WO2024131734A1 - 具有改进颗粒的化学机械抛光组合物 - Google Patents

具有改进颗粒的化学机械抛光组合物 Download PDF

Info

Publication number
WO2024131734A1
WO2024131734A1 PCT/CN2023/139566 CN2023139566W WO2024131734A1 WO 2024131734 A1 WO2024131734 A1 WO 2024131734A1 CN 2023139566 W CN2023139566 W CN 2023139566W WO 2024131734 A1 WO2024131734 A1 WO 2024131734A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
composition
ceria
particles
compositions
Prior art date
Application number
PCT/CN2023/139566
Other languages
English (en)
French (fr)
Inventor
马庭轩
贾仁合
叶日博纳·纳根德拉·普拉萨德
Original Assignee
昂士特科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂士特科技(深圳)有限公司 filed Critical 昂士特科技(深圳)有限公司
Priority to CN202380013138.2A priority Critical patent/CN118139938A/zh
Publication of WO2024131734A1 publication Critical patent/WO2024131734A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the invention belongs to the technical field of chemical engineering, and in particular relates to a chemical mechanical polishing composition with improved particles.
  • CMP compositions are commonly used in the integrated circuit and micro-electromechanical systems industries for chemical mechanical polishing of substrates such as wafers by a combination of chemical and mechanical forces. These compositions are typically aqueous solutions containing various chemical additives and abrasive particles dispersed in the composition. CMP compositions are also referred to as polishing slurries, CMP slurries, or polishing compositions. CMP compositions greatly affect many factors in the polishing and smoothing of substrates, such as material removal rate, planarization, and defectivity of the substrate.
  • tetraethyl orthosilicate is usually deposited in the grooves of a silicon wafer, and then a CMP process is used to remove the surface TEOS to obtain a structure in which TEOS is embedded in the grooves of the silicon wafer in a predetermined pattern.
  • the CMP process of the dielectric substrate formed by the TEOS deposition is often polished with a CMP composition containing cerium oxide abrasive grains.
  • a CMP composition containing cerium oxide (ceria) abrasive grains with a high material removal rate is required.
  • ceria abrasive grains with a high material removal rate often lead to more undesirable defects, such as scratches, in the substrate during the CMP process.
  • ceria abrasive grains are widely used in polishing dielectric silicon substrates, there is still a need for a CMP composition containing ceria abrasive grains, which is suitable for polishing materials containing silicon oxides, and shows an increase in material removal rate and a reduction in the number of defects in the substrate during the CMP process.
  • An object of the present invention is to overcome the problems of the prior art. Specifically, an object of the present invention is to provide a novel CMP composition for polishing a substrate containing silicon oxide, which on the one hand exhibits a high material removal rate during the CMP process, and on the other hand causes fewer defects in the substrate, such as scratches.
  • the CMP composition of the present invention comprises ceria abrasive particles, wherein the ceria abrasive particles have a cubic morphology, a steepness factor of at least 34, and an F 2g peak whose FWTM measured by Raman spectroscopy at a wavelength of 532 nm is at most 65 cm -1 .
  • the CMP composition (referred to herein as the "composition") comprises abrasive particles dispersed in an aqueous carrier, the abrasive particles It helps to remove material from the surface of the substrate during polishing.
  • the abrasive particles are metal oxide abrasive particles selected from cerium oxide (ceria), aluminum oxide (aluminum oxide), silicon oxide (silicon dioxide), zirconium oxide (zirconium oxide), titanium oxide (titania), germanium oxide (germania), magnesium oxide (magnesium oxide), nickel oxide, gallium oxide (gallium oxide), yttrium oxide (yttrium oxide) and combinations thereof.
  • the abrasive particles contain at least 72 wt% (weight), more preferably at least 83 wt%, more preferably at least 91 wt%, more preferably at least 96 wt%, and most preferably at least 98 wt% of ceria.
  • the abrasive particles are ceria abrasive particles.
  • ceria refers to the oxide of the rare earth metal cerium, also known as cerium oxide, cerium oxide or ceria.
  • the ceria abrasive grains are doped ceria abrasive grains.
  • Suitable dopants are, for example, metal ions (such as Ca, Mg, Zn, Zr, Sc, Y) or lanthanides (such as lanthanum, praseodymium, neodymium, promethium or samarium).
  • metal ions such as Ca, Mg, Zn, Zr, Sc, Y
  • lanthanides such as lanthanum, praseodymium, neodymium, promethium or samarium.
  • the ceria abrasive grains are preferably substantially free of dopants.
  • Dopants may be present in the abrasive grains as impurities, which may originate from the raw materials or starting materials used to prepare the abrasive grains.
  • substantially free of component X refers to a composition that does not substantially contain the component X, i.e., the component may at most be present in the composition as an impurity or contaminant, but is not added to the composition as a single component. This means that the component X is not added in substantial amounts.
  • substantially amounts of the present invention are amounts less than 30 ppm, more preferably less than 20 ppm, more preferably less than 10 ppm, and most preferably less than 1 ppm.
  • Ppm as used herein refers to ppm by weight.
  • the composition preferably contains at least 0.001 wt%, more preferably at least 0.03 wt%, more preferably at least 0.06 wt%, more preferably at least 0.09 wt%, and most preferably at least 0.14 wt% of ceria abrasive particles.
  • the term "when used” refers to when the composition is applied to the surface of the substrate during the CMP process. If the concentration of ceria abrasive particles is too high, the particles will aggregate, which will shorten the shelf life of the composition and cause undesirable surface defects on the substrate during the CMP process.
  • the composition when used, preferably contains at most 21.7 wt%, more preferably at most 18.9 wt%, more preferably at most 16.8 wt%, more preferably at most 13.3 wt%, and most preferably at most 10.8 wt% of ceria abrasive particles.
  • the composition contains 0.03 wt% to 18.9 wt%, more preferably 0.06 wt% to 16.8 wt%, and more preferably 0.09 wt% to 13.3 wt% of ceria abrasive particles.
  • the cerium oxide abrasive particles may be present in the composition as individual particles, aggregates, agglomerates, and mixtures thereof. Individual particles may be attached to each other, for example, by van der Waals forces, thereby forming aggregates of more than one individual particle. The aggregates themselves may be further attached to each other, for example, by physical interactions, Agglomerates of more than one aggregate are formed. The formation of aggregates and agglomerates is reversible. As used herein, the term cerium oxide abrasive particles refers to individual particles, aggregates, and agglomerates.
  • the number of individual particles and aggregates and agglomerates can be determined by a person skilled in the art through transmission electron microscopy (TEM) or scanning electron microscopy (SEM) images. The analysis should be based on a statistically significant number of randomly selected particles, such as at least 300.
  • the sum of aggregates and agglomerates of the cerium dioxide abrasive is at most 68.9wt% of the cerium dioxide abrasive, more preferably at most 56.7wt%, more preferably at most 45.4wt%, more preferably at most 32.3wt%, and most preferably at most 22.1wt%. Fewer aggregates and agglomerates can be achieved, for example, by deagglomeration such as filtering, grinding and other processes known to those skilled in the art.
  • the cerium dioxide abrasive particles of the present invention should have a suitable morphology.
  • the morphology of the particles affects the surface reactivity of the particles and affects the material removal rate.
  • the morphology can be determined by a person skilled in the art, for example, using a transmission electron microscope (TEM) or a scanning electron microscope (SEM) image. It has been found that particles with a spherical morphology exhibit a lower material removal rate.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the term spherical morphology is not limited to a perfect sphere, and refers to any rounded morphology without substantial edges and vertices (corners), such as spherical, elliptical, grape-like structures, etc.
  • the amount of the cerium dioxide abrasive particles having a spherical morphology is at most 34.6wt% of the cerium dioxide abrasive particles, more preferably at most 24.9wt%, more preferably at most 13.8wt%, more preferably at most 6.8wt%, and most preferably at most 3.1wt%.
  • cerium oxide abrasive particles having at least one vertex can exhibit higher material removal rates.
  • the cerium oxide abrasive particles have a morphology selected from the group consisting of cubes, tetrahedral pyramids, triangular prisms, dodecahedrons, icosahedrons, octahedrons, hexagonal pyramids, hexagonal prisms, pentagonal prisms, cones, tetrahedrons, cuboids, rhombuses, hexagonal rhombuses, and mixtures thereof.
  • the ceria abrasive has a cubic morphology.
  • the cubic morphology can be achieved by controlling the chemical environment of synthesizing the ceria abrasive, such as temperature, pressure and time. In the process of synthesizing the ceria abrasive, different cubic morphologies can be obtained by appropriate environmental conditions (such as temperature, pressure and time). It has been found that ceria abrasives with cubic morphology can exhibit higher material removal rates.
  • the term cubic morphology refers to any cube-like morphology and is not limited to perfect cubes.
  • one or more edges of the ceria abrasive can be slightly rounded, one or more vertices of the ceria abrasive can be slightly rounded, one or more opposite edges of the ceria abrasive can be slightly tilted (not completely parallel), and one or more dihedral angles of the ceria abrasive can be slightly larger or smaller than 90°, and other deviations from a perfect cube. Slightly may refer to deviations from a perfect cube of up to 30%, more preferably up to 20%, and most preferably up to 10%.
  • the cerium oxide abrasive grains have a cubic morphology in an amount of at least 31.3 wt %, more preferably at least 49.2 wt %, more preferably at least 68.4 wt %, more preferably at least 76.3 wt %, more preferably at least 86.7 wt %, more preferably at least 93.8 wt %, and most preferably at least 98 wt % of the cerium oxide abrasive grains.
  • the average particle size (diameter) of the ceria abrasive particles can affect the material removal rate.
  • the average particle size can be obtained by laser diffraction measurement (e.g., using LA-960 from Horiba). The curve graph obtained by this measurement provides the cumulative volume percentage of particles of a certain size.
  • the average particle size (D50) is the particle size at which 50% by volume of the particles have a particle size less than this value. A smaller D50 will reduce the material removal rate.
  • the ceria abrasive particles have a laser diffraction measurement of at least 5 nm, more preferably at least 10 nm, more preferably at least 20 nm, more preferably at least 30 nm, more preferably at least 35 nm, more preferably at least 40 nm, and most preferably at least 45 nm.
  • the ceria abrasive particles should have a smaller average particle size.
  • the ceria abrasive particles have a D50 of at most 400nm, more preferably at most 300, more preferably at most 200nm, more preferably at most 150nm, more preferably at most 100nm, more preferably at most 95nm, and most preferably at most 90nm, as measured by laser diffraction.
  • the ceria abrasive particles have a D50 of 5nm to 400nm, more preferably 10nm to 300nm, more preferably 20nm to 200nm, more preferably 30nm to 150nm, more preferably 35nm to 100nm, more preferably 40nm to 95nm, and more preferably 45nm to 90nm, as measured by laser diffraction. It is generally believed that ceria abrasive particles with a larger D50 will result in a higher material removal rate during CMP processing. However, it is surprisingly found that the ceria abrasive particles of the present invention can achieve a high material removal rate even with a smaller D50.
  • the D10 is the particle size at which 10% by volume of the particles have a particle size less than this value.
  • the ceria abrasive has a D10 of at least 3 nm, more preferably at least 9 nm, more preferably at least 15 nm, more preferably at least 20 nm, more preferably at least 25 nm, more preferably at least 30 nm, and most preferably at least 39 nm as measured by laser diffraction.
  • a smaller D10 of the ceria abrasive increases the particle packing density (reduces the void volume) on the surface of the substrate during the CMP process, which helps to improve the material removal rate.
  • the ceria abrasive preferably has a D10 of at most 300 nm, more preferably at most 200, more preferably at most 100 nm, more preferably at most 90 nm, more preferably at most 80 nm, more preferably at most 75 nm, and most preferably at most 70 nm as measured by laser diffraction.
  • the ceria abrasive has a D10 of 3 nm to 300 nm, more preferably 9 nm as measured by laser diffraction.
  • the D10 is preferably from 15 nm to 100 nm, more preferably from 20 nm to 90 nm, more preferably from 25 nm to 80 nm, more preferably from 30 nm to 75 nm, and most preferably from 39 nm to 70 nm.
  • D90 is the particle size at which 90% by volume of the particles have a particle size less than this value.
  • the higher D90 of the ceria abrasive grains will increase the material removal rate during the CMP process.
  • the ceria abrasive grains have a D90 of at least 24nm, more preferably at least 41nm, more preferably at least 76nm, more preferably at least 83nm, and most preferably at least 99nm measured by laser diffraction.
  • the D90 of the ceria abrasive grains is too high, more undesirable defects such as scratches will appear during the CMP process.
  • the ceria abrasive grains preferably have a D90 of at most 489nm, more preferably at most 376, more preferably at most 269nm, more preferably at most 219nm, and most preferably at most 194nm measured by laser diffraction.
  • the ceria abrasive grains have a D90 of 41nm to 376nm, more preferably 76nm to 269nm, more preferably 83nm to 219nm, and most preferably 99nm to 194nm measured by laser diffraction.
  • the cerium dioxide abrasive should have a large steepness factor.
  • the steepness factor used herein refers to the value obtained by the formula (D30/D70)*100.
  • D30 and D70 can be obtained by laser diffraction as described above.
  • D30 is the particle size at which 30% by volume of the particles have a particle size less than this value.
  • D70 is the particle size at which 70% by volume of the particles have a particle size less than this value.
  • a wide particle size distribution provides a small steepness factor, while a narrow particle size distribution provides a large steepness factor. It was surprisingly found that the cerium dioxide abrasive with a large steepness factor of the present invention exhibits a high material removal rate while achieving fewer defects in the substrate, such as scratches, during the CMP process.
  • the cerium dioxide abrasive has a steepness factor of at least 34, more preferably at least 40, more preferably at least 45, more preferably at least 50, and most preferably at least 60.
  • the cerium oxide abrasive grains preferably have a steepness factor of at most 98, more preferably at most 97, more preferably at most 96, and most preferably at most 95.
  • the cerium oxide abrasive grains have a D30 of 4nm to 353nm, more preferably 20nm to 168nm, and most preferably 44nm to 103nm, as measured by laser diffraction.
  • the cerium oxide abrasive grains have a D70 of 16nm to 421nm, more preferably 43nm to 218nm, and most preferably 62nm to 137nm, as measured by laser diffraction.
  • the cerium dioxide abrasive particles should have a small slope factor.
  • slope factor refers to the absolute value of the rising slope of the particle size distribution graph divided by the falling slope (meaning that its sign is not taken into account).
  • the particle size distribution graph can be obtained from a particle size distribution measurement as described above, where the particle size (x-axis) is plotted relative to the volume percentage of the particle (y-axis).
  • rising slope refers to the slope of a tangent (straight line) drawn from P_D01 to P_max.
  • falling slope refers to the slope of a tangent (straight line) drawn from P_D01 to P_max.
  • P_D01 refers to the point in the particle size distribution diagram where the particle size is equal to D01.
  • D01 is the particle size obtained by laser diffraction as described above, and 1% by volume of the particles have a particle size less than D01.
  • P_D99 refers to the point in the particle size distribution diagram where the particle size is equal to D99.
  • D99 is the particle size obtained by laser diffraction as described above, and 99% by volume of the particles have a particle size less than D99.
  • P_max refers to the absolute maximum value of the particle size distribution diagram, i.e., the point in the particle size distribution diagram with the maximum volume % of particles.
  • a smaller slope factor can, for example, be the result of a wider distribution of smaller particles than larger particles, which can improve particle accumulation during CMP processing. It was found that a smaller slope factor resulted in fewer defects in the substrate while still showing a high material removal rate.
  • a smaller slope factor can be achieved, for example, by improving the dispersion of the particles and subsequently less aggregated and agglomerated particles.
  • the cerium oxide abrasive grains have a slope factor of at most 300, more preferably at most 200, more preferably at most 100, more preferably at most 50, more preferably at most 30, more preferably at most 20, and most preferably at most 10.
  • the D10, D30, D50, D70, D90, steepness factor and slope factor of the ceria abrasive described herein can be achieved by controlling appropriate synthesis conditions of the ceria abrasive, such as temperature, pressure and time.
  • a crystallite may be a region of a crystal or a crystalline structure.
  • a crystallite may be located anywhere within the ceria abrasive grain, such as in the center of the ceria abrasive grain or exposed on the surface of the ceria abrasive grain.
  • a ceria abrasive grain may contain a single crystallite, two crystallites, or a plurality of crystallites.
  • the ceria abrasive should have a high degree of crystallinity.
  • crystallinity as used herein refers to the volume % of crystallites contained in the ceria abrasive.
  • a suitable degree of crystallinity can be obtained by controlling parameters such as temperature during the synthesis of the ceria abrasive.
  • the degree of crystallinity can be obtained from a dry powder of ceria abrasive by X-ray diffraction (XRD), for example, using a D8 X-ray diffractometer (Bruker Corp). It was found that a higher degree of crystallinity results in a higher material removal rate of the substrate during the CMP process.
  • the ceria abrasive preferably has a crystallinity of at least 56% by volume, more preferably at least 78% by volume, more preferably at least 86% by volume, and most preferably at least 96% by volume of the ceria abrasive.
  • the ceria abrasive is a single crystallite.
  • the ceria abrasive grains should have a coefficient of linear thermal expansion (CTELP) with a suitable lattice parameter.
  • CTELP refers to the expansion of the interatomic spacing within the ceria abrasive grains in response to a specific temperature change.
  • CTELP can be measured by X-ray diffraction (XRD), for example, at multiple (e.g., at least four) heating and cooling cycles. The CTELP is measured during the cycle using a D8 X-ray diffractometer (Bruker Corp). As known to those skilled in the art, CTELP can be calculated from the slope of the curve of expansion versus the average temperature of the heating and cooling cycles.
  • the cerium oxide abrasive particles of the present invention preferably have at least 100 nm at a particle size of 40 nm.
  • the cerium dioxide abrasive grains have a CTELP of at most More preferably at most More preferably at most More preferably at most Most preferably at most In a preferred embodiment, the cerium dioxide abrasive grains have a CTELP of 1.2*10 -5 to 40 nm. More preferably, 2.6*10 -5 to More preferred to CTELP.
  • the ceria abrasive particles may have lattice planes exposed on the surface of the abrasive particles, such as ⁇ 100 ⁇ , ⁇ 110 ⁇ , ⁇ 111 ⁇ , ⁇ 220 ⁇ , ⁇ 422 ⁇ and combinations thereof.
  • the desired lattice planes can be achieved, for example, by suitable particle shape, particle size, and parameters (such as temperature) during the synthesis of the ceria abrasive particles.
  • the lattice planes can be measured by X-ray diffraction, such as by measuring dry powder of ceria abrasive particles using a D8 X-ray diffractometer (Bruker Corp).
  • the lattice plane ⁇ 100 ⁇ exposed on the surface of ceria abrasive particles leads to more oxygen vacancies. More oxygen vacancies on the surface of ceria abrasive particles can increase the movement of oxygen atoms within the crystallites, which can increase the surface reactivity of ceria abrasive particles. It has been found that a higher percentage of lattice planes ⁇ 100 ⁇ exposed on the surface of ceria abrasive particles can increase the material removal rate of the substrate during CMP processing.
  • preferably at least 26%, more preferably at least 42%, more preferably at least 52%, more preferably at least 64%, more preferably at least 71%, more preferably at least 83%, and most preferably at least 94% of the lattice planes exposed on the surface of the cerium dioxide abrasive are ⁇ 100 ⁇ .
  • the cerium dioxide abrasive grains should have a suitable lattice parameter a.
  • the lattice parameter a refers to the average (arithmetic mean) length of the unit cells in the lattice of the cerium dioxide abrasive grains along the x-axis.
  • the lattice parameter can be obtained by X-ray diffraction, for example, using a D8 X-ray diffractometer (Bruker Corp), and calculated from each reflection (hkl) relative to cos 2 ⁇ .
  • a suitable lattice parameter a can induce favorable mechanical stress in the cerium dioxide abrasive grains.
  • the cerium dioxide abrasive grains have at least More preferably at least Most preferably at least The lattice parameter a of the cerium dioxide grinding
  • the particle size of 40 nm has a maximum More preferably at most Most preferably at most The lattice parameter a of .
  • the ceria abrasive has a low band gap Eg.
  • the band gap Eg refers to the minimum energy required to excite an electron from the valence band to the conduction band.
  • the band gap Eg can be obtained from the ultraviolet visible (UV-Vis) absorption spectrum of a 1 wt% solution of ceria abrasive, for example, using a Varian Cary 5E spectrophotometer (Agilent Technologies) at 25°C, scanning wavelengths from 300 to 1000 nm.
  • a Tauc curve can be plotted from ( ⁇ h ⁇ ) 2 (Y axis) and (h ⁇ ) (X axis), where ⁇ is the linear absorption coefficient, h is the Planck constant, and ⁇ is the frequency of light.
  • the linear portion of the graph can be extrapolated, and the intersection with the extrapolated X axis corresponds to the band gap Eg.
  • a smaller band gap Eg results in an increased formation of reactive oxygen species (ROS) such as superoxide, singlet oxygen, hydroxyl radicals, and hydrogen peroxide. ROS may contribute to higher surface reactivity during CMP processing. It was found that a lower band gap Eg may be associated with a higher material removal rate during CMP processing.
  • ROS reactive oxygen species
  • the cerium oxide abrasive grains preferably have a band gap of at most 3.40 eV, more preferably at most 3.34 eV, more preferably at most 3.31 eV, more preferably at most 3.27 eV, more preferably at most 3.20 eV, and most preferably at most 3.11 eV.
  • the cerium oxide abrasive grains have a band gap E g of at least 2.36 eV, more preferably at least 2.40 eV, more preferably at least 2.46 eV, more preferably at least 2.51 eV, and most preferably at least 2.57 eV.
  • the cerium oxide abrasive grains have a band gap of 2.36 eV to 3.40 eV, more preferably 2.40 eV to 3.34 eV, more preferably 2.46 eV to 3.31 eV, more preferably 2.51 eV to 3.27 eV, and more preferably 2.57 eV to 3.20 eV.
  • a smaller band gap E g can be achieved by suitable particle size distribution, particle morphology, and microcrystalline structure of the cerium oxide abrasive grains.
  • the above-mentioned preferred band gap cerium dioxide abrasive grains can be obtained by controlling appropriate synthesis conditions, such as temperature, pressure and time.
  • the ceria abrasive grains have a narrow F 2g peak as assessed by visible Raman spectroscopy.
  • Visible Raman spectra can be obtained, for example, at 25°C using a FRS 27 Raman spectrometer (Bruker Corp.) with a 532 nm laser on a dry powder of ceria abrasive grains.
  • the F 2g peak appears near 464 cm -1 and corresponds to Ce-O vibrations.
  • the Raman spectra should be baseline corrected and normalized to the intensity of the F 2g peak.
  • the full width at half maximum (FWHM) can be used to describe the width of the F 2g peak at half maximum height.
  • the FWHM is the wavelength difference at which the F 2g peak intensity is equal to half the maximum intensity of the visible Raman spectrum measured at 532 nm.
  • a smaller FWHM is associated with a larger ceria abrasive grain crystallite size.
  • a smaller number of defect sites can help reduce the FWHM.
  • Crystal surface defects affect the oxygen mobility within the crystallites and can change the surface reactivity during the CMP process. Surprisingly, it was found that a smaller FWHM can be associated with an increased material removal rate.
  • the cerium dioxide abrasive grains preferably have a FWHM of at most
  • the F 2g peak is at most 58 cm -1 , more preferably at most 42 cm -1 , more preferably at most 28 cm -1 , more preferably at most 15 cm -1 , more preferably at most 13 cm -1 , most preferably at most 11 cm -1 .
  • FWTM full width at 1/3 maximum peak
  • FWTM is the wavelength difference when the F2g peak intensity is equal to 1/3 of the maximum intensity of the visible Raman spectrum measured at 532nm.
  • Smaller FWTM values are associated with larger cerium dioxide abrasive grain crystallite size and the presence of crystal surface defects. Surprisingly, it was found that smaller FWTM can be associated with increased material removal rate.
  • the cerium dioxide abrasive preferably has a F2g peak with a FWTM of at most 65cm -1 , more preferably at most 60cm -1 , more preferably at most 45cm -1 , more preferably at most 25cm -1 , more preferably at most 23cm -1 , and most preferably at most 21cm -1 measured by Raman spectroscopy at a wavelength of 532nm.
  • cerium dioxide abrasive grains having the above-mentioned preferred half-maximum full width and 1/3 full width at the maximum peak can be obtained by controlling appropriate synthesis conditions, such as temperature, pressure and time.
  • the ceria abrasive particles should have a high ratio of D50 to FWHM.
  • the ratio of D50 to FWHM is the absolute value of the D50 of the ceria abrasive particles divided by the absolute value of the FWHM of the F 2g peak of the ceria abrasive particles measured by Raman spectroscopy at a wavelength of 532 nm.
  • the D50 and FWHM of the F 2g peak of the ceria abrasive particles can be obtained as described above.
  • a high ratio of D50 to FWHM is associated with a larger crystallite size relative to the particle size of the ceria abrasive particles.
  • a lower number of crystal face defects also helps to increase the ratio of D50 to FWHM of the F 2g peak.
  • the cerium dioxide abrasive grain preferably has a ratio of D50 to the FWHM of the F2g peak measured by Raman spectroscopy at a wavelength of 532 nm of at least 4.51, more preferably at least 5.12, more preferably at least 5.72, more preferably at least 6.1, and most preferably at least 6.68.
  • the ceria abrasive grains should have a high D50 to FWTM ratio.
  • the D50 to FWTM ratio is the absolute value of the D50 of the ceria abrasive grain divided by the FWTM of the F 2g peak of the ceria abrasive grain measured by Raman spectroscopy at a wavelength of 532 nm.
  • the D50 and FWTM of the F 2g peak of the ceria abrasive grains can be obtained as described above.
  • a higher ratio of D50 to the FWTM of the F 2g peak is associated with a larger crystallite size relative to the ceria abrasive grain size.
  • a lower number of crystal face defects also helps to increase the D50 to the FWTM of the F2g peak.
  • the cerium dioxide abrasive grain preferably has a ratio of D50 to FWTM of the F 2g peak measured by Raman spectroscopy at a wavelength of 532 nm of at least 1.47, more preferably at least 2.15, more preferably at least 3.64, more preferably at least 3.95, more preferably at least 4.13, and most preferably at least 4.81.
  • the cerium oxide abrasive particles have a negative charge in the composition.
  • the negative charge in the composition is obtained after coating with a coating agent.
  • the charge refers to the zeta potential, which can be measured, for example, by a Mastersizer S (Malvern Instruments).
  • the zeta potential refers to the potential at the interface between the mobile fluid in the composition and the fluid stabilizing layer attached to the abrasive particles dispersed in the composition. A higher absolute value of the zeta potential results in stronger electrostatic repulsion between particles, thereby increasing the stability of the dispersion of particles in the composition.
  • the abrasive particles preferably have a negative zeta potential in the composition at a pH of 7.5 to 9.5.
  • the abrasive particles preferably have a zeta potential of at least -5 mV, more preferably at least -10 mV, more preferably at least -15 mV, more preferably at least -20 mV, and most preferably at least -25 mV in the composition at a pH of 7.5 to 9.5.
  • the abrasive particles have a zeta potential of at most -90 mV, more preferably at most -85 mV, more preferably at most -80 mV, more preferably at most -75 mV, and most preferably at most -70 mV in the composition at a pH of 7.5 to 9.5.
  • the abrasive particles have a zeta potential of -5 mV to -90 mV, more preferably -10 mV to -85 mV, more preferably -15 mv to -80 mV, more preferably -20 mV to -75 mV, and most preferably -25 mV to -70 mV in the composition at a pH of 7.5 to 9.5. It has been found that, compared to cerium oxide with a positive zeta potential, cerium oxide with a negative zeta potential in some embodiments of the present invention can reduce silicon oxide loss (removal amount) in the recessed portion of the pattern when planarizing an ILD wafer with a pattern.
  • the abrasive cerium dioxide abrasive particles are positively charged and the abrasive particles are not coated with a coating agent.
  • the charge refers to the zeta potential, which can be measured by, for example, a Mastersizer S (Malvern Instruments).
  • the zeta potential refers to the potential at the interface between a moving fluid in a composition and a fluid stabilizing layer attached to the abrasive cerium dioxide abrasive particles dispersed in the composition.
  • the zeta potential depends on the pH value of the composition. Higher zeta potentials result in stronger electrostatic repulsion between particles, thereby increasing the stability of the dispersion of particles in the composition.
  • the cerium dioxide abrasive particles have a zeta potential of at least 10 mV, more preferably at least 15 mV, more preferably at least 20 mV, more preferably at least 25 mV, more preferably at least 30 mV, and most preferably at least 35 mV in the composition at a pH of 3 to 4.5.
  • the cerium oxide abrasive particles have a zeta potential of at most 95 mV, more preferably at most 90 mV, more preferably at most 85 mV, more preferably at most 80 mV, more preferably at most 75 mV, and most preferably at most 70 mV at a pH of 3 to 4.5 in the composition.
  • the zeta potential of the cerium dioxide abrasive grains in the above slurry composition is 10 mV to 95 mV, more preferably 15 mV to 90 mV, more preferably 20 mV to 85 mV, more preferably 25 mV to 80 mV, more preferably 30 mV to 75 mV, more preferably 35 mV to 70 mV at a pH of 1.
  • the cerium dioxide abrasive grains having the above zeta potential in the above slurry composition can be obtained by controlling a suitable synthesis process, such as temperature, pressure and time.
  • the composition should have a suitable viscosity.
  • the viscosity can be measured in mPa*s (milliPascal seconds) at 25°C using a NDJ-8S viscometer (Shanghai Lichen Instrument Technology Co., Ltd.). Higher viscosity can reduce the aggregation and agglomeration of cerium dioxide abrasive particles, thereby achieving fewer defects in the substrate.
  • the composition has a viscosity of at least 0.08 mPa*s, more preferably at least 0.24 mPa*s, and most preferably at least 0.72 mPa*s when measured as a 2% solution at 25°C.
  • the composition preferably has a viscosity of at most 28.3 mPa*s, more preferably at most 15.3 mPa*s, and most preferably at most 7.8 mPa*s when measured as a 2% solution at 25°C.
  • compositions comprising ceria abrasive particles as described herein dispersed in an aqueous carrier can exhibit advantageously high material removal rates even without the addition of chemical additives.
  • the composition further comprises one or more chemical additives.
  • the chemical additives may interact, for example, with the ceria abrasive particles and/or with the substrate and/or with the polishing pad during the CMP treatment process. The interaction may be based on, for example, hydrogen bonds, van der Waals forces, electrostatic forces, etc.
  • the chemical additives may be suitable for use as, for example, removal rate promoters, polishing rate inhibitors, surfactants, thickeners, conditioning agents, complexing agents, chelating agents, biocides, dispersants, oxidants, film formers, etching inhibitors, catalysts, termination compounds, dissolution inhibitors, corrosion inhibitors, or any component of a combination thereof.
  • the composition comprises an aqueous carrier.
  • the cerium oxide abrasive and chemical additives are suspended in the aqueous carrier.
  • the aqueous carrier enables the cerium oxide abrasive and chemical additives to contact the substrate and the polishing pad during the CMP process.
  • the aqueous carrier can be any component suitable for suspending the cerium oxide abrasive and chemical additives. Examples of the aqueous carrier include water, ethers (such as dioxane and tetrahydrofuran), alcohols (such as methanol and ethanol) and combinations thereof.
  • the aqueous carrier contains at least 50wt% water, more preferably at least 70wt% water, more preferably at least 90wt% water, more preferably at least 95wt% water, and most preferably at least 99wt% water.
  • the water is deionized water.
  • the composition comprises a pH adjusting agent when used.
  • the pH adjusting agent helps The composition achieves a suitable pH.
  • the pH adjusting agent may be a base or a salt thereof.
  • the base or a salt thereof is an organic base.
  • the composition may contain a certain concentration of a pH adjusting agent to achieve a corresponding pH value.
  • the pH adjusting agent is an organic nitrogen-containing compound.
  • Suitable organic nitrogen-containing compounds include ethanolamine, diethanolamine, triethanolamine, imidazole, triethylamine, piperazine, cyclic amines, organic quaternary ammonium hydroxides (e.g., tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH)), and combinations thereof.
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • TPAH tetrapropylammonium hydroxide
  • TBAH tetrabutylammonium hydroxide
  • the pH adjuster is not an inorganic compound.
  • unsuitable inorganic pH adjusters include alkali metal hydroxides (such as potassium hydroxide, sodium hydroxide, lithium hydroxide), alkaline earth metal hydroxides (such as magnesium hydroxide, calcium hydroxide, beryllium hydroxide), alkali metal carbonates (such as potassium carbonate, potassium bicarbonate, sodium carbonate, sodium bicarbonate, lithium bicarbonate), alkaline earth metal carbonates (such as magnesium carbonate, calcium carbonate, beryllium carbonate), alkali metal phosphates (such as tripotassium phosphate, trisodium phosphate, dipotassium phosphate, disodium phosphate), alkaline earth metal phosphates (such as magnesium phosphate, calcium phosphate, beryllium phosphate), ammonium carbonate, ammonium bicarbonate, ammonium hydroxide and combinations thereof.
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, lithium hydro
  • the composition comprises a pH adjusting agent when used.
  • the pH adjusting agent helps the composition achieve a suitable pH.
  • the pH adjusting agent can be an acid or a salt thereof.
  • the acid or a salt thereof can be an organic acid, an inorganic acid or a combination thereof.
  • organic acids are formic acid, acetic acid, propionic acid, butyric acid, valeric acid, methylbutyric acid, caproic acid, dimethylbutyric acid, ethylbutyric acid, methylvaleric acid, heptanoic acid, methylhexanoic acid, caprylic acid, ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, malic acid, phthalic acid, tartaric acid, citric acid, lactic acid, diglycolic acid, furancarboxylic acid, tetrahydrofuranic acid, methoxyacetic acid, methoxyphenylacetic acid, phenoxyacetic acid, methanesulfonic acid, ethanesulfonic acid, sulfosuccinic acid,
  • inorganic acids examples include hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, phosphoric acid, and combinations thereof.
  • the pH adjusting agent is an organic acid.
  • the organic acid is selected from maleic acid, malic acid, tartaric acid, citric acid, acetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and combinations thereof.
  • the composition may comprise a pH adjusting agent at a concentration suitable for achieving the pH of the present invention.
  • the composition may also optionally contain a pH buffer.
  • the pH buffer helps maintain the composition at a suitable pH.
  • the pH buffer can be any suitable buffer.
  • the pH buffer can be, for example, a phosphate, a sulfate, an acetate, a borate, an ammonium salt, or a combination thereof.
  • the composition can include a pH buffer at a concentration suitable for maintaining the pH of the present invention.
  • the pH of the composition affects the removal rate of the substrate during the CMP process.
  • the composition has a pH of at least 4.0, more preferably at least 5.0, more preferably at least 6.0, more preferably at least 6.5, more preferably at least 7.0 when used.
  • the composition has a pH of at most 12.0, more preferably at most 11.0, more preferably at most 10.0, more preferably at most 9.5, more preferably at most 9.0 when used.
  • the composition has a pH of between 4.0 and 12.0, more preferably between 5.0 and 11.0, more preferably between 6.0 and 10.0, more preferably between 6.5 and 9.5, more preferably between 7.0 and 9.0 when used.
  • the composition preferably has a pH of at most 7.0, more preferably at most 6.5, more preferably at most 6.0, more preferably at most 5.5, more preferably at most 5.0, most preferably at most 4.5 when in use.
  • the composition preferably comprises a coating agent.
  • the coating agent can be reversibly bonded to the surface of the ceria abrasive by means of hydrogen bonding and/or ionic interactions.
  • the coating agent used herein refers to a coating agent present in the composition in any form, such as being bonded to the surface of the ceria abrasive or not bonded to the surface of the ceria abrasive.
  • the ceria abrasive is coated with a coating agent.
  • the surface of the ceria abrasive can be treated with a coating agent by any suitable method.
  • the coating agent can be dissolved in an aqueous carrier such as deionized water, and then the ceria abrasive is added to form a mixture. Then, the mixture is stirred until the components are dissolved. The mixture of the coating agent and the ceria abrasive is then added to the composition.
  • an aqueous carrier such as deionized water
  • the capping agent is an anionic polymer.
  • the anionic polymer can be used in any achievable form, such as acid, conjugate acid, conjugate base, salt (such as ammonium salt), or a combination thereof.
  • the anionic polymer contains repeating monomer units comprising a functional group selected from carboxylic acid, sulfonic acid, sulfate, phosphonic acid, phosphoric acid, and combinations thereof.
  • the repeating monomer units contain carboxylic acid functional groups.
  • Examples of carboxylic acids of the repeating monomer units are maleic acid, acrylic acid, aspartic acid, methacrylic acid, succinic acid, terephthalic acid, itaconic acid, and combinations thereof.
  • Examples of sulfonic acids of the repeating monomer units are vinyl sulfonic acid, styrene sulfonic acid, vinylbenzene sulfonic acid, sulfoethyl methacrylate, propylene sulfonic acid, 3-sulfopropyl acrylate, sulfopropyl methacrylate, sulfopropyl acrylate, acrylamidomethylpropanesulfonic acid (AMPS), ethyl sulfonate, sodium styrene sulfonate, and combinations thereof.
  • AMPS acrylamidomethylpropanesulfonic acid
  • Phosphine of the repeating monomer units is preferably phosphine.
  • acids are bisdiethylammonium methacrylate phosphonate, vinylphosphonic acid, vinylbenzyldimethylphosphonic acid, acrylamidephosphonic acid, vinylidene diphosphonic acid, and combinations thereof.
  • the anionic polymer may be a homopolymer, a copolymer, or a combination thereof.
  • anionic homopolymers are polysulfonic acid, poly(acrylamidomethylpropanesulfonic acid), polystyrenesulfonic acid, poly(vinylsulfonic acid), poly(aspartic acid), polyacrylic acid, polymethacrylic acid, phosphonated polyacrylic acid, phosphonated polyacryl acid, poly(methacrylic acid), poly(maleic acid), poly(itaconic acid), poly(maleic anhydride), anionic polyacrylamide, poly(methacrylamide), poly(methyl vinyl ether-co-maleic acid), poly(methacrylamidomethylpropanesulfonic acid), poly(vinylphosphonic acid), poly(vinyl phosphoric acid), poly(acrylamidomethylpropanesulfonic acid), poly(methylacrylamide), poly(methylacrylamide), poly(methylvinylether-co-maleic acid), poly(meth
  • the invention relates to poly(acryloyloxyethyl sulfonic acid), poly(acrylamidomethylpropane sulfonic acid), poly(methacryloyloxyethyl phosphoric acid), poly(methacrylamidomethylpropane sulfonic acid), carboxymethyl inulin, polynaphthalene sulfonic acid, polyhydroxypropyl acrylic acid, poly(octadecyl acrylic acid), poly(tert-butyl acrylic acid), poly(tetrahydrofurfuryl methacrylic acid), poly(ethyl acrylic acid), poly(isobornyl acrylic acid), poly(isobutyl acrylic acid), poly(isodecyl acrylic acid), poly(isodecyl methacrylic acid), poly(isooctyl acrylic acid), poly(lauryl acrylic acid), poly(propyl acrylic acid), poly(butyl acrylic acid), poly(decyl acrylic acid), poly(hexyl
  • copolymers are poly(acrylic acid-co-maleic acid), poly(styrene sulfonic acid-co-maleic acid), poly(acrylamide-co-acrylic acid), poly(vinylphosphonic acid-co-acrylic acid), poly(vinyl sulfate), acrylic acid-acrylamide-methylpropane sulfonic acid copolymer, acrylic acid-2-acrylamide-2-methylpropane sulfonic acid (AA-AMPS) in different weight percentages as shown, and combinations thereof.
  • A-AMPS acrylic acid-2-acrylamide-2-methylpropane sulfonic acid
  • the coating agent should have a low molecular weight (MW). If the molecular weight of the coating agent is too high, it will cause aggregation and agglomeration of the ceria abrasive particles, thereby causing defects such as scratches on the substrate surface, and leading to precipitation of the ceria abrasive particles and shortened shelf life.
  • the coating agent has a molecular weight (MW) of at most 50,000 g/mol, more preferably at most 30,000 g/mol, more preferably at most 20,000 g/mol, more preferably at most 15,000 g/mol, and most preferably at most 9,000 g/mol.
  • the coating agent has a molecular weight of at least 100 g/mol, more preferably at least 200 g/mol, more preferably at least 300 g/mol, more preferably at least 400 g/mol, and most preferably at least 500 g/mol.
  • the coating agent has a molecular weight of 100 g/mol to 50,000 g/mol, more preferably 200 g/mol to 30,000 g/mol, more preferably 300 g/mol to 20,000 g/mol, more preferably 400 g/mol to 15,000 g/mol, more preferably 500 g/mol to 9,000 g/mol.
  • the molecular weight of the present invention can improve the removal rate of the substrate material during the CMP process. Extends the shelf life of the composition.
  • the composition comprises a coating agent in a concentration of at least 0.0001 wt.%, more preferably at least 0.0005 wt.%, more preferably at least 0.001 wt.%, most preferably at least 0.002 wt.%.
  • the coating agent has a concentration of at most 2.0 wt.%, more preferably at most 1.0 wt.%, more preferably at most 0.8.0 wt.%, most preferably at most 0.6 wt.%.
  • the coating agent is 0.0001 wt.% to 2.0 wt.%, more preferably 0.0005 wt.% to 1 wt.%, more preferably 0.001 wt.% to 0.8 wt.%, most preferably 0.002 wt.% to 0.6 wt.%.
  • the composition preferably comprises a monoacid.
  • the monoacid is an organic compound having an acid group.
  • the monoacid can be in the form of an acid, a conjugate acid, a salt or a combination thereof.
  • Suitable acid groups include, for example, carboxyl, sulfonic acid and phosphonic acid.
  • the monoacid is a monocarboxylic acid.
  • the monocarboxylic acid can be, for example, a straight chain monocarboxylic acid, a branched monocarboxylic acid, a saturated monocarboxylic acid, an unsaturated monocarboxylic acid, a substituted monocarboxylic acid, an aromatic monocarboxylic acid and a combination thereof.
  • the example of the monocarboxylic acid has nicotinic acid, isonicotinic acid, quinaldic acid, acetic acid, picolinic acid, hydroxybenzoic acid, formic acid, carbonic acid, glycolic acid, glyoxylic acid, lactic acid, glyceric acid, pyruvic acid, oxopropionic acid, hydroxypropionic acid, oxopropionic acid, glycidic acid, butyric acid, isobutyric acid, butyric acid, propionic acid, crotonic acid, isocrotonic acid, acrylic acid, methacrylic acid, vinylacetic acid, butynoic acid, hydroxybutyric acid, oxobutyric acid, valeric acid, isovaleric acid, neopentanoic acid, caproic acid, sorbic acid, benzoic acid, salicylic acid, octanoic acid, nonanoic acid, cinnamic acid, capric
  • the monoacid is selected from propionic acid, butyric acid, acetic acid, valeric acid, caproic acid, picolinic acid and combinations thereof.
  • the monoacid is different from pH adjusting agent, meaning that they are not identical compounds.
  • the composition comprises at least 0.0001wt%, more preferably at least 0.001wt%, more preferably at least 0.007wt%, more preferably at least 0.013wt%, most preferably at least 0.021wt% of monoacid when used.
  • the composition comprises at most 9.7wt%, more preferably at most 4.4wt%, more preferably at most 2.3wt%, more preferably at most 1.2wt%, most preferably at most 0.14wt% of monoacid when used.
  • the composition comprises 0.0001wt% to 9.7wt%, more preferably 0.001wt% to 4.4wt%, more preferably 0.007wt% to 2.3wt%, more preferably 0.013wt% to 1.2wt% of monoacid.
  • the composition further comprises amino acids, wherein the amino acids can be proteinogenic amino acids (such as alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, selenocysteine, pyrrolysine), non Proteinogenic amino acids (such as ornithine, citrulline, carnitine, ⁇ -aminobutyric acid, levothyroxine, ⁇ -alanine, aminoisobutyric acid), or combinations thereof.
  • proteinogenic amino acids such as alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine,
  • the amino acids are proteinogenic amino acids.
  • the molecular weight of the amino acids is at most 150 g/mol, more preferably at most 140 g/mol, more preferably at most 130 g/mol, and most preferably at most 120 g/mol.
  • the composition comprises an amount of at least 0.001 wt.%, more preferably at least 0.01 wt.%, more preferably at least 0.1 wt.%, more preferably at least 0.2 wt.%, most preferably at least 0.3 wt.%.
  • the composition comprises an amount of at most 18.3 wt.%, more preferably at most 9.8 wt.%, more preferably at most 6.3 wt.%, more preferably at most 4.3 wt.%, most preferably at most 2.9 wt.%.
  • the content of amino acids in the composition is between 0.001 wt.% and 18.3 wt.%, more preferably between 0.01 wt.% and 9.8 wt.%, more preferably between 0.1 wt.% and 6.3 wt.%, more preferably between 0.2 wt.% and 4.3 wt.%, more preferably between 0.3 wt.% and 2.9 wt.%.
  • the composition may also optionally include one or more biocides.
  • the biocide may be a compound that prevents, inhibits, reduces the growth, inhibits the activity, or eliminates unwanted microorganisms.
  • biocides are sodium hypochlorite, methylisothiazolinone, benzisothiazolinone, chloromethylisothiazolinone, and combinations thereof.
  • the composition preferably comprises at least 0.6 ppm by weight, more preferably at least 1.6 ppm by weight, more preferably at least 2.7 ppm by weight, more preferably at least 3.8 ppm by weight, and most preferably at least 4.6 ppm by weight of the biocide.
  • the composition preferably comprises at most 98 ppm by weight, more preferably at most 83 ppm by weight, more preferably at most 74 ppm by weight, and most preferably at most 69 ppm by weight of the biocide.
  • the present invention also provides a method for chemical mechanical polishing of a substrate comprising a silicon oxide material, the method comprising the following steps: (a) providing a chemical mechanical polishing composition; (b) contacting the substrate with the chemical mechanical polishing composition and a polishing pad; (c) moving the polishing pad relative to the substrate with the composition located therebetween; and (d) removing at least a portion of the substrate.
  • the CMP composition provided in step (a) is a composition of the present invention.
  • the method may optionally include other steps.
  • the cerium oxide abrasive particles can be prepared by any suitable method known to those skilled in the art to impart the above-mentioned properties to the cerium oxide abrasive particles.
  • the cerium oxide abrasive particles can be prepared by precipitation of cerium nitrate and by growing the particles by heat. The particles can then be centrifuged, washed and dried. The particles can be further processed, such as filtering, grading, crushing, grinding, milling, ultrasonic treatment and combinations thereof to desorb the particles. The particles are dispersed and used to formulate a composition. Useful dispersion processes may be, for example, high shear mixing, ultrasonic treatment and other processes known to those skilled in the art.
  • the composition can be prepared using suitable techniques known to those skilled in the art.
  • the cerium oxide abrasive and other chemical additives as described above can be added to an aqueous carrier in any order and in suitable amounts to achieve the desired concentration.
  • the cerium oxide abrasive and chemical additives can be mixed and stirred in an aqueous carrier.
  • the pH value can be adjusted using the above-mentioned pH regulator and pH buffer to obtain and maintain the desired pH.
  • the cerium oxide abrasive and chemical additives can be added at any time before use (e.g., one month, one day, one hour or one minute) or during the CMP process.
  • the composition can be provided as a one-part system, a two-part system, or a multi-part system.
  • the first part can include ceria abrasive particles and the second part can include one or more chemical additives.
  • the first part and the second part can be mixed at any time (e.g., one month, one day, one hour, or one minute) before the CMP treatment or during the CMP treatment, such as when a polishing device with multiple supply paths for the CMP composition is used.
  • the composition can be provided as a concentrate and can be diluted with an appropriate amount of water before use.
  • concentration of each component in the composition can be any suitable, such as 2 times, 3 times, 10 times or 25 times the above-mentioned concentration when used.
  • concentration of cerium dioxide abrasive particles and chemical additives contained in the concentrate is such that after dilution with an appropriate amount of water, the cerium dioxide abrasive particles and chemical additives are present in the composition at the above-mentioned concentrations.
  • the composition is provided, for example, as a two-part system, one or both parts can be provided as a concentrate.
  • the two parts can be provided at different concentrations, for example, the first part has a concentration of three times and the second part has a concentration of five times.
  • the two parts can be diluted in any order before mixing.
  • the composition should achieve high material removal rates for substrates comprising silicon oxide materials during CMP processing.
  • substrates comprising silicon oxide materials are silicon wafers comprising high density plasma (HDP) oxide, plasma enhanced tetraethyl orthosilicate (PETEOS), spin-on glass (SOG), and tetraethyl orthosilicate (TEOS).
  • HDP high density plasma
  • PETEOS plasma enhanced tetraethyl orthosilicate
  • SOOG spin-on glass
  • TEOS tetraethyl orthosilicate
  • the composition exhibits at least More preferably at least More preferably at least Most preferably at least
  • the material removal rate of the substrate comprising silicon oxide material is determined by the method of FIG.
  • the present invention also relates to the use of the composition of the present invention.
  • the composition of the present invention is used for chemical mechanical polishing of a substrate comprising a silicon oxide material.
  • chemical mechanical polishing refers to a process in which a substrate is placed in a CMP apparatus so that it contacts a polishing pad and a CMP composition located therebetween. The polishing pad and the substrate are moved relative to each other to remove a portion of the substrate.
  • silicon oxide materials are Polysilicon, silicon oxide, tetraethyl orthosilicate (TEOS), silicon nitride, doped silicon oxide materials such as carbon-doped silicon oxide materials, high density plasma (HDP) oxide, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), high aspect ratio process (HARP) oxide, spin-on dielectric (SOD) oxide, chemical vapor deposition (CVD) oxide, plasma enhanced tetraethyl orthosilicate (PETEOS), thermal oxide, undoped silicate glass and combinations thereof.
  • HDP high density plasma
  • PSG phosphosilicate glass
  • BPSG borophosphosilicate glass
  • HTP high aspect ratio process
  • SOD spin-on dielectric
  • CVD chemical vapor deposition
  • PETEOS plasma enhanced tetraethyl orthosilicate
  • thermal oxide undoped silicate glass and combinations thereof.
  • the compositions of the present invention are used for chemical mechanical polishing of substrates comprising silicon oxide materials and silicon nitride materials.
  • the composition exhibit a particular material removal selectivity for silicon oxide relative to silicon nitride.
  • the material removal rate of silicon oxide preferably exceeds the material removal rate of silicon nitride by at least 2 times, more preferably at least 6 times, more preferably at least 18 times, more preferably at least 37 times, more preferably at least 57, and most preferably at least 71.
  • the material removal rate of silicon nitride preferably exceeds the material removal rate of silicon oxide by at least 2 times, more preferably at least 9 times, and most preferably at least 18 times.
  • the compositions of the present invention are used to polish substrates comprising silicon oxide and polycrystalline silicon.
  • the composition may be desirable for the composition to exhibit a particular material removal selectivity for silicon oxide relative to polycrystalline silicon.
  • the material removal rate of silicon oxide preferably exceeds the material removal rate of polycrystalline silicon by at least 2 times, more preferably by at least 11 times, more preferably by at least 37 times, and most preferably by at least 72 times.
  • Figure 1 is the UV-visible absorption spectra of ceria abrasive grains from compositions E7 and A11-A12 in the wavelength range of 300nm to 1000nm, with the x-axis showing the wavelength in nm and the y-axis showing the absorbance in arbitrary units (a.u.).
  • compositions E8 and A13-15 are visible Raman spectrum of ceria abrasive grains from compositions E8 and A13-15 in the wavelength range of 200 cm -1 to 700 cm -1 , with the x-axis showing wavenumber in cm -1 and the y-axis showing intensity in arbitrary units (au).
  • compositions E8', E9', A13' and A14' in the wavelength range of 200 cm -1 to 700 cm -1 , with the x-axis showing wave number in cm -1 and the y-axis showing intensity in arbitrary units (au).
  • compositions A20 and E16-E17 are visible Raman spectrum of ceria abrasive grains from compositions A20 and E16-E17 in the wavelength range of 200 cm -1 to 700 cm -1 .
  • the x-axis represents the wave number in cm-1 and the y-axis represents the intensity in arbitrary units (au).
  • the synthesis method of cubic cerium dioxide abrasive grains of the present invention is as follows: 0.03 mol of cerium (III) nitrate (Ce(NO 3 ) 3 ⁇ 6H 2 O) is dissolved in 100 mL of deionized water, stirred at room temperature until the solid is dissolved, and recorded as liquid A; 3.6 mol of sodium hydroxide (NaOH) is dissolved in 500 mL of deionized water, stirred until the solid is dissolved, and cooled to room temperature, and recorded as liquid B. Liquid A is slowly added to liquid B while stirring at room temperature, and stirring is continued for 30 minutes.
  • the mixed solution is transferred to a stainless steel hydrothermal autoclave with a Teflon lining, the synthesis temperature is 120° C., the reaction time is 24 hours, and then naturally cooled to room temperature.
  • the cooled mixture is centrifuged to obtain a white solid.
  • the white solid obtained by centrifugation is washed three times with water and ethanol respectively, until the conductivity of the supernatant is less than 1 mS ⁇ cm.
  • the solid obtained by the last washing is dried at 120° C. to obtain cerium dioxide abrasive grains with preferred properties and cubic morphology.
  • the preparation method of spherical cerium dioxide abrasive grains used in the embodiment of the present invention is as follows: 0.3 mol of cerium (III) nitrate (Ce(NO 3 ) 3 ⁇ 6H 2 O) is dissolved in 100 mL of deionized water, stirred at room temperature until the solid is dissolved, and recorded as liquid A; 2.7 mol of polyvinyl pyrrolidone (PVP) (in terms of repeating units) is dissolved in 500 mL of deionized water, stirred until the solid is dissolved, and cooled to room temperature, and recorded as liquid B. At room temperature, under stirring, liquid A is slowly added to liquid B, and stirring is continued for 60 minutes.
  • cerium (III) nitrate Ce(NO 3 ) 3 ⁇ 6H 2 O
  • PVP polyvinyl pyrrolidone
  • the mixed solution is transferred to a stainless steel hydrothermal autoclave with a Teflon liner, the synthesis temperature is 140°C, the reaction time is 24 hours, and then naturally cooled to room temperature.
  • the cooled mixture is centrifuged to obtain a milky white solid.
  • the white solid obtained by centrifugation is washed three times with water and ethanol respectively, until the conductivity of the supernatant is less than 1 mS ⁇ cm.
  • the solid obtained by the last washing is dried at 120°C to obtain spherical cerium dioxide abrasive grains.
  • the hexagonal cerium dioxide abrasive grains used in the present invention were purchased from Solvay S.A.
  • the method for preparing the composition used in the following examples includes dispersing cerium dioxide abrasive particles in deionized water, then adding chemical additives, and stirring until the chemical additives are completely dissolved.
  • TopVendor obtained The thickness of the silicon dioxide wafer was obtained by plasma enhanced tetraethyl orthosilicate (PE-TEOS) deposition.
  • the polishing was carried out using a CTS-AP300 polishing tool (available from CTS Co.) at a polishing platform speed of 103 rpm, a carrier speed of 87 rpm, a film pressure of 3.3 psi and a
  • the PE-TEOS wafer was polished for 60 seconds at a slurry flow rate of 150 ml/min.
  • compositions E1-E2 and compositions A1-A2 of different D50 sizes were evaluated.
  • Compositions E1-E2 included ceria having a cubic morphology and compositions A1-A2 included ceria having a spherical morphology.
  • compositions E1-E2 and A1-A2 are as follows: 0.5 g of cerium oxide abrasive particles of the morphology shown in Table 1 are dispersed in 50 g of deionized water, diluted with deionized water to adjust the abrasive weight percentage to 0.5 wt.%, and 30 ppm of biocide KATHON TM LX150 (Dow Inc.) is added by weight, and the pH of the composition is adjusted to 3.5 with acetic acid. Filtration can achieve a narrower distribution and a smaller particle size. In this embodiment, a narrower distribution of particles is achieved by using a Cobetter filter from Hangzhou Cobetter Filter Equipment Co., Ltd.
  • the morphology was evaluated by TEM using a Talos F200x transmission electron microscope.
  • the cerium dioxide and each composition were prepared as described above.
  • the PE-TEOS wafers were polished with the compositions on a CTS-AP300 polishing tool for 60 seconds as described above.
  • the values in Table 1 are expressed in angstroms/minute.
  • the material removal rate is listed in units of .Particle size D50 was measured by laser diffraction using a Horiba LA960.
  • the zeta potential of the compositions was measured using a Nano ZSE (Malvern Instruments).
  • compositions E1 and E2 comprising ceria in cubic morphology and having a higher zeta potential exhibit higher PE-TEOS material removal rates than compositions A1 and A2 comprising ceria in spherical morphology.
  • compositions E3-E4 and A3-A6 were evaluated.
  • Compositions E3-E4 and A3-A6 were prepared as follows: 0.5 g of cerium dioxide abrasive particles of the morphology shown in Table 2A were dispersed in 0.002 g of picolinic acid was added to 50 g of deionized water, and the mixture was diluted with deionized water to adjust the weight percentage of the abrasive to 0.2%. 30 ppm of biocide KATHON TM LX150 (Dow Inc.) was also added by weight, and the pH of the composition was adjusted to 3.5 with acetic acid.
  • the differences in the synthesis process of cubic cerium dioxide in compositions E4, A3 and A4 are: the synthesis temperature of E4 is changed to 140°C, the synthesis temperature of A3 is changed to 80°C, and the reaction time of A4 is adjusted to 6 hours.
  • compositions E3-E4 and A3-A4 included ceria having cubic morphology and different particle size distributions.
  • Composition A5 included ceria having spherical morphology.
  • Ceria particles of compositions E3-E4 and A3-A5 were prepared as described above.
  • Composition A6 included commercial ceria purchased from Solvay S.A. having hexagonal morphology and particle sizes listed in Table 2. All compositions were prepared as described above.
  • the morphology of the particles was evaluated by SEM using a NovaNano450 scanning electron microscope.
  • the particle sizes D30, D50 and D70 were obtained by laser diffraction using a Horiba LA960 as described above.
  • the steepness factor and slope factor were calculated as described above.
  • the PE-TEOS wafer was polished with the composition on a CTS-AP300 polishing tool for 60 seconds as described above.
  • the values in Table 2 are expressed in angstroms per minute.
  • the material removal rate is listed in units.
  • compositions E3 and E4 of this example have large steepness factors and small slope factors, higher Zeta potentials, and both compositions advantageously exhibit higher PE-TEOS removal rates compared to compositions A3-A6.
  • D50 which is expected to be associated with a higher material removal rate
  • composition A3 shows a significantly lower PE-TEOS material removal rate.
  • composition A3 has an unfavorable large slope factor.
  • composition A4 has an unfavorable low steepness factor and an unfavorable large slope factor, and shows a lower PETEOS removal rate.
  • composition A5 containing spherical cerium dioxide and composition A6 containing hexagonal cerium dioxide have a high steepness factor and a small slope factor
  • the PE-TEOS material removal rate is lower than that of compositions E3-E4 containing cubic cerium dioxide.
  • cubic morphology, large steepness factor and small slope factor are associated with favorable high PE-TEOS material removal rates.
  • compositions E3’-E4’ and A3’-A6’ were evaluated for PE-TEOS material removal rates.
  • Compositions E3’-E4’ and A3’-A4’ included ceria having a cubic morphology and different particle size distributions as listed in Table 2B.
  • Composition A5’ included ceria having a spherical morphology.
  • Ceria particles of compositions E3’-E4’ and A3’-A5’ were prepared as described in Example 2A.
  • Composition A6’ included commercial ceria purchased from Solvay S.A. having a hexagonal morphology and the particle sizes listed in Table 2B. All compositions were prepared as described above.
  • the preparation method of the composition in Table 2B is as follows: 1 gram of polyacrylic acid is dissolved in 100 grams of water, 50 grams of cerium dioxide abrasive particles of the form shown in Table 2 are added under ultrasound and stirring, and the pH is adjusted to 8.0 with a 5% tetramethylammonium hydroxide solution, and ultrasonic stirring is continued for 20 minutes, the ultrasonic frequency is 400kHz, and the stirring blade speed is 400rpm. Then, water is added to adjust the mass of the composition to 5000 grams, and the pH is adjusted to 8.8 with a tetramethylammonium hydroxide solution.
  • the morphology of the particles was evaluated by SEM using a NovaNano450 scanning electron microscope.
  • the particle sizes D30, D50 and D70 were obtained by laser diffraction using a Horiba LA960 as described above.
  • the steepness factor and slope factor were calculated as described above.
  • the PE-TEOS wafer was polished with the composition on a CTS-AP300 polishing tool for 60 seconds as described above.
  • the values in Table 2 are expressed in angstroms per minute.
  • the material removal rate is listed in units.
  • compositions E5-E6 and A7-A10 were evaluated.
  • Compositions E5 and A7-A10 were prepared as follows: 0.5 g of the cerium dioxide abrasive particles shown in Table 3A were dispersed in 50 g of deionized water, 0.001 g of proline was added, and the abrasive particles were diluted with deionized water to 0.5% by weight, and 30 ppm of biocide KATHON TM LX150 (Dow Inc.) was added by weight, and the pH of the composition was adjusted to 4.0 with acetic acid.
  • the synthesis process of cubic cerium dioxide of composition E6 is the same as above, except that the synthesis time is adjusted to 18 hours.
  • compositions E5-E6 included ceria in a cubic morphology, while composition A7 included ceria in a spherical morphology. Ceria abrasive grains for compositions E5-E6 and A7 were prepared as described above.
  • Compositions A8-A10 included commercial ceria purchased from Solvay S.A., which had a hexagonal morphology and a D50 of 71.17 nm, 81.47 nm, and 94.62 nm, respectively, as measured by laser diffraction using a Horiba LA960. All compositions were prepared as described above.
  • the PE-TEOS wafer was polished with the composition on a CTS-AP300 polishing tool for 60 seconds.
  • the material removal rate is listed in units.
  • NU Non-uniformity
  • the material removal rate on the diameter of the PE-TEOS wafer is measured under the same conditions as above to obtain the diagonal removal rate distribution. For each measurement point, the standard deviation of the thickness difference of the PE-TEOS wafer before and after polishing is obtained. Compared with the total average thickness difference of the PE-TEOS wafer before and after polishing, NU is calculated as the size of this standard deviation. NU is listed as a percentage in Table 3A.
  • compositions E5 and E6 comprising cubic cerium oxide exhibit significantly higher PE-TEOS material removal rates than compositions A7 comprising spherical cerium oxide and compositions A8-A10 comprising hexagonal cerium oxide.
  • compositions E5-E6 comprising cubic cerium oxide and having a higher Zeta potential advantageously exhibit less heterogeneity than compositions A8-A10 comprising hexagonal cerium oxide, indicating that the polished PE-TEOS wafer has a higher surface quality and fewer surface defects.
  • compositions E5’-E6’ and A7’-A10’ were evaluated for PE-TEOS material removal rate and within-wafer non-uniformity (WIWNU).
  • Compositions E5’-E6’ included ceria in cubic morphology, while composition A7’ included ceria in spherical morphology.
  • Ceria abrasives for compositions E5’-E6’ and A7’ were prepared as described in Example 3A.
  • Compositions A8’-A10’ included commercial ceria purchased from Solvay S.A.
  • composition in Table 3B was prepared as follows: 2.1 g of polymaleic acid acrylic acid copolymer was dissolved in 100 g of water, 70 g of cerium dioxide abrasive was added under ultrasound and stirring, and the pH was adjusted to 8.0 with triethanolamine, and ultrasonic stirring was continued for 20 minutes, the ultrasonic frequency was 400 kHz, and the stirring blade speed was 400 rpm. Water was then added to adjust the mass of the composition to 6000 g, and the pH was adjusted to 8.3 with triethanolamine.
  • compositions E7 and A11-A12 were evaluated.
  • Compositions E7 and A11-A12 were prepared by dispersing 0.5 g of ceria abrasive particles in 50 g of deionized water, adding 0.05 g of lactic acid, diluting with deionized water to adjust the abrasive weight percentage to 0.3%, adding 30 ppm of biocide KATHON TM LX150 (Dow Inc.) by weight, and adjusting the pH of the composition to 3.8 with acetic acid.
  • Composition E7 included ceria particles in cubic morphology prepared as described above.
  • Compositions A11-A12 included commercial ceria purchased from Solvay S.A., which had a hexagonal morphology and a D50 of 71.17 nm and 81.47 nm, respectively, as measured by laser diffraction using a Horiba LA960. The compositions were prepared as described above.
  • the PE-TEOS wafer was polished with the composition on a CTS-AP300 polishing tool for 60 seconds.
  • the material removal rate is listed in units.
  • UV-visible absorption spectra were obtained from the corresponding cerium oxide particles of compositions E7 and A11-A12, as shown in Figure 1.
  • a solution sample of 1 wt% cerium oxide particles dispersed in deionized water was prepared and measured at 25°C using a Cary-60 UV-visible spectrometer (Agilent Technologies Inc.).
  • the band gap was estimated based on the Tauc plot.
  • composition E7 of the present invention comprising cubic cerium oxide particles exhibits a lower band gap and a higher PE-TEOS material removal rate compared to the compositions A11-A12 comprising hexagonal cerium oxide particles.
  • compositions E8 and A13-A15 were evaluated for PE-TEOS material removal and Raman spectra of the corresponding ceria particles. These compositions contained 0.05 wt% ceria, 30 ppm of the biocide KATHON TM LX 150 (Dow Inc.), and the pH of each composition was adjusted to about 4.2 with acetic acid.
  • compositions E8 and A13-A15 The preparation method of compositions E8 and A13-A15 is as follows: 0.5 g of cerium dioxide abrasive is dispersed in 50 g of deionized water, 0.003 g of glutamic acid is added, and the mixture is diluted with deionized water to adjust the abrasive weight percentage to 0.3%, and 30 ppm of biocide KATHON TM LX150 (Dow Inc.) is added by weight, and the pH of the composition is adjusted to 4.2 with acetic acid.
  • Composition E8 includes cerium dioxide having a cubic morphology
  • composition A13 includes cerium dioxide having a spherical morphology
  • compositions 14-A15 include commercial cerium dioxide having a hexagonal morphology purchased from Solvay S.A.
  • compositions E8 and A13-A15 were measured by laser diffraction using a Horiba LA960 and is listed in Table 5A.
  • Particles of compositions E8 and A13 and compositions E8 and A13-A15 were prepared as described above.
  • PE-TEOS wafers were polished with the compositions on a CTS-AP300 polishing tool for 60 seconds as described above.
  • the D50 values in Table 5A are in angstroms/minute.
  • the material removal rate is listed in units. For Raman spectroscopy, the cerium dioxide particles were centrifuged, the supernatant removed, and the particles dried at 60°C overnight.
  • Raman spectroscopy was applied to the dried powder using a Horiba iHR550 spectrometer (Horiba) at 25°C using a 532nm laser.
  • the spectra were baseline corrected using iterative reweighted least squares and normalized to the intensity of the F2g peak.
  • the Raman spectra of compositions E8 and A13-15 are shown in Figure 2.
  • FWHM full width at half maximum
  • FWTM (1/3
  • the ratio of D50 to FWHM and the ratio of D50 to FWTM are listed in Table 5A.
  • the composition E8 containing cubic cerium oxide exhibits a higher PE-TEOS material removal rate than the composition A13 containing spherical cerium oxide and the compositions A14-A15 containing hexagonal cerium oxide.
  • the cerium oxide particles of the composition E8 show a smaller FWHM, a smaller FWTM, a higher D50 to FWHM ratio, and a higher D50 to FWTM ratio than the cerium oxide particles of the compositions A13-A15.
  • compositions E8', E9' and A13'-A14' evaluates the PE-TEOS material removal rates and Raman spectra of the corresponding ceria particles for compositions E8', E9' and A13'-A14'.
  • Compositions E8', E9' and A13'-A14' comprise ceria having a cubic morphology.
  • the preparation method of the composition in this embodiment is as follows: 0.8 g of polymaleic acid is dissolved in 100 g of water, 40 g of cerium dioxide abrasive is added under ultrasound and stirring, and the pH is adjusted to 8.0 with triethylamine, and ultrasonic stirring is continued for 20 minutes, the ultrasonic frequency is 400 kHz, and the stirring blade speed is 400 rpm. Then water is added to adjust the mass of the composition to 5000 g, and the pH is adjusted to 8.6 with triethylamine.
  • the detection method was the same as in Example 5A, and the results are shown in Table 5B.
  • This example evaluates the dispersion stability of A16-A18 and E9-E11.
  • the preparation method of the composition A16-A18 and E9-E11 is as follows: 0.5 grams of the above-mentioned cubic cerium dioxide abrasive is dispersed in 50 grams of deionized water, diluted with deionized water to adjust the abrasive weight percentage to 0.1%, and 30 ppm of biocide KATHON TM LX150 (Dow Inc.) is added by weight, and the pH of the composition is adjusted to 3.6 with acetic acid.
  • compositions A16-A18 and E9-E11 are: the amount of cerium nitrate in composition A16 is adjusted to 0.1 mol, the amount of sodium hydroxide in composition A17 is adjusted to 1 mol, the amount of sodium hydroxide in composition A18 is adjusted to 1 mol and the amount of cerium nitrate is adjusted to 0.01 mol, the synthesis temperature of composition E9 is adjusted to 130°C, the synthesis temperature of composition E10 is adjusted to 140°C, the synthesis temperature of composition E11 is adjusted to 150°C, and the reaction time is adjusted to 6h.
  • the composition was placed in an oven at 45°C without stirring.
  • the z-average particle size of each component was measured using a Horiba LA960 laser diffractometer before the sample was placed in the oven and every 7 days after being placed in the oven.
  • the z-average particle size refers to the intensity-weighted average hydrodynamic particle size of the particle set measured by laser diffraction.
  • the time for the average particle size of the composition to reach twice the measured average particle size is listed in Table 6, referred to herein as the average particle size doubling time.
  • an increase in the average particle size doubling time is generally associated with an increase in the shelf life of the composition.
  • the zeta potential of the composition was measured using a Nano ZSE (Malvern Instruments) and is listed in Table 6.
  • compositions A19 and E12-E15 evaluates the TEOS removal rate and defects of compositions A19 and E12-E15.
  • the preparation method of composition E12-E15 is as follows: 0.5 grams of the above-mentioned cubic cerium dioxide abrasive is dispersed in 50 grams of deionized water, 0.01 grams of glycolic acid is added, and the abrasive weight percentage is adjusted to 0.4% with deionized water, and 30 ppm of biocide KATHON TM LX150 (Dow Inc.) is added by weight, and the pH of the composition is adjusted to 3.5 with acetic acid.
  • the cubic cerium dioxide in composition A19 is synthesized as described above, except that: the synthesis temperature is adjusted to 100°C, and the reaction time is adjusted to 5 hours, and the reaction conditions affect the parameters of the obtained product.
  • the particle sizes D30, D50 and D70 of each component were measured by laser diffractometer.
  • the zeta potential of each component was determined by Nano ZSE (Malvern Instruments).
  • the blanket TEOS wafers were polished as described in the Application Examples section and the TEOS removal rates are listed in Table 7.
  • the number of surface defects on polished TEOS wafers was measured using the Candela surface defect inspection system (KLATencor). Scratches with a length of not less than 100 ⁇ m and a width of not less than 0.1 ⁇ m were counted. If no corresponding defects were observed, the score was A, if 1-5 defects were counted, the score was B, if 5-20 defects were counted, the score was C, and if more than 20 defects were counted, the score was D.
  • Sample A19 has the required lower steepness factor, indicating a wide particle size distribution, and shows a large number of scratches and the same RR, which means that, as described in the specification of the present application, the particles of the present invention can achieve a high removal rate and fewer defects even with a narrow particle size distribution.
  • the TEOS removal efficiency and Raman spectra of the corresponding particles of A20 and E16-E17 compositions were evaluated. All compositions included 1% ceria (the morphology of which is shown in Table 8) and 30 ppm of the biocide KATHONTM LX 150 (Dow). All samples were adjusted to pH 3.5 with acetic acid.
  • the D30, D50, D70 and zeta potential of each composition were measured as described in Example 7.
  • Raman spectroscopy analysis was performed on the cerium oxide abrasive particles of all the compositions in this example at a wavelength of 532 nm to obtain FWHM, FWTM, D50/FWHM, and D50/FWTM.
  • the Raman spectra of compositions E16-E17 and A20 are shown in FIG3 .
  • compositions A20 and E16 are as follows: 0.5 g of the cerium dioxide abrasive particles shown in Table 8 are dispersed in 50 g of deionized water, 0.012 g of propionic acid is added, and the mixture is diluted with deionized water to adjust the abrasive particle weight percentage to 0.5%, and 30 ppm of biocide KATHON TM LX150 (Dow Inc.) is added by weight, and the pH of the composition is adjusted to 3.5 with acetic acid.
  • the cubic cerium dioxide in composition E17 The synthesis method was as above, except that the synthesis temperature was adjusted to 140°C and the reaction time was adjusted to 12 h.
  • compositions E16 and E17 containing cubic ceria have higher TEOS removal rates and have good Raman spectroscopy characteristics, such as smaller FWTM, smaller FWHM, higher D50/FWHM, higher D50/FWTM, higher slope factor and narrow particle size distribution.
  • the composition A20 containing hexagonal ceria has a lower TEOS removal rate, slightly larger FWTM and FWHM, and slightly smaller D50/FWHM and D50/FWTM ratios.
  • the preparation method of the composition E10'-E16' in Table 9 is as follows: 0.8 g of the coating agent in Table 9 is dissolved in 100 g of water, 50 g of the cerium dioxide abrasive grains with a cubic morphology synthesized by the above method are added under ultrasound and stirring, and the pH is adjusted to 8.0 with ethanolamine, and ultrasonic stirring is continued for 20 minutes, the ultrasonic frequency is 400 kHz, and the stirring blade speed is 400 rpm. Then water is added to adjust the mass of the composition to 4000 g, and the pH is adjusted to 8.4 with ethanolamine. The test results are shown in Table 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本发明涉及化学机械抛光组合物和用相同组合物对包含硅氧化物材料的基材进行化学机械抛光的方法。本发明尤其涉及包含二氧化铈磨粒的化学机械抛光组合物,所述二氧化铈磨粒的特征在于立方体形态、至少为34的陡度因子,且所述二氧化铈磨粒具有F2g峰,其通过拉曼光谱在532nm波长下测量的FWTM为最多65cm-1。本发明的新型CMP组合物,其在CMP处理过程中一方面展现出高材料去除率,另一方面引起基材中更少的缺陷,如划痕。

Description

具有改进颗粒的化学机械抛光组合物 技术领域
本发明属于化工技术领域,具体涉及一种具有改进颗粒的化学机械抛光组合物。
背景技术
化学机械抛光(CMP)组合物通常用于集成电路和微机电***工业中,用于通过化学和机械力的组合对诸如晶片的基材进行化学机械抛光。这些组合物通常是水溶液,包含分散在组合物中的各种化学添加剂和磨粒。CMP组合物也称为抛光浆料、CMP浆料或抛光组合物。CMP组合物极大地影响基材抛光和平滑化过程中的许多因素,例如基材的材料去除率、平坦化和缺陷率。
在诸如浅沟槽隔离的CMP应用中,通常将原硅酸四乙酯沉积于硅晶圆的沟槽中,之后使用CMP工艺去除表层TEOS,得到TEOS以预定图案嵌于硅晶圆沟槽内的结构。该TEOS沉积形成的介电基材的CMP工艺经常用含有铈氧化物磨粒的CMP组合物抛光。对于许多介电层CMP应用,需要包含具有高材料去除率的铈氧化物(二氧化铈)磨粒的CMP组合物。然而,具有高材料去除率的二氧化铈磨粒常常会导致在CMP处理期间基材中出现更多不希望的缺陷,例如划痕。尽管二氧化铈磨粒广泛用于抛光介电硅基材,但仍然需要包含二氧化铈磨粒的CMP组合物,其适合用于抛光含有硅氧化物的材料,在CMP处理过程中表现出材料去除率提高和基材中缺陷数目降低。
发明内容
本发明的一个目的是克服现有技术的问题。具体来说,本发明的一个目的是提供一种用于抛光含有硅氧化物的基材的新型CMP组合物,其在CMP处理过程中一方面展现出高材料去除率,另一方面引起基材中更少的缺陷,如划痕。
本发明通过如下方案解决了上述问题:本发明的CMP组合物包含二氧化铈磨粒,其中所述二氧化铈磨粒具有立方体形态,陡度因子(steepness factor)至少为34,所述二氧化铈磨粒具有F2g峰,其通过拉曼光谱在532nm波长下测量的FWTM为最多65cm-1
CMP组合物(本文称为“组合物”)包含分散在水性载体中的磨粒,所述磨粒 有助于在抛光过程中从基材表面去除材料。优选地,所述磨粒是选自铈氧化物(二氧化铈)、铝氧化物(氧化铝)、硅氧化物(二氧化硅)、锆氧化物(氧化锆)、钛氧化物(二氧化钛)、锗氧化物(氧化锗)、镁氧化物(氧化镁)、镍氧化物、镓氧化物(氧化镓)、钇氧化物(氧化钇)及其组合的金属氧化物磨粒。优选所述磨粒包含至少72wt(重量)%、更优选至少83wt%、更优选至少91wt%、更优选至少96wt%、最优选至少98wt%的二氧化铈。在特别优选的实施方案中,所述磨粒是二氧化铈磨粒。如本领域技术人员所知,二氧化铈是指稀土金属铈的氧化物,也称为氧化铈、铈氧化物或二氧化铈。
在一些实施方案中,所述二氧化铈磨粒是掺杂二氧化铈磨粒。合适的掺杂剂例如是金属离子(如Ca、Mg、Zn、Zr、Sc、Y)或镧系元素(如镧、镨、钕、钷或钐)。然而,发现本发明的磨粒即使在没有掺杂剂的情况下也可以表现出高去除率。因此,所述二氧化铈磨粒优选基本上不含掺杂剂。掺杂剂可作为杂质存在于磨粒中,杂质可源自用于制备磨粒的原料或起始材料。
本文所用术语“基本上不含组分X”是指组合物,其实质上不包含所述组分X,即该组分至多可以作为杂质或污染物存在于所述组合物中,但不是作为单个组分添加到所述组合物中的。这意味着所述组分X没有以实质量添加。本发明的非实质量是小于30ppm,更优选小于20ppm,更优选小于10ppm,最优选小于1ppm的量。本文所用ppm是指重量ppm。
在使用时,所述组合物优选包含至少0.001wt%、更优选至少0.03wt%、更优选至少0.06wt%、更优选至少0.09wt%、最优选至少0.14wt%的二氧化铈磨粒。本文所用术语“使用时”是指在CMP过程中将所述组合物应用到基材表面的时候。如果二氧化铈磨粒的浓度太高,则颗粒会聚集,这会缩短组合物的保质期并在CMP处理过程中导致基材出现不希望的表面缺陷。因此,在使用时,所述组合物优选包含至多21.7wt%、更优选至多18.9wt%、更优选至多16.8wt%、更优选至多13.3wt%,最优选至多10.8wt%的二氧化铈磨粒。在优选的实施方案中,所述组合物包含0.03wt%至18.9wt%,更优选0.06wt%至16.8wt%,更优选0.09wt%至13.3wt%的二氧化铈磨粒。
所述二氧化铈磨粒可以作为单个颗粒、聚集体、附聚物及其混合物存在于所述组合物中。单个颗粒可以例如通过范德华力彼此附着,从而形成超过一个的单个颗粒的聚集体。聚集体自身可以例如通过物理相互作用进一步彼此附着, 形成一个以上聚集体的附聚物。聚集体和附聚物的形成是可逆的。本文所用的术语二氧化铈磨粒是指单个颗粒、聚集体和附聚物。
已发现在CMP处理过程中,单个颗粒的大量聚集和附聚会导致基材表面上出现更多缺陷,如划痕和凹坑。单个颗粒以及聚集体和附聚物的数目可以由本领域技术人员通过透射电子显微镜(TEM)或扫描电子显微镜(SEM)图像确定。分析应基于统计学上有意义的大量随机选择的颗粒,例如至少300个。优选所述二氧化铈磨粒的聚集体和附聚物的总和至多为二氧化铈磨粒的68.9wt%,更优选至多56.7wt%,更优选至多45.4wt%,更优选至多32.3wt%,最优选至多22.1wt%。较少的聚集体和附聚物可以例如通过解聚如过滤、研磨和本领域技术人员已知的其他过程来实现。
本发明的二氧化铈磨粒应具有合适的形态。颗粒的形态会影响颗粒的表面反应性并且影响材料去除率。所述形态可由本领域技术人员例如使用透射电子显微镜(TEM)或扫描电子显微镜(SEM)图像确定。已发现具有球形形态的颗粒表现出较低的材料去除率。术语球形形态不限于完美的球体,是指没有实质性边缘和顶点(角)的任何圆形形态,例如球状、椭圆状、葡萄状结构等。优选所述二氧化铈磨粒具有球形形态的量至多为二氧化铈磨粒的34.6wt%,更优选至多为24.9wt%,更优选至多为13.8wt%,更优选最多为6.8wt%,最优选至多为3.1wt%。
已发现具有至少一个顶点的二氧化铈磨粒可表现出较高的材料去除率。优选所述二氧化铈磨粒具有选自立方体、四角锥、三棱柱、十二面体、二十面体、八面体、六方体、六角锥、六角棱柱、五角棱柱、圆锥、四面体、长方体、菱形、六角菱形及其混合物的形态。
在特别优选的实施方案中,所述二氧化铈磨粒具有立方体形态。该立方体形态可以通过控制合成二氧化铈磨粒的化学环境,如温度,压力和时间等实现。在合成二氧化铈磨粒的过程中,可以通过适当的环境条件(如温度、压力和时间)获得不同的立方体形态。已发现具有立方体形态的二氧化铈磨粒可以表现出更高的材料去除率。术语立方体形态是指任何类似立方体的形态,并不限于完美的立方体。例如,二氧化铈磨粒的一个或多个边缘可以稍微圆化,二氧化铈磨粒的一个或多个顶点可以稍微圆化,二氧化铈磨粒的一个或多个对棱可以稍微倾斜(不完全平行),二氧化铈磨粒的一个或多个二面角可以略大于或小于 90°,以及与完美立方体的其他差异。略微可指与完美立方体的偏差至多30%,更优选至多20%,最优选至多10%。优选所述二氧化铈磨粒具有立方体形态的量为二氧化铈磨粒的至少31.3wt%,更优选至少49.2wt%,更优选至少68.4wt%,更优选至少76.3wt%,更优选至少86.7wt%,更优选至少93.8wt%,最优选至少98wt%。
所述二氧化铈磨粒的平均粒径(直径)会影响材料去除率。如本领域技术人员所知,平均粒径可以通过激光衍射测量(例如使用来自Horiba的LA-960)获得。通过该测量获得的曲线图提供了具有一定尺寸的颗粒的累积体积百分比。平均粒径(D50)是50体积%颗粒的粒径小于该值的粒径。D50较小会使材料去除率降低。优选所述二氧化铈磨粒具有激光衍射测量为至少5nm、更优选至少10nm、更优选至少20nm、更优选至少30nm、更优选至少35nm、更优选至少40nm、最优选至少45nm的D50。然而,如果D50太大,则在CMP处理过程中,基材表面会出现大量不希望有的缺陷,如划痕。因此,所述二氧化铈磨粒应具有较小的平均粒径。优选所述二氧化铈磨粒具有激光衍射测量的至多400nm、更优选至多300、更优选至多200nm、更优选至多150nm、更优选至多100nm、更优选至多95nm、最优选至多90nm的D50。在优选的实施方案中,所述二氧化铈磨粒具有激光衍射测量为5nm至400nm,更优选10nm至300nm,更优选20nm至200nm,更优选30nm至150nm,更优选35nm至100nm,更优选40nm至95nm,更优选45nm至90nm的D50。通常认为具有较大D50的二氧化铈磨粒会在CMP处理过程中导致较高的材料去除率。然而,令人惊奇地发现,本发明的二氧化铈磨粒即使具有较小的D50也可以实现高材料去除率。
D10是10体积%颗粒的粒径小于该值的粒径。优选所述二氧化铈磨粒具有激光衍射测量为至少3nm、更优选至少9nm、更优选至少15nm、更优选至少20nm、更优选至少25nm、更优选至少30nm、最优选至少39nm的D10。二氧化铈磨粒的D10较小会增加CMP处理过程中基材表面上的颗粒堆积密度(减少空隙体积),这有助于提高材料去除率。因此,所述二氧化铈磨粒优选具有激光衍射测量为至多300nm、更优选至多200、更优选至多100nm、更优选至多90nm、更优选至多80nm、更优选至多75nm、最优选至多70nm的D10。在优选的实施方案中,所述二氧化铈磨粒具有激光衍射测量的3nm至300nm、更优选9nm 至200nm、更优选15nm至100nm、更优选20nm至90nm、更优选25nm至80nm、更优选30nm至75nm、最优选39nm至70nm的D10。
D90是90体积%颗粒的粒径小于该值的粒径。二氧化铈磨粒的较高D90会提高CMP处理过程中的材料去除率。优选所述二氧化铈磨粒具有激光衍射测量的至少24nm、更优选至少41nm、更优选至少76nm、更优选至少83nm、最优选至少99nm的D90。然而,如果二氧化铈磨粒的D90过高,则在CMP处理过程中会出现更多不希望有的缺陷,如划痕。因此,所述二氧化铈磨粒优选具有激光衍射测量的至多489nm、更优选至多376、更优选至多269nm、更优选至多219nm、最优选至多194nm的D90。在优选的实施方案中,所述二氧化铈磨粒具有激光衍射测量的41nm至376nm,更优选76nm至269nm,更优选83nm至219nm,最优选99nm至194nm的D90。
所述二氧化铈磨粒应该具有大的陡度因子。本文所用的陡度因子指的是通过公式(D30/D70)*100得到的值。D30和D70可以如上所述通过激光衍射获得。D30是30体积%颗粒的粒径小于该值的粒径。D70是70体积%颗粒的粒径小于该值的粒径。粒径分布宽提供小的陡度因子,而粒径分布窄提供大的陡度因子。令人惊奇地发现,本发明的具有大陡度因子的二氧化铈磨粒表现出高材料去除率,同时在CMP处理过程中实现了基材中更少的缺陷,如划痕。优选所述二氧化铈磨粒具有至少34,更优选至少40,更优选至少45,更优选至少50,最优选至少60的陡度因子。然而,如果陡度因子过大,CMP处理过程中材料去除率会降低。因此,所述二氧化铈磨粒优选具有至多98,更优选至多97,更优选至多96,最优选至多95的陡度因子。
优选所述二氧化铈磨粒具有激光衍射测量的4nm至353nm、更优选20nm至168nm、最优选44nm至103nm的D30。优选所述二氧化铈磨粒具有激光衍射测量的16nm至421nm、更优选43nm至218nm、最优选62nm至137nm的D70。
所述二氧化铈磨粒应具有小的斜率因子。本文所用的术语斜率因子指的是粒径分布图的上升斜率除以下降斜率的绝对值(意思是不考虑其符号)。如本领域技术人员已知的,粒径分布图可以如上所述由粒径分布测量获得,其中相对于颗粒的体积百分比(y轴)对粒径(x轴)作图。本文使用的术语上升斜率是指从P_D01到P_max绘制的切线(直线)的斜率。本文使用的术语下降斜率是指从 P_max到P_D99绘制的切线(直线)的斜率。P_D01是指粒径分布图中粒径等于D01的点。D01是如上所述通过激光衍射获得的粒径,1体积%的颗粒具有小于D01的粒径。P_D99是指粒径分布图中粒径等于D99的点。D99是如上所述通过激光衍射获得的粒径,99体积%的颗粒具有小于D99的粒径。P_max是指粒径分布图的绝对最大值,即粒径分布图中具有最大体积%颗粒的点。斜率因子较小例如可以是较小颗粒比较大颗粒的分布更宽的结果,这会改善CMP处理过程中的颗粒堆积。发现斜率因子较小使基材中的缺陷较少,同时仍表现出高材料去除率。较小的斜率因子可以例如通过改善颗粒的分散以及之后较少聚集和附聚的颗粒来实现。优选所述二氧化铈磨粒具有至多300、更优选至多200、更优选至多100、更优选至多50、更优选至多30、更优选至多20、最优选至多10的斜率因子。
此处描述的有关二氧化铈磨粒的D10、D30、D50、D70、D90、陡度因子和斜率因子,可以通过控制合适的二氧化铈磨粒的合成条件,如温度,压力和时间实现。
在合成所述二氧化铈磨粒的过程中,颗粒中会形成微晶。微晶可以是晶体或晶体结构的区域。微晶可位于二氧化铈磨粒内的任何位置,例如在二氧化铈磨粒的中心或暴露于二氧化铈磨粒的表面。一个二氧化铈磨粒可包含单个微晶、两个微晶或多个微晶。通过控制二氧化铈磨粒合成过程中的条件,例如温度,可以获得二氧化铈磨粒中所需数量和尺寸的微晶。
所述二氧化铈磨粒应具有高结晶度。本文所用的术语结晶度是指所述二氧化铈磨粒包含微晶的体积%。通过控制二氧化铈磨粒合成过程中的参数,例如温度,可以获得合适的结晶度。如本领域技术人员所知,结晶度可以通过X射线衍射(XRD)例如使用D8X射线衍射仪(Bruker Corp)由二氧化铈磨粒的干燥粉末得到。发现结晶度较高会导致CMP处理过程中基材的材料去除率较高。因此,所述二氧化铈磨粒优选具有至少56体积%。,更优选至少78体积%,更优选至少86体积%,最优选至少96体积%二氧化铈磨粒的结晶度。在特别优选的实施方案中,所述二氧化铈磨粒是单个微晶。
所述二氧化铈磨粒应具有合适的晶格参数的线性热膨胀系数(CTELP)。CTELP是指二氧化铈磨粒内的原子间距响应于特定的温度变化而膨胀。CTELP可以通过X射线衍射(XRD)测量,例如在多个(如至少四个)加热和冷却 循环期间用D8X射线衍射仪(Bruker Corp)测量。如本领域技术人员所知,CTELP可以由膨胀相对于加热和冷却循环的平均温度的曲线的斜率来计算。CTELP是指在20℃至400℃的温度范围内的线性热膨胀的平均系数。令人惊奇地发现,CTELP较高会使CMP处理过程中基材的材料去除率增加。因此,本发明的二氧化铈磨粒优选在40nm的粒径下具有至少更优选至少更优选至少更优选至少更优选至少最优选至少的CTELP。优选所述二氧化铈磨粒在40nm的粒径下具有至多更优选至多更优选至多更优选至多最优选至多的CTELP。在优选的实施方案中,所述二氧化铈磨粒在40nm的粒径下具有1.2*10-5更优选2.6*10-5更优选的CTELP。
二氧化铈磨粒可具有暴露在磨粒表面的晶格面,例如{100}、{110}、{111}、{220}、{422}及其组合。期望的晶格面可以例如通过二氧化铈磨粒合成期间合适的颗粒形状、颗粒尺寸以及参数(如温度)来实现。如本领域技术人员所知,晶格面可以通过X射线衍射测量,例如用D8X射线衍射仪(Bruker Corp)由二氧化铈磨粒的干燥粉末测量。与暴露在二氧化铈磨粒表面的其他晶格面如{111}和{110}相比,暴露在二氧化铈磨粒表面的晶格面{100}会导致更多的氧空位。二氧化铈磨粒表面更多的氧空位可以增加微晶内氧原子的运动,这可以增加二氧化铈磨粒的表面反应性。已发现暴露在二氧化铈磨粒表面的晶格面{100}的百分比更高可以增加CMP处理过程中基材的材料去除率。在实施方案中,优选暴露在二氧化铈磨粒表面的晶格面的至少26%、更优选至少42%、更优选至少52%、更优选至少64%、更优选至少71%、更优选至少83%、最优选至少94%是{100}。
所述二氧化铈磨粒应具有合适的晶格参数a。晶格参数a是指二氧化铈磨粒的晶格内沿x轴方向的晶胞的平均(算术平均)长度。如本领域技术人员所知,晶格参数可以由X射线衍射,例如用D8X射线衍射仪(Bruker Corp)获得,并由相对cos2θ的每个反射(hkl)计算。合适的晶格参数a可以在二氧化铈磨粒内引起有利的机械应力。优选所述二氧化铈磨粒在40nm的粒径下具有至少更优选至少最优选至少的晶格参数a。优选所述二氧化铈磨 粒在40nm的粒径下具有至多更优选至多最优选至多 的晶格参数a。
优选所述二氧化铈磨粒具有低带隙Eg。如本领域技术人员所知,带隙Eg是指将电子从价带激发到导带所需的最小能量。带隙Eg可以由二氧化铈磨粒的1wt%溶液的紫外可见(UV-Vis)吸收光谱获得,例如在25℃使用Varian Cary 5E分光光度计(Agilent Technologies),扫描波长300至1000nm。基于紫外可见吸收光谱,可以由(αhν)2(Y轴)和(hγ)(X轴)绘制Tauc曲线,其中α是线性吸收系数,h是Planck常数,ν是光的频率。图的线性部分可以外推,与外推的X轴的交点对应于带隙Eg。较小的带隙Eg会导致活性氧类(ROS)如超氧化物、单线态氧、羟基自由基和过氧化氢的形成增加。ROS可能有助于CMP处理过程中更高的表面反应性。发现较低的带隙Eg可能与CMP处理过程中较高的材料去除率相关。因此,所述二氧化铈磨粒优选具有至多3.40eV、更优选至多3.34eV、更优选至多3.31eV、更优选至多3.27eV、更优选至多3.20eV、最优选至多3.11eV的带隙。优选所述二氧化铈磨粒具有至少2.36eV、更优选至少2.40eV、更优选至少2.46eV、更优选至少2.51eV、最优选至少2.57eV的带隙Eg。优选所述二氧化铈磨粒具有2.36eV至3.40eV、更优选2.40eV至3.34eV、更优选2.46eV至3.31eV、更优选2.51eV至3.27eV、更优选2.57eV至3.20eV的带隙。较小的带隙Eg可通过二氧化铈磨粒的合适粒径分布、粒子形态和微晶结构来实现。上述优选的带隙的二氧化铈磨粒,可以通过控制合适的合成条件,如温度,压力和时间来获得。
优选所述二氧化铈磨粒具有可见拉曼光谱评估的窄F2g峰。可见拉曼光谱可以例如在25℃下使用FRS 27拉曼光谱仪(Bruker Corp.)用532nm激光在二氧化铈磨粒的干粉上获得。如本领域技术人员所知,F2g峰出现在464cm-1附近并且对应于Ce-O振动。拉曼光谱应进行基线校正并归一化为F2g峰的强度。半峰全宽(FWHM)可用于描述F2g峰在半峰高处的宽度。FWHM是F2g峰强度等于在532nm处测量的可见拉曼光谱的最大强度一半时的波长差。较小的FWHM与较大的二氧化铈磨粒微晶尺寸有关。此外,较少数目的缺陷点会有助于减小FWHM。晶体表面缺陷影响微晶内的氧迁移率,并会在CMP处理过程中改变表面反应性。令人惊讶的是,发现较小的FWHM可与增加的材料去除率相关。因此,二氧化铈磨粒优选具有拉曼光谱在532nm波长下测量的FWHM为至多 58cm-1、更优选至多42cm-1、更优选至多28cm-1、更优选至多15cm-1、更优选至多13cm-1、最优选至多11cm-1的F2g峰。
1/3最大峰值处的全宽(FWTM)可用于描述峰下部的F2g峰的宽度。FWTM是F2g峰强度等于在532nm处测量的可见拉曼光谱最大强度1/3时的波长差。较小的FWTM值与较大的二氧化铈磨粒微晶尺寸以及晶体表面缺陷的存在有关。令人惊讶的是,发现较小的FWTM可与材料去除率增加相关。因此,二氧化铈磨粒优选具有拉曼光谱在532nm波长下测量的FWTM为至多65cm-1、更优选至多60cm-1、更优选至多45cm-1、更优选至多25cm-1、更优选至多23cm-1、最优选至多21cm-1的F2g峰。
具有上述优选半峰全宽和1/3最大峰值处全宽的二氧化铈磨粒,可以通过控制合适的合成条件,如温度、压力和时间等获得。
二氧化铈磨粒应具有高的D50与FWHM之比。D50与FWHM之比是二氧化铈磨粒的D50绝对值除以拉曼光谱在532nm波长下测量的二氧化铈磨粒的F2g峰的FWHM的绝对值。二氧化铈磨粒的D50和F2g峰的FWHM可以如上所述获得。D50与FWHM之比较高与相对于二氧化铈磨粒粒径微晶尺寸较大有关。晶面缺陷数目较少也有助于提高D50与F2g峰的FWHM之比。已发现D50与F2g峰的FWHM之比较高可与CMP处理过程中基材的材料去除率增加有关。因此,二氧化铈磨粒优选具有至少4.51、更优选至少5.12、更优选至少5.72、更优选至少6.1、最优选至少6.68的D50与拉曼光谱在532nm波长下测量的F2g峰的FWHM之比。
二氧化铈磨粒应具有高的D50与FWTM之比。D50与FWTM之比是二氧化铈磨粒的D50绝对值除以拉曼光谱在532nm波长下测量的二氧化铈磨粒的F2g峰的FWTM。二氧化铈磨粒的D50和F2g峰的FWTM可以如上所述获得。D50与F2g峰的FWTM之比较高与相对于二氧化铈磨粒粒径微晶尺寸较大相关。晶面缺陷数目较少也有助于提高D50与F2g峰的FWTM之比。已发现D50与F2g峰的FWTM之比较高可与材料去除率增加相关。因此,二氧化铈磨粒优选具有至少1.47、更优选至少2.15、更优选至少3.64、更优选至少3.95、更优选至少4.13、最优选至少4.81的D50与拉曼光谱在532nm波长下测量的F2g峰的FWTM之比。
在一个实施例中,所述二氧化铈磨粒在组合物中带有负电荷。所述磨粒在 组合物中的负电荷是经包覆剂包覆后获得的。电荷是指zeta电位,可以通过例如Mastersizer S(Malvern Instruments)测量。如本领域技术人员所知,zeta电位是指在组合物内的移动流体与附着于分散在所述组合物中的磨粒上的流体稳定层之间的界面处的电位。zeta电位的绝对值更高使得粒子之间静电排斥更强,从而增加粒子在组合物中分散体的稳定性。在一些实施例中,优选所述磨粒在组合物中在7.5至9.5的pH下具有负的zeta电位。优选所述磨粒在组合物中在7.5至9.5的pH下具有至少-5mV、更优选至少-10mV、更优选至少-15mV、更优选至少-20mV、最优选至少-25mV的zeta电位。优选所述磨粒在组合物中在7.5至9.5的pH下具有至多-90mV、更优选至多-85mV、更优选至多-80mV、更优选至多-75mV、最优选至多-70mV的zeta电位。优选所述磨粒在组合物中在7.5至9.5的pH下具有-5mV至-90mV、更优选-10mV至-85mV、更优选-15mv至-80mV、更优选-20mV至-75mV、最优选-25mV至-70mV的zeta电位。经发现,相较于具有正电Zeta电位的氧化铈,本发明一些实施例中具有负电Zeta电位的氧化铈在带有图形的ILD晶圆平坦化时能够减少图形凹部的硅氧化物损失(去除量)。
在另一个实施例中,所述磨粒二氧化铈磨粒带有正电荷,所述磨粒没有包覆剂包覆。电荷是指zeta电位,可以通过例如Mastersizer S(Malvern Instruments)测量。如本领域技术人员所知,zeta电位是指在组合物内的移动流体与附着于分散在所述组合物中的磨粒二氧化铈磨粒上的流体稳定层之间的界面处的电位。zeta电位取决于组合物的pH值。zeta电位更高导致粒子之间静电排斥更强,从而增加粒子在组合物中分散体的稳定性。在另一些实施例中,优选二氧化铈磨粒在组合物中在3至4.5的pH下具有至少10mV、更优选至少15mV、更优选至少20mV、更优选至少25mV、更优选至少30mV、最优选至少35mV的zeta电位。优选二氧化铈磨粒在组合物中在3至4.5的pH下具有至多95mV、更优选至多90mV、更优选至多85mV、更优选至多80mV、更优选至多75mV、最优选至多70mV的zeta电位。优选二氧化铈磨粒在组合物中在3至4.5的 pH下具有10mV至95mV、更优选15mV至90mV、更优选20mV至85mV、更优选25mV至80mV、更优选30mV至75mV、更优选35mV至70mV的zeta电位。可以通过控制合适的合成过程,如温度,压力和时间获得在上述浆料组合物中具有上述Zeta电位二氧化铈磨粒。
所述组合物应具有合适的粘度。粘度可以用NDJ-8S粘度计(上海力辰仪器科技有限公司)在25℃下以mPa*s(毫帕秒)为单位测量。较高的粘度可以减少二氧化铈磨粒的聚集和附聚,从而实现基材中较少的缺陷。优选所述组合物在25℃下作为2%溶液测量时具有至少0.08mPa*s、更优选至少0.24mPa*s、最优选至少0.72mPa*s的粘度。然而,如果粘度过高,则颗粒和化学添加剂在组合物中的移动会受到限制,会导致去除率降低。因此,所述组合物在25℃下作为2%溶液测量时优选具有至多28.3mPa*s、更优选至多15.3mPa*s、最优选至多7.8mPa*s的粘度。
已发现具有本文所述特征的二氧化铈磨粒有利地表现出高材料去除率,同时引起的缺陷更少。令人惊奇地发现,包含分散在水性载体中的如本文所述的二氧化铈磨粒的组合物即使不添加化学添加剂,也能表现出有利的高材料去除率。
优选所述组合物还包含一种或多种化学添加剂。该化学添加剂可以在CMP处理过程中例如与二氧化铈磨粒和/或与基材和/或与抛光垫相互作用。该相互作用可以基于例如氢键、范德华力、静电力等。所述化学添加剂可以是适合用作例如去除率促进剂、抛光率抑制剂、表面活性剂、增稠剂、调节剂、络合剂、螯合剂、生物杀灭剂、分散剂、氧化剂、成膜剂、蚀刻抑制剂、催化剂、终止化合物、溶解抑制剂、腐蚀抑制剂或其组合的任何组分。
所述组合物包含水性载体。所述二氧化铈磨粒和化学添加剂悬浮在水性载体中。该水性载体使二氧化铈磨粒和化学添加剂能够在CMP处理过程中与基材和抛光垫接触。该水性载体可以是适合用于悬浮二氧化铈磨粒和化学添加剂的任何组分。该水性载体的实例有水、醚类(如二烷和四氢呋喃)、醇类(如甲醇和乙醇)以及它们的组合。优选该水性载体含至少50wt%水、更优选至少70wt%水、更优选至少90wt%水、更优选至少95wt%水、最优选至少99wt%水。优选所述水是去离子水。
在一些实施例中,所述组合物在使用时包含pH调节剂。该pH调节剂帮助 组合物实现合适的pH。所述pH调节剂可以是碱或其盐。优选地,所述碱或其盐为有机碱。根据本发明,组合物可以包含一定浓度的pH调节剂,以达到相应的pH值。
在特别优选的实施方案中,pH调节剂是一种有机含氮化合物。合适的有机含氮化合物有乙醇胺、二乙醇胺、三乙醇胺、咪唑、三乙胺、哌嗪、环胺、有机季铵氢氧化物(例如四甲基氢氧化铵(TMAH)、四乙基氢氧化铵(TEAH)、四丙基氢氧化铵(TPAH)、四丁基氢氧化铵(TBAH))、及其组合。
优选地,pH调节剂不是无机化合物。此类不合适的无机pH调节剂包括碱金属的氢氧化物(如氢氧化钾、氢氧化钠、氢氧化锂)、碱土金属的氢氧化物(如氢氧化镁、氢氧化钙、氢氧化铍)、碱金属碳酸盐(如碳酸钾、碳酸氢钾、碳酸钠、碳酸氢钠、碳酸氢锂)、碱土金属碳酸盐(如碳酸镁、碳酸钙、碳酸铍)、碱金属磷酸盐(如磷酸三钾、磷酸三钠、磷酸二钾、磷酸二钠)、碱土金属磷酸盐(如磷酸镁、磷酸钙、磷酸铍)、碳酸铵、碳酸氢铵、氢氧化铵及其组合。
在另一些实施例中,所述组合物在使用时包含pH调节剂。该pH调节剂帮助组合物实现合适的pH。该pH调节剂可以是酸或其盐。该酸或其盐可以是有机酸、无机酸或其组合。
有机酸的实例有甲酸、乙酸、丙酸、丁酸、戊酸、甲基丁酸、己酸、二甲基丁酸、乙基丁酸、甲基戊酸、庚酸、甲基己酸、辛酸、乙基己酸、苯甲酸、乙醇酸、水杨酸、甘油酸、草酸、丙二酸、琥珀酸、戊二酸、己二酸、庚二酸、马来酸、苹果酸、邻苯二甲酸、酒石酸、柠檬酸、乳酸、二甘醇酸、呋喃羧酸、四氢呋喃酸、甲氧基乙酸、甲氧基苯乙酸、苯氧基乙酸、甲磺酸、乙磺酸、磺基琥珀酸、苯磺酸、甲苯磺酸、苯基膦酸、羟乙基二膦酸及其组合。
无机酸的实例有盐酸、硫酸、硝酸、氢氟酸、硼酸、碳酸、次磷酸、亚磷酸、磷酸及其组合。
优选所述pH调节剂是有机酸。在特别优选的实施方案中,所述有机酸选自马来酸、苹果酸、酒石酸、柠檬酸、乙酸、草酸、丙二酸、琥珀酸、戊二酸、己二酸、庚二酸及其组合。所述组合物可以包含浓度适合于实现本发明的pH的pH调节剂。
所述组合物还任选包含pH缓冲剂。该pH缓冲剂帮助维持组合物合适的 pH。该pH缓冲剂可以是任何合适的缓冲剂。该pH缓冲剂可以例如是磷酸盐、硫酸盐、乙酸盐、硼酸盐、铵盐或其组合。所述组合物可以包含浓度适合维持本发明的pH的pH缓冲剂。
所述组合物的pH影响CMP处理过程中基材的去除率。在一些实施例中,该组合物在使用时具有至少4.0、更优选至少5.0、更优选至少6.0、更优选至少6.5、更优选至少7.0的pH值。在另一些实施例中,该组合物在使用时具有至多为12.0、更优选至多为11.0、更优选至多为10.0、更优选至多为9.5、更优选至多为9.0的pH值。优选地,组合物在使用时具有在4.0至12.0之间、更优选在5.0至11.0之间、更优选在6.0至10.0之前,更优选在6.5至9.5之间,更优选在7.0至9.0之间的pH值。
在另一些实施例中,该组合物优选在使用时具有至多7.0、更优选至多6.5、更优选至多6.0、更优选至多5.5、更优选至多5.0、最优选至多4.5的pH。
在磨粒二氧化铈磨粒具有负电荷的实施例中,所述组合物优选包含包覆剂。包覆剂可通过氢键和/或离子相互作用等方式与二氧化铈磨粒表面可逆结合。此处所用的包覆剂是指以任何形式存在于组合物中的包覆剂,例如与二氧化铈磨粒表面结合或不与二氧化铈磨粒表面结合。优选地,所述二氧化铈磨粒经包覆剂包覆。二氧化铈磨粒的表面可以通过任何合适的方法进行包覆剂处理。例如,可以将包覆剂溶解在去离子水等水性载体中,然后加入二氧化铈磨粒形成混合物。然后,搅拌混合物,直到各成分溶解。然后将包覆剂和二氧化铈磨粒的混合物加入到所述组合物中。
优选地,所述包覆剂为阴离子聚合物。所述阴离子聚合物能够以任何可实现的形式使用,如酸、共轭酸、共轭碱、盐(如铵盐)、或其组合。
优选地,所述阴离子聚合物含有重复单体单元,所述单体单元包含选自羧酸、磺酸、硫酸盐、膦酸、磷酸、及其组合的官能团。在特别优选的实施方案中,所述重复单体单元含有羧酸官能团。
重复单体单元的羧酸的实例有马来酸、丙烯酸、天冬氨酸、甲基丙烯酸、琥珀酸、对苯二甲酸、衣康酸、及其组合。重复单体单元的磺酸的实例有乙烯基磺酸、苯乙烯磺酸、乙烯基苯磺酸、甲基丙烯酸磺乙酯、丙烯磺酸、丙烯酸3-磺基丙酯、甲基丙烯酸磺丙酯、丙烯酸磺丙酯、丙烯酰胺甲基丙磺酸(AMPS)、丙烯酸磺酸乙酯、苯乙烯磺酸钠、及其组合。重复单体单元的膦 酸的实例有甲基丙烯酸双二乙基膦酸铵、乙烯基膦酸、乙烯基苄基二甲基膦酸、丙烯酰胺膦酸、亚乙烯基二膦酸、及其组合。
阴离子聚合物可以是均聚物、共聚物或其组合。阴离子均聚物的实例有聚磺酸、聚(丙烯酰胺基甲丙磺酸)、聚苯乙烯磺酸、聚(乙烯基磺酸)、聚(天冬氨酸)、聚丙烯酸、聚甲基丙烯酸、膦酸化聚丙烯酸(phosphonated polyacrylic acid,phosphonated polyacryl acid)、聚(甲基丙烯酸)、聚(马来酸)、聚(衣康酸)、聚(马来酸酐)、阴离子聚丙烯酰胺、聚(甲基丙烯酰胺)、聚(甲基乙烯基醚-共聚-马来酸)、聚(甲基丙烯酰胺基甲丙磺酸)、聚(乙烯基膦酸)、聚(乙烯基磷酸)、聚(丙烯酰胺基甲基丙磺酸)、聚(甲基丙烯酰氧基乙磺酸)、聚(丙烯酰胺基甲丙磺酸)、聚(甲基丙烯酰氧基乙基磷酸)、聚(甲基丙烯酰胺基甲丙磺酸)、羧甲基菊粉、聚萘磺酸、聚羟丙基丙烯酸、聚(十八烷基丙烯酸)、聚(叔丁基丙烯酸)、聚(四氢糠基甲基丙烯酸)、聚(乙基丙烯酸)、聚(异冰片基丙烯酸)、聚(异丁基丙烯酸)、聚(异癸基丙烯酸)、聚(异癸基甲基丙烯酸)、聚(异辛基丙烯酸)、聚(月桂基丙烯酸)、聚(丙基丙烯酸)、聚(丁基丙烯酸)、聚(癸基丙烯酸)、聚(己基丙烯酸)、聚(辛基丙烯酸)、聚(辛基甲基丙烯酸)、聚环氧琥珀酸、膦酰甲基化壳聚糖。
共聚物的实例有聚(丙烯酸-共马来酸)共聚物、聚(苯乙烯磺酸-共马来酸)、聚(丙烯酰胺-共丙烯酸)、聚(乙烯基膦酸-共丙烯酸)、聚(乙烯基硫酸酯)、丙烯酸-丙烯酰胺-甲基丙磺酸共聚物、所示的不同重量百分比的丙烯酸-2-丙烯酰胺-2-甲基丙磺酸(AA-AMPS)及其组合。
所述包覆剂应具有低的分子量(MW)。如果包覆剂的分子量过高,会造成二氧化铈磨粒的聚集和团聚,从而在基材表面造成划痕等缺陷,并导致二氧化铈磨粒沉淀和保质期缩短。优选所述包覆剂具有至多为50,000g/mol、更优选至多30,000g/mol、更优选至多20,000g/mol、更优选至多15,000g/mol、最优选至多9,000g/mol的分子量(MW)。优选所述包覆剂具有至少100g/mol、更优选至少200g/mol、更优选至少300g/mol、更优选至少400g/mol、最优选至少500g/mol的分子量。在优选的实施方案中,所述包覆剂具有100g/mol至50,000g/mol、更优选200g/mol至30,000g/mol、更优选300g/mol至20,000g/mol、更优选400g/mol至15,000g/mol、更优选500g/mol至9,000g/mol的分子量。研究发现,本发明的分子量可提高CMP过程中基底材料的去除率, 延长组合物的保质期。
优选在使用时,所述组合物包含的包覆剂的浓度至少0.0001wt.%、更优选至少0.0005wt.%、更优选至少0.001wt.%、最优选至少0.002wt.%。优选在使用时,所述包覆剂的浓度为至多2.0wt.%、更优选至多1.0wt.%、更优选至多0.8.0wt%、最优选至多0.6wt.%。在优选的实施方案中,所述包覆剂为0.0001wt.%至2.0wt.%、更优选0.0005wt.%至1wt.%、更优选0.001wt.%至0.8wt.%、最优选0.002wt.%至0.6wt.%。
在另一些实施例中,优选所述组合物包含一元酸。该一元酸是具有一个酸基的有机化合物。该一元酸可以是酸、共轭酸、盐或其组合的形式。合适的酸基有例如羧基、磺酸基和膦酸基。优选所述一元酸是单羧酸。该单羧酸例如可以是直链单羧酸、支链单羧酸、饱和单羧酸、不饱和单羧酸、取代单羧酸、芳族单羧酸及其组合。
所述单羧酸的实例有烟酸、异烟酸、喹哪啶酸、乙酸、皮考啉酸、羟基苯甲酸、甲酸、碳酸、乙醇酸、乙醛酸、乳酸、甘油酸、丙酮酸、氧代丙酸、羟基丙酸、氧代丙酸、缩水甘油酸、酪酸、异丁酸、丁酸、丙酸、巴豆酸、异巴豆酸、丙烯酸、甲基丙烯酸、乙烯基乙酸、丁炔酸、羟基丁酸、氧代丁酸、戊酸、异戊酸、新戊酸、己酸、山梨酸、苯甲酸、水杨酸、辛酸、壬酸、肉桂酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸及其组合。在特别优选的实施方案中,所述一元酸选自丙酸、丁酸、乙酸、戊酸、己酸、皮考啉酸及其组合。优选所述一元酸不同于pH调节剂,意味着它们不是相同的化合物。
优选所述组合物在使用时包含至少0.0001wt%、更优选至少0.001wt%、更优选至少0.007wt%、更优选至少0.013wt%、最优选至少0.021wt%的一元酸。优选所述组合物在使用时包含至多9.7wt%、更优选至多4.4wt%、更优选至多2.3wt%、更优选至多1.2wt%、最优选至多0.14wt%的一元酸。在优选的实施方案中,所述组合物包含0.0001wt%至9.7wt%、更优选0.001wt%至4.4wt%、更优选0.007wt%至2.3wt%、更优选0.013wt%至1.2wt%的一元酸。
可选地,所述组合物还包含氨基酸,其中所述氨基酸可以是蛋白源氨基酸(如丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸、缬氨酸、硒半胱氨酸、吡咯赖氨酸)、非 蛋白源氨基酸(如鸟氨酸、瓜氨酸、肉毒碱、γ-氨基丁酸、左旋甲状腺素、β-丙氨酸、氨基异丁酸)、或其组合。优选地,氨基酸为蛋白质氨基酸。在优选的实施方案中,氨基酸的分子量至多为150g/mol,更优选至多为140g/mol,更优选至多为130g/mol,最优选至多为120g/mol。
可选地,在使用时,组合物包含氨基酸的量至少为0.001wt.%,更优选至少为0.01wt.%,更优选至少为0.1wt.%,更优选至少为0.2wt.%,最优选至少为0.3wt.%。优选地,在使用时,组合物包含氨基酸的量至多为18.3wt.%,更优选至多为9.8wt.%,更优选至多为6.3wt.%,更优选至多为4.3wt.%,最优选至多为2.9wt.%。在优选的实施方案中,在使用时,组合物中氨基酸的含量在0.001wt.%至18.3wt.%之间,更优选在0.01wt.%至9.8wt.%之间,更优选在0.1wt.%至6.3wt.%之间,更优选在0.2wt.%至4.3wt.%之间,更优选在0.3wt.%至2.9wt.%之间。
所述组合物还任选包含一种或多种生物杀灭剂。该生物杀灭剂可以是防止、抑制、减少生长、抑制活性或消除不需要的微生物的化合物。生物杀灭剂的实例是次氯酸钠、甲基异噻唑啉酮、苯并异噻唑酮、氯甲基异噻唑啉酮及其组合。
所述组合物优选包含按重量计至少0.6ppm、更优选按重量计至少1.6ppm、更优选按重量计至少2.7ppm、更优选按重量计至少3.8ppm、最优选按重量计至少4.6ppm的生物杀灭剂。高浓度的生物杀灭剂会导致生物杀灭剂与组合物的其他组分以及基材之间发生不希望的相互作用,因此,所述组合物优选包含按重量计至多98ppm、更优选按重量计至多83ppm、更优选按重量计至多74ppm、最优选按重量计至多69ppm的生物杀灭剂。
本发明还提供了一种化学机械抛光包含硅氧化物材料的基材的方法,该方法包括以下步骤:(a)提供化学机械抛光组合物;(b)使基材与化学机械抛光组合物和抛光垫接触;(b)相对于基材移动抛光垫,组合物位于两者之间;(c)除去至少一部分基材。步骤(a)提供的CMP组合物是本发明的组合物。该方法可以任选包括其他步骤。
所述二氧化铈磨粒可以用本领域技术人员已知的任何合适方法制备,以赋予二氧化铈磨粒上述特性。在实施方案中,二氧化铈磨粒可通过硝酸铈沉淀和通过使颗粒受热生长来制备。颗粒之后可以离心、洗涤和干燥。所述颗粒可通过进一步加工,如过滤、分级、压碎、研磨、碾磨、超声处理及其组合来解附 聚。所述颗粒被分散并用于配制组合物。有用的分散过程可以是例如高剪切混合、超声处理和本领域技术人员已知的其他过程。
所述组合物可以用本领域技术人员已知的合适技术来制备。如上所述的二氧化铈磨粒和其他化学添加剂可以以任何顺序以合适的量添加到水性载体中以达到所需的浓度。所述二氧化铈磨粒和化学添加剂可以在水性载体中混合和搅拌。pH值可以用上述pH调节剂和pH缓冲剂进行调节,以获得并保持希望的pH。所述二氧化铈磨粒和化学添加剂可以在使用前任何时间(例如一个月、一天、一小时或一分钟)或CMP处理过程中添加。
所述组合物可以作为单部分***、两部分***或多部分***提供。例如,作为双部分***,第一部分可包括二氧化铈磨粒,第二部分可包括一种或多种化学添加剂。第一部分和第二部分可以在CMP处理之前的任何时间(例如一个月、一天、一小时或一分钟)或在CMP处理过程中混合,例如当使用具有多个CMP组合物的供给路径的抛光设备时。
所述组合物可以作为浓缩物提供,并且可在使用前用适量的水稀释。所述组合物中各组分的浓缩度可以是任何合适的,例如上述使用时浓度的2倍、3倍、10倍或25倍。例如,所述浓缩物所含二氧化铈磨粒和化学添加剂的浓度使得在用适量水稀释后,二氧化铈磨粒和化学添加剂以上述浓度存在于组合物中。如果所述组合物例如作为两部分***提供,则一个或两个部分可以作为浓缩物提供。两部分可以不同的浓缩度提供,例如第一部分的浓缩度为三倍,第二部分的浓缩度为五倍。两部分在混合之前可以按任何顺序稀释。
在CMP处理过程中,所述组合物应实现包含硅氧化物材料的基材的高材料去除率。包含硅氧化物材料的基材的示例有包含高密度等离子体(HDP)氧化物、等离子体增强的原硅酸四乙酯(PETEOS)、旋涂玻璃(SOG)和原硅酸四乙酯(TEOS)的硅晶片。优选所述组合物在CMP处理过程中表现出至少 更优选至少更优选至少最优选至少 的包含硅氧化物材料的基材的材料去除率。
本发明还涉及本发明的组合物的用途。优选本发明的组合物用于化学机械抛光包含硅氧化物材料的基材。如本领域技术人员所知,化学机械抛光是指将基材放置在CMP装置内,使其与抛光垫和位于两者之间的CMP组合物接触的过程。所述抛光垫与基材相对移动,以除去部分基材。硅氧化物材料的实例是 多晶硅、氧化硅、原硅酸四乙酯(TEOS)、氮化硅、掺杂氧化硅材料如碳掺杂氧化硅材料、高密度等离子体(HDP)氧化物、磷硅酸盐玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)、高深宽比工艺(HARP)氧化物、旋涂电介质(SOD)氧化物、化学气相沉积(CVD)氧化物、等离子增强原硅酸四乙酯(PETEOS)、热氧化物、未掺杂硅酸盐玻璃及其组合。
在一些实施方案中,本发明的组合物用于化学机械抛光包含硅氧化物材料和硅氮化物材料的基材。根据应用不同,可能希望所述组合物相对于硅氮化物而言表现出特定的对硅氧化物的材料去除选择性。在某些实施方案中,硅氧化物的材料去除率优选超过硅氮化物的材料去除率至少2倍、更优选至少6倍、更优选至少18倍、更优选至少37倍、更优选至少57、最优选至少71。在其他实施方案中,硅氮化物的材料去除率优选超过硅氧化物的材料去除率至少2倍、更优选至少9倍、最优选至少18倍。
在一些实施方案中,本发明的组合物用于抛光包含硅氧化物和多晶硅的基材。根据应用不同,可能希望所述组合物相对于多晶硅而言表现出特定的对硅氧化物的材料去除选择性。在某些实施方案中,硅氧化物的材料去除率优选超过多晶硅的材料去除率至少2倍、更优选至少11倍、更优选至少37倍、最优选至少72倍。
附图说明
图1是来自组合物E7和A11-A12的二氧化铈磨粒在300nm至1000nm波长范围内的紫外可见吸收光谱,x轴显示以nm为单位的波长,y轴显示任意单位(a.u.)的吸光度。
图2是来自组合物E8和A13-15的二氧化铈磨粒在200cm-1至700cm-1波长范围内的可见拉曼光谱,x轴显示以cm-1为单位的波数,y轴显示任意单位(a.u.)的强度。
图3是来自组合物E8’、E9’、A13’和A14’的二氧化铈磨粒在200cm-1至700cm-1波长范围内的可见拉曼光谱,x轴显示以cm-1为单位的波数,y轴显示任意单位(a.u.)的强度。
图4是来自组合物A20和E16-E17的二氧化铈磨粒在200cm-1~700cm-1波长范围内的可见拉曼光谱。x轴表示以cm-1为单位的波数,y轴表示以任意单位(a.u.)为单位的强度。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在以下实施例中,本发明的立方体形态二氧化铈磨粒合成方法如下:将0.03mol硝酸铈(III)(Ce(NO3)3·6H2O)溶解于100mL去离子水中,室温搅拌至固体溶解,记为液A,将3.6mol氢氧化钠(NaOH)溶解于500mL去离子水中,搅拌至固体溶解,并冷却至室温,记为液B。室温搅拌,将液A缓慢加入到液B中,持续搅拌30分钟。将混合液转入带有特氟龙(Teflon)内衬的不锈钢水热釜中,合成温度在120℃,反应时间是24小时,然后自然冷却至室温。将冷却后的混合物离心可得白色固体。将离心得到的白色固体用水和乙醇分别清洗三次,至上清液电导率小于1mS·cm。将最后一次清洗得到的固体于120℃干燥可以得到具有优选性质立方形貌的二氧化铈磨粒。
本发明实施例中使用的球形二氧化铈磨粒制备方法如下:将0.3mol硝酸铈(III)(Ce(NO3)3·6H2O)溶解于100mL去离子水中,室温搅拌至固体溶解,记为液A,将2.7mol聚乙烯吡咯烷酮(PVP)(以重复单元计)溶解于500mL去离子水中,搅拌至固体溶解,并冷却至室温,记为液B。在室温下,在搅拌下,将液A缓慢加入到液B中,持续搅拌60分钟。将混合液转入带有特氟龙(Teflon)内衬的不锈钢水热釜中,合成温度在140℃,反应时间是24小时,然后自然冷却至室温。将冷却后的混合物离心可得乳白色固体。将离心得到的白色固体用水和乙醇分别清洗三次,至上清液电导率小于1mS·cm。将最后一次清洗得到的固体于120℃干燥可以得到具有球形形貌的二氧化铈磨粒。
本发明实施例使用的六方形态二氧化铈磨粒购买自Solvay S.A.
如下实施例中使用的组合物制备方法包括:将二氧化铈磨粒分散于去离子水中,然后加入化学添加剂,搅拌直至所述化学添加剂完全溶解。
在以下实施例中,由TopVendor获得具有厚度由等离子增强原硅酸四乙酯(PE-TEOS)沉积得到的二氧化硅晶片。用CTS-AP300抛光工具(可从CTS Co.获得)在103rpm的研磨平台速度、87rpm的载具速度、3.3psi的膜下压压力和 150ml/min的浆料流速下将PE-TEOS晶片抛光60秒。
实施例1
评估不同D50尺寸的组合物E1-E2和组合物A1-A2的PE-TEOS材料去除率(RR)。组合物E1-E2包括具有立方体形态的二氧化铈,组合物A1-A2包括具有球形形态的二氧化铈。
组合物E1-E2和A1-A2制备工艺如下:将0.5克表1所示形貌的二氧化铈磨粒分散在50克去离子水中,用去离子水稀释调整至磨粒重量百分比0.5wt.%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至3.5。过滤可以实现更窄的分布和更小的颗粒尺寸。本实施例通过使用杭州科百特过滤器材有限公司的Cobetter过滤器实现颗粒的更窄分布。
用Talos F200x透射电子显微镜通过TEM评估形态。如上所述制备二氧化铈和各组合物。如上所述,将PE-TEOS晶片在CTS-AP300抛光工具上用组合物抛光60秒。表1中以埃/分钟为单位列出了材料去除率。用Horiba LA960通过激光衍射测量粒径D50。组合物的zeta电位用Nano ZSE(Malvern Instruments)测量。
表1
从表1可以看出,包含立方体形态,且具有更高Zeta电位的二氧化铈的组合物E1和E2表现出比包含球形形态二氧化铈的组合物A1和A2更高的PE-TEOS材料去除率。
实施例2A
评估组合物E3-E4和A3-A6的PE-TEOS材料去除率。组合物E3-E4和A3-A6制备方法如下:将0.5克表2A中所示形貌的二氧化铈磨粒分别分散在 50g去离子水中,加入0.002克皮考林酸,用去离子水稀释调整至磨粒重量百分比0.2%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至3.5。
组合物E4,A3和A4中的立方体形态二氧化铈合成工艺中,不同之处在于:E4的合成温度改为140℃,A3合成温度改为80℃,A4的反应时间调整为6小时。
如表2A中所列,组合物E3-E4和A3-A4包括具有立方体形态和不同粒径分布的二氧化铈。组合物A5包括球形形态的二氧化铈。如上所述制备组合物E3-E4和A3-A5的二氧化铈颗粒。组合物A6包括购自Solvay S.A.的商品二氧化铈,其具有六方形态和表2中所列的粒径。所有组合物均如上所述制备。
用NovaNano450扫描电子显微镜通过SEM评估颗粒的形态。如上所述,粒径D30、D50和D70使用Horiba LA960通过激光衍射获得。如上所述计算陡度因子和斜率因子。如上所述,将PE-TEOS晶片在CTS-AP300抛光工具上用组合物抛光60秒。表2中以埃每分钟为单位列出了材料去除率。
表2A
从表2A中可以看出,本实施例的组合物E3和E4具有大的陡度因子和小的斜率因子,更高的Zeta电位,并且与组合物A3-A6相比,这两种组合物都有利地表现出更高的PE-TEOS去除率。尽管组合物A3显示出与组合物E3和E4 相比略高的D50(这预计与较高的材料去除率有关),但组合物A3表示出显著较低的PE-TEOS材料去除率。从表2A可以看出,组合物A3具有不利的大斜率因子。与组合物E3-E4相比,组合物A4具有不利的低陡度因子和不利的大斜率因子,并且表现出较低的PETEOS去除率。从表2中可以看出,尽管含有球形二氧化铈的组合物A5和含有六方二氧化铈的组合物A6具有高的陡度因子和小的斜率因子,但是PE-TEOS材料去除率与包含立方体形态二氧化铈的组合物E3-E4相比较低。从表2中可以看出,立方体形态、大陡度因子和小斜率因子与有利的高PE-TEOS材料去除率相关。
实施例2B
评估组合物E3’-E4’和A3’-A6’的PE-TEOS材料去除率。如表2B中所列,组合物E3’-E4’和A3’-A4’包括具有立方形态和不同粒径分布的二氧化铈。组合物A5’包括球形形态的二氧化铈。如实施例2A所述制备组合物E3’-E4’和A3’-A5’的二氧化铈颗粒。组合物A6’包括购自Solvay S.A.的商品二氧化铈,其具有六方形态和表2B中所列的粒径。所有组合物均如上所述制备。
表2B中的组合物的制备方法为:将1克聚丙烯酸溶解于100克水中,在超声和搅拌下,加入50克表2所示的形态的二氧化铈磨粒,并用5%四甲基氢氧化铵溶液将pH调整至8.0,持续超声搅拌20分钟,超声波频率400kHz,搅拌桨转速400rpm。之后加水调整组合物质量为5000克,用四甲基氢氧化铵溶液将pH调整至8.8。
用NovaNano450扫描电子显微镜通过SEM评估颗粒的形态。如上所述,粒径D30、D50和D70使用Horiba LA960通过激光衍射获得。如上所述计算陡度因子和斜率因子。如上所述,将PE-TEOS晶片在CTS-AP300抛光工具上用组合物抛光60秒。表2中以埃每分钟为单位列出了材料去除率。
表2B

结论同实施例2A。
实施例3A
评估组合物E5-E6和A7-A10的PE-TEOS材料去除率和晶片内不均匀性(WIWNU)。组合物E5和A7-A10制备工艺如下:将0.5克表3A所示的二氧化铈磨粒分别分散在50克去离子水中,加入0.001克脯氨酸,用去离子水稀释调整至磨粒重量百分比0.5%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至4.0。
组合物E6的立方体形态二氧化铈合成工艺如上,不同之处在于:合成时间调整为18小时。
组合物E5-E6包括立方体形态的二氧化铈,而组合物A7包括球形形态的二氧化铈。如上所述制备组合物E5-E6和A7的二氧化铈磨粒。组合物A8-A10包括购自Solvay S.A.的商品二氧化铈,其具有六方形态,用Horiba LA960通过激光衍射测量的D50分别为71.17nm、81.47nm和94.62nm。如上所述制备所有组合物。
如上所述,将PE-TEOS晶片在CTS-AP300抛光工具上用组合物抛光60秒。表3A中以埃/分钟为单位列出了材料去除率。不均匀性(NU)可用于描述抛光晶片的表面质量。较高的表面均匀性与较低的NU有关。较高的NU可能是局部区域去除率过高和有缺陷(如斑点、凹坑和划痕)的结果。为了获得NU,在与上述相同的条件下测量PE-TEOS晶片直径上的材料去除率,以获得对角去除率分布。对于每个测量点,获得抛光前后PE-TEOS晶片厚度差的标准偏差。相比抛光前后PE-TEOS晶片的总平均厚度差,计算NU,作为该标准偏差的大小。表3A中以百分比列出了NU。
表3A
从表3A中可以看出,与包含球形形态二氧化铈的组合物A7、包括六方形态二氧化铈的组合物A8-A10相比,包含立方体形态二氧化铈的组合物E5和E6表现出显著更高的PE-TEOS材料去除率。此外,与包含六方形态二氧化铈的组合物A8-A10相比,包含立方体形态二氧化铈,且具有更高的Zeta电位的组合物E5-E6有利地显示出更小的不均匀性,表明抛光的PE-TEOS晶片具有更高的表面质量和更少的表面缺陷。
实施例3B
评估组合物E5’-E6’和A7’-A10’的PE-TEOS材料去除率和晶片内不均匀性(WIWNU)。组合物E5’-E6’包括立方形态的二氧化铈,而组合物A7’包括球形形态的二氧化铈。如实施例3A所述制备组合物E5’-E6’和A7’的二氧化铈磨粒。组合物A8’-A10’包括购自Solvay S.A.的商品二氧化铈其具有六方形态,用Horiba LA960通过激光衍射测量的D50分别为71.17nm、81.47nm和94.62nm如上所述制备所有组合物。
表3B中的组合物制备方法如下:将2.1克聚马来酸丙烯酸共聚物溶解于100克水中,在超声和搅拌下,加入70克由二氧化铈磨粒,并用三乙醇胺将pH调整至8.0,持续超声搅拌20分钟,超声波频率400kHz,搅拌桨转速400rpm。之后加水调整组合物质量为6000克,用三乙醇胺将pH调整至8.3。
抛光处理及检测同实施例3A,结果见表3B。
表3B
结论同实施例3A。
实施例4
评估组合物E7和A11-A12的PE-TEOS材料去除率和相应二氧化铈颗粒的带隙。组合物E7和A11-A12的制备方法:将0.5克二氧化铈磨粒,分散在50克去离子水中,加入0.05克乳酸,用去离子水稀释调整至磨粒重量百分比0.3%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至3.8。
组合物E7包括如上所述制备的立方体形态的二氧化铈颗粒。组合物A11-A12包括购自Solvay S.A.的商品二氧化铈,其具有六方形态,用Horiba LA960通过激光衍射测量的D50分别为71.17nm和81.47nm。如上所述制备组合物。
如上所述,将PE-TEOS晶片在CTS-AP300抛光工具上用组合物抛光60秒。表4A中以埃/分钟为单位列出了材料去除率。对于带隙评估,从组合物E7和A11-A12的相应二氧化铈颗粒获得紫外可见吸收光谱,如图1所示。制备分散在去离子水中的1wt%二氧化铈颗粒的溶液样品,并在25℃下用Cary-60紫外可见光谱仪(Agilent Technologies Inc.)进行测量。如上所述,基于Tauc曲线估计带隙。
表4
从表4中可以看出,与包含六方形态二氧化铈颗粒的组合物A11-A12相比,本发明的包含立方体形态二氧化铈的组合物E7显示出较低的带隙,并且表现出较高的PE-TEOS材料去除率。
实施例5A
评估组合物E8和A13-A15的PE-TEOS材料去除率和相应二氧化铈颗粒的拉曼光谱。这些组合物包含0.05wt%的二氧化铈,30ppm添加生物杀灭剂KATHONTM LX 150(Dow Inc.),用乙酸将每种组合物的pH调节至约4.2.
组合物E8和A13-A15制备方法如下:将0.5克二氧化铈磨粒,分散在50克去离子水中,加入0.003克谷氨酸,用去离子水稀释调整至磨粒重量百分比0.3%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至4.2.
组合物E8包括具有立方体形态的二氧化铈,组合物A13包括具有球形形态的二氧化铈,组合物14-A15包括购自Solvay S.A.的具有六方形态的商品二氧化铈。
组合物E8和A13-A15的D50用Horiba LA960通过激光衍射测量并列于表5A中。如上所述制备组合物E8和A13的颗粒以及组合物E8和A13-A15。如上所述,将PE-TEOS晶片在CTS-AP300抛光工具上用组合物抛光60秒。表5A中以埃/分钟为单位列出了材料去除率。对于拉曼光谱,将二氧化铈颗粒离心,去除上清液,并将颗粒在60℃下干燥过夜。用Horiba iHR550光谱仪(Horiba)在25℃下使用532nm激光对干燥的粉末应用拉曼光谱。使用迭代重加权最小二乘法对光谱进行基线校正,并归一化为F2g峰的强度。组合物E8和A13-15的拉曼光谱如图2所示。如上所述计算FWHM(半峰全宽)、FWTM(1/3 最大峰值处的全宽)、D50与FWHM之比以及D50与FWTM之比,并列在表5A中。
表5A
从表5A中可以看出,与包含球形形态二氧化铈的组合物A13和包含六方形态二氧化铈的组合物A14-A15相比,包含立方体形态二氧化铈的组合物E8表现出更高的PE-TEOS材料去除率。与组合物A13-A15的二氧化铈颗粒相比,组合物E8的二氧化铈颗粒显示出更小的FWHM、更小的FWTM、更高的D50与FWHM之比以及更高的D50与FWTM之比。
实施例5B
本实施例评估了组合物E8’,E9’和A13’-A14’的PE-TEOS材料去除率和相应二氧化铈颗粒的拉曼光谱。组合物E8’,E9’和A13’-A14’包括具有立方形态的二氧化铈。
本实施例中的组合物制备方法如下:将0.8克聚马来酸溶解于100克水中,在超声和搅拌下,加入40克二氧化铈磨粒,并用三乙胺将pH调整至8.0,持续超声搅拌20分钟,超声波频率400kHz,搅拌桨转速400rpm。之后加水调整组合物质量为5000克,用三乙胺将pH调整至8.6。
检测方法同实施例5A,结果见表5B。
表5B
实施例6
本实施例评价了A16-A18和E9-E11的分散稳定性。组合物A16-A18和E9-E11的制备方法如下:将0.5克上述立方体形态二氧化铈磨粒,分散在50克去离子水中,用去离子水稀释调整至磨粒重量百分比0.1%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至3.6。组合物A16-A18和E9-E11的制备方法中不同之处在于:组合物A16的硝酸铈用量调整为0.1mol,组合物A17将氢氧化钠用量调整为1mol,组合物A18将氢氧化钠用量调整为1mol和硝酸铈用量调整为0.01mol,组合物E9的合成温度调整为130℃,组合物E10的合成温度调整为140℃,组合物E11的合成温度调整为150℃,将合反应时间调整为6h。
将组合物放入烤箱,放置在45℃,不搅拌。在样品放入烘箱前和放入烘箱后每隔7天用Horiba LA960激光衍射仪测量各组分的z-平均粒径。z-平均粒径是指激光衍射测量的粒子集合的强度加权平均水动力粒径。在将组合物放入烘箱之前,组合物的平均粒度达到所测平均粒度的两倍的时间列于表6,在此称为平均粒度加倍时间。在45℃时,平均粒度加倍时间的增加通常与组合物的保质期的增加有关。组合物的zeta电位用Nano ZSE(Malvern Instruments)测量,并在表6中列出。
表6
表6看出,更高的zeta电位增加了粒度加倍时间,表明保质期延长;E9-E11的平均粒度加倍时间大于12,表明它们的z-平均粒径没有增加。
实施例7
本实施例对组合物A19和E12-E15的TEOS去除率和缺陷进行了评价。组合物E12-E15制备方法如下:将0.5克上述立方体形态二氧化铈磨粒,分散在50克去离子水中,加入0.01克乙醇酸,用去离子水稀释调整至磨粒重量百分比0.4%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至3.5。组合物A19中的立方体形态二氧化铈合成如上所述,除了:合成温度调整为100℃,且将反应时间调整为5h,该反应条件影响所得产物的参数。
采用激光衍射仪测量了各组分的粒径D30、D50和D70。用Nano ZSE(Malvern Instruments)测定各组分的zeta电位。毯状TEOS晶片按照应用实施例部分的描述进行抛光,TEOS去除率列在表7中。
使用Candela表面缺陷检测***(KLATencor)测量抛光TEOS晶圆表面缺陷的数量。长度不小于100μm,宽度不小于0.1μm的凹痕划痕被计算在内。如果没有观察到相应的缺陷,则打分为A,如果分别计数到1-5个缺陷,则打分为B,如果分别计数到5-20个缺陷,则打分为C,如果分别计数到20个缺陷以上,则打分为D。
表7
现有技术中,通常较宽的粒径分布(=较小的陡度因子)可以提高去除率,但会导致更多的缺陷。样品A19具有所要求的较低的陡度因子,表明粒度分布宽,并且表现出大量划痕和相同的RR,这意味着,如本申请的说明书中所述,本发明的颗粒即使具有狭窄的粒度分布也可以实现高去除率,同时实现更少的缺陷。
实施例8
对A20和E16-E17组成物的TEOS去除率和相应颗粒的拉曼光谱进行了评价。所有组合物包括1%的二氧化铈(其形貌如表8所示)以及30ppm的杀菌剂KATHONTM LX 150(陶氏公司)。所有样品用乙酸调节pH为3.5。
如实施例7所述,测量每种组合物的D30、D50、D70和zeta电位。对本实施例中的所有组合物的氧化铈磨料颗粒进行波长为532nm的拉曼光谱分析,得到FWHM、FWTM、D50/FWHM、D50/FWTM。组合物E16-E17和A20的拉曼光谱如图3所示。
组合物A20和E16制备方法如下:将0.5克表8中所示的二氧化铈磨粒分别分散在50克去离子水中,加入0.012克丙酸,用去离子水稀释调整至磨粒重量百分比0.5%,另按照重量计加入30ppm生物杀灭剂KATHONTM LX150(Dow Inc.),用乙酸将组合物的pH调节至3.5。组合物E17中的立方体形态二氧化铈 合成方法如上,除了合成温度调整为140℃,将合反应时间调整为12h。
表8
从表8可以看出,含有立方状二氧化铈的组合物E16和E17具有较高的TEOS去除率,具有良好的拉曼光谱特性,如较小的FWTM、较小的FWHM、较高的D50/FWHM、较高的D50/FWTM、较高的斜率因子和窄的粒度分布。与组合物E16和E17相比,含有六方形态二氧化铈的组合物A20对TEOS的去除率较低,其FWTM和FWHM略大,D50/FWHM和D50/FWTM比略小。
实施例9
表9中的组合物E10’-E16’制备方法为:将0.8克表9中的涂覆剂溶解于100克水中,在超声和搅拌下,加入50克由上述方法合成的具有立方形貌的二氧化铈磨粒,并用乙醇胺将pH调整至8.0,持续超声搅拌20分钟,超声波频率400kHz,搅拌桨转速400rpm。之后加水调整组合物质量为4000克,用乙醇胺将pH调整至8.4。检测结果见表9。
表9
结果表明,组合物E10’-E16’中的聚合物均具有良好的抛光效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种包含二氧化铈磨粒的化学机械抛光组合物,其中所述二氧化铈磨粒具有:
    立方体形态,
    至少为34的陡度因子,
    所述二氧化铈磨粒具有F2g峰,其通过拉曼光谱在532nm波长下测量的FWTM为最多65cm-1
  2. 根据权利要求1所述的组合物,其特征在于,所述二氧化铈磨粒具有F2g峰,其通过拉曼光谱在532nm波长下测量的FWTM为至多60cm-1
  3. 根据权利要求1所述的组合物,其特征在于,所述二氧化铈磨粒具有至多20的斜率因子。
  4. 根据权利要求1所述的组合物,其特征在于,所述二氧化铈磨粒具有F2g峰,其通过拉曼光谱在532nm波长下测量的FWHM为至多58cm-1
  5. 根据权利要求1所述的组合物,其特征在于,所述二氧化铈磨粒在所述组合物中在3-4.5的pH下至少为15mV的zeta电位。
  6. 根据权利要求1所述的组合物,其特征在于,所述二氧化铈磨粒具有至少4.51的D50与F2g峰的FWHM之比,所述FWHM通过拉曼光谱在532nm的波长下测量。
  7. 根据权利要求1所述的组合物,其特征在于,所述二氧化铈磨粒具有至少1.47的D50与F2g峰的FWTM之比,所述FWTM通过拉曼光谱在532nm波长下测量。
  8. 根据权利要求1所述的组合物,其特征在于,所述二氧化铈磨粒在所述组合物中在7.5-9.5的pH下有-15mV至-90mV的zeta电位。
  9. 根据权利要求1-8中任一项所述的组合物,其特征在于,所述二氧化铈磨粒具有至多3.40eV的带隙。
  10. 一种对含有硅氧化物材料的基材进行化学机械抛光的方法, 该方法包括以下步骤:
    a.提供根据权利要求1-9中任一项所述的化学机械抛光组合物;
    b.使所述基材与化学机械抛光组合物和抛光垫接触;
    c.相对于所述基材移动抛光垫,所述组合物位于两者之间;
    d.除去至少一部分基材。
PCT/CN2023/139566 2022-12-23 2023-12-18 具有改进颗粒的化学机械抛光组合物 WO2024131734A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380013138.2A CN118139938A (zh) 2022-12-23 2023-12-18 具有改进颗粒的化学机械抛光组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211662133.6A CN115960540A (zh) 2022-12-23 2022-12-23 具有改进颗粒的化学机械抛光组合物
CN202211662133.6 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024131734A1 true WO2024131734A1 (zh) 2024-06-27

Family

ID=87357409

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/101110 WO2024130991A1 (zh) 2022-12-23 2023-06-19 具有改进颗粒的化学机械抛光组合物
PCT/CN2023/139566 WO2024131734A1 (zh) 2022-12-23 2023-12-18 具有改进颗粒的化学机械抛光组合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101110 WO2024130991A1 (zh) 2022-12-23 2023-06-19 具有改进颗粒的化学机械抛光组合物

Country Status (2)

Country Link
CN (1) CN115960540A (zh)
WO (2) WO2024130991A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960540A (zh) * 2022-12-23 2023-04-14 昂士特科技(深圳)有限公司 具有改进颗粒的化学机械抛光组合物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160257855A1 (en) * 2015-03-05 2016-09-08 Cabot Microelectronics Corporation Polishing composition containing ceria particles and method of use
CN107267118A (zh) * 2016-03-31 2017-10-20 弗萨姆材料美国有限责任公司 复合颗粒、其精制方法及用途
CN107746069A (zh) * 2017-10-18 2018-03-02 西北师范大学 水热法制备不同形貌二氧化铈的方法
CN110857380A (zh) * 2018-08-09 2020-03-03 弗萨姆材料美国有限责任公司 用于抛光氧化物材料的化学机械平面化组合物及其使用方法
CN111378386A (zh) * 2018-12-28 2020-07-07 安集微电子(上海)有限公司 一种氧化铈磨料在pi介电材料抛光中的用途
KR102373924B1 (ko) * 2020-10-26 2022-03-15 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
CN114761514A (zh) * 2019-11-26 2022-07-15 罗地亚经营管理公司 基于铈的颗粒、其生产方法及其在抛光中的用途
CN115960540A (zh) * 2022-12-23 2023-04-14 昂士特科技(深圳)有限公司 具有改进颗粒的化学机械抛光组合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887714B2 (en) * 2000-12-25 2011-02-15 Nissan Chemical Industries, Ltd. Cerium oxide sol and abrasive
JP2005038924A (ja) * 2003-07-16 2005-02-10 Sanyo Chem Ind Ltd Cmpプロセス用研磨液
JP4951218B2 (ja) * 2004-07-15 2012-06-13 三星電子株式会社 酸化セリウム研磨粒子及び該研磨粒子を含む組成物
KR20170073857A (ko) * 2015-12-21 2017-06-29 솔브레인 주식회사 연마용 슬러리 조성물 및 이를 이용한 기판의 연마 방법
KR20180068425A (ko) * 2016-12-14 2018-06-22 솔브레인 주식회사 화학 기계적 연마 슬러리 조성물 및 반도체 소자의 제조방법
KR20180068424A (ko) * 2016-12-14 2018-06-22 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조방법
KR20180068426A (ko) * 2016-12-14 2018-06-22 솔브레인 주식회사 화학 기계적 연마 슬러리 조성물 및 반도체 소자의 제조방법
KR20180068423A (ko) * 2016-12-14 2018-06-22 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조방법
CN114585699A (zh) * 2019-10-22 2022-06-03 Cmc材料股份有限公司 自停止性的抛光组合物及方法
CN114599750A (zh) * 2019-10-22 2022-06-07 Cmc材料股份有限公司 用于硅氧化物和碳掺杂的硅氧化物的化学机械抛光的组合物及方法
JP2022553336A (ja) * 2019-10-22 2022-12-22 シーエムシー マテリアルズ,インコーポレイティド 選択的酸化物cmpのための組成物及び方法
KR20220087494A (ko) * 2019-10-22 2022-06-24 씨엠씨 머티리얼즈, 인코포레이티드 유전체 cmp를 위한 조성물 및 방법
CN115368826B (zh) * 2022-08-26 2023-08-25 江南大学 基于类球形氧化铈磨粒的抛光液及其制备方法、应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160257855A1 (en) * 2015-03-05 2016-09-08 Cabot Microelectronics Corporation Polishing composition containing ceria particles and method of use
CN107267118A (zh) * 2016-03-31 2017-10-20 弗萨姆材料美国有限责任公司 复合颗粒、其精制方法及用途
CN107746069A (zh) * 2017-10-18 2018-03-02 西北师范大学 水热法制备不同形貌二氧化铈的方法
CN110857380A (zh) * 2018-08-09 2020-03-03 弗萨姆材料美国有限责任公司 用于抛光氧化物材料的化学机械平面化组合物及其使用方法
CN111378386A (zh) * 2018-12-28 2020-07-07 安集微电子(上海)有限公司 一种氧化铈磨料在pi介电材料抛光中的用途
CN114761514A (zh) * 2019-11-26 2022-07-15 罗地亚经营管理公司 基于铈的颗粒、其生产方法及其在抛光中的用途
KR102373924B1 (ko) * 2020-10-26 2022-03-15 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
CN115960540A (zh) * 2022-12-23 2023-04-14 昂士特科技(深圳)有限公司 具有改进颗粒的化学机械抛光组合物

Also Published As

Publication number Publication date
CN115960540A (zh) 2023-04-14
WO2024130991A1 (zh) 2024-06-27

Similar Documents

Publication Publication Date Title
JP5176154B2 (ja) Cmp研磨剤及び基板の研磨方法
US7470295B2 (en) Polishing slurry, method of producing same, and method of polishing substrate
WO2024131734A1 (zh) 具有改进颗粒的化学机械抛光组合物
US7364600B2 (en) Slurry for CMP and method of polishing substrate using same
JPWO2005110679A1 (ja) 研磨用組成物
TWI406815B (zh) 氧化鈰的製造方法、以此方法製造之氧化鈰、以及含此氧化鈰之化學機械研磨液
WO2012036087A1 (ja) 研磨剤および研磨方法
TW201829679A (zh) 二氧化鈰研磨粒
KR20180068424A (ko) 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조방법
KR100599327B1 (ko) Cmp용 슬러리 및 그의 제조법
TW202134390A (zh) 基於鈰之顆粒、其生產方法及其在拋光中之用途
JP2022553346A (ja) 酸化ケイ素及び炭素ドープ酸化ケイ素cmpのための組成物並びに方法
JP2022553336A (ja) 選択的酸化物cmpのための組成物及び方法
JP2021127359A (ja) セリア系複合微粒子分散液、その製造方法およびセリア系複合微粒子分散液を含む研磨用砥粒分散液
TW202423617A (zh) 具有改進顆粒的化學機械拋光組合物
CN118139938A (zh) 具有改进颗粒的化学机械抛光组合物
JP7044510B2 (ja) 酸化セリウム含有複合研磨材
JP4666138B2 (ja) 水性ジルコニアゾル含有研磨用組成物
JP2020050571A (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP2020079163A (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
KR20190064245A (ko) 연마용 슬러리 조성물, 이의 제조방법 및 이를 이용한 반도체 박막의 연마방법
JP7402565B2 (ja) セリウム酸化物粒子の製造方法、研磨粒子及びそれを含む研磨用スラリー組成物
JP7019379B2 (ja) 複合砥粒
EP4339253A1 (en) Aqueous dispersion comprising inorganic particles
KR102566384B1 (ko) Cmp 슬러리 조성물 및 이의 제조 방법