie endoscopique
US6375682B1 (en) 2001-08-06 2002-04-23 Lewis W. Fleischmann Collapsible, rotatable and expandable spinal hydraulic prosthetic device
JP2003059558A (ja) 2001-08-09 2003-02-28 Tokai Rika Co Ltd プリント基板用コネクタ
EP1745765B1 (en) 2001-09-05 2011-04-06 Potencia Medical AG Stoma opening forming apparatus with connection device
US20040172040A1 (en) 2001-10-19 2004-09-02 Heggeness Michael H. Bone compression devices and systems and methods of contouring and using same
AU2002349962B2 (en) 2001-10-19 2006-04-06 Baylor College Of Medicine Bone compression devices and systems and methods of contouring and using same
US7194297B2 (en) 2001-11-13 2007-03-20 Boston Scientific Scimed, Inc. Impedance-matching apparatus and construction for intravascular device
US7001346B2 (en) 2001-11-14 2006-02-21 Michael R. White Apparatus and methods for making intraoperative orthopedic measurements
DE10156316A1 (de) * 2001-11-19 2003-06-05 Wittenstein Ag Distraktionsvorrichtung
DE10158545B4 (de) 2001-11-29 2004-05-19 Gkn Driveline Deutschland Gmbh Längsverschiebeeinheit mit hohlem Profilzapfen
US7601156B2 (en) 2001-12-05 2009-10-13 Randolph C. Robinson Limb lengthener
US20030114731A1 (en) 2001-12-14 2003-06-19 Cadeddu Jeffrey A. Magnetic positioning system for trocarless laparoscopic instruments
US6852113B2 (en) * 2001-12-14 2005-02-08 Orthopaedic Designs, Llc Internal osteotomy fixation device
FR2834631B1 (fr) 2002-01-15 2004-10-22 Cie Euro Etude Rech Paroscopie Anneau de gastroplastie en materiau elastomere a durete variable
US20040019353A1 (en) 2002-02-01 2004-01-29 Freid James M. Spinal plate system for stabilizing a portion of a spine
US9101422B2 (en) 2002-02-01 2015-08-11 Zimmer Spine, Inc. Spinal plate system for stabilizing a portion of a spine
US7105029B2 (en) 2002-02-04 2006-09-12 Zimmer Spine, Inc. Skeletal fixation device with linear connection
US7678136B2 (en) 2002-02-04 2010-03-16 Spinal, Llc Spinal fixation assembly
FR2835734B1 (fr) 2002-02-11 2004-10-29 Scient X Systeme de liaison entre une tige rachidienne et une barre transversale
US20040006342A1 (en) 2002-02-13 2004-01-08 Moti Altarac Posterior polyaxial plate system for the spine
US7163538B2 (en) 2002-02-13 2007-01-16 Cross Medical Products, Inc. Posterior rod system
UA75048C2 (uk) 2002-02-18 2006-03-15 Товариство З Обмеженою Відповідальністю "Кримський Центр Травматології І Ортопедії Імені О.І. Блискунова-"Абас" Пристрій блискунова для подовження довгих кісток
US6607363B1 (en) 2002-02-20 2003-08-19 Terumo Cardiovascular Systems Corporation Magnetic detent for rotatable knob
US7311690B2 (en) 2002-02-25 2007-12-25 Novashunt Ag Implantable fluid management system for the removal of excess fluid
US7011658B2 (en) 2002-03-04 2006-03-14 Sdgi Holdings, Inc. Devices and methods for spinal compression and distraction
EP1343112A1 (en) 2002-03-08 2003-09-10 EndoArt S.A. Implantable device
US20100168751A1 (en) 2002-03-19 2010-07-01 Anderson D Greg Method, Implant & Instruments for Percutaneous Expansion of the Spinal Canal
US6774624B2 (en) 2002-03-27 2004-08-10 Ge Medical Systems Global Technology Company, Llc Magnetic tracking system
DE60334897D1 (de) 2002-03-30 2010-12-23 Infinity Orthopaedics Co Ltd Medizinische Intervertebrale Vorrichtung
US6761503B2 (en) 2002-04-24 2004-07-13 Torque-Traction Technologies, Inc. Splined member for use in a slip joint and method of manufacturing the same
US7445010B2 (en) 2003-01-29 2008-11-04 Torax Medical, Inc. Use of magnetic implants to treat issue structures
US6749556B2 (en) 2002-05-10 2004-06-15 Scimed Life Systems, Inc. Electroactive polymer based artificial sphincters and artificial muscle patches
US20030220643A1 (en) 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
FR2840193B1 (fr) 2002-05-31 2005-02-11 Textile Hi Tec Anneau gastrique
US20050165440A1 (en) 2002-06-13 2005-07-28 Richard Cancel System for treating obesity and implant for a system of this type
US7175589B2 (en) 2002-07-02 2007-02-13 The Foundry Inc. Methods and devices for luminal and sphincter augmentation
US7357037B2 (en) 2002-07-10 2008-04-15 Orthodata Technologies Llc Strain sensing system
EP1535039B1 (en) 2002-07-10 2010-10-06 OrthoData Inc. Strain sensing system
US7060075B2 (en) 2002-07-18 2006-06-13 Biosense, Inc. Distal targeting of locking screws in intramedullary nails
US20040133219A1 (en) 2002-07-29 2004-07-08 Peter Forsell Multi-material constriction device for forming stoma opening
FR2843538B1 (fr) 2002-08-13 2005-08-12 Frederic Fortin Dispositif de distraction et d'amortissement ajustable a la croissance du rachis
US7338433B2 (en) 2002-08-13 2008-03-04 Allergan, Inc. Remotely adjustable gastric banding method
EP1534162B1 (en) 2002-08-13 2012-04-04 Allergan, Inc. Remotely adjustable gastric banding device
EP1389453B1 (de) 2002-08-16 2007-03-07 AMI Agency for Medical Innovations GmbH Band zur Erzeugung einer künstlichen Verengung im Gastro-Intestinal-Trakt
US6667725B1 (en) 2002-08-20 2003-12-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Radio frequency telemetry system for sensors and actuators
JP4423197B2 (ja) 2002-08-25 2010-03-03 ザ ユニヴァーシティ オブ ホンコン 脊柱変形の矯正装置
US7811298B2 (en) 2002-08-28 2010-10-12 Allergan, Inc. Fatigue-resistant gastric banding device
US7175660B2 (en) 2002-08-29 2007-02-13 Mitralsolutions, Inc. Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
FR2843875B1 (fr) 2002-08-30 2004-10-08 Arnaud Andre Soubeiran Dispositif implantable pour transformer sur commande des couples alternes appliques par la force musculaire entre deux pieces en un deplacement de deux corps relativement l'un a l'autre
DE60223535T2 (de) 2002-09-04 2008-09-18 Endoart S.A. Vorrichtung zum Verschliessen von chirurgischen Ringen
US7972346B2 (en) 2002-09-04 2011-07-05 Allergan Medical S.A. Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
ATE369820T1 (de) 2002-09-04 2007-09-15 Endoart Sa Chirurgischer ring mit fernsteuerungseinrichtung für reversible durchmesserveränderungen
US7901419B2 (en) 2002-09-04 2011-03-08 Allergan, Inc. Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
US7441559B2 (en) 2002-09-06 2008-10-28 Koninklijke Philips Electronics N.V. Devices, systems, and methods to fixate tissue within the regions of body, such as the pharyngeal conduit
US20120312307A1 (en) 2002-09-06 2012-12-13 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
WO2004021870A2 (en) 2002-09-06 2004-03-18 Apneon, Inc. Magnetic force devices, systems, and methods for resisting tissue collapse within the pharyngal conduit
US7360542B2 (en) 2002-09-06 2008-04-22 Apneon, Inc. Devices, systems, and methods to fixate tissue within the regions of body, such as the pharyngeal conduit
US8522790B2 (en) 2002-09-06 2013-09-03 Koninklijke Philips N.V. Stabilized magnetic force devices, systems and methods
US8707959B2 (en) 2002-09-06 2014-04-29 Koninklijke Philips N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US7188627B2 (en) 2002-09-06 2007-03-13 Apneon, Inc. Magnetic force devices, systems, and methods for resisting tissue collapse within the pharyngeal conduit
US20070256693A1 (en) 2002-09-06 2007-11-08 Apneon, Inc. Devices, systems, and methods using magnetic force systems in or on soft palate tissue
US20080066764A1 (en) 2002-09-06 2008-03-20 Apneon, Inc. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20060289014A1 (en) 2002-09-06 2006-12-28 Apneon, Inc. Devices, systems, and methods using magnetic force systems in or on tissue in an airway
US7845356B2 (en) 2002-09-06 2010-12-07 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US7216648B2 (en) 2002-09-06 2007-05-15 Apneon, Inc. Systems and methods for moving and/or restraining tissue in the upper respiratory system
US8074654B2 (en) 2002-09-06 2011-12-13 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
MXPA05002819A (es) 2002-09-20 2005-06-03 Potencia Medical Ag Transmision de energia inalambrica inofensiva a implante.
US20040055610A1 (en) 2002-09-25 2004-03-25 Peter Forsell Detection of implanted wireless energy receiving device
US20040064030A1 (en) 2002-10-01 2004-04-01 Peter Forsell Detection of implanted injection port
AU2003277118A1 (en) 2002-10-01 2004-04-23 Ample Medical, Inc. Devices for retaining native heart valve leaflet
AU2003299542B2 (en) 2002-10-03 2009-01-15 Virginia Tech Intellectual Properties, Inc. Magnetic targeting device
US7837669B2 (en) 2002-11-01 2010-11-23 Valentx, Inc. Devices and methods for endolumenal gastrointestinal bypass
US9060844B2 (en) 2002-11-01 2015-06-23 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US7794447B2 (en) 2002-11-01 2010-09-14 Valentx, Inc. Gastrointestinal sleeve device and methods for treatment of morbid obesity
US6656194B1 (en) 2002-11-05 2003-12-02 Satiety, Inc. Magnetic anchoring devices
AU2003287689A1 (en) 2002-11-07 2004-06-03 Nmt Medical, Inc. Patent foramen ovale (pfo) closure with magnetic force
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
ES2321085T3 (es) 2002-12-11 2009-06-02 CHRISTOPH MIETHKE GMBH & CO. KG Valvula hidrocefalica regulable.
US6918910B2 (en) 2002-12-16 2005-07-19 John T. Smith Implantable distraction device
KR100498951B1 (ko) 2003-01-02 2005-07-04 삼성전자주식회사 동영상 압축 부호화를 위한 움직임 예측 방법과 그기록매체
US20070270631A1 (en) 2003-01-22 2007-11-22 Apneon, Inc. Magnetic force devices, systems, and methods for resisting tissue collapse within the pharyngeal conduit
US6752754B1 (en) 2003-02-04 2004-06-22 Imagine Enterprise, Inc. Artificial rectum and related method
US20040158254A1 (en) 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
US20070043376A1 (en) 2003-02-21 2007-02-22 Osteobiologics, Inc. Bone and cartilage implant delivery device
US7618435B2 (en) 2003-03-04 2009-11-17 Nmt Medical, Inc. Magnetic attachment systems
US20040193266A1 (en) 2003-03-31 2004-09-30 Meyer Rudolf Xaver Expansible prosthesis and magnetic apparatus
IL155222A0 (en) 2003-04-03 2003-11-23 Hadasit Med Res Service An implant for treating idiopathic scoliosis and a method for using the same
US6961553B2 (en) 2003-04-11 2005-11-01 Motorola, Inc. Bidirectional distributed amplifier
DE10317776A1 (de) 2003-04-16 2004-11-04 Wittenstein Ag Vorrichtung zum Verlängern von Knochen oder Knochenteilen
US20050171543A1 (en) 2003-05-02 2005-08-04 Timm Jens P. Spine stabilization systems and associated devices, assemblies and methods
US8652175B2 (en) 2003-05-02 2014-02-18 Rachiotek, Llc Surgical implant devices and systems including a sheath member
US20050182401A1 (en) 2003-05-02 2005-08-18 Timm Jens P. Systems and methods for spine stabilization including a dynamic junction
US20050177164A1 (en) 2003-05-02 2005-08-11 Carmen Walters Pedicle screw devices, systems and methods having a preloaded set screw
US20050182400A1 (en) 2003-05-02 2005-08-18 Jeffrey White Spine stabilization systems, devices and methods
US7615068B2 (en) 2003-05-02 2009-11-10 Applied Spine Technologies, Inc. Mounting mechanisms for pedicle screws and related assemblies
AU2004235772B2 (en) 2003-05-02 2008-12-11 Yale University Dynamic spine stabilizer
US7713287B2 (en) 2003-05-02 2010-05-11 Applied Spine Technologies, Inc. Dynamic spine stabilizer
JP4391762B2 (ja) 2003-05-08 2009-12-24 オリンパス株式会社 外科用処置具
AT413475B (de) 2003-06-04 2006-03-15 Ami Gmbh Einrichtung zur erzeugung einer künstlichen verengung im gastro-intestinal-trakt
US20050131352A1 (en) 2003-06-16 2005-06-16 Conlon Sean P. Subcutaneous injection port for applied fasteners
US7850660B2 (en) 2003-12-19 2010-12-14 Ethicon Endo-Surgery, Inc. Implantable medical device with simultaneous attachment mechanism and method
US7561916B2 (en) 2005-06-24 2009-07-14 Ethicon Endo-Surgery, Inc. Implantable medical device with indicator
US8715243B2 (en) 2003-06-16 2014-05-06 Ethicon Endo-Surgery, Inc. Injection port applier with downward force actuation
US7862546B2 (en) 2003-06-16 2011-01-04 Ethicon Endo-Surgery, Inc. Subcutaneous self attaching injection port with integral moveable retention members
US7374557B2 (en) 2003-06-16 2008-05-20 Ethicon Endo-Surgery, Inc. Subcutaneous self attaching injection port with integral fasteners
JP2007524460A (ja) 2003-06-25 2007-08-30 ジョージア テック リサーチ コーポレイション 弁輪形成チェーン
US7494459B2 (en) 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US20050002984A1 (en) 2003-06-27 2005-01-06 Byrum Randal T. Implantable band with attachment mechanism having dissimilar material properties
US7951067B2 (en) 2003-06-27 2011-05-31 Ethicon Endo-Surgery, Inc. Implantable band having improved attachment mechanism
US7218232B2 (en) 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
CA2533020A1 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
US8048169B2 (en) 2003-07-28 2011-11-01 Baronova, Inc. Pyloric valve obstructing devices and methods
US9700450B2 (en) 2003-07-28 2017-07-11 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US9498366B2 (en) 2003-07-28 2016-11-22 Baronova, Inc. Devices and methods for pyloric anchoring
US20090259236A2 (en) 2003-07-28 2009-10-15 Baronova, Inc. Gastric retaining devices and methods
US7794476B2 (en) 2003-08-08 2010-09-14 Warsaw Orthopedic, Inc. Implants formed of shape memory polymeric material for spinal fixation
US8037871B2 (en) 2003-08-12 2011-10-18 Cameron International Corporation Seal assembly for a pressurized fuel feed system for an internal combustion engine
US7371244B2 (en) 2003-08-25 2008-05-13 Ethicon, Inc. Deployment apparatus for suture anchoring device
EP1677692A1 (de) 2003-08-28 2006-07-12 Wittenstein AG Planetenrollensystem, insbesondere fuer eine vorrichtung zum verlaengern von knochen
DE10340025A1 (de) 2003-08-28 2005-03-24 Wittenstein Ag Vorrichtung zum Verlängern von Knochen oder Knochenteilen
JP4731482B2 (ja) 2003-09-04 2011-07-27 ウォーソー・オーソペディック・インコーポレーテッド 前方脊柱器具
EP1514518A1 (en) 2003-09-11 2005-03-16 SDGI Holdings, Inc. Impulsive percussion instruments for endplate preparation
ES2529617T3 (es) 2003-09-15 2015-02-23 Apollo Endosurgery, Inc. Sistema de fijación de dispositivos implantables
US8026729B2 (en) 2003-09-16 2011-09-27 Cardiomems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
US20050070937A1 (en) 2003-09-30 2005-03-31 Jambor Kristin L. Segmented gastric band
US7255714B2 (en) 2003-09-30 2007-08-14 Michel H. Malek Vertically adjustable intervertebral disc prosthesis
US7485149B1 (en) 2003-10-06 2009-02-03 Biomet Manufacturing Corporation Method and apparatus for use of a non-invasive expandable implant
US20050090823A1 (en) 2003-10-28 2005-04-28 Bartimus Christopher S. Posterior fixation system
US20050261779A1 (en) 2003-11-17 2005-11-24 Meyer Rudolf X Expansible rod-type prosthesis and external magnetic apparatus
US7775099B2 (en) 2003-11-20 2010-08-17 Schlumberger Technology Corporation Downhole tool sensor system and method
AU2004292429A1 (en) 2003-11-20 2005-06-09 Apneon, Inc. Devices systems, and methods to fixate tissue within the regions of the body, such as the pharyngeal conduit
US7862586B2 (en) 2003-11-25 2011-01-04 Life Spine, Inc. Spinal stabilization systems
US7429259B2 (en) 2003-12-02 2008-09-30 Cadeddu Jeffrey A Surgical anchor and system
AU2004235622A1 (en) 2003-12-17 2005-07-07 Ethicon Endo-Surgery, Inc. Mechanically adjustable gastric band
US8162897B2 (en) 2003-12-19 2012-04-24 Ethicon Endo-Surgery, Inc. Audible and tactile feedback
US7833228B1 (en) 2004-01-05 2010-11-16 Biomet Manufacturing Corp. Method and instrumentation for performing minimally invasive hip arthroplasty
EP1729672A2 (en) 2004-01-08 2006-12-13 Spine Wave, Inc. Apparatus and method for injecting fluent material at a distracted tissue site
FR2865129B1 (fr) 2004-01-16 2006-05-19 Medical Innovation Dev Ceinture gastrique
US20050159754A1 (en) 2004-01-21 2005-07-21 Odrich Ronald B. Periosteal distraction bone growth
US20050159755A1 (en) 2004-01-21 2005-07-21 Odrich Ronald B. Bone growth via periosteal distraction
CA2567161C (en) 2004-01-23 2012-03-13 Allergan, Inc. Releasably-securable one-piece adjustable gastric band
JP4778448B2 (ja) 2004-01-23 2011-09-21 アラーガン、インコーポレイテッド 埋め込み型装置固定システムおよびその使用法
US7442196B2 (en) 2004-02-06 2008-10-28 Synvasive Technology, Inc. Dynamic knee balancer
US8758355B2 (en) 2004-02-06 2014-06-24 Synvasive Technology, Inc. Dynamic knee balancer with pressure sensing
US8328854B2 (en) 2004-02-10 2012-12-11 Atlas Spine, Inc. Cervical plate ratchet pedicle screws
US8002809B2 (en) 2004-02-10 2011-08-23 Atlas Spine, Inc. Dynamic cervical plate
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
US7458981B2 (en) 2004-03-09 2008-12-02 The Board Of Trustees Of The Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
US20050272976A1 (en) 2004-03-15 2005-12-08 Olympus Corporation Endoscope insertion aiding device
US20050234448A1 (en) 2004-03-19 2005-10-20 Mccarthy James Implantable bone-lengthening device
WO2005092219A1 (ja) 2004-03-26 2005-10-06 Hirotaka Shimizu 骨接合器具
ES2297677T3 (es) 2004-03-27 2008-05-01 CHRISTOPH MIETHKE GMBH & CO. KG Valvula hidrocefalica ajustable.
US7909852B2 (en) 2004-03-31 2011-03-22 Depuy Spine Sarl Adjustable-angle spinal fixation element
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US7489495B2 (en) 2004-04-15 2009-02-10 Greatbatch-Sierra, Inc. Apparatus and process for reducing the susceptibility of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7531002B2 (en) 2004-04-16 2009-05-12 Depuy Spine, Inc. Intervertebral disc with monitoring and adjusting capabilities
WO2005102195A1 (en) 2004-04-20 2005-11-03 Allez Spine, Llc Pedicle screw assembly
FR2869218B1 (fr) 2004-04-21 2006-06-09 Europlak Sa Dispositif de cerclage gastrique ou "anneau gastrique" motorise comportant au moins une antenne de reception desorientee pour l'alimentation, la commande a distance et l'envoi de donnees, par induction
US7763080B2 (en) 2004-04-30 2010-07-27 Depuy Products, Inc. Implant system with migration measurement capacity
US7333013B2 (en) 2004-05-07 2008-02-19 Berger J Lee Medical implant device with RFID tag and method of identification of device
US20050251147A1 (en) * 2004-05-07 2005-11-10 Novak Vincent P Open wedge osteotomy system and surgical method
US20080091059A1 (en) 2004-05-14 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant having an adjustable bridge stop
US7314372B2 (en) 2004-05-19 2008-01-01 Orthovisage, Inc. System and method to bioengineer facial form in adults
US7909839B2 (en) 2004-05-26 2011-03-22 Bariatec Corporation Gastric bypass band and surgical method
US7481763B2 (en) 2004-05-28 2009-01-27 Ethicon Endo-Surgery, Inc. Metal bellows position feedback for hydraulic control of an adjustable gastric band
US7351240B2 (en) 2004-05-28 2008-04-01 Ethicon Endo—Srugery, Inc. Thermodynamically driven reversible infuser pump for use as a remotely controlled gastric band
US7390294B2 (en) 2004-05-28 2008-06-24 Ethicon Endo-Surgery, Inc. Piezo electrically driven bellows infuser for hydraulically controlling an adjustable gastric band
US7351198B2 (en) 2004-06-02 2008-04-01 Ethicon Endo-Surgery, Inc. Implantable adjustable sphincter system
KR101189732B1 (ko) 2004-06-07 2012-10-11 신세스 게엠바하 센서를 구비한 정형외과용 임플란트
US7243719B2 (en) 2004-06-07 2007-07-17 Pathfinder Energy Services, Inc. Control method for downhole steering tool
US7191007B2 (en) 2004-06-24 2007-03-13 Ethicon Endo-Surgery, Inc Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics
US20070135913A1 (en) 2004-06-29 2007-06-14 Micardia Corporation Adjustable annuloplasty ring activation system
US7776091B2 (en) 2004-06-30 2010-08-17 Depuy Spine, Inc. Adjustable posterior spinal column positioner
US7481841B2 (en) 2004-06-30 2009-01-27 Depuy Products, Inc. Adjustable orthopaedic prosthesis and associated method
US7955357B2 (en) 2004-07-02 2011-06-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
JP4977020B2 (ja) 2004-07-08 2012-07-18 シェンバーガー,デボラ 歪モニタリングシステム及び装置
US7402134B2 (en) 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
US7285087B2 (en) 2004-07-15 2007-10-23 Micardia Corporation Shape memory devices and methods for reshaping heart anatomy
EP1773239B1 (en) 2004-07-15 2010-03-31 Micardia Corporation Shape memory devices for reshaping heart anatomy
US7875033B2 (en) 2004-07-19 2011-01-25 Synthes Usa, Llc Bone distraction apparatus
GB0417005D0 (en) 2004-07-29 2004-09-01 Finsbury Dev Ltd Auto-extensible device
US20060036259A1 (en) 2004-08-03 2006-02-16 Carl Allen L Spine treatment devices and methods
US7611526B2 (en) 2004-08-03 2009-11-03 K Spine, Inc. Spinous process reinforcement device and method
US7658753B2 (en) 2004-08-03 2010-02-09 K Spine, Inc. Device and method for correcting a spinal deformity
US8114158B2 (en) 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US20060036323A1 (en) 2004-08-03 2006-02-16 Carl Alan L Facet device and method
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US20060036251A1 (en) 2004-08-09 2006-02-16 Reiley Mark A Systems and methods for the fixation or fusion of bone
US8444693B2 (en) 2004-08-09 2013-05-21 Si-Bone Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US8414648B2 (en) 2004-08-09 2013-04-09 Si-Bone Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US8388667B2 (en) 2004-08-09 2013-03-05 Si-Bone, Inc. Systems and methods for the fixation or fusion of bone using compressive implants
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US9717537B2 (en) 2004-08-30 2017-08-01 Globus Medical, Inc. Device and method for treatment of spinal deformity
US7763053B2 (en) 2004-08-30 2010-07-27 Gordon Jeffrey D Implant for correction of spinal deformity
US7255682B1 (en) 2004-09-09 2007-08-14 Bartol Jr Robert J Spot locator device
US7887566B2 (en) 2004-09-16 2011-02-15 Hynes Richard A Intervertebral support device with bias adjustment and related methods
US7302858B2 (en) 2004-09-24 2007-12-04 Kevin Walsh MEMS capacitive cantilever strain sensor, devices, and formation methods
US7776061B2 (en) 2004-09-28 2010-08-17 Garner Dean L Fluid adjustable band
US8915915B2 (en) 2004-09-29 2014-12-23 The Regents Of The University Of California Apparatus and methods for magnetic alteration of anatomical features
US8142454B2 (en) 2004-09-29 2012-03-27 The Regents Of The University Of California, San Francisco Apparatus and method for magnetic alteration of anatomical features
US8043290B2 (en) 2004-09-29 2011-10-25 The Regents Of The University Of California, San Francisco Apparatus and methods for magnetic alteration of deformities
US8439915B2 (en) 2004-09-29 2013-05-14 The Regents Of The University Of California Apparatus and methods for magnetic alteration of anatomical features
US20060079897A1 (en) 2004-09-29 2006-04-13 Harrison Michael R Apparatus and methods for magnetic alteration of anatomical features
US20060271107A1 (en) 2004-09-29 2006-11-30 Harrison Michael R Apparatus and methods for magnetic alteration of anatomical features
US8623036B2 (en) 2004-09-29 2014-01-07 The Regents Of The University Of California Magnamosis
US7559951B2 (en) 2004-09-30 2009-07-14 Depuy Products, Inc. Adjustable, remote-controllable orthopaedic prosthesis and associated method
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US20070239159A1 (en) 2005-07-22 2007-10-11 Vertiflex, Inc. Systems and methods for stabilization of bone structures
CN101080204B (zh) 2004-10-28 2010-05-12 轴向生物技术公司 用于中凹脊柱侧凸扩展的装置
US7105968B2 (en) 2004-12-03 2006-09-12 Edward William Nissen Magnetic transmission
US20060136062A1 (en) 2004-12-17 2006-06-22 Dinello Alexandre Height-and angle-adjustable motion disc implant
US20060142767A1 (en) 2004-12-27 2006-06-29 Green Daniel W Orthopedic device and method for correcting angular bone deformity
US7601162B2 (en) 2005-01-14 2009-10-13 Ethicon Endo-Surgery, Inc. Actuator for an implantable band
US7942908B2 (en) 2005-02-02 2011-05-17 Depuy Spine, Inc. Adjustable length implant
US7927357B2 (en) 2005-02-02 2011-04-19 Depuy Spine, Inc. Adjustable length implant
CN101155559B (zh) 2005-02-08 2011-01-26 I平衡医疗公司 用于为开放楔形截骨术中在骨头中形成楔形开口的装置
WO2006086627A2 (en) 2005-02-11 2006-08-17 Micardia Corporation Dynamically adjustable gastric implants and methods of treating obesity using dynamically adjustable gastric implants
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US8096995B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US20070055237A1 (en) 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
US20070276373A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US20060195102A1 (en) 2005-02-17 2006-08-31 Malandain Hugues F Apparatus and method for treatment of spinal conditions
US7993342B2 (en) 2005-02-17 2011-08-09 Kyphon Sarl Percutaneous spinal implants and methods
KR20100031774A (ko) 2005-02-17 2010-03-24 키폰 에스에이알엘 경피 척추 임플란트 및 방법
US7988709B2 (en) 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US20070276372A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8092459B2 (en) 2005-02-17 2012-01-10 Kyphon Sarl Percutaneous spinal implants and methods
US7998208B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US7927354B2 (en) 2005-02-17 2011-04-19 Kyphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US20060184248A1 (en) 2005-02-17 2006-08-17 Edidin Avram A Percutaneous spinal implants and methods
US8038698B2 (en) 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
WO2006090380A2 (en) 2005-02-22 2006-08-31 Orthogon Technologies 2003 Ltd. Device and method for vertebral column distraction and oscillation
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
JP2008536537A (ja) 2005-03-02 2008-09-11 オステオメトリックス・エルエルシー 術中の位置および長さの決定のための非侵襲的方法、装置、キットおよびシステム
JP2006250178A (ja) 2005-03-08 2006-09-21 Nsk Ltd 車輪支持用軸受ユニットとその製造方法
US7189005B2 (en) 2005-03-14 2007-03-13 Borgwarner Inc. Bearing system for a turbocharger
US9492276B2 (en) 2005-03-25 2016-11-15 St. Jude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
DE202005009809U1 (de) 2005-03-31 2005-08-25 Stryker Trauma Gmbh Datenübertragungssystem in Verbindung mit einem Implantat
JP4647365B2 (ja) 2005-03-31 2011-03-09 日本シャーウッド株式会社 医療用の接続器具
WO2006108114A2 (en) 2005-04-01 2006-10-12 The Regents Of The University Of Colorado A graft fixation device and method
US20060235424A1 (en) 2005-04-01 2006-10-19 Foster-Miller, Inc. Implantable bone distraction device and method
US20060276812A1 (en) 2005-04-04 2006-12-07 Hill James W Dynamic reinforcement of the lower esophageal sphincter
US7708762B2 (en) 2005-04-08 2010-05-04 Warsaw Orthopedic, Inc. Systems, devices and methods for stabilization of the spinal column
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7846188B2 (en) 2005-04-12 2010-12-07 Moskowitz Nathan C Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, total intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US7704279B2 (en) 2005-04-12 2010-04-27 Moskowitz Mosheh T Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, expansile intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US8257370B2 (en) 2005-04-12 2012-09-04 Moskowitz Ahmnon D Posterior cervical and lumbar interarticulating joint staples, stapling guns, and devices for spinal fusion
US7972363B2 (en) 2005-04-12 2011-07-05 Moskowitz Ahmnon D Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs and posterior cervical and lumbar interarticulating joint stapling guns and devices for spinal fusion
US8251888B2 (en) 2005-04-13 2012-08-28 Mitchell Steven Roslin Artificial gastric valve
US20060235299A1 (en) 2005-04-13 2006-10-19 Martinelli Michael A Apparatus and method for intravascular imaging
US20060241746A1 (en) 2005-04-21 2006-10-26 Emanuel Shaoulian Magnetic implants and methods for reshaping tissue
US7361192B2 (en) 2005-04-22 2008-04-22 Doty Keith L Spinal disc prosthesis and methods of use
US7799080B2 (en) 2005-04-22 2010-09-21 Doty Keith L Spinal disc prosthesis and methods of use
US7811328B2 (en) 2005-04-29 2010-10-12 Warsaw Orthopedic, Inc. System, device and methods for replacing the intervertebral disc with a magnetic or electromagnetic prosthesis
US7727141B2 (en) 2005-05-04 2010-06-01 Ethicon Endo-Surgery, Inc. Magnetic resonance imaging (MRI) safe remotely adjustable artifical sphincter
US20060249914A1 (en) 2005-05-06 2006-11-09 Dulin Robert D Enhanced reliability sealing system
US20070264605A1 (en) 2005-05-19 2007-11-15 Theodore Belfor System and method to bioengineer facial form in adults
US7390007B2 (en) 2005-06-06 2008-06-24 Ibis Tek, Llc Towbar system
US7867235B2 (en) 2005-06-14 2011-01-11 Fell Barry M System and method for joint restoration by extracapsular means
US7651483B2 (en) 2005-06-24 2010-01-26 Ethicon Endo-Surgery, Inc. Injection port
US7918844B2 (en) 2005-06-24 2011-04-05 Ethicon Endo-Surgery, Inc. Applier for implantable medical device
IL176810A (en) 2005-07-12 2011-02-28 Intramed Systems Ltd Intramedullar distraction device with user actuated distraction
US7364542B2 (en) 2005-07-15 2008-04-29 Ethicon Endo-Surgery, Inc. Gastric band suture tab extender
US8298133B2 (en) 2005-07-15 2012-10-30 Ethicon Endo-Surgery, Inc. Gastric band composed of different hardness materials
US7367937B2 (en) 2005-07-15 2008-05-06 Ethicon Endo-Surgey, Inc. Gastric band
US7615001B2 (en) 2005-07-15 2009-11-10 Ethicon Endo-Surgery, Inc. Precurved gastric band
US20070015955A1 (en) 2005-07-15 2007-01-18 Mark Tsonton Accordion-like gastric band
US7416528B2 (en) 2005-07-15 2008-08-26 Ethicon Endo-Surgery, Inc. Latching device for gastric band
US8182411B2 (en) 2005-07-15 2012-05-22 Ethicon Endo-Surgery, Inc. Gastric band with mating end profiles
US8523865B2 (en) 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
CA2616101C (en) 2005-07-26 2016-05-17 Ram Weiss Extending intrabody capsule
US7766815B2 (en) 2005-07-28 2010-08-03 Ethicon Endo-Surgery, Inc. Electroactive polymer actuated gastric band
US7353747B2 (en) 2005-07-28 2008-04-08 Ethicon Endo-Surgery, Inc. Electroactive polymer-based pump
EP1915099A2 (en) 2005-08-01 2008-04-30 Orthogon Technologies 2003 Ltd. An implantable magnetically activated actuator
US20070031131A1 (en) 2005-08-04 2007-02-08 Mountain Engineering Ii, Inc. System for measuring the position of an electric motor
JP5258153B2 (ja) 2005-08-17 2013-08-07 柴田科学株式会社 有機合成装置
US20070050030A1 (en) 2005-08-23 2007-03-01 Kim Richard C Expandable implant device with interchangeable spacer
CA2620247C (en) 2005-08-23 2014-04-29 Smith & Nephew, Inc. Telemetric orthopaedic implant
US20070055368A1 (en) 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
DE102005045070A1 (de) 2005-09-21 2007-04-05 Siemens Ag Knochenimplantat, insbesondere Oberschenkelhalsprothese
US9028550B2 (en) 2005-09-26 2015-05-12 Coalign Innovations, Inc. Selectively expanding spine cage with enhanced bone graft infusion
US8070813B2 (en) 2005-09-26 2011-12-06 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for vertebral body replacement
US7985256B2 (en) 2005-09-26 2011-07-26 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for enhanced spinal fusion
US20070123989A1 (en) 2005-10-21 2007-05-31 Synthes (U.S.A.) Method and instruments to treat spondylolisthesis by an anterior minimally invasive approach of the spine
FR2892617B1 (fr) 2005-11-02 2008-09-26 Frederic Fortin Dispositif de distraction d'amortissement et de correction ajustable a la croissance du rachis
EP1790318B1 (en) 2005-11-16 2009-04-22 Micardia Corporation Magnetic engagement of catheter to implantable device
WO2007061890A2 (en) 2005-11-17 2007-05-31 Calypso Medical Technologies, Inc. Apparatus and methods for using an electromagnetic transponder in orthopedic procedures
US20070173837A1 (en) 2005-11-18 2007-07-26 William Marsh Rice University Bone fixation and dynamization devices and methods
US8494805B2 (en) 2005-11-28 2013-07-23 Orthosensor Method and system for assessing orthopedic alignment using tracking sensors
US7749224B2 (en) 2005-12-08 2010-07-06 Ebi, Llc Foot plate fixation
WO2007081304A2 (en) 2006-01-04 2007-07-19 Allergan, Inc. Self-regulating gastric band
US7798954B2 (en) 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US8043206B2 (en) 2006-01-04 2011-10-25 Allergan, Inc. Self-regulating gastric band with pressure data processing
WO2007081986A2 (en) 2006-01-10 2007-07-19 Life Spine, Inc. Pedicle screw constructs and spinal rod attachment assemblies
US20070179493A1 (en) 2006-01-13 2007-08-02 Kim Richard C Magnetic spinal implant device
US20070185374A1 (en) 2006-01-17 2007-08-09 Ellipse Technologies, Inc. Two-way adjustable implant
US9301792B2 (en) 2006-01-27 2016-04-05 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US7776075B2 (en) 2006-01-31 2010-08-17 Warsaw Orthopedic, Inc. Expandable spinal rods and methods of use
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8323290B2 (en) 2006-03-03 2012-12-04 Biomet Manufacturing Corp. Tensor for use in surgical navigation
US7431692B2 (en) 2006-03-09 2008-10-07 Edwards Lifesciences Corporation Apparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US20070213751A1 (en) 2006-03-13 2007-09-13 Scirica Paul A Transdermal magnetic coupling gastric banding
AU2007234790A1 (en) 2006-04-06 2007-10-18 Synthes Gmbh Remotely adjustable tissue displacement device
US8298240B2 (en) 2006-04-06 2012-10-30 Synthes (Usa) Remotely adjustable tissue displacement device
US20070255088A1 (en) 2006-04-11 2007-11-01 Jacobson Andrew D Implantable, magnetic actuator
JP2009533187A (ja) 2006-04-12 2009-09-17 スパイナルモーション, インコーポレイテッド 後方脊椎の装置および方法
JP2009535161A (ja) 2006-04-29 2009-10-01 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 貫壁性の及び管腔内の手術で用いるための装置
US7708779B2 (en) 2006-05-01 2010-05-04 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
FR2900563B1 (fr) 2006-05-05 2008-08-08 Frederic Fortin Dispositif reglable redresseur de scoliose
US8147517B2 (en) 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US20070276369A1 (en) 2006-05-26 2007-11-29 Sdgi Holdings, Inc. In vivo-customizable implant
US7780590B2 (en) 2006-05-31 2010-08-24 Allergan, Inc. Method for locating an implanted fluid access port
US7727143B2 (en) 2006-05-31 2010-06-01 Allergan, Inc. Locator system for implanted access port with RFID tag
US20070288024A1 (en) 2006-06-06 2007-12-13 Sohrab Gollogly Bone fixation
US20070288183A1 (en) 2006-06-07 2007-12-13 Cherik Bulkes Analog signal transition detector
FR2901991B1 (fr) 2006-06-13 2021-07-09 Arnaud Andre Soubeiran Dispositif d'allongement intracorporel a vis montee en traction
BRPI0712370A2 (pt) 2006-06-22 2012-06-12 Ams Res Corp sistema e mÉtodo para prover suporte para tecido corporal para abrandar incontinÊncia
US20100179601A1 (en) 2006-06-29 2010-07-15 Jung Edward K Y Threadless position augmenting mechanism
US20080033431A1 (en) 2006-06-29 2008-02-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Position augmenting mechanism
US8241292B2 (en) 2006-06-30 2012-08-14 Howmedica Osteonics Corp. High tibial osteotomy system
GB0613240D0 (en) 2006-07-04 2006-08-09 Univ Birmingham Distraction device
US20080015577A1 (en) 2006-07-11 2008-01-17 Alexander Loeb Spinal Correction Device
US8475499B2 (en) 2006-07-14 2013-07-02 DePuy Synthes Products, LLC. Rod to rod connectors and methods of adjusting the length of a spinal rod construct
US20080021455A1 (en) 2006-07-21 2008-01-24 Depuy Spine, Inc. Articulating Sacral or Iliac Connector
US20080021456A1 (en) 2006-07-21 2008-01-24 Depuy Spine, Inc. Sacral or iliac cross connector
US20080021454A1 (en) 2006-07-21 2008-01-24 Depuy Spine, Inc. Sacral or iliac connector
WO2008015679A2 (en) 2006-08-03 2008-02-07 Intellimedi Ltd. System and method for monitoring displacements of in vivo objects
US20080051784A1 (en) 2006-08-03 2008-02-28 Sohrab Gollogly Bone repositioning apparatus and methodology
US8403958B2 (en) 2006-08-21 2013-03-26 Warsaw Orthopedic, Inc. System and method for correcting spinal deformity
US8551141B2 (en) 2006-08-23 2013-10-08 Pioneer Surgical Technology, Inc. Minimally invasive surgical system
US20080086128A1 (en) 2006-09-07 2008-04-10 David Warren Lewis Method and apparatus for treatment of scoliosis
US8685091B2 (en) 2006-09-29 2014-04-01 DePuy Synthes Products, LLC System, method, and device for monitoring orthopaedic implant data over a cellular network
FR2906453B1 (fr) 2006-10-03 2009-03-06 Arnaud Andre Soubeiran Dispositif d'allongement intra-corporel a aimant permanent.
US8246533B2 (en) 2006-10-20 2012-08-21 Ellipse Technologies, Inc. Implant system with resonant-driven actuator
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
US20100145462A1 (en) 2006-10-24 2010-06-10 Trans1 Inc. Preformed membranes for use in intervertebral disc spaces
US20080108995A1 (en) 2006-11-06 2008-05-08 Janet Conway Internal bone transport
US8043299B2 (en) 2006-11-06 2011-10-25 Janet Conway Internal bone transport
CA2568078C (en) 2006-11-14 2014-03-18 Unifor S.P.A. Telescopic table support
US20100286791A1 (en) 2006-11-21 2010-11-11 Goldsmith David S Integrated system for the ballistic and nonballistic infixion and retrieval of implants
US20140163664A1 (en) 2006-11-21 2014-06-12 David S. Goldsmith Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting
US7793583B2 (en) 2006-12-06 2010-09-14 Schaeffler Kg Mechanical tappet in particular for a fuel pump of an internal combustion engine
US20080177319A1 (en) 2006-12-09 2008-07-24 Helmut Schwab Expansion Rod, Self-Adjusting
DE102006059225A1 (de) 2006-12-13 2008-06-26 Wittenstein Ag Medizinische Einrichtung zur Lagebestimmung von intrakorporalen Implantaten
US20080167685A1 (en) 2007-01-05 2008-07-10 Warsaw Orthopedic, Inc. System and Method For Percutanously Curing An Implantable Device
US20080177326A1 (en) 2007-01-19 2008-07-24 Matthew Thompson Orthosis to correct spinal deformities
US8435268B2 (en) 2007-01-19 2013-05-07 Reduction Technologies, Inc. Systems, devices and methods for the correction of spinal deformities
US8523866B2 (en) 2007-02-09 2013-09-03 Christopher G. Sidebotham Modular tapered hollow reamer for medical applications
US20100087821A1 (en) * 2007-03-22 2010-04-08 Novalign Orthopaedics, Inc. Fracture fixation device with support rods and sheath
US20080255615A1 (en) 2007-03-27 2008-10-16 Warsaw Orthopedic, Inc. Treatments for Correcting Spinal Deformities
US8469908B2 (en) 2007-04-06 2013-06-25 Wilson T. Asfora Analgesic implant device and system
US8709090B2 (en) 2007-05-01 2014-04-29 Moximed, Inc. Adjustable absorber designs for implantable device
US9907645B2 (en) 2007-05-01 2018-03-06 Moximed, Inc. Adjustable absorber designs for implantable device
US8123805B2 (en) 2007-05-01 2012-02-28 Moximed, Inc. Adjustable absorber designs for implantable device
US20080275567A1 (en) 2007-05-01 2008-11-06 Exploramed Nc4, Inc. Extra-Articular Implantable Mechanical Energy Absorbing Systems
US7611540B2 (en) 2007-05-01 2009-11-03 Moximed, Inc. Extra-articular implantable mechanical energy absorbing systems and implantation method
US8409281B2 (en) 2007-05-01 2013-04-02 Moximed, Inc. Adjustable absorber designs for implantable device
US20080272928A1 (en) 2007-05-03 2008-11-06 Shuster Gary S Signaling light with motion-sensing light control circuit
WO2008140756A2 (en) 2007-05-09 2008-11-20 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
FR2916622B1 (fr) 2007-05-28 2009-09-04 Arnaud Andre Soubeiran Distracteur implantable a longueur modifiable sans reoperation en forme de j
AU2008262019B2 (en) 2007-06-06 2013-01-24 K2M, Inc. Medical device and method to correct deformity
US8366628B2 (en) 2007-06-07 2013-02-05 Kenergy, Inc. Signal sensing in an implanted apparatus with an internal reference
US7753915B1 (en) 2007-06-14 2010-07-13 August Eksler Bi-directional bone length adjustment system
EP2182871B1 (en) 2007-07-26 2014-07-02 Glenn R. Buttermann M. D. Segmental orthopedic device for spinal elongation and for treatment of scoliosis
US9204908B2 (en) 2007-07-26 2015-12-08 Dynamic Spine, Llc Segmental orthopedic device for spinal elongation and for treatment of scoliosis
US20090076597A1 (en) 2007-09-19 2009-03-19 Jonathan Micheal Dahlgren System for mechanical adjustment of medical implants
US20090082815A1 (en) 2007-09-20 2009-03-26 Zimmer Gmbh Spinal stabilization system with transition member
LT2197534T (lt) 2007-09-25 2018-06-25 Neosync, Inc. Įtaisas su dviem sukamaisiais nuolatiniais magnetais, skirtas dėti ant tiriamojo galvos
US8177789B2 (en) 2007-10-01 2012-05-15 The General Hospital Corporation Distraction osteogenesis methods and devices
US20090088803A1 (en) 2007-10-01 2009-04-02 Warsaw Orthopedic, Inc. Flexible members for correcting spinal deformities
US20090093890A1 (en) 2007-10-04 2009-04-09 Daniel Gelbart Precise control of orthopedic actuators
US20090192514A1 (en) 2007-10-09 2009-07-30 Feinberg Stephen E Implantable distraction osteogenesis device and methods of using same
US20090093820A1 (en) 2007-10-09 2009-04-09 Warsaw Orthopedic, Inc. Adjustable spinal stabilization systems
US8057472B2 (en) 2007-10-30 2011-11-15 Ellipse Technologies, Inc. Skeletal manipulation method
AU2008318535B2 (en) 2007-10-31 2014-06-19 Wright Medical Technology, Inc. Orthopedic device
DE102007053362B4 (de) 2007-11-06 2014-06-05 Universität Rostock Magnetisch gelagertes künstliches Gelenk
US8241331B2 (en) 2007-11-08 2012-08-14 Spine21 Ltd. Spinal implant having a post-operative adjustable dimension
US7983763B2 (en) 2007-11-20 2011-07-19 Greatbatch Ltd. Implanted lead sleeve having RFID tag
US9242070B2 (en) 2007-12-21 2016-01-26 MicronVention, Inc. System and method for locating detachment zone of a detachable implant
US20090171356A1 (en) 2008-01-02 2009-07-02 International Business Machines Corporation Bone Repositioning Apparatus and System
US20090177203A1 (en) 2008-01-04 2009-07-09 Inbone Technologies, Inc. Devices, systems and methods for re-alignment of bone
US8092499B1 (en) 2008-01-11 2012-01-10 Roth Herbert J Skeletal flexible/rigid rod for treating skeletal curvature
US8425608B2 (en) 2008-01-18 2013-04-23 Warsaw Orthopedic, Inc. Lordotic expanding vertebral body spacer
AU2009209045B2 (en) 2008-02-01 2014-09-18 Smith & Nephew, Inc. System and method for communicating with an implant
US8777995B2 (en) 2008-02-07 2014-07-15 K2M, Inc. Automatic lengthening bone fixation device
FI123247B (fi) 2008-03-19 2013-01-15 Aalto Korkeakoulusaeaetioe Kehon sisäinen luudistraktiolaite
EP2265164A4 (en) 2008-04-01 2013-10-02 Cardiomems Inc STRETCH MONITORING SYSTEM AND DEVICE
KR101045933B1 (ko) 2008-05-02 2011-07-01 김가브리엘민 교정 장치
US8211149B2 (en) 2008-05-12 2012-07-03 Warsaw Orthopedic Elongated members with expansion chambers for treating bony members
WO2009146377A1 (en) 2008-05-28 2009-12-03 Kerflin Orthopedic Innovations, Llc Fluid-powered elongation instrumentation for correcting orthopedic deformities
EP2140816B1 (en) 2008-07-01 2016-02-10 Baxano, Inc. Access and tissue modification systems
EP2304445B1 (en) 2008-07-09 2020-06-10 Micropoint Bioscience Inc Analytical cartridge with fluid flow control
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
WO2010006195A1 (en) 2008-07-09 2010-01-14 Amei Technologies, Inc. Ankle arthrodesis nail and outrigger assembly
JP5602735B2 (ja) 2008-08-15 2014-10-08 アーオー テクノロジー アクチエンゲゼルシャフト 骨固定器具
US20100057127A1 (en) 2008-08-26 2010-03-04 Mcguire Brian Expandable Laminoplasty Fixation System
CN102123657B (zh) 2008-09-02 2014-12-03 克里斯琴.M.帕特利兹咨询有限责任公司 生物微机电***传感器、设备及其方法
DE102008050233A1 (de) 2008-10-02 2010-04-08 Copf jun., Franz, Dr. Instrument zur Messung des Distraktionsdrucks zwischen Wirbelkörpern
WO2010042767A1 (en) 2008-10-11 2010-04-15 Anthem Orthopaedics Van, Llc Intramedullary rod with pivotable and fixed fasteners and method for using same
US20100094303A1 (en) * 2008-10-13 2010-04-15 Arvin Chang Spinal distraction system
US7987241B2 (en) 2008-10-15 2011-07-26 Xerox Corporation Sharing EIP service applications across a fleet of multi-function document reproduction devices in a peer-aware network
US8095317B2 (en) 2008-10-22 2012-01-10 Gyrodata, Incorporated Downhole surveying utilizing multiple measurements
US20100100185A1 (en) 2008-10-22 2010-04-22 Warsaw Orthopedic, Inc. Intervertebral Disc Prosthesis Having Viscoelastic Properties
US8623056B2 (en) 2008-10-23 2014-01-07 Linares Medical Devices, Llc Support insert associated with spinal vertebrae
US20100106192A1 (en) 2008-10-27 2010-04-29 Barry Mark A System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation condition in patients requiring the accomodation of spinal column growth or elongation
US20100106193A1 (en) 2008-10-27 2010-04-29 Barry Mark A System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions in patients requiring the accomodation of spinal column growth or elongation
CN105943145B (zh) 2008-10-31 2020-09-08 伊姆普兰蒂卡专利有限公司 利用无线能量传输进行骨调整的装置与方法
US20100114103A1 (en) 2008-11-06 2010-05-06 The Regents Of The University Of California Apparatus and methods for alteration of anatomical features
US8382756B2 (en) 2008-11-10 2013-02-26 Ellipse Technologies, Inc. External adjustment device for distraction device
EG25692A (en) 2008-11-11 2012-05-20 Hazem Bayoumi Elsebaie Self expandable vertebral instrumentation system with apical deformity control
US8828058B2 (en) 2008-11-11 2014-09-09 Kspine, Inc. Growth directed vertebral fixation system with distractible connector(s) and apical control
US8147549B2 (en) 2008-11-24 2012-04-03 Warsaw Orthopedic, Inc. Orthopedic implant with sensor communications antenna and associated diagnostics measuring, monitoring, and response system
US8043338B2 (en) 2008-12-03 2011-10-25 Zimmer Spine, Inc. Adjustable assembly for correcting spinal abnormalities
US20100137872A1 (en) 2008-12-03 2010-06-03 Linvatec Corporation Drill guide for cruciate ligament repair
US8133280B2 (en) 2008-12-19 2012-03-13 Depuy Spine, Inc. Methods and devices for expanding a spinal canal
US8556911B2 (en) 2009-01-27 2013-10-15 Vishal M. Mehta Arthroscopic tunnel guide for rotator cuff repair
WO2010088621A1 (en) 2009-02-02 2010-08-05 Simpirica Spine, Inc. Sacral tether anchor and methods of use
WO2010094032A2 (en) 2009-02-16 2010-08-19 Aoi Medical Inc. Trauma nail accumulator
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
DE102009011661A1 (de) 2009-03-04 2010-09-09 Wittenstein Ag Wachstumsprothese
WO2010104975A1 (en) 2009-03-10 2010-09-16 Simpirica Spine, Inc. Surgical tether apparatus and methods of use
EP2405840B1 (en) 2009-03-10 2024-02-21 Empirical Spine, Inc. Surgical tether apparatus
EP2405839A4 (en) 2009-03-10 2013-12-11 Simpirica Spine Inc SURGICAL ATTACHMENT DEVICE AND METHODS OF USE
US8357183B2 (en) 2009-03-26 2013-01-22 Kspine, Inc. Semi-constrained anchoring system
US8668719B2 (en) 2009-03-30 2014-03-11 Simpirica Spine, Inc. Methods and apparatus for improving shear loading capacity of a spinal segment
JP2012522602A (ja) 2009-04-02 2012-09-27 アヴェドロ・インコーポレーテッド 眼治療システム
US8211154B2 (en) * 2009-04-06 2012-07-03 Lanx, Inc. Bone plate assemblies with backout protection and visual indicator
US8762308B2 (en) 2009-04-08 2014-06-24 Virginia Commonwealth University Combining predictive capabilities of Transcranial Doppler (TCD) with Electrocardiogram (ECG) to predict hemorrhagic shock
US9095436B2 (en) 2009-04-14 2015-08-04 The Invention Science Fund I, Llc Adjustable orthopedic implant and method for treating an orthopedic condition in a subject
WO2010123879A1 (en) 2009-04-20 2010-10-28 Virginia Tech Intellectual Properties, Inc. Intramedullary nail targeting device
US20100318129A1 (en) 2009-06-16 2010-12-16 Kspine, Inc. Deformity alignment system with reactive force balancing
US8394124B2 (en) 2009-06-18 2013-03-12 The University Of Toledo Unidirectional rotatory pedicle screw and spinal deformity correction device for correction of spinal deformity in growing children
FR2947170B1 (fr) 2009-06-24 2011-07-22 Jean Marc Guichet Clou d'allongement pour os long ou analogue
US8105360B1 (en) 2009-07-16 2012-01-31 Orthonex LLC Device for dynamic stabilization of the spine
ES2522822T3 (es) 2009-08-13 2014-11-18 Cork Institute Of Technology Clavos intramedulares para reducción de fractura de hueso largo
WO2014040013A1 (en) 2012-09-10 2014-03-13 Cotera, Inc. Method and apparatus for treating canine cruciate ligament disease
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
EP2781197B8 (en) 2009-08-27 2018-06-27 The Foundry, LLC Apparatus for force redistribution in articular joints
US9278004B2 (en) 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
US8657856B2 (en) 2009-08-28 2014-02-25 Pioneer Surgical Technology, Inc. Size transition spinal rod
GB0915382D0 (en) 2009-09-03 2009-10-07 Dalmatic As Expansion devices
CN102905625B (zh) 2009-09-04 2015-09-09 埃利普斯科技有限公司 骨生长装置及方法
US20110057756A1 (en) 2009-09-04 2011-03-10 Electron Energy Corporation Rare Earth Composite Magnets with Increased Resistivity
FR2949662B1 (fr) 2009-09-09 2011-09-30 Arnaud Soubeiran Dispositif intra corporel pour le deplacement de tissus
US9168071B2 (en) 2009-09-15 2015-10-27 K2M, Inc. Growth modulation system
PL215752B1 (pl) 2009-09-28 2014-01-31 Lfc Spolka Z Ograniczona Odpowiedzialnoscia Urzadzenie do chirurgicznego przemieszczania kregów
MX2009010782A (es) 2009-10-05 2010-05-03 Ruben Fernando Sayago Distractor interno hidraulico y manejado a control remoto, para la correccion de deformidades oseas de la columna vertebral, o para elongacion de huesos largos en humanos.
US20110098748A1 (en) 2009-10-26 2011-04-28 Warsaw Orthopedic, Inc. Adjustable vertebral rod system and methods of use
US8211151B2 (en) 2009-10-30 2012-07-03 Warsaw Orthopedic Devices and methods for dynamic spinal stabilization and correction of spinal deformities
US8470003B2 (en) 2009-10-30 2013-06-25 DePuy Synthes Products, LLC Laminoplasty plates and methods of expanding the spinal canal
WO2011066077A2 (en) 2009-11-24 2011-06-03 Spine21 Ltd. Spinal fusion cage having post-operative adjustable dimensions
JP2013512040A (ja) 2009-11-25 2013-04-11 スパイン21エル・ティー・ディー 術後調整可能な寸法を有する脊椎ロッド
BR112012013107A2 (pt) 2009-12-01 2019-09-24 Synthes Gmbh haste espinhal expansível de escoliose não fundida.
US8556901B2 (en) 2009-12-31 2013-10-15 DePuy Synthes Products, LLC Reciprocating rasps for use in an orthopaedic surgical procedure
US8506569B2 (en) 2009-12-31 2013-08-13 DePuy Synthes Products, LLC Reciprocating rasps for use in an orthopaedic surgical procedure
US8585740B1 (en) 2010-01-12 2013-11-19 AMB Surgical, LLC Automated growing rod device
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US8758347B2 (en) 2010-03-19 2014-06-24 Nextremity Solutions, Inc. Dynamic bone plate
BR112012023246A2 (pt) 2010-03-19 2017-08-08 Smith & Nephew Inc haste im telescópica e mecanismo de acionamento
US8777947B2 (en) 2010-03-19 2014-07-15 Smith & Nephew, Inc. Telescoping IM nail and actuating mechanism
FR2957776B1 (fr) 2010-03-23 2013-02-15 Arnaud Andre Soubeiran Dispositif de deplacement de tissus a l'interieur de l'organisme, notamment de tissus osseux, a vis travaillant en traction fixe et ecrou tournant
WO2011119873A2 (en) 2010-03-24 2011-09-29 Board Of Regents Of The University Of Texas System Ultrasound guided automated wireless distraction osteogenesis
GB201006173D0 (en) 2010-04-14 2010-06-02 Depuy Ireland A distractor
US20110284014A1 (en) 2010-05-19 2011-11-24 The Board Of Regents Of The University Of Texas System Medical Devices That Include Removable Magnet Units and Related Methods
FI123991B (fi) 2010-05-24 2014-01-31 Synoste Oy Kehonsisäinen hoitolaite
US8641723B2 (en) 2010-06-03 2014-02-04 Orthonex LLC Skeletal adjustment device
FR2960766B1 (fr) 2010-06-07 2012-06-15 Tornier Sa Prothese modulaire, et kit chirurgical comprenant au moins une telle prothese modulaire
CN103200887B (zh) 2010-06-07 2015-08-26 卡波菲克斯整形有限公司 复合材料骨植入物
US8287540B2 (en) 2010-06-18 2012-10-16 Kettering University Easily implantable and stable nail-fastener for skeletal fixation and method
US8771272B2 (en) 2010-06-18 2014-07-08 Kettering University Easily implantable and stable nail-fastener for skeletal fixation and method
FR2961386B1 (fr) 2010-06-21 2012-07-27 Arnaud Soubeiran Dispositif intra-medullaire pour le deplacement relatif de deux portions d'os a verrouillage par le canal medullaire.
US9248043B2 (en) 2010-06-30 2016-02-02 Ellipse Technologies, Inc. External adjustment device for distraction device
US20120019341A1 (en) 2010-07-21 2012-01-26 Alexandr Gabay Composite permanent magnets made from nanoflakes and powders
US20120019342A1 (en) 2010-07-21 2012-01-26 Alexander Gabay Magnets made from nanoflake precursors
US20120271353A1 (en) 2010-08-16 2012-10-25 Mark Barry System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions in patients requiring the accomodation of spinal column growth or elongation
DE102010047738A1 (de) 2010-08-26 2012-03-01 Wittenstein Ag Aktuator zur Skoliosekorrektur
RU2452426C1 (ru) * 2010-09-30 2012-06-10 Михаил Михайлович Криштал Стержень для фиксации положения и формы трубчатых костей
US20120088953A1 (en) 2010-10-08 2012-04-12 Jerry King Fractured Bone Treatment Methods And Fractured Bone Treatment Assemblies
US8282671B2 (en) 2010-10-25 2012-10-09 Orthonex Smart device for non-invasive skeletal adjustment
US20120109207A1 (en) 2010-10-29 2012-05-03 Warsaw Orthopedic, Inc. Enhanced Interfacial Conformance for a Composite Rod for Spinal Implant Systems with Higher Modulus Core and Lower Modulus Polymeric Sleeve
WO2012071373A1 (en) 2010-11-22 2012-05-31 Synthes Usa, Llc Non-fusion scoliosis expandable spinal rod
US8636771B2 (en) 2010-11-29 2014-01-28 Life Spine, Inc. Spinal implants for lumbar vertebra to sacrum fixation
DE202010018144U1 (de) 2010-12-10 2014-05-06 Celgen Ag Universaldistraktor zur Knochenregeneration
WO2012083101A1 (en) 2010-12-17 2012-06-21 Synthes Usa, Llc Methods and systems for minimally invasive posterior arch expansion
US9168076B2 (en) 2011-01-25 2015-10-27 Bridging Medical, Llc Bone compression screw
US8585595B2 (en) 2011-01-27 2013-11-19 Biomet Manufacturing, Llc Method and apparatus for aligning bone screw holes
US8486076B2 (en) 2011-01-28 2013-07-16 DePuy Synthes Products, LLC Oscillating rasp for use in an orthopaedic surgical procedure
WO2012107056A1 (en) 2011-02-08 2012-08-16 Stryker Trauma Gmbh Implant system for bone fixation
WO2012112396A2 (en) 2011-02-14 2012-08-23 Ellipse Technologies, Inc. Device and method for treating fractured bones
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
PL218347B1 (pl) 2011-05-12 2014-11-28 Lfc Spółka Z Ograniczoną Odpowiedzialnością Implant miedzykręgowy do wzajemnego sytuowania sąsiadujących kręgów
EP2712304A4 (en) 2011-05-16 2015-06-17 Smith & Nephew Inc MEASURE A SKELETAL DISTRACTION
WO2012159106A2 (en) 2011-05-19 2012-11-22 Northwestern University Ph responsive self-healing hydrogels formed by boronate-catechol complexation
CN103781429B (zh) 2011-06-03 2017-02-15 科斯班公司 脊柱矫正***致动器
KR101738374B1 (ko) 2011-06-22 2017-05-22 신세스 게엠바하 위치 추적 시스템을 포함하는 골을 조작하기 위한 조립체
WO2013001463A1 (en) 2011-06-27 2013-01-03 University Of Cape Town An endoprosthesis
US20130013066A1 (en) 2011-07-06 2013-01-10 Moximed, Inc. Methods and Devices for Joint Load Control During Healing of Joint Tissue
WO2013006830A1 (en) 2011-07-07 2013-01-10 Samy Abdou Devices and methods to prevent or limit spondlylolisthesis and other aberrant movements of the vertebral bones
US8636770B2 (en) 2011-08-08 2014-01-28 Zimmer Spine, Inc. Bone anchoring device
DE102011053638A1 (de) * 2011-09-15 2013-03-21 Wittenstein Ag Marknagel
US8920422B2 (en) 2011-09-16 2014-12-30 Stryker Trauma Gmbh Method for tibial nail insertion
US8968402B2 (en) 2011-10-18 2015-03-03 Arthrocare Corporation ACL implants, instruments, and methods
KR20140096294A (ko) 2011-10-21 2014-08-05 이노베이티브 써지컬 디자인스, 인크. 척추관 협착증을 교정하기 위한 척추경의 경피적 연장을 위한 외과용 임플란트
US9022917B2 (en) 2012-07-16 2015-05-05 Sophono, Inc. Magnetic spacer systems, devices, components and methods for bone conduction hearing aids
US10016226B2 (en) 2011-12-12 2018-07-10 Children's Hospital Medical Center Of Akron Noninvasive device for adjusting fastener
JP6265911B2 (ja) 2011-12-12 2018-01-24 オースティン バイオイノベーション インスティテュート イン アクロンAusten Bioinnovation Institute In Akron 固定具を調節するための非侵襲的デバイス
US8617220B2 (en) 2012-01-04 2013-12-31 Warsaw Orthopedic, Inc. System and method for correction of a spinal disorder
US9848894B2 (en) 2012-01-05 2017-12-26 Pivot Medical, Inc. Flexible drill bit and angled drill guide for use with the same
CA2863205A1 (en) 2012-02-07 2013-08-15 Io Surgical, Llc Sensor system, implantable sensor and method for remote sensing of a stimulus in vivo
US20140052134A1 (en) 2012-02-08 2014-02-20 Bruce Orisek Limb lengthening apparatus and methods
US9561062B2 (en) 2012-03-19 2017-02-07 Alphatec Spine, Inc. Spondylolisthesis reduction system
US20130253587A1 (en) 2012-03-20 2013-09-26 Warsaw Orthopedic, Inc. Spinal systems and methods for correction of spinal disorders
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US8945188B2 (en) 2012-04-06 2015-02-03 William Alan Rezach Spinal correction system and method
US8870881B2 (en) 2012-04-06 2014-10-28 Warsaw Orthopedic, Inc. Spinal correction system and method
WO2013158801A1 (en) 2012-04-17 2013-10-24 Aurora Spine, Llc A dynamic and non-dynamic interspinous fusion implant and bone growth stimulation system
US20130325006A1 (en) 2012-05-30 2013-12-05 Acumed Llc Articulated intramedullary nail
US20130325071A1 (en) 2012-05-30 2013-12-05 Marcin Niemiec Aligning Vertebral Bodies
US9072606B2 (en) 2012-07-17 2015-07-07 Clemson University Research Foundation Lockable knee implants and related methods
US20140058450A1 (en) 2012-08-22 2014-02-27 Warsaw Orthopedic, Inc. Spinal correction system and method
EP3760147B1 (en) 2012-10-29 2022-11-30 NuVasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US9339300B2 (en) 2012-11-05 2016-05-17 University of Medical Center of Johannes Guten University Mainz Dynamic stabilizing device for bones
US8790409B2 (en) 2012-12-07 2014-07-29 Cochlear Limited Securable implantable component
US9532804B2 (en) 2013-03-15 2017-01-03 Moximed, Inc. Implantation approach and instrumentality for an energy absorbing system
US9439797B2 (en) 2013-04-08 2016-09-13 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US10420666B2 (en) 2013-04-08 2019-09-24 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US20140358150A1 (en) 2013-05-29 2014-12-04 Children's National Medical Center Surgical distraction device with external activation
JP2016540529A (ja) 2013-10-15 2016-12-28 エクスパンドーソ,インコーポレイテッド 関節形成術のための駆動される位置決め装置及びその使用方法

Also Published As

Publication number Publication date
US20220096136A1 (en) 2022-03-31
US20190159817A1 (en) 2019-05-30
CN104902854B (zh) 2017-10-03
US20190046252A1 (en) 2019-02-14
US11191579B2 (en) 2021-12-07
EP3760147A1 (en) 2021-01-06
CN104902854A (zh) 2015-09-09
EP2911616A4 (en) 2016-07-13
US20150223854A1 (en) 2015-08-13
AU2013338218B2 (en) 2017-05-04
US11213330B2 (en) 2022-01-04
RU2015120291A (ru) 2016-12-27
EP2911616B1 (en) 2020-10-07
CA2889769A1 (en) 2014-05-08
EP2911616A1 (en) 2015-09-02
US11871971B2 (en) 2024-01-16
RU2626961C2 (ru) 2017-08-02
US20240180599A1 (en) 2024-06-06
WO2014070681A8 (en) 2014-06-26
EP3760147B1 (en) 2022-11-30
US20140155946A1 (en) 2014-06-05
RU2017126066A (ru) 2019-01-31
WO2014070681A1 (en) 2014-05-08
US10130405B2 (en) 2018-11-20
AU2013338218A1 (en) 2015-05-21
BR112015009446A2 (pt) 2017-07-04
IN2015DN03762A (pt) 2015-10-02

Similar Documents

Publication Publication Date Title
US11871971B2 (en) Adjustable devices for treating arthritis of the knee
JP7179906B2 (ja) 膝の関節炎を治療する調整可能なデバイス
US11439449B2 (en) Systems and methods for distraction
UA42285C2 (en) Method of controlled stretching of cortical bones with accompanying intraosteal osteosynthesis

Legal Events

Date Code Title Description
B25A Requested transfer of rights approved

Owner name: NUVASIVE, INC. (US)

B25A Requested transfer of rights approved

Owner name: NUVASIVE SPECIALIZED ORTHOPEDICS, INC. (US)

B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 28/10/2013, OBSERVADAS AS CONDICOES LEGAIS.