WO2024128572A1 - 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법 - Google Patents

혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법 Download PDF

Info

Publication number
WO2024128572A1
WO2024128572A1 PCT/KR2023/018154 KR2023018154W WO2024128572A1 WO 2024128572 A1 WO2024128572 A1 WO 2024128572A1 KR 2023018154 W KR2023018154 W KR 2023018154W WO 2024128572 A1 WO2024128572 A1 WO 2024128572A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
alkyl
polyethylene
metallocene catalyst
metal compound
Prior art date
Application number
PCT/KR2023/018154
Other languages
English (en)
French (fr)
Inventor
김병석
강민영
이승민
이진영
권동현
정윤철
이채은
김세영
한창완
김영국
김동현
이수현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230154258A external-priority patent/KR20240093329A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024128572A1 publication Critical patent/WO2024128572A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a hybrid metallocene catalyst useful for producing polyethylene having excellent impact strength and haze characteristics, and a method for producing polyethylene using the same.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed to suit their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to existing commercial processes since its invention in the 1950s.
  • it is a multi-site catalyst with multiple active sites, it is characterized by a wide molecular weight distribution of the polymer and comonomer.
  • metallocene catalysts are composed of a combination of a main catalyst mainly composed of transition metal compounds and a cocatalyst which is an organometallic compound mainly composed of aluminum.
  • Such catalysts are homogeneous complex catalysts and are called single site catalysts.
  • a polymer with a narrow molecular weight distribution due to the single active site characteristics and a uniform composition distribution of the comonomer is obtained.
  • the stereoregularity of the polymer, copolymerization characteristics, molecular weight It has properties that can change crystallinity, etc.
  • linear low density polyethylene is manufactured by copolymerizing ethylene and alpha olefin at low pressure using a polymerization catalyst. It is a resin with a narrow molecular weight distribution, short chain branches of a certain length, and no long chain branches. am.
  • Linear low-density polyethylene film has the characteristics of general polyethylene, as well as high breaking strength and elongation, and has excellent tear strength and drop impact strength, so its use is increasing in stretch films and overlap films where it is difficult to apply existing low-density polyethylene or high-density polyethylene. I'm doing it.
  • Drop impact strength is a very important mechanical property that determines the resistance to various impacts of a resin. Additionally, haze is a representative characteristic indicating the transparency of the film.
  • linear low-density polyethylene has the disadvantage of poor blown film processability and poor transparency compared to its excellent mechanical properties.
  • Blown film is a film manufactured by blowing air into molten plastic to inflate it, and is also called inflation film.
  • Linear low-density polyethylene generally has the characteristics of improved transparency and increased drop impact strength as the density decreases.
  • problems such as an increase in the frequency of fouling in the slurry polymerization process, so many products with a density of 0.915 g/cm 3 or more are produced in the slurry polymerization process. I'm doing it.
  • polyethylene that has a density of 0.915 g/cm 3 or more and can provide transparency and excellent mechanical properties such as drop impact strength.
  • the present invention seeks to provide a hybrid metallocene catalyst useful for producing polyethylene with excellent impact strength and haze characteristics.
  • the present invention seeks to provide a method for producing polyethylene with excellent impact strength and haze characteristics using the hybrid metallocene catalyst.
  • a first transition metal compound represented by the following formula (1) a first transition metal compound represented by the following formula (1); and a second transition metal compound represented by the following formula (2):
  • M 1 is a group 4 transition metal
  • a 1 is C, Si, or Ge
  • R 11 to R 14 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl ego,
  • R 15 and R 16 is C 2-20 alkoxyalkyl, the other is C 1-20 alkyl, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
  • R is C 1-20 alkyl
  • X 11 and X 12 are each independently halogen or C 1-20 alkyl
  • M 2 is a group 4 transition metal
  • a 2 is C 2-20 alkylene
  • R 21 , R 22 , R 21 'and R 22 ' are each independently hydrogen, C 1-20 alkyl, C 1-20 alkoxy, C 2-20 alkenyl, C 6-20 aryl, C 7-20 alkylaryl , C 7-20 arylalkyl, or C 2-20 alkoxyalkyl, or R 21 and R 22 , and R 21 'and R 22 ' are connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings. And the aliphatic ring, aromatic ring, or hetero ring is unsubstituted or substituted with C 1-20 alkyl,
  • R 23 and R 23 ' are each independently hydrogen, C 1-20 alkyl, or C 2-20 alkoxyalkyl,
  • X 21 and X 22 are each independently halogen or C 1-20 alkyl.
  • a method for producing polyethylene which includes the step of slurry polymerizing ethylene monomer and olefin monomer while adding hydrogen in the presence of a hybrid metallocene catalyst.
  • the hybrid metallocene catalyst according to the present invention exhibits high activity in olefin polymerization and can produce polyethylene with high drop impact strength and low haze characteristics.
  • polyethylene produced using the hybrid metallocene catalyst has excellent processability, mechanical properties, and transparency, and can be usefully used for purposes such as films.
  • Figure 1 is a contour plot showing the content of fractions according to elution temperature (Te) and weight average molecular weight (log M) through cross fraction chromatography (CFC) analysis of polyethylene.
  • Figure 2 is a region sum coefficient map in which the fractions according to Te and Log M are divided by region from the CFC analysis results for polyethylene, and positive or negative coefficients are arbitrarily assigned to each region depending on the contribution of the fraction to the drop impact strength. .
  • Figure 3 is a map showing the results of multiplying the actual element value for each region calculated from the CFC analysis results for polyethylene by the coefficient value for each region.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • indicating a numerical range includes both the upper and lower limits of the numerical range. For example, in the case of A ⁇ B, it means more than A and less than B.
  • the hybrid metallocene catalyst according to the present invention includes a first transition metal compound represented by the following formula (1);
  • M 1 is a group 4 transition metal
  • a 1 is C, Si, or Ge
  • R 11 to R 14 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl ego,
  • R 15 and R 16 is C 2-20 alkoxyalkyl, the other is C 1-20 alkyl, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
  • R is C 1-20 alkyl
  • X 11 and X 12 are each independently halogen or C 1-20 alkyl
  • M 2 is a group 4 transition metal
  • a 2 is C 2-20 alkylene
  • R 21 , R 22 , R 21 'and R 22 ' are each independently hydrogen, C 1-20 alkyl, C 1-20 alkoxy, C 2-20 alkenyl, C 6-20 aryl, C 7-20 alkylaryl , C 7-20 arylalkyl, or C 2-20 alkoxyalkyl, or R 21 and R 22 , and R 21 'and R 22 ' are connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings. And the aliphatic ring, aromatic ring, or hetero ring is unsubstituted or substituted with C 1-20 alkyl,
  • R 23 and R 23 ' are each independently hydrogen, C 1-20 alkyl, or C 2-20 alkoxyalkyl,
  • X 21 and X 22 are each independently halogen or C 1-20 alkyl.
  • Halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • the C 1-20 alkyl may be straight chain, branched chain, or cyclic alkyl. Specifically, the C 1-20 alkyl is straight-chain alkyl having 1 to 20 carbon atoms; Straight chain alkyl having 1 to 10 carbon atoms; Straight-chain alkyl having 1 to 5 carbon atoms; Branched chain or cyclic alkyl having 3 to 20 carbon atoms; Branched chain or cyclic alkyl having 3 to 15 carbon atoms; Alternatively, it may be branched chain or cyclic alkyl having 3 to 10 carbon atoms.
  • alkyl having 1 to 20 carbon atoms is methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group or It may be a cyclohexyl group, etc.
  • Alkenyl at C 2-20 may be straight chain, branched chain or cyclic alkenyl.
  • the C 2-20 alkenyl is straight chain alkenyl with 2 to 20 carbon atoms, straight chain alkenyl with 2 to 10 carbon atoms, straight chain alkenyl with 2 to 5 carbon atoms, branched chain alkenyl with 3 to 20 carbon atoms, and carbon number. It may be branched chain alkenyl with 3 to 15 carbon atoms, branched chain alkenyl with 3 to 10 carbon atoms, cyclic alkenyl with 5 to 20 carbon atoms, or cyclic alkenyl with 5 to 10 carbon atoms. More specifically, C 2-20 alkenyl may be ethenyl, propenyl, butenyl, pentenyl, or cyclohexenyl.
  • Alkoxy at C 1-20 may be a straight chain, branched chain, or cyclic alkoxy group.
  • the C 1-20 alkoxy group is a straight-chain alkoxy group having 1 to 20 carbon atoms; Straight chain alkoxy having 1 to 10 carbon atoms; A straight-chain alkoxy group having 1 to 5 carbon atoms; Branched chain or cyclic alkoxy having 3 to 20 carbon atoms; Branched chain or cyclic alkoxy having 3 to 15 carbon atoms; Alternatively, it may be branched chain or cyclic alkoxy having 3 to 10 carbon atoms.
  • alkoxy having 1 to 20 carbon atoms includes methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, iso-butoxy group, tert-butoxy group, n-pentoxy group, iso -It may be a pentoxy group, neo-pentoxy group, or cyclohexoxy group.
  • C 2-20 alkoxyalkyl has a structure containing -R y -OR z and may be a substituent in which one or more hydrogens of alkyl (-R y ) are replaced with alkoxy (-OR z ).
  • the alkoxyalkyl having C2 to C20 carbon atoms is methoxymethyl group, methoxyethyl group, ethoxymethyl group, iso-propoxymethyl group, iso-propoxyethyl group, iso-propoxyhexyl group, tert-butoxymethyl group, tert -It may be a butoxyethyl group or a tert-butoxyhexyl group.
  • Aryl at C 6-20 may refer to a monocyclic, bicyclic or tricyclic aromatic hydrocarbon.
  • the C6 to C20 aryl may be a phenyl group, naphthyl group, or anthracenyl group.
  • C 7-20 alkylaryl may mean a substituent in which one or more hydrogens of aryl are replaced by alkyl.
  • the C 7-20 alkylaryl may be methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl, or cyclohexylphenyl.
  • C 7-20 arylalkyl may mean a substituent in which one or more hydrogens of alkyl are replaced by aryl.
  • the C 7-20 arylalkyl may be a benzyl group, phenylpropyl, or phenylhexyl.
  • Group 4 transition metal may be titanium, zirconium, or hafnium.
  • the hybrid metallocene catalyst according to the present invention is a hybrid catalyst comprising a high molecular weight, highly copolymerizable first transition metal compound and a low molecular weight, low copolymerizable second transition metal compound.
  • the first transition metal compound represented by Formula 1 contributes to making a high molecular weight copolymer with a high SCB content
  • the second transition metal compound represented by Formula 2 has a low SCB (short chain branch) content. It contributes to the production of low molecular weight copolymers having .
  • the hybrid metallocene catalyst of the present invention exhibits high copolymerizability in polyethylene in the high molecular weight region due to the first transition metal compound, and low copolymerization in polyethylene in the low molecular weight region due to the action of the second transition metal compound. It can exhibit copolymerization.
  • polyethylene produced using the hybrid metallocene catalyst according to the present invention has an appropriate level of crystallinity and a uniform lamellar structure.
  • the lamellar structure is connected by a tie chain, it can exhibit high drop impact strength.
  • polyethylene produced using the hybrid metallocene catalyst according to the present invention can exhibit low HAZE characteristics.
  • the first transition metal compound represented by Formula 1 contributes to the production of a high molecular weight copolymer and exhibits a relatively high comonomer incorporation rate compared to the second transition metal compound.
  • the central metal (M 1 ) may be a Group 4 transition metal of Ti, Zr, or Hf, and more specifically, may be Ti or Zr.
  • a 1 may specifically be Si.
  • R 11 to R 14 may each independently be hydrogen or C 1-8 alkyl, and more specifically, may be hydrogen or methyl.
  • R 15 and R 16 may be C 2-12 alkoxyalkyl, the other may be C 1-8 alkyl or C 6-12 aryl, and more specifically, one of R 15 and R 16 may be t- butoxyethyl, t-butoxybutyl, or t-butoxyhexyl, and the remainder may be methyl or phenyl.
  • R may be C 1-8 alkyl, and more specifically, R may be C 3-6 branched chain alkyl such as t-butyl.
  • X 11 and X 12 may each independently be halogen or methyl, and more specifically, X 11 and X 12 may each be chloro.
  • the first transition metal compound is, specifically, in Formula 1, M 1 is Ti, Zr, or Hf, A 1 is Si, and R 11 to R 14 are each independently hydrogen, or C 1- 8 alkyl, one of R 15 and R 16 is C 2-12 alkoxyalkyl, the other is C 1-8 alkyl or C 6-12 aryl, R is C 1-8 alkyl, X 11 and X 12 are Each may independently be a halogen or methyl compound.
  • M 1 is Ti or Zr
  • a 1 is Si
  • R 11 to R 14 are each independently hydrogen or methyl
  • One of 16 is t-butoxyethyl, t - butoxybutyl, or t- butoxyhexyl , the other is methyl or phenyl, R is t-butyl, and there is.
  • first transition metal compound may be any one selected from the group consisting of the following compounds:
  • the first transition metal compound represented by Formula 1 can be synthesized by applying known reactions, and for more detailed synthesis methods, refer to the synthesis examples below.
  • the second transition metal compound represented by Chemical Formula 2 contributes to the production of low molecular weight copolymers and has a relatively low comonomer incorporation rate compared to the first transition metal compound. indicates.
  • the second transition metal compound represented by Formula 2 may be a compound represented by the following Formula 2-1 or 2-2:
  • M 2 may be Ti, Zr, or Hf, and more specifically, may be Zr.
  • a 2 may be C 2-6 alkylene, and more specifically, may be ethylene, propylene, or butylene.
  • R 23 and R 23 ' may each independently be hydrogen, C 1-8 alkyl, or C 2-12 alkoxyalkyl, and more specifically, may be hydrogen, n-butyl, or t-butoxyhexyl. .
  • X 21 and X 22 may each independently be chloro or methyl, and more specifically, may be chloro.
  • the second transition metal compound represented by Formula 2 may be any one selected from the group consisting of the following compounds:
  • the second transition metal compound represented by Formula 2 can be synthesized by applying known reactions, and for more detailed synthesis methods, refer to the synthesis examples below.
  • the second transition metal compound is a racemic isomer.
  • racemic form or “racemic body” or “racemic isomer” means that the same substituent on two ligands is a transition metal represented by M 2 in Formula 2, such as zirconium ( It means a plane containing a transition metal such as Zr) or hafnium (Hf) and a form on the opposite side to the center of the ligand portion.
  • a transition metal represented by M 2 in Formula 2 such as zirconium ( It means a plane containing a transition metal such as Zr) or hafnium (Hf) and a form on the opposite side to the center of the ligand portion.
  • the term "meso isomer” or “meso isomer” refers to a stereoisomer of the above-mentioned racemic isomer, where the same substituent on two ligands is a transition metal represented by M 2 in Formula 2.
  • M 2 transition metal represented by M 2 in Formula 2.
  • M 2 for example, means a form that is on the same plane with respect to the center of the ligand portion and a plane containing a transition metal such as zirconium (Zr) or hafnium (Hf).
  • the hybrid metallocene catalyst according to the present invention can increase catalytic activity and further improve the physical properties of the produced polymer by controlling the molar ratio of the first and second transition metal compounds.
  • the hybrid metallocene catalyst may include the first and second transition metal compounds at a molar ratio of 4:1 to 3:2.
  • the hybrid metallocene catalyst may include the first and second transition metal compounds at a molar ratio of 3:1 to 3:2.
  • the first and second transition metal compounds are used in the form of a supported catalyst supported on a carrier.
  • a carrier having a highly reactive hydroxy group, silanol group, or siloxane group on the surface can be used.
  • a carrier that has been surface modified by calcination or has had moisture removed from the surface by drying can be used. You can.
  • silica prepared by calcining silica gel silica such as silica dried at high temperature, silica-alumina, and silica-magnesia may be used, and these are typically Na 2 O, K 2 CO 3 , BaSO 4 , and Mg ( It may contain oxides such as NO 3 ) 2 , carbonate, sulfate, and nitrate.
  • the particle shape and bulk density of the produced polymer are excellent, and can be suitably used in conventional slurry polymerization, bulk polymerization, and gas phase polymerization processes.
  • the functional group of the transition metal compound is chemically bonded to the silica carrier, there is almost no catalyst released from the surface of the carrier during the ethylene polymerization process, and as a result, polyethylene is manufactured through slurry or gas phase polymerization. Fouling that occurs on the reactor wall or between polymer particles can be minimized.
  • the carrier may have an average particle diameter (D50) of 20 to 40 ⁇ m.
  • D50 average particle diameter
  • the transition metal compound can be supported with greater efficiency, and as a result, catalytic activity can be increased. More specifically, it may be 20 ⁇ m or more, or 25 ⁇ m or more, and 40 ⁇ m or less, or 30 ⁇ m or less.
  • the average particle diameter (D50) of the carrier means the particle diameter at 50% of the cumulative distribution of particle numbers according to particle size (particle diameter).
  • the D50 can be measured using a laser diffraction method.
  • the carrier to be measured is dispersed in a dispersion medium such as deionized water, and then used with a commercially available laser diffraction particle size measurement device (e.g. Microtrac S3500). ), the particle size distribution is calculated by measuring the difference in diffraction patterns according to particle size when particles pass through the laser beam. The particle size at a point that is 50% of the cumulative distribution of particle numbers according to particle size in the measuring device is calculated, and this is taken as the average particle size.
  • the first and second transition metal compounds are, for example, 10 mmol or more, 20 mmol or more, or 25 mmol or more, and 100 mmol or less, or 90 mmol or less, or 80 mmol or less, respectively, based on 1,000 g of the silica carrier. , or may be contained in a content range of 78 mmol or less. When supported in the above content range, it exhibits appropriate supported catalyst activity, which can be advantageous in terms of maintaining the activity of the catalyst and economic efficiency.
  • the hybrid metallocene catalyst may further include a cocatalyst to improve high activity and process stability.
  • the cocatalyst may include one or more compounds represented by the following formula (3).
  • R 41 is halogen; or C 1-20 hydrocarbyl substituted or unsubstituted with halogen;
  • a is an integer greater than or equal to 2.
  • the hydrocarbyl group is a monovalent functional group obtained by removing a hydrogen atom from hydrocarbon, and includes an alkyl group, alkenyl group, alkynyl group, aryl group, aralkyl group, aralkenyl group, aralkynyl group, and alkylaryl group. , alkenyl aryl group and alkynylaryl group, etc. may be included.
  • the hydrocarbyl group having 1 to 20 carbon atoms may be a hydrocarbyl group having 1 to 15 carbon atoms or a hydrocarbyl group having 1 to 10 carbon atoms.
  • the hydrocarbyl group having 1 to 20 carbon atoms is methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, and n-hexyl group.
  • straight-chain, branched-chain or cyclic alkyl groups such as n-heptyl group and cyclohexyl group;
  • it may be an aryl group such as a phenyl group, naphthyl group, or anthracenyl group.
  • the compound represented by Formula 3 include alkylaluminoxane-based compounds such as methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, and any one or a mixture of two or more of these may be used. there is.
  • the cocatalyst may be, more specifically, an alkylaluminoxane-based cocatalyst such as methylaluminoxane.
  • the alkylaluminoxane-based cocatalyst stabilizes the first and second transition metal compounds and acts as a Lewis acid, forming a functional group introduced into the bridge group of the first and second transition metal compounds.
  • Catalytic activity can be further improved by including a metal element that can form a bond through Lewis acid-base interaction.
  • the amount of the cocatalyst used can be appropriately adjusted depending on the physical properties or effects of the desired catalyst and polyethylene.
  • the cocatalyst when using silica as the carrier, the cocatalyst is 1,000 g or more, or 5,000 g or more, or 7,000 g or more, and 10,000 g or less, or 8,000 g or less, per weight of the carrier, for example, based on 1,000 g of silica. Alternatively, it may be carried in a content of 7,800 g or less.
  • the hybrid metallocene catalyst according to the present invention having the above-described structure includes the steps of supporting a cocatalyst compound on a carrier, and supporting the first and second transition metal compounds on the carrier. It can be manufactured by a manufacturing method including the step of: At this time, the loading order of the cocatalyst and the first and second transition metal compounds can be changed as needed, and the loading order of the first and second transition metal compounds is also required. It may change depending on.
  • the first and second transition metal compounds may be supported simultaneously. Considering the effect of the supported catalyst with a structure determined according to the supporting order, it is important to sequentially support the first and second transition metal compounds after supporting the cocatalyst on the carrier so that the prepared supported catalyst can be used in the polyethylene manufacturing process. Excellent process stability can be achieved along with high catalyst activity.
  • the hybrid metallocene catalyst according to the present invention can exhibit excellent catalytic activity by containing first and second transition metal compounds having specific structures. Accordingly, the hybrid metallocene catalyst can be suitably used for polymerization of olefin-based monomers.
  • the present invention provides a method for producing an olefinic polymer, specifically, a method for producing polyethylene, including the step of slurry polymerizing an olefinic monomer in the presence of the hybrid metallocene catalyst.
  • the method for producing polyethylene according to the present invention includes the step of introducing hydrogen in the presence of the above-described hybrid metallocene catalyst and slurry polymerizing ethylene monomer and olefin monomer.
  • the olefin monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
  • the olefin monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 -Dodecene, 1-tetradecene, 1-hexadecene, 1-eicocene, norbornene, norbonadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, Examples include 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, and 3-chloromethylstyrene, and two or more of these monomers may be mixed for copolymerization. More specifically, the olefin monomer may be 1-hexene.
  • the amount of the olefin monomer added may be determined depending on the physical properties of polyethylene to be manufactured. For example, considering the physical properties, high drop impact strength, and low HAZE characteristics of polyethylene to be implemented in the present invention, the olefin monomer will be added in an amount of 10 to 15% by weight based on the total weight of monomers including ethylene monomer and olefin monomer. You can. More specifically, the olefin monomer may be added in an amount of 10% by weight or more, or 11% by weight, or 15% by weight or less, or 14% by weight or less, based on the total weight of monomers including ethylene monomer and olefin monomer.
  • the polymerization reaction is carried out under conditions of hydrogen input.
  • hydrogen is 5 to 40 ppm, more specifically 5 ppm or more, or 7 ppm or more, or 8 ppm or more, and 40 ppm or less, or 38 ppm or less, Alternatively, it may be added in an amount of 35 ppm or less. When added in the above range, it is easier to realize the physical properties of polyethylene described above. When the polymerization reaction is performed under conditions without hydrogen input, the melt index (MI) of the polyethylene produced is greatly lowered, making it impossible to achieve the MI condition of 0.8 to 1.2 g/10 min for polyethylene targeted in the present invention.
  • MI melt index
  • the polymerization reaction may be performed as a slurry polymerization reaction.
  • the hybrid supported catalyst is an aliphatic hydrocarbon solvent having 4 to 12 carbon atoms, such as isobutane, pentane, hexane, heptane, nonane, decane, and isomers thereof, and an aromatic hydrocarbon solvent such as toluene and benzene, dichloromethane, and chlorine. It can be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom, such as benzene, and then injected.
  • the solvent used here is preferably treated with a small amount of alkyl aluminum to remove a small amount of water or air, which acts as a catalyst poison, and it is also possible to use a cocatalyst.
  • the polymerization reaction may be performed at a temperature of 40°C or higher, 60°C or higher, or 80°C or lower, and 110°C or lower, 100°C or lower, or 90°C or lower.
  • the pressure conditions during the polymerization reaction may be performed under a pressure of 5 bar or more, or 10 bar or more, or 20 bar or more, and 50 bar or less, or 45 bar or less, or 40 bar or less.
  • Polyethylene manufactured by the above manufacturing method has a uniformly distributed lamellar structure with an appropriate level of crystallinity. Accordingly, it exhibits high drop impact strength and low haze characteristics.
  • the polyethylene may be an ethylene/1-hexene copolymer.
  • polyethylene produced using the hybrid supported catalyst satisfies the following conditions (i) to (iii):
  • MI Melt index
  • BOCF broad orthogonal crystalline fraction
  • BOCF index ⁇ area sum/188.5560176 ⁇ + ⁇ 1/297.9631479 ⁇
  • the area sum is obtained as a contour plot of the content of the fraction according to the elution temperature (Te) and weight average molecular weight (Log M) through CFC analysis of polyethylene; Arbitrarily dividing the fractions according to Te and Log M into a plurality of regions and assigning random coefficients to each region according to the contribution of the fractions to the drop impact strength to derive a region sum coefficient map; Substituting the area sum coefficient map into the contour drawing and calculating the area of the signal for each area to obtain a real element value for each area; and calculating the area sum by multiplying the actual element value for each area by the coefficient value for each area given above and then calculating the total.
  • Te elution temperature
  • Log M weight average molecular weight
  • the drop impact strength of linear low-density polyethylene increases when lamellar structures with an appropriate level of crystallinity are connected by tie chains.
  • the present inventors Based on the CFC analysis results, the present inventors derived an area sum coefficient map according to the contribution of the polyethylene fraction to the drop impact strength, and created Equation 1 above to define the BOCF index through linear regression.
  • the content of the fraction according to elution temperature (Te) and weight average molecular weight (log M) is obtained as a contour plot.
  • the contour line plot uses the elution temperature (Te) as the x-axis and the logarithmic value of the weight average molecular weight (log M) as the y-axis.
  • Figure 1 is only an example for explaining the present invention, and the present invention is not limited thereto.
  • the fractions according to Te and Log M are arbitrarily divided by region, and a positive or negative coefficient is arbitrarily assigned to each region depending on the contribution of the fraction to the drop impact strength to derive a region sum coefficient map.
  • the area sum coefficient map uses the elution temperature (Te) as the x-axis and the logarithmic value of the weight average molecular weight (log M) as the y-axis.
  • the fraction corresponding to a given elution temperature (Te) and a given weight average molecular weight (Log M) can be expressed as CFC (Te, Log M).
  • assigning a positive or negative coefficient to each region gives a high positive coefficient to the region of the fraction that can increase the drop impact strength, and conversely, gives a negative coefficient to the fraction that can reduce the drop impact strength. Grant.
  • Figure 2 shows the fractions according to Te and Log M into LCHW (low crystalline - high molecular weight), MCHW (medium crystalline - high molecular weight), HCHW (high crystalline - high molecular weight), LCMW (low crystalline - medium molecular weight), MCMW (medium crystal - medium molecular weight), HCMW (high crystal - medium molecular weight), LCLW (low crystal - low molecular weight), MCLW (medium crystal - low molecular weight), HCLW (high crystal - low molecular weight), LW (low molecular weight) , arbitrarily divided into HC (high crystalline), HC&LW (high crystalline & low molecular weight), and SF (soluble fraction) regions, and each region has 60, 40, 40, depending on the contribution of the fraction to the drop impact strength.
  • the area sum coefficient map was derived by assigning coefficients of 40, 30, 0, 0, 0, 0, -10, -10, -25, and 20.
  • ULW (ultra low molecular weight) regions can be further distinguished, and in this case, arbitrary coefficients, for example, 0, can be assigned to these regions.
  • Equation 2 the area sum coefficient map is substituted into the contour plot, and the actual element value for each area, that is, the area of the signal for each area, is calculated using the sigma formula in Equation 2 below.
  • Te is the elution temperature
  • n 10 x Log M
  • M is the weight average molecular weight (g/mol).
  • Equation 1 the calculated real element value for each region is multiplied by the coefficient value for each region given above, then the total is calculated to calculate the region sum, and the BOCF index can be calculated by substituting this into Equation 1.
  • Figure 3 is a map showing the results of multiplying the actual element value for each region calculated by the method described above from the CFC analysis results for polyethylene by the coefficient value for each region, and is only an example to explain the present invention, and the present invention is therefor. It is not limited. Meanwhile, the cross fraction chromatography (CFC) analysis method and conditions for calculating the BOCF index are as described in the experimental examples below.
  • CFC cross fraction chromatography
  • the polyethylene according to the present invention has a BOCF index calculated according to Equation 1 above of 1 or more, more specifically 1 to 1.5, or 1 to 1.2. By having a BOCF index in the above range, it can exhibit high drop impact strength.
  • the polyethylene according to the present invention has a density of 0.915 to 0.920 g/cm 3 as measured according to the ASTM D1505 standard, and a melt index (MI) of 0.8 to 1.2 as measured under the conditions of 190°C and 2.16 kg according to the ASTM D1238 standard. It satisfies the condition of g/10min.
  • the polyethylene has a density measured according to ASTM D1505 of 0.915 g/cm 3 or more, or 0.9155 g/cm 3 or more, and 0.920 g/cm 3 or less, or 0.919 g/cm 3 or less.
  • the density of polyethylene increases, the drop impact strength decreases.
  • high-density polyethylene exceeding 0.93 g/cm 3 shows a low drop impact strength of 300 gf or less.
  • the polyethylene according to the present invention has a density within the above-mentioned range and thus exhibits excellent drop impact strength.
  • the polyethylene has a melt index (MI 2.16 ) of 0.8 g/10min or more, or 0.85 g/10min or more, or 0.89 g/10min or more, as measured at a temperature of 190°C and a load of 2.16 kg according to the ASTM D1238 standard, It is less than or equal to 1.2 g/10min, or less than or equal to 1.15 g/10min, or less than or equal to 1.12 g/10min.
  • MI 2.16 melt index
  • the polyethylene satisfies the conditions of low density and optimal melt index along with a high BOCF index, it can exhibit high drop impact strength and improved haze characteristics along with excellent processability.
  • the polyethylene is produced by using a film forming machine to produce a polyethylene film (BUR (Blown-Up Ratio) 2 to 3, more specifically 2.5, and a film thickness of 45 to 55 ⁇ m, more specifically 50 ⁇ m).
  • the drop impact strength measured according to ASTM D1709 [Method A] is 1800 gf or more, more specifically 1800 to 2300 gf.
  • the polyethylene is produced by producing a polyethylene film (BUR 2 to 3, more specifically 2.5, and film thickness 45 to 55 ⁇ m, more specifically 50 ⁇ m) using a film forming machine, and then produced according to ISO 13468.
  • the haze of the measured film was 13% or less, more specifically 1 to 13%.
  • polyethylene produced by the above production method using the hybrid supported catalyst of the present invention has excellent processability, drop impact strength, and haze properties, and can be applied to a variety of purposes depending on the purpose. In particular, high mechanical properties and transparency are required. It can be particularly useful in the production of films.
  • room temperature means 23 ⁇ 5°C.
  • n-BuLi (2.05 equivalents) was added to the resulting solution at -25°C and stirred at room temperature for 5 hours.
  • a slurry prepared by suspending TiCl 4 (THF) 2 (1 equivalent) in toluene (0.3M) was added and stirred at room temperature overnight.
  • the resulting reactant was vacuum dried to remove the solvent, DCM was reintroduced, and LiCl was removed by filtration. The filtrate was vacuum dried to obtain the transition metal compound (A-1) with the above structure.
  • step 1 of Synthesis Example 1 (t-BuOBu)MeSiCl 2 was prepared using 4-Chloro-1-butanol instead of 2-Chloroethanol, and in step 2, (t-BuOEt)MeSiCl 2 was used instead of (t)
  • a transition metal compound (A-2) having the above structure was prepared in the same manner as in Synthesis Example 1, except that -BuOBu)MeSiCl 2 was used.
  • step 1 of Synthesis Example 1 (t-BuOHex)MeSiCl 2 was prepared using 6- Chloro -1- hexanol instead of 2-Chloroethanol, and in step 2, (t-BuOEt)MeSiCl 2 was used instead of (t)
  • a transition metal compound (A-3) having the above structure was prepared in the same manner as in Synthesis Example 1, except that -BuOHex)MeSiCl 2 was used.
  • step 1 of Synthesis Example 1 (t-BuOEt)PhSiCl 2 was prepared using phenyltrichlorosilane (PhSiCl 3 ) instead of MeSiCl 3 , and in step 2, (t-BuOEt)PhSiCl 2 was used instead of (t-BuOEt)MeSiCl 2.
  • a transition metal compound (A-3) having the above structure was prepared in the same manner as in Synthesis Example 1, except for using PhSiCl 2 .
  • step 1 of Synthesis Example 1 (t-BuOEt)PhSiCl 2 was prepared by using 4-Chloro-1-butanol instead of 2-Chloroethanol and phenyltrichlorosilane (PhSiCl 3 ) instead of MeSiCl 3 , and further steps Transition metal compound (A-5) of the above structure was prepared in the same manner as in Synthesis Example 1, except that (t-BuOBu)PhSiCl 2 was used instead of (t-BuOEt)MeSiCl 2 in 2. Manufactured.
  • step 1 of Synthesis Example 1 6- Chloro -1- hexanol was used instead of 2-Chloroethanol, and phenyltrichlorosilane (PhSiCl 3 ) was used instead of MeSiCl 3 to prepare (t-BuOHex)PhSiCl 2 , and further steps were performed.
  • Transition metal compound (A-6) of the above structure was prepared in the same manner as in Synthesis Example 1, except that (t-BuOHex)PhSiCl 2 was used instead of (t-BuOEt)MeSiCl 2 in 2. Manufactured.
  • the transition metal compound (rac B-1) prepared in Synthesis Example 7 and DCM (0.05M) were placed in a high pressure reactor, and a slurry prepared by mixing Pd/C (0.1 equivalent) with DCM (0.1M) was prepared. It was put in. Afterwards, the reactor was filled with H 2 gas at 20 bar/g and stirred at room temperature overnight. When the reaction was completed, it was filtered using Celite and dried under vacuum to remove the solvent. Hexane was added to the resulting reaction product to make a slurry, and then filtered to obtain a solid transition metal compound (rac B-2).
  • n-BuLi (2.05 equivalents) was added at -25°C and stirred at room temperature for 5 hours.
  • butyl iodide 2.1 equivalents was added and stirred at room temperature overnight.
  • Water was added to the resulting reaction product, and the organic layer was separated through an extraction flask. The organic layer was washed twice with ether, water was removed with MgSO 4 , and the solvent was removed by filtration.
  • THF (0.1M) was added to the resulting reaction product, n-BuLi (2.05 equivalents) was added at -25°C, and the mixture was stirred at room temperature for 5 hours.
  • a transition metal compound (rac B-4) was obtained in the same manner as in Synthesis Example 9, except that butoxyhexyl iodide was used instead of butyl iodide.
  • a transition metal compound (C-1) having the above structure was prepared in the same manner as in Comparative Synthesis Example 2 of Korean Patent Publication No. 10-2022-0067494.
  • a transition metal compound (C-2) having the above structure was prepared in the same manner as in Comparative Synthesis Example 3 of Korean Patent Publication No. 10-2022-0067494.
  • a transition metal compound (C-3) having the above structure was prepared in the same manner as in Preparation Example 2 of Korean Patent Publication No. 10-2015-0045369.
  • a transition metal compound (C-4) having the above structure was prepared in the same manner as in Preparation Example 1 of Korean Patent Publication No. 10-2015-0045369.
  • a transition metal compound (C-5) having the above structure was prepared in the same manner as in the preparation example of Korean Patent Publication No. 10-2020-0064245.
  • a transition metal compound (C-6) having the above structure was prepared in the same manner as in Preparation Example 1 of Korean Patent Publication No. 10-2015-0063885.
  • a transition metal compound (C-7) having the above structure was prepared in the same manner as in Preparation Example 2 of Korean Patent Publication No. 10-2015-0063885.
  • a transition metal compound (C-8) having the above structure was prepared in the same manner as in Preparation Example 4 of Korean Patent Publication No. 10-2020-0090041.
  • a transition metal compound (C-9) having the above structure was prepared in the same manner as in Preparation Example 1 of Korean Patent Publication No. 10-2021-0032820.
  • 1,2-Bis(3-indenyl)ethane was dissolved in THF (0.1M), n-BuLi (2.05 eq) was added at -25°C, and then stirred at room temperature for 5 hours.
  • ZrCl 4 (THF) 2 (1 eq) was added to the flask as a slurry in THF (0.1 M) and stirred at room temperature overnight.
  • the temperature of the reactor was lowered to room temperature, stirring was stopped, the reaction product was allowed to stand for about 30 minutes, and then the reaction product was decantated.
  • 3kg of hexane was added to the reactor, the hexane slurry solution was transferred to a 20L filter dryer, the solution was filtered, and dried under reduced pressure at 50°C for about 4 hours to obtain 1.5 kg of hybrid metallocene catalyst.
  • a hybrid metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the types and mixing molar ratios of the first and second transition metal compounds were changed. .
  • the isobutene slurry loop process is possible as a polymerization reactor, and a 140L continuous polymerization reactor operated at a reaction flow rate of approximately 7 m/s was prepared. Then, the reactants required for polyethylene polymerization were continuously added to the reactor as shown in Tables 2 and 3.
  • the catalyst used in each polymerization reaction was the one prepared in the Preparation Example or Comparative Preparation Example shown in Table 1 or Table 2, and the catalyst was mixed with isobutene slurry and added. Additionally, the polymerization reaction was performed at a pressure of about 40 bar and a temperature of about 85°C.
  • Example 1 Manufacturing Example 1 25.0 14.0 11 7.6
  • Example 2 Production example 2 25.0 14.0 10 5.1
  • Example 3 Production example 3 24.5 12.5 20 3.2
  • Example 4 Production example 4 20.3 14.0 14 3.9
  • Example 5 Production example 5 20.4 11.5 28 4.5
  • Example 6 Production example 6 20.0 13.1 16 2.8
  • Example 7 Production example 7 20.0 11.7 11 4.9
  • Example 8 Production example 8 20.0 13.5 9 4.8
  • Example 10 Production example 10 20.0 11.9 33 3.0
  • Example 11 Production example 11 20.2 12.1 8 5.5
  • Example 12 Production Example 12 20.1 13.4 8 4.8
  • Example 13 Production Example 13 18.7 12.0 10 4.4
  • Example 14 Production example 14 20.0 12.0 10 5.0
  • Example 15 Production Example 15 23.0 11.0 25 3.0
  • activity was calculated as the ratio of the weight of the produced polymer (kg PE) per weight of the supported catalyst used (kg) based on unit time (hr). .
  • the 1-Hexene input amount (wt%) is calculated as a percentage based on the total weight of monomers containing ethylene and 1-hexene
  • the hydrogen input amount (ppm) is calculated as a percentage of the monomers containing ethylene and 1-hexene. It is based on total weight.
  • MI 2.16 Melt Index
  • CFC Cross fraction chromatography
  • CFC Cross-fraction chromatography
  • the content ratio (W L ) of the low-crystalline polymer eluted in the region with an elution temperature of 75°C or lower, excluding SF, and the content ratio of the highly crystalline polymer eluted in the region with an elution temperature of more than 75°C ( W H ) was calculated (wt%).
  • BOCF index ⁇ area sum/188.5560176 ⁇ + ⁇ 1/297.9631479 ⁇
  • the area sum is obtained as a contour plot of the content of the fraction according to the elution temperature (Te) and weight average molecular weight (Log M) through CFC analysis of polyethylene; Arbitrarily dividing the fractions according to Te and Log M into a plurality of regions and assigning random coefficients to each region according to the contribution of the fractions to the drop impact strength to derive a region sum coefficient map; Substituting the area sum coefficient map into the contour drawing and calculating the area of the signal for each area to obtain a real element value for each area; and calculating the area sum by multiplying the actual element value for each area by the coefficient value for each area given above and then calculating the total.
  • the area sum is calculated using the following method. It was calculated as .
  • the fractions are divided into 13 regions as shown below, and for each region according to the contribution of the fraction to the drop impact strength, 60, 40, 40, 40, 30, 0, 0,
  • the area sum coefficient map was derived by arbitrarily assigning coefficients of 0, 0, -10, -10, -25, and 20.
  • Te is the elution temperature
  • n 10 x LogM
  • M is the weight average molecular weight (g/mol).
  • the area sum was calculated by multiplying the actual element value for each region calculated above by the coefficient value for each region given above, and then calculating the total.
  • the area sum was calculated as shown in Equation 3 below.
  • LCHW, MCHW, HCHW, LCMW, MCMW, HCMW, LCLW, MCLW, HCLW, LW, HC, HC&LW, and SF are the LCHW area, MCHW area, HCHW area, LCMW area calculated above, respectively, These are the actual element values in MCMW area, HCMW area, LCLW area, MCLW area, HCLW area, LW area, HC area, HC&LW area and SF area.
  • the BOCF index value was calculated by substituting the area sum calculated using the above method into Equation 1 above.
  • a film was prepared by inflation molding the film forming composition prepared above under the following film extrusion conditions.
  • drop impact strength was measured according to ASTM D1709 [Method A] standard. At this time, each film sample was measured more than 20 times and the average value was taken.
  • the haze of the films was measured according to ISO 13468 standards.
  • Example 1 0.9180 0.95 1.077 1980 11
  • Example 2 0.9181 0.97 1.044 1890 10
  • Example 3 0.9170 0.89 1.121 2015
  • Example 4 0.9160 1.01 1.190 2180 10
  • Example 5 0.9161 0.98 1.059 1965 11
  • Example 6 0.9159 0.98 1.131 1895 11
  • Example 7 0.9156 1.00 1.059 2050 13
  • Example 8 0.9175 1.01 1.056 1960
  • Example 9 0.9192 1.11 1.102 2080
  • Example 10 0.9175 0.95 1.103 2100 11
  • Example 11 0.9190 0.97 1.046 1980 12
  • Example 12 0.9189 0.98 1.025 1875 10
  • Example 13 0.9167 0.98 1.093 1950
  • Example 14 0.9185 1.05 1.035 1849 10
  • Example 15 0.9175 0.89 1.141 1980 11
  • the polyethylenes of Examples 1 to 15 had high drop impact due to the use of a hybrid metallocene catalyst containing a high molecular weight, highly copolymerizable first transition metal compound and a low molecular weight, low copolymerizable second transition metal compound during polymerization. It showed strength and, in addition, excellent transparency with low HAZE due to the crystal structure of the polymer.
  • Comparative Example 10 showed high drop impact strength, but was not suitable for use as a film due to excessively high HAZE.
  • Comparative Examples 12 and 13 high MI and density were achieved by using a combination of low molecular weight and low copolymerizable transition metal compounds. As a result, the drop impact strength was greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명에서는 우수한 충격 강도 및 헤이즈 특성을 갖는 폴리에틸렌의 제조에 유용한 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법이 제공된다.

Description

혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2022년 12월 15일자 한국 특허 출원 제10-2022-0176238호 및 2023년 11월 9일자 한국 특허 출원 제10-2023-0154258호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 우수한 충격 강도 및 헤이즈 특성을 갖는 폴리에틸렌의 제조에 유용한 혼성 메탈로센 촉매, 및 이를 이용한 폴리에틸렌의 제조방법에 관한 것이다.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
반면, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
한편, 선형 저밀도 폴리에틸렌(linear low density polyethylene; LLDPE)은 중합 촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되는 것으로, 분자량 분포가 좁고, 일정한 길이의 단쇄 분지를 가지며, 장쇄 분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙하 충격 강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
최근 탈탄소화와 함께 재활용성 향상을 위한 고기능성의 선형 저밀도 폴리에틸렌에 대한 수요가 증가하고 있으며, 이와 함께 가공성과 낙하충격강도가 우수한 선형 저밀도 폴리에틸렌에 대한 요구도 증가하고 있다.
낙하 충격 강도(Dart drop impact strength)는 수지의 다양한 충격 저항성을 확인하는 매우 중요한 기계적 특성이다. 또, 헤이즈는 필름의 투명성을 나타내는 대표적인 특성이다.
그러나, 선형 저밀도 폴리에틸렌은 우수한 기계적 물성에 비하여 블로운 필름(blown film) 가공성이 좋지 않고 투명도가 떨어지는 단점이 있다. 블로운 필름이란, 용융 플라스틱에 공기를 불어넣어 부풀리는 방식으로 제조한 필름으로서, 인플레이션 필름이라고도 불린다.
선형 저밀도 폴리에틸렌은 일반적으로 밀도가 낮을수록 투명성이 좋아지고 낙하 충격 강도가 증가하는 특성이 있다. 하지만 저밀도의 폴리에틸렌을 제조하기 위하여 알파 올레핀 공단량체를 많이 사용할 경우 슬러리 중합 공정에서 파울링(fouling) 발생 빈도가 높이지는 등의 문제가 있어 슬러리 중합 공정에서는 밀도 0.915 g/cm3 이상의 제품을 많이 생산하고 있다.
따라서 밀도 0.915 g/cm3 이상이면서 투명성과 함께 낙하 충격 강도 등의 우수한 기계적 물성을 구현할 수 있는 폴리에틸렌의 개발의 필요성이 요구되고 있다.
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 우수한 충격 강도 및 헤이즈 특성을 갖는 폴리에틸렌의 제조에 유용한 혼성 메탈로센 촉매를 제공하고자 한다.
또, 본 발명은 상기 혼성 메탈로센 촉매를 이용하여 우수한 충격 강도 및 헤이즈 특성을 갖는 폴리에틸렌의 제조방법을 제공하고자 한다.
본 발명에 따르면, 하기 화학식 1로 표시되는 제1전이금속 화합물; 및 하기 화학식 2로 표시되는 제2전이금속 화합물;을 포함하는, 혼성 메탈로센 촉매를 제공한다:
[화학식 1]
Figure PCTKR2023018154-appb-img-000001
상기 화학식 1에서,
M1은 4족 전이금속이고,
A1는 C, Si, 또는 Ge이며,
R11 내지 R14는 각각 독립적으로 수소, C1-20 알킬, C2-20 알케닐, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
R15 및 R16 중 하나는 C2-20 알콕시알킬이고, 나머지는 C1-20 알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이며,
R은 C1-20 알킬이고,
X11 및 X12은 각각 독립적으로 할로겐 또는 C1-20 알킬이며,
[화학식 2]
Figure PCTKR2023018154-appb-img-000002
상기 화학식 2에서,
M2는 4족 전이금속이고,
A2는 C2-20 알킬렌이며,
R21, R22, R21' 및 R22'는 각각 독립적으로 수소, C1-20 알킬, C1-20 알콕시, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, C7-20 아릴알킬, 또는 C2-20 알콕시알킬이거나, 또는 R21과 R22, 및 R21'과 R22'가 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성하고, 상기 지방족 고리, 방향족 고리, 또는 헤테로 고리는 비치환되거나 또는 C1-20 알킬로 치환되며,
R23 및 R23'은 각각 독립적으로 수소, C1-20 알킬, 또는 C2-20 알콕시알킬이고,
X21 및 X22는 각각 독립적으로 할로겐 또는 C1-20 알킬이다.
또, 본 발명에 따르면, 혼성 메탈로센 촉매의 존재 하에, 수소를 투입하며 에틸렌 단량체와 올레핀 단량체를 슬러리 중합하는 단계를 포함하는, 폴리에틸렌의 제조방법이 제공된다.
본 발명에 따른 혼성 메탈로센 촉매는, 올레핀 중합에 높은 활성을 나타내며, 높은 낙하 충격 강도와 낮은 헤이즈 특성을 갖는 폴리에틸렌을 제조할 수 있다.
이에 따라, 상기 혼성 메탈로센 촉매를 이용하여 제조된 폴리에틸렌은 가공성, 기계적 물성 및 투명성이 우수하여, 필름 등의 용도로 유용하게 사용될 수 있다.
도 1은 폴리에틸렌에 대한 교차 분획 크로마토그래피(Cross Fractionation Chromatography, CFC) 분석을 통해 용리 온도(Te) 및 중량평균 분자량(log M)에 따른 분획의 함량을 나타낸 등고선 그림이다.
도 2는 폴리에틸렌에 대한 CFC 분석 결과로부터 Te와 Log M에 따른 분획을 영역 별로 구분하고, 낙하 충격 강도에 대한 분획의 기여도에 따라 각 영역에 대해 양 또는 음의 계수를 임의로 부여한 영역합 계수 맵이다.
도 3은 폴리에틸렌에 대한 CFC 분석 결과로부터 산출한 각 영역별 실 원소 값에 각 영역 별 계수 값을 곱한 결과를 나타낸 맵이다.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또, 본 명세서에서 수치 범위를 나타내는 "~"는 수치 범위의 상한 값과 하한 값을 모두 포함한다. 일례로, A~B의 경우, A이상이고, B이하를 의미한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명의 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법에 대해 상세히 설명한다.
본 발명에 따른 혼성 메탈로센 촉매는 하기 화학식 1로 표시되는 제1전이금속 화합물; 및
하기 화학식 2로 표시되는 제2전이금속 화합물;을 포함한다:
[화학식 1]
Figure PCTKR2023018154-appb-img-000003
상기 화학식 1에서,
M1은 4족 전이금속이고,
A1는 C, Si, 또는 Ge이며,
R11 내지 R14는 각각 독립적으로 수소, C1-20 알킬, C2-20 알케닐, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
R15 및 R16 중 하나는 C2-20 알콕시알킬이고, 나머지는 C1-20 알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이며,
R은 C1-20 알킬이고,
X11 및 X12은 각각 독립적으로 할로겐 또는 C1-20 알킬이며,
[화학식 2]
Figure PCTKR2023018154-appb-img-000004
상기 화학식 2에서,
M2는 4족 전이금속이고,
A2는 C2-20 알킬렌이며,
R21, R22, R21' 및 R22'는 각각 독립적으로 수소, C1-20 알킬, C1-20 알콕시, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, C7-20 아릴알킬, 또는 C2-20 알콕시알킬이거나, 또는 R21과 R22, 및 R21'과 R22'가 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성하고, 상기 지방족 고리, 방향족 고리, 또는 헤테로 고리는 비치환되거나 또는 C1-20 알킬로 치환되며,
R23 및 R23'은 각각 독립적으로 수소, C1-20 알킬, 또는 C2-20 알콕시알킬이고,
X21 및 X22는 각각 독립적으로 할로겐 또는 C1-20 알킬이다.
본 발명에서, 상기 화학식의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
상기 C1-20의 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, 상기 C1-20의 알킬은 탄소수 1 내지 20의 직쇄 알킬; 탄소수 1 내지 10의 직쇄 알킬; 탄소수 1 내지 5의 직쇄 알킬; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알킬은 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기 또는 사이클로헥실기 등일 수 있다.
C2-20의 알케닐은 직쇄, 분지쇄 또는 고리형 알케닐일 수 있다. 구체적으로, 상기 C2-20의 알케닐은 탄소수 2 내지 20의 직쇄 알케닐, 탄소수 2 내지 10의 직쇄 알케닐, 탄소수 2 내지 5의 직쇄 알케닐, 탄소수 3 내지 20의 분지쇄 알케닐, 탄소수 3 내지 15의 분지쇄 알케닐, 탄소수 3 내지 10의 분지쇄 알케닐, 탄소수 5 내지 20의 고리형 알케닐 또는 탄소수 5 내지 10의 고리형 알케닐일 수 있다. 보다 구체적으로, C2-20의 알케닐은 에테닐, 프로페닐, 부테닐, 펜테닐 또는 사이클로헥세닐 등일 수 있다.
C1-20의 알콕시는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있다. 구체적으로, 상기 C1-20의 알콕시는 탄소수 1 내지 20의 직쇄 알콕시기; 탄소수 1 내지 10의 직쇄 알콕시; 탄소수 1 내지 5의 직쇄 알콕시기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알콕시; 탄소수 3 내지 15의 분지쇄 또는 고리형 알콕시; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알콕시일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알콕시는 메톡시기, 에톡시기, n-프로폭시기, iso-프로폭시기, n-부톡시기, iso-부톡시기, tert-부톡시기, n-펜톡시기, iso-펜톡시기, neo-펜톡시기 또는 사이클로헥톡시기 등일 수 있다.
C2-20의 알콕시알킬은 -Ry-O-Rz를 포함하는 구조로 알킬(-Ry)의 하나 이상의 수소가 알콕시(-O-Rz)로 치환된 치환기일 수 있다. 구체적으로, 상기 탄소수 C2 내지 C20의 알콕시알킬은 메톡시메틸기, 메톡시에틸기, 에톡시메틸기, iso-프로폭시메틸기, iso-프로폭시에틸기, iso-프로폭시헥틸기, tert-부톡시메틸기, tert-부톡시에틸기 또는 tert-부톡시헥실기 등일 수 있다.
C6-20의 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 구체적으로, 상기 C6 내지 C20의 아릴은 페닐기, 나프틸기 또는 안트라세닐기 등일 수 있다.
C7-20의 알킬아릴은 아릴의 1 이상의 수소가 알킬에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, 상기 C7-20의 알킬아릴은 메틸페닐, 에틸페닐, n-프로필페닐, iso-프로필페닐, n-부틸페닐, iso-부틸페닐, tert-부틸페닐 또는 사이클로헥실페닐 등일 수 있다.
C7-20의 아릴알킬은 알킬의 1 이상의 수소가 아릴에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, 상기 C7-20의 아릴알킬은 벤질기, 페닐프로필 또는 페닐헥실 등일 수 있다.
또, 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등일 수 있다.
본 발명에 따른 혼성 메탈로센 촉매는, 고분자량 고공중합성의 제1전이금속 화합물과, 저분자량 저공중합성의 제2전이금속 화합물을 함께 포함하는 혼성(hybrid) 촉매이다.
구체적으로, 상기 화학식 1로 표시되는 제1전이금속 화합물은 높은 SCB 함량을 가지는 고분자량의 공중합체를 만드는데 기여하고, 상기 화학식 2로 표시되는 제2전이금속 화합물은 낮은 SCB(short chain branch) 함량을 가지는 저분자량의 공중합체를 제조하는데 기여한다.
이에 따라, 본 발명의 혼성 메탈로센 촉매는 상기 제1전이금속 화합물에 의해 고분자량 영역의 폴리에틸렌에서는 높은 공중합성을 나타내면서, 상기 제2전이금속 화합물의 작용에 의해 저분자량 영역에서의 폴리에틸렌에서는 낮은 공중합성을 나타낼 수 있다, 그 결과, 본 발명에 따른 혼성 메탈로센 촉매를 이용하여 제조되는 폴리에틸렌은 적정 수준의 결정성과, 균일한 라멜라 구조를 갖는다. 또 상기 라멜라 구조가 Tie 사슬에 의해 연결된 구조를 가짐에 따라 높은 낙하 충격 강도를 나타낼 수 있다.
또 본 발명에 따른 혼성 메탈로센 촉매를 이용하여 제조되는 폴리에틸렌은 낮은 HAZE 특성을 나타낼 수 있다.
본 발명에 따른 혼성 메탈로센 촉매에 있어서, 상기 화학식 1로 표시되는 제1전이금속 화합물은 고분자량의 공중합체 제조에 기여하며, 제2전이금속 화합물에 비하여 상대적으로 높은 공단량체 혼입률을 나타낸다.
구체적으로, 상기 화학식 1에 있어서, 중심 금속(M1)은 Ti, Zr, 또는 Hf의 4족 전이금속일 수 있으며, 보다 구체적으로는 Ti, 또는 Zr일 수 있다.
또, 상기 화학식 1에서 A1은 구체적으로 Si일 수 있다.
또, 상기 R11 내지 R14는 각각 독립적으로 수소, 또는 C1-8 알킬일 수 있으며, 보다 구체적으로는 수소 또는 메틸일 수 있다.
또, 상기 R15 및 R16 중 하나는 C2-12 알콕시알킬이고, 나머지는 C1-8 알킬 또는 C6-12 아릴일 수 있으며, 보다 구체적으로는 R15 및 R16 중 하나는 t-부톡시에틸, t-부톡시부틸, 또는 t-부톡시헥실이고, 나머지는 메틸 또는 페닐일 수 있다.
또, 상기 R은 C1-8 알킬일 수 있으며, 보다 구체적으로는 R은 t-부틸 등의 C3-6 분지쇄 알킬일 수 있다.
또, 상기 X11 및 X12은 각각 독립적으로 할로겐 또는 메틸일 수 있으며, 보다 구체적으로는 X11 및 X12은 각각 클로로일 수 있다.
이에 따라, 상기 제1전이금속 화합물은, 구체적으로 상기 화학식 1에서, M1은 Ti, Zr, 또는 Hf이고, A1은 Si이며, R11 내지 R14는 각각 독립적으로 수소, 또는 C1-8 알킬이고, R15 및 R16 중 하나는 C2-12 알콕시알킬이고, 나머지는 C1-8 알킬 또는 C6-12 아릴이며, R은 C1-8 알킬이고, X11 및 X12은 각각 독립적으로 할로겐 또는 메틸인 화합물일 수 있다.
보다 구체적으로는 상기 제1전이금속 화합물은, 상기 화학식 1에서, M1은 Ti, 또는 Zr이고, A1은 Si이며, R11 내지 R14는 각각 독립적으로 수소 또는 메틸이고, R15 및 R16 중 하나는 t-부톡시에틸, t-부톡시부틸, 또는 t-부톡시헥실이고, 나머지는 메틸 또는 페닐이며, R은 t-부틸이고, X11 및 X12은 각각 클로로인 화합물일 수 있다.
보다 더 구체적으로, 상기한 제1전이금속 화합물은 하기 화합물들로 이루어진 군에서 선택되는 어느 하나일 수 있다:
Figure PCTKR2023018154-appb-img-000005
상기 화학식 1로 표시되는 제1전이금속 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 이하 합성예를 참고할 수 있다.
한편, 본 발명에 따른 혼성 메탈로센 촉매에 있어서, 상기 화학식 2로 표시되는 제2전이금속 화합물은 저분자량의 공중합체 제조에 기여하며, 제1전이금속 화합물에 비하여 상대적으로 낮은 공단량체 혼입률을 나타낸다.
구체적으로, 상기 화학식 2로 표시되는 제2전이금속 화합물은 하기 화학식 2-1 또는 2-2로 표시되는 화합물일 수 있다:
[화학식 2-1]
Figure PCTKR2023018154-appb-img-000006
[화학식 2-2]
Figure PCTKR2023018154-appb-img-000007
상기 화학식 2-1 및 2-2에 있어서,
M2는 Ti, Zr 또는 Hf일 수 있고, 보다 구체적으로는 Zr일 수 있다.
또, A2는 C2-6 알킬렌일 수 있으며, 보다 구체적으로는 에틸렌, 프로필렌, 또는 부틸렌일 수 있다.
또, R23 및 R23'은 각각 독립적으로 수소, C1-8 알킬, 또는 C2-12 알콕시알킬일 수 있으며, 보다 구체적으로는 수소, n-부틸, 또는 t-부톡시헥실일 수 있다.
또, X21 및 X22는 각각 독립적으로 클로로 또는 메틸일 수 있으며, 보다 구체적으로는 클로로일 수 있다.
보다 구체적으로 상기 화학식 2로 표시되는 제2전이금속 화합물은 하기 화합물들로 이루어진 군에서 선택되는 어느 하나 일 수 있다:
Figure PCTKR2023018154-appb-img-000008
상기 화학식 2로 표시되는 제2 전이금속 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 이하 합성예를 참고할 수 있다.
한편, 본 발명에 따른 혼성 메탈로센 촉매에 있어서, 상기 제2 전이금속 화합물은 라세믹 이성질체이다.
본 명세서에서, "라세믹 형태(racemic form)" 또는 "라세믹체" 또는 "라세믹 이성질체"는, 두 개의 리간드 상의 동일한 치환체가, 상기 화학식 2에서 M2로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및 상기 리간드 부분의 중앙에 대해 반대편 상에 있는 형태를 의미한다.
한편, 본 명세서에서 용어 "메조 형태(meso isomer)" 또는 "메조 이성질체"는, 상술한 라세믹 이성질체의 입체 이성질체로서, 두 개의 리간드 상의 동일한 치환체가, 상기 화학식 2에서 M2로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및 상기 리간드 부분의 중앙에 대해 동일편 상에 있는 형태를 의미한다.
또, 본 발명에 따른 혼성 메탈로센 촉매는 상기 제1 및 제2 전이금속 화합물의 몰비 제어를 통해 촉매 활성을 증가시키고, 제조되는 중합체의 물성을 더욱 개선할 수 있다.
일례로, 상기 혼성 메탈로센 촉매는 제1 및 제2전이금속 화합물을 4:1 내지 3:2의 몰비로 포함할 수 있다. 상기한 혼합비 조건을 만족할 경우 촉매의 활성이 우수하게 유지되면서, 혼성 담지 촉매로부터 제조되는 폴리에틸렌의 결정 구조가 더욱 최적화되고, 라멜라 구조의 분포가 보다 균일화되어 낙하 충격 강도 및 HAZE 특성을 더욱 향상시킬 수 있다. 보다 구체적으로는 상기 혼성 메탈로센 촉매는 제1 및 제2전이금속 화합물을 3:1 내지 3:2의 몰비로 포함할 수 있다.
또, 본 발명에 따른 혼성 메탈로센 촉매는 담체 및 조촉매 중 1종 이상을 더 포함할 수 있다.
상기 혼성 메탈로센 촉매가 담체를 포함하는 경우, 상기 제1 및 제2 전이금속 화합물은 담체에 담지된 담지 촉매의 형태로 사용된다.
상기 담체로는, 표면에 반응성이 큰 하이드록시기, 실라놀기 또는 실록산기를 갖는 담체를 사용할 수 있으며, 이를 위해 하소(calcination)에 의해 표면 개질되거나, 또는 건조에 의해 표면에 수분이 제거된 것이 사용될 수 있다.
예컨대, 실리카겔을 하소하여 제조한 실리카, 고온에서 건조한 실리카와 같은 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
담지 촉매 상태로 이용시, 제조되는 중합체의 입자 형태 및 벌크 밀도가 우수하며, 종래의 슬러리 중합 또는 벌크 중합, 기상 중합 공정에 적합하게 사용 가능하다. 또, 여러 담체 들 중에서도 실리카 담체는, 상기 전이금속 화합물의 작용기가 화학적으로 결합하여 담지되기 때문에, 에틸렌 중합공정에서 담체 표면으로부터 유리되어 나오는 촉매가 거의 없으며, 그 결과 슬러리 또는 기상 중합으로 폴리에틸렌을 제조할 때 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링을 최소화할 수 있다.
상기 담체는 20 내지 40 ㎛의 평균 입경(D50)을 갖는 것일 수 있다. 상기한 입자 크기를 가질 경우 보다 우수한 효율로 전이금속 화합물을 담지할 수 있고, 결과로서 촉매 활성을 높일 수 있다. 보다 구체적으로는 20 ㎛ 이상, 또는 25 ㎛ 이상이고, 40 ㎛ 이하, 또는 30 ㎛ 이하일 수 있다.
한편, 본 발명에 있어서, 상기 담체의 평균 입경(D50)은 입자 크기(입경)에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 상기 D50은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 구체적으로는, 측정 대상 담체를 탈이온수 등의 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 크기를 산출하고, 이를 평균 입자 크기로 한다.
또 상기 담체에 담지시, 상기 제1 및 제2 전이금속 화합물은 일례로 실리카 담체 1,000g을 기준으로 각각 10 mmol 이상, 또는 20mmol 이상, 또는 25mmol 이상이고, 100mmol 이하, 또는 90mmol 이하, 또는 80mmol 이하, 또는 78mmol 이하의 함량 범위로 담지될 수 있다. 상기 함량 범위로 담지될 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
또, 상기 혼성 메탈로센 촉매는 높은 활성과 공정 안정성을 향상시키는 측면에서 조촉매를 더 포함할 수 있다.
구체적으로, 상기 조촉매는 하기 화학식 3으로 표시되는 화합물 중 1종 이상을 포함할 수 있다.
[화학식 3]
-[Al(R41)-O]a-
상기 화학식 3에서,
R41는 할로겐; 또는 할로겐으로 치환 또는 비치환된 C1-20 하이드로카빌이고;
a는 2 이상의 정수이다.
한편, 본 명세서에 있어서, 하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 아르알키닐기, 알킬아릴기, 알케닐아릴기 및 알키닐아릴기 등을 포함할 수 있다. 그리고, 탄소수 1 내지 20의 하이드로카빌기는 탄소수 1 내지 15 또는 탄소수 1 내지 10의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 하이드로카빌기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, n-헥실기, n-헵틸기, 사이클로헥실기 등의 직쇄, 분지쇄 또는 고리형 알킬기; 또는 페닐기, 나프틸기, 또는 안트라세닐기 등의 아릴기일 수 있다.
상기 화학식 3로 표시되는 화합물의 구체적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등의 알킬알루미녹산계 화합물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기한 화합물들 중에서도 상기 조촉매는 보다 구체적으로는 메틸알루미녹산과 같은 알킬알루미녹산계 조촉매일 수 있다.
상기 알킬알루미녹산계 조촉매는, 상기 제1 및 제2전이금속 화합물을 안정화시키고, 또 루이스 산으로 작용하여, 상기 제1 및 제2전이금속 화합물의 브릿지 그룹(bridge group)에 도입된 작용기와 루이스 산-염기 상호 작용을 통한 결합을 형성할 수 있는 금속 원소를 포함함으로써 촉매 활성을 더욱 증진시킬 수 있다.
또, 상기 조촉매의 사용량은 목적하는 촉매와 폴리에틸렌의 물성 또는 효과에 따라 적절하게 조절될 수 있다. 예컨대 상기 담체로서 실리카를 사용하는 경우, 상기 조촉매는 담체 중량당, 예컨대, 실리카 1,000g을 기준으로 1,000g 이상, 또는 5,000g 이상, 또는 7,000g 이상이고, 10,000g 이하, 또는 8,000g 이하, 또는 7,800g 이하의 함량으로 담지될 수 있다.
상기한 구성을 갖는 본 발명에 따른 혼성 메탈로센 촉매는, 상기한 구성을 갖는 촉매 조성물은, 담체에 조촉매 화합물을 담지시키는 단계, 및 상기 담체에 상기 제1 및 제2전이금속 화합물을 담지시키는 단계를 포함하는 제조방법에 의해 제조될 수 있으며, 이때 조촉매와 제1 및 제2전이금속 화합물의 담지 순서는 필요에 따라 바뀔 수 있으며, 제1 및 제2 전이금속 화합물의 담지 순서 또한 필요에 따라 바뀔 수 있다. 상기 제1 및 제2 전이금속 화합물은 동시에 담지 될 수도 있다. 담지 순서에 따라 결정된 구조의 담지 촉매의 효과를 고려할 때, 이중에서도 담체에 대한 조촉매 담지 후, 제1 및 제2전이금속 화합물을 순차로 담지하는 것이, 제조된 담지 촉매가 폴리에틸렌의 제조 공정에서 높은 촉매 활성과 함께 보다 우수한 공정 안정성을 구현할 수 있다.
상술한 바와 같은, 본 발명에 따른 혼성 메탈로센 촉매는 특정 구조를 갖는 제1 및 제2전이금속 화합물을 포함함으로써, 우수한 촉매활성을 나타낼 수 있다. 이에 따라 상기 혼성 메탈로센 촉매는 올레핀계 단량체의 중합에 적합하게 사용될 수 있다.
이에, 본 발명에서는 상기 혼성 메탈로센 촉매의 존재 하에서, 올레핀계 단량체를 슬러리 중합시키는 단계를 포함하는 올레핀계 중합체의 제조방법, 구체적으로 폴리에틸렌의 제조방법을 제공한다.
구체적으로 본 발명에 따른 폴리에틸렌의 제조방법은, 상기한 혼성 메탈로센 촉매의 존재 하에 수소를 투입하며, 에틸렌 단량체와 올레핀 단량체를 슬러리 중합하는 단계를 포함한다.
상기 올레핀 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있다.
상기 올레핀 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-에이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 혼합하여 공중합할 수도 있다. 보다 구체적으로는 상기 올레핀 단량체는 1-헥센일 수 있다.
상기 올레핀 단량체의 투입량은 제조하고자 하는 폴리에틸렌의 물성에 따라 결정될 수 있다. 일례로, 본 발명에서 구현하고자 하는 폴리에틸렌의 물성 및 높은 낙하 충격 강도와 낮은 HAZE 특성을 고려할 때, 상기 올레핀 단량체는, 에틸렌 단량체와 올레핀 단량체를 포함하는 단량체 총 중량 기준 10 내지 15중량%로 투입될 수 있다. 보다 구체적으로는 상기 올레핀 단량체는, 에틸렌 단량체와 올레핀 단량체를 포함하는 단량체 총 중량 기준 10중량% 이상, 또는 11중량% 이상이고, 15중량% 이하, 또는 14중량% 이하로 투입될 수 있다.
상기 중합 반응은 수소 투입의 조건 하에 수행된다.
구체적으로는, 에틸렌 단량체와 올레핀 단량체를 포함하는 단량체 총 중량 기준, 수소를 5 내지 40ppm, 보다 구체적으로는 5ppm 이상, 또는 7 ppm 이상, 또는 8 ppm 이상이고, 40 ppm 이하, 또는 38 ppm 이하, 또는 35 ppm 이하의 양으로 투입될 수 있다. 상기한 범위로 투입될 경우 전술한 폴리에틸렌의 물성 구현이 보다 용이하다. 수소 무투입의 조건에서 중합 반응을 수행할 경우, 제조되는 폴리에틸렌의 용융지수(MI)가 크게 낮아져, 본 발명에서 목적하는 폴리에틸렌의 MI 조건 0.8 내지 1.2 g/10min을 구현할 수 없다.
상기 중합 반응은 슬러리 중합 반응으로 수행될 수 있다.
이에 따라, 하나의 연속식 슬러리 중합 반응기, 또는 루프 슬러리 반응기를 이용하여 수행될 수 있다.
또, 상기 혼성 담지 촉매는 탄소수 4 내지 12의 지방족 탄화수소 용매, 예를 들면 아이소부탄, 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
또 상기 중합 반응은 40℃ 이상, 또는 60℃ 이상, 또는 80℃ 이상이고, 110℃ 이하 또는 100℃ 이하, 또는 90℃ 이하의 온도에서 수행될 수 있다. 또 상기 중합 반응시 압력 조건을 더 제어할 경우, 5 bar 이상, 또는 10 bar 이상, 또는 20 bar 이상이고, 50 bar 이하, 또는 45 bar 이하, 또는 40 bar 이하의 압력 하에서 수행될 수 있다.
상기한 제조방법으로 제조되는 폴리에틸렌은 적절 수준의 결정성과 함께 균일하게 분포된 라멜라 구조를 갖는다. 이에 따라 높은 낙하충격강도와 낮은 HAZE 특성을 나타낸다. 바람직한 일 구현예에서, 상기 폴리에틸렌은 에틸렌/1-헥센 공중합체일 수 있다.
구체적으로, 상기 혼성 담지 촉매를 이용하여 제조되는 폴리에틸렌은 하기 (i) 내지 (iii)의 조건을 만족한다:
(i) ASTM D1505 규격에 따라 측정한 밀도: 0.915 내지 0.920 g/cm3
(ii) ASTM D1238 규격에 따라 190℃ 및 2.16kg의 조건에서 측정한 용융지수(MI): 0.8 내지 1.2 g/10min
(iii) 하기 수학식 1에 따라 산출된 BOCF (broad orthogonal crystalline fraction) index: 1 이상
[수학식 1]
BOCF index = {영역합/188.5560176} + {1/297.9631479}
상기 수학식 1에서, 영역합은 폴리에틸렌에 대한 CFC 분석을 통해 용리 온도(Te)와 중량평균 분자량(Log M)에 따른 분획의 함량을 등고선 그림으로 수득하는 단계; 상기 Te와 Log M에 따른 분획을 임의로 복수개의 영역으로 구분하고, 낙하 충격 강도에 대한 분획의 기여도에 따라 상기 각 영역에 대해 임의의 계수를 부여하여 영역합 계수 맵을 도출하는 단계; 상기 등고선 그림에 상기 영역합 계수 맵을 대입하고, 각 영역 별 signal의 넓이를 계산하여 각 영역 별 실 원소 값을 구하는 단계; 및 각 영역 별 실 원소 값에 상기에서 부여한 각 영역 별 계수 값을 곱한 후, 총 합을 구하여 영역합을 계산하는 단계;를 통해 산출한다.
일반적으로 선형 저밀도 폴리에틸렌의 낙하 충격 강도는 적정 수준의 결정성을 갖는 라멜라 구조가 Tie 사슬에 의해 연결될 때 증가한다. 즉, 낙하 충격 강도 상승을 위해서는 Tie가 될 수 있는 고분자량의 사슬이 비정질(amorphous) 영역으로 발산할 수 있도록 충분한 저결정성을 갖는 것이 필요하다.
본 발명자들은 CFC 분석 결과를 토대로, 낙하 충격 강도에 대한 폴리에틸렌 분획의 기여도에 따른 영역합 계수 맵을 도출하고, 이에 대한 선형 회귀를 통해 BOCF index를 정의하는 상기 수학식 1을 만들었다.
동일한 밀도 및 용융지수를 갖는 수지 중에서도 높은 낙하 충격 강도를 나타내는 수지는 낙하 충격 강도에 대한 기여도가 큰 분획의 함량이 높다. 이를 나타내는 파라미터를 본 발명에서는 BOCF index로 명명하고, 상기 수학식 1에서와 같이 나타내었다.
상세하게는, 도 1에서와 같이, 폴리에틸렌에 대한 CFC 분석을 통해 용리 온도(Te) 및 중량평균 분자량(log M)에 따른 분획의 함량을 등고선 그림으로 수득한다. 이때 상기 등고선 그림은 용리온도(Te)를 x축으로, 중량평균 분자량의 로그 값(log M)을 y축으로 한다. 도 1은 본 발명을 설명하기 위한 일 예일뿐, 본 발명이 이에 한정되는 것은 아니다.
다음으로, Te와 Log M에 따른 분획을 영역 별로 임의로 구분하고, 낙하 충격 강도에 대한 분획의 기여도에 따라 각 영역에 대해 양 또는 음의 계수를 임의로 부여하여 영역합 계수 맵을 도출한다. 이때 영역합 계수 맵은 용리온도(Te)를 x축으로, 중량평균 분자량의 로그 값(log M)을 y축으로 한다.
영역합 계수 맵에 있어서 주어진 용리 온도(Te)와 주어진 중량평균 분자량(Log M)에 해당하는 분획은 CFC(Te, Log M)으로 표시할 수 있다.
또, 각 영역에 대한 양 또는 음의 계수 부여는, 낙하 충격 강도를 높일 수 있는 분획의 영역에 대해서는 높은 양의 계수를 부여하고, 반대로 낙하 충격 강도를 저해할 수 있는 분획에 대해서는 음의 계수를 부여한다.
일례로 도 2는, Te와 Log M에 따른 분획을 LCHW(저결정-고분자량), MCHW(중결정-고분자량), HCHW(고결정-고분자량), LCMW(저결정-중분자량), MCMW(중결정-중분자량), HCMW(고결정-중분자량), LCLW(저결정-저분자량), MCLW(중결정-저분자량), HCLW(고결정-저분자량), LW(저분자량), HC(고결정), HC&LW(고결정&저분자량) 및 SF(soluble fraction)의 영역으로 각각 임의로 구분하고, 낙하 충격 강도에 대한 분획의 기여도에 따라 상기 각 영역에 대해 60, 40, 40, 40, 30, 0, 0, 0, 0, -10, -10, -25, 및 20의 계수를 부여하여 영역합 계수 맵을 도출한 것이다. 도 2는 본 발명을 설명하기 위한 일 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.
또, 도 2에 도시되지는 않았으나, 상기 Te와 Log M에 따른 분획을 각 영역으로 구분할 때, log M=6.5~8에 해당하는 HW(고분자량) 영역과, log M=2.0~3.0에 해당하는 ULW(초저분자량) 영역을 더 구분할 수 있으며, 이 경우, 이들 영역들에 대해서도 임의의 계수, 예를 들면 0을 부여할 수 있다.
다음으로, 상기 등고선 그림에 상기 영역합 계수 맵을 대입하고, 각 영역별 실 원소 값, 즉 각 영역 별 signal의 넓이를 하기 수학식 2의 sigma 수식을 이용하여 계산한다.
[수학식 2]
Figure PCTKR2023018154-appb-img-000009
상기 수학식 2에서, Te는 용리 온도이고, n=10 x Log M이며, 이때 M은 중량평균 분자량(g/mol)이다.
다음으로, 산출된 각 영역별 실 원소 값에 상기에서 부여한 각 영역 별 계수 값을 곱한 후, 총 합을 구하여 영역합을 계산하고, 이를 수학식 1에 대입하여 BOCF index를 산출할 수 있다.
도 3은 폴리에틸렌에 대한 CFC 분석 결과로부터 상기한 방법으로 계산한 각 영역별 실 원소 값에 각 영역 별 계수 값을 곱한 결과를 나타낸 맵으로, 본 발명을 설명하기 위한 일 예 일뿐, 본 발명이 이에 한정되는 것은 아니다.한편, BOCF index 산출을 위한 교차 분획 크로마토그래피(Cross Fractionation Chromatography, CFC) 분석 방법 및 조건은 이하 실험예에서 설명한 바와 같다.
본 발명에 따른 폴리에틸렌은 상기 수학식 1에 따라 계산한 BOCF index 가 1 이상, 보다 구체적으로 1 내지 1.5, 또는 1 내지 1.2이다. 상기한 범위의 BOCF index를 가짐에 따라 높은 낙하 충격 강도를 나타낼 수 있다.
또, 본 발명에 따른 폴리에틸렌은 ASTM D1505 규격에 따라 측정한 밀도가 0.915 내지 0.920 g/cm3이고, ASTM D1238 규격에 따라 190℃ 및 2.16kg의 조건에서 측정한 용융지수(MI)가 0.8 내지 1.2 g/10min인 조건을 만족한다.
또, 상기 폴리에틸렌은 ASTM D1505에 따라 측정한 밀도가 0.915 g/cm3 이상, 또는 0.9155 g/cm3 이상이고, 0.920 g/cm3 이하, 또는 0.919 g/cm3 이하이다. 일반적으로 폴리에틸렌의 밀도가 증가할수록 낙하 충격 강도는 낮아진다. 본 발명자들의 연구에 따르면 0.93 g/cm3 초과의 고밀도 폴리에틸렌의 경우 300 gf 이하의 낮은 낙하충격강도를 나타낸다. 한편, 본 발명에 따른 폴리에틸렌은 상기한 범위의 밀도를 가짐에 따라 우수한 낙하 충격 강도를 나타낸다.
또, 상기 폴리에틸렌은 ASTM D1238 규격에 따라 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수(MI2.16)가 0.8 g/10min 이상, 또는 0.85 g/10min 이상, 또는 0.89 g/10min 이상이고, 1.2 g/10min 이하, 또는 1.15 g/10min 이하, 또는 1.12g/10min 이하이다.
이와 같이 높은 BOCF index와 함께 저밀도 및 최적 범위의 용융 지수 조건을 만족함에 따라 상기 폴리에틸렌은 우수한 가공성과 함께 높은 낙하충격강도 및 개선된 HAZE 특성을 나타낼 수 있다.
구체적으로, 상기 폴리에틸렌은, 필름 제막기를 이용하여 폴리에틸렌 필름(BUR(Blown-Up Ratio) 2 내지 3, 보다 구체적으로는 2.5, 및 필름 두께 45 내지 55㎛, 보다 구체적으로는 50㎛)을 제조한 후, ASTM D1709 [Method A]에 따라 측정한 낙하 충격 강도가 1800 gf 이상, 보다 구체적으로는 1800 내지 2300 gf이다.
또, 상기 폴리에틸렌은 필름 제막기를 이용하여 폴리에틸렌 필름(BUR 2 내지 3, 보다 구체적으로는 2.5, 및 필름 두께 45 내지 55㎛, 보다 구체적으로는 50㎛)을 제조한 후, ISO 13468에 의거하여 측정한 필름의 헤이즈(haze)가 13% 이하, 보다 구체적으로는 1 내지 13%이다.
이와 같이 본 발명의 혼성 담지 촉매를 이용한 상기 제조방법으로 제조된 폴리에틸렌은 가공성, 낙하충격강도, 헤이즈(Haze) 특성이 우수하여, 용도에 따라 다양하게 적용될 수 있으며, 특히 높은 기계적 특성 및 투명성이 요구되는 필름(film)의 제조에 특히 유용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
한편, 본 명세서에서 상온은 23±5℃를 의미한다.
<전이금속 화합물의 제조>
합성예 1
Figure PCTKR2023018154-appb-img-000010
(A-1)
단계 1: 실란의 제조
2-Chloroethanol(1당량)을 톨루엔 (1M)에 용해시킨 용액에, Amberlyst® 15(H) (alfa aesar사제, wet, ion exchange resin)를 상기 2-Chloroethanol의 10wt%에 해당하는 양으로 투입하였다. 결과의 혼합물에 대해 상온에서 이소부텐 가스(isobutene gas)를 버블링 하였다. 결과로 수득한 반응물을 셀라이트로 여과한 후, 진공 건조하여 t-BuOEtCl을 수득하였다.
별도의 플라스크에 Mg(1.5 당량)를 준비하고, HCl과 아세톤을 이용하여 세척한 후, 진공 건조하였다. 결과로 수득한 반응물을 THF (1M)에 용해시킨 후, 앞서 수득한 t-BuOEtCl의 전체 투입량 중 10%에 해당하는 양을 투입하고, 환류(reflux) 하였다. Activation이 완료되면, 결과의 반응물을 50℃로 냉각하고, 나머지 90%에 해당하는 t-BuOEtCl을 서서히 투입한 후, 밤새(Overnight) 반응을 유지하였다. 반응 완료 후, 결과의 반응물을 셀라이트로 여과하였다. 결과로서 Grignard reagent시약인 tert-BuOEtMgCl를 제조하였다
별도의 플라스크에서 Methyltrichlorosilane(MeSiCl3) 1당량을 THF (1M)에 투입한 후, -25℃에서 Grignard reagent (tert-BuOEtMgCl)를 서서히 투입하였다. 밤새 교반한 후, 건조하여 용매를 제거하고, Hexane으로 치환한 후 여과하여 (t-BuOEt)MeSiCl2을 수득하였다.
단계 2: 전이금속 화합물의 제조
Tetramethylcyclopentadiene (TMCP) 1당량을 THF (0.3M)에 용해시켜 준비한 용액에 대해, -25℃에서 n-BuLi (1.05 당량)을 천천히 적가하고, 상온에서 3시간 동안 교반하였다. 결과의 반응 용액에 상기에서 제조한 (t-BuOEt)MeSiCl2 (1.05 당량)을 -10℃에서 투입한 후, 상온에서 밤새 교반하였다. 결과의 반응물에 t-Butylamine (2당량)을 투입하고, 밤새 교반하였다. 결과의 반응물을 건조하여 용매를 제거한 후, 에테르(Et2O) (0.3M)에 용해시켰다. 결과의 용액에 대해 -25℃에서 n-BuLi (2.05당량)을 투입하고, 상온에서 5시간 동안 교반하였다. 결과의 반응물에 대해, TiCl4(THF)2 (1당량)을 톨루엔 (0.3M)에 suspension시켜 제조한 슬러리를 투입하고, 상온에서 밤새 교반하였다. 반응이 완료되면, 결과의 반응물을 진공 건조하여 용매를 제거하고, DCM을 재투입한 후, 여과하여 LiCl을 제거하였다. 여액을 진공 건조하여 상기 구조의 전이금속 화합물(A-1)을 수득하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 0.67 (3H, s), 0.85 (2H, t), 1.18 (9H, s), 1.42 (9H, s), 2.13 (6H, s), 2.24 (6H, s), 3.34 (2H, s)
합성예 2
Figure PCTKR2023018154-appb-img-000011
(A-2)
상기 합성예 1의 단계 1에서 2-Chloroethanol 대신에 4-Chloro-1-butanol을 사용하여 (t-BuOBu)MeSiCl2를 제조하고, 또 단계 2에서 (t-BuOEt)MeSiCl2 대신에 상기 (t-BuOBu)MeSiCl2를 사용하는 것을 제외하고는, 상기 합성예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(A-2)를 제조하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 0.68 (3H, s), 0.89 (2H, t), 1.17 (9H, s), 1.31 (4H, m), 1.45 (9H, s), 2.11 (6H, s), 2.21 (6H, s), 3.33 (2H, s)
합성예 3
Figure PCTKR2023018154-appb-img-000012
(A-3)
상기 합성예 1의 단계 1에서 2-Chloroethanol 대신에 6-Chloro-1-hexanol을 사용하여 (t-BuOHex)MeSiCl2를 제조하고, 또 단계 2에서 (t-BuOEt)MeSiCl2 대신에 상기 (t-BuOHex)MeSiCl2를 사용하는 것을 제외하고는, 상기 합성예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(A-3)를 제조하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 0.66 (3H, s), 0.87 (2H, t), 1.18 (9H, s), 1.33 (4H, m), 1.42 (9H, s), 1.48 (2H, m), 2.13 (6H, s), 2.23 (6H, s), 3.34 (2H, s)
합성예 4
Figure PCTKR2023018154-appb-img-000013
(A-4)
상기 합성예 1의 단계 1에서 MeSiCl3 대신에 phenyltrichlorosilane (PhSiCl3)을 사용하여 (t-BuOEt)PhSiCl2를 제조하고, 또 단계 2에서 (t-BuOEt)MeSiCl2 대신에 상기 (t-BuOEt)PhSiCl2를 사용하는 것을 제외하고는, 상기 합성예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(A-3)를 제조하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 0.68 (3H, s), 0.79 (2H, t), 1.17 (9H, s), 1.41 (9H, s), 2.12 (6H, s), 2.22 (6H, s), 3.34 (2H, s), 7.28 (3H, m), 7.40 (2H, d)
합성예 5
Figure PCTKR2023018154-appb-img-000014
(A-5)
상기 합성예 1의 단계 1에서 2-Chloroethanol 대신에 4-Chloro-1-butanol을 사용하고, 또 MeSiCl3 대신에 phenyltrichlorosilane (PhSiCl3)을 사용하여 (t-BuOEt)PhSiCl2를 제조하고, 또 단계 2에서 (t-BuOEt)MeSiCl2 대신에 상기 (t-BuOBu)PhSiCl2를 사용하는 것을 제외하고는, 상기 합성예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(A-5)를 제조하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 0.66 (3H, s), 0.78 (2H, t), 1.16 (9H, s), 1.30 (4H, m), 1.40 (9H, s), 2.14 (6H, s), 2.23 (6H, s), 3.33 (2H, s), 7.30 (3H, m), 7.41 (2H, d)
합성예 6
Figure PCTKR2023018154-appb-img-000015
(A-6)
상기 합성예 1의 단계 1에서 2-Chloroethanol 대신에 6-Chloro-1-hexanol을 사용하고, 또 MeSiCl3 대신에 phenyltrichlorosilane (PhSiCl3)을 사용하여 (t-BuOHex)PhSiCl2를 제조하고, 또 단계 2에서 (t-BuOEt)MeSiCl2 대신에 상기 (t-BuOHex)PhSiCl2를 사용하는 것을 제외하고는, 상기 합성예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(A-6)를 제조하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 0.68 (3H, s), 0.80 (2H, t), 1.15 (9H, s), 1.32 (4H, m), 1.38 (2H, m), 1.41 (9H, s), 1.43 (2H, m), 2.14 (6H, s), 2.24 (6H, s), 3.34 (2H, s), 7.31 (3H, m), 7.42 (2H, d)
합성예 7
Figure PCTKR2023018154-appb-img-000016
1,2-Bis(3-indenyl)ethane을 THF (0.1M)에 용해시킨 용액에 대해, -25℃에서 n-BuLi (2.05당량)을 투입하고, 상온에서 5시간동안 교반하였다. 결과의 반응물에 대해, ZrCl4(THF)2 (1당량)을 THF (0.1M)과 혼합하여 제조한 슬러리를 투입하고, 상온에서 밤새 교반하였다. 반응이 완료되면 진공 건조하여 용매를 제거하고, DCM을 투입한 후 여과하여 LiCl을 제거하였다. 여액을 진공 건조한 후, DCM 및 Hexane을 첨가하여 상온에서 재결정시켰다. 생성된 고체를 여과하고, 진공 건조하여 고체상의 전이금속 화합물(rac B-1)을 수득하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 3.80 (4H, m), 6.23 (2H, s), 6.61 (2H, s), 7.22 (2H, q), 7.32 (2H, q), 7.50 (2H, d), 7.73 (2H, d)
합성예 8
Figure PCTKR2023018154-appb-img-000017
고압 반응기에 상기 합성예 7에서 제조한 전이금속 화합물(rac B-1)과 DCM (0.05M)을 넣고, 여기에 Pd/C (0.1당량)을 DCM (0.1M)과 혼합하여 제조한 슬러리를 투입하였다. 이후 반응기 내에 H2 가스를 20bar/g으로 채운 뒤 상온에서 밤새 교반하였다. 반응이 완료되면 셀라이트를 이용하여 여과하고, 진공 건조하여 용매를 제거하였다. 결과의 반응물에 헥산을 첨가하여 슬러리로 만든 후 여과하여 고체상의 전이금속 화합물(rac B-2)를 수득하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 1.59 (4H, m), 1.96 (4H, m), 2.48 (2H, m), 2.62 (4H, m), 3.06 (2H, m), 3.17 (4H, m), 5.65 (2H, s), 6.39 (2H, s)
합성예 9
Figure PCTKR2023018154-appb-img-000018
(rac B-3)
1,2-Bis(3-indenyl)ethane을 THF (0.1M)에 용해시킨 용액에 대해, -25℃에서 n-BuLi (2.05당량)을 투입하고, 상온에서 5시간동안 교반하였다. 결과의 반응물에 대해, butyl iodide (2.1당량)를 투입하고, 상온에서 밤새 교반하였다. 결과의 반응물에 물을 투입하고, 추출 플라스크를 통해 유기층을 분리 수득하였다. 유기층을 에테르로 2회 세척하고, MgSO4로 물을 제거한 후, 여과하여 용매를 제거하였다. 결과의 반응물에 THF (0.1M)을 투입하고, -25℃에서 n-BuLi (2.05당량)를 투입한 후, 상온에서 5시간 동안 교반하였다. 결과의 반응물에 대해, ZrCl4(THF)2 (1당량)을 THF (0.1M)과 혼합하여 제조한 슬러리를 투입하고, 상온에서 밤새 교반하였다. 반응이 완료되면 진공 건조하여 용매를 제거하고, DCM을 투입한 후 여과하여 LiCl을 제거하였다. 여액을 진공 건조한 후, DCM 및 Hexane을 첨가하여 상온에서 재결정시켰다. 생성된 고체를 여과하고, 진공 건조하여 고체상의 전이금속 화합물(rac B-3)을 수득하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 1.08 (6H, t), 1.48 (4H, m), 1.67 (4H, m), 2.78 (4H, t), 3.68 (4H, m), 6.23 (2H, s), 6.68 (2H, s), 7.38 (2H, q), 7.52 (2H, d), 7.81 (2H, d)
합성예 10
Figure PCTKR2023018154-appb-img-000019
(rac B-4)
Butyl iodide 대신에 butoxyhexyl iodide를 사용하는 것을 제외하고는 상기 합성예 9에서와 동일한 방법으로 수행하여 전이금속 화합물(rac B-4)를 수득하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 1.21 (18H, s), 1.40 (8H, m), 1.59 (8H, m), 2.64 (4H, t), 3.38 (4H, t), 3.66 (4H, m), 6.25 (2H, s), 6.71 (2H, s), 7.39 (2H, q), 7.54 (2H, d), 7.82 (2H, d)
합성예 11
Figure PCTKR2023018154-appb-img-000020
(C-1)
한국 공개 특허 제10-2022-0067494호의 비교 합성예 2에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-1)을 제조하였다.
합성예 12
Figure PCTKR2023018154-appb-img-000021
(C-2)
한국 공개 특허 제10-2022-0067494호의 비교 합성예 3에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-2)을 제조하였다.
합성예 13
Figure PCTKR2023018154-appb-img-000022
(C-3)
한국 공개 특허 제10-2015-0045369호의 제조예 2에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-3)을 제조하였다.
합성예 14
Figure PCTKR2023018154-appb-img-000023
(C-4)
한국 공개 특허 제10-2015-0045369호의 제조예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-4)을 제조하였다.
합성예 15
Figure PCTKR2023018154-appb-img-000024
(C-5)
한국 공개 특허 제10-2020-0064245의 제조예에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-5)을 제조하였다.
합성예 16
Figure PCTKR2023018154-appb-img-000025
(C-6)
한국 공개 특허 제10-2015-0063885호의 제조예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-6)을 제조하였다.
합성예 17
Figure PCTKR2023018154-appb-img-000026
(C-7)
한국 공개 특허 제10-2015-0063885호의 제조예 2에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-7)을 제조하였다.
합성예 18
Figure PCTKR2023018154-appb-img-000027
(C-8)
한국 공개 특허 제10-2020-0090041호의 제조예 4에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-8)을 제조하였다.
합성예 19
Figure PCTKR2023018154-appb-img-000028
(C-9)
한국 공개 특허 제10-2021-0032820호의 제조예 1에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-9)을 제조하였다.
합성예 20
Figure PCTKR2023018154-appb-img-000029
Tetramethylcyclopentadiene (TMCP) 1당량을 THF (0.3M)에 용해시켜 준비한 용액에 대해, -25℃에서 n-BuLi (1.05 당량)을 천천히 적가하고, 상온에서 3시간 동안 교반하였다. 결과의 반응 용액에 Me2SiCl2 (1.05 당량)을 -10℃에서 투입한 후, 상온에서 밤새 교반하여 mono-Si 화합물(b1) 포함 용액을 수득하였다.
다른 반응기에 2-methyl -4-phenyl-indene (1당량)을 MTBE (0.3M)에 용해시켜 제조한 용액에 대해, -25℃에서 n-BuLi (1.05 당량)을 천천히 적가하고, 상온에서 3시간 동안 교반하였다. 결과의 반응 용액에 대해 CuCN (2몰%)를 투입하고 30분동안 교반한 후, 상기에서 제조한 mono-Si 화합물(b1) 포함 용액을 투입하였다. 이후 상온에서 밤새 교반하고, 물을 이용하여 work-up 한 후, 건조하여 리간드(b2)를 수득하였다.
상기 리간드(b2)를 톨루엔/에테르 (2/1 부피비, 0.53M)에 용해시키고, 결과의 용액에 대해 -25℃에서 n-BuLi (2.05당량)을 투입한 후, 상온에서 5시간 동안 교반하여 리튬화된 리간드(lithiatied Ligand)를 제조하였다.
별도의 플라스크에서 ZrCl4 (1당량)을 담아 톨루엔 (0.17M)과 혼합하여 제조한 슬러리를, 상기 lithiatied Ligand에 투입하고, 상온에서 밤새 교반하였다. 반응이 완료되면 진공 건조하여 용매를 제거하고, 결과의 건조물에 대해 DCM을 투입하고, 여과하여 LiCl을 제거하였다. 여액을 진공 건조하고, DCM 및 hexane을 첨가하여 상온에서 재결정시켰다. 이후 생성된 고체를 여과하고, 진공 건조하여 고체상의 전이금속 화합물(C-10)을 수득하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 1.12 (3H, s), 1.23 (3H, s), 1.88 (3H, s), 1.93 (3H, s), 1.99(3H, s), 2.06 (3H, s), 2.28 (3H, s), 7.02 (1H, s), 7.11 (1H, m), 7.29 (1H, d), 7.40 (1H, m), 7.46 (2H, t), 7.60 (1H, d), 7.68 (2H, d)
합성예 21
Figure PCTKR2023018154-appb-img-000030
1,2-Bis(3-indenyl)ethane을 THF (0.1M)에 녹여 -25℃에서 n-BuLi (2.05 eq)를 투입한 뒤 상온에서 5 시간동안 교반하였다. 플라스크에 ZrCl4(THF)2 (1 eq)를 THF (0.1 M)에 Slurry를 만들어 투입한 후 상온에서 밤새 교반하였다.
반응이 완료되면, 용매를 진공 건조하고 DCM을 재투입하여 filter를 통해 LiCl를 제거하고, 여액을 진공 건조하고, DCM/Hexane을 첨가하여 상온에서 재결정화하였다. 이후 생성된 고체(racemic)를 filter하고 남은 여액을 냉장고(0oC)에 3일간 방치한 후 생성된 고체를 filter하여 고체상의 전이금속 화합물(meso-B-1)을 수득하였다.
1H NMR (500MHz, CDCl3, 7.26ppm): 3.68 (4H, m), 6.31 (2H, s), 6.68 (2H, s), 7.42 (2H, q), 7.52 (4H, m), 7.64 (2H, d)
<혼성 메탈로센 촉매의 제조>
제조예 1
20L SUS 고압 반응기에 톨루엔 2.0 kg 및 실리카 (SYLOPOL 952X, Grace Davision 사제, calcinated under 250 ℃) 700 g을 투입하고, 반응기의 온도를 40 ℃로 올리면서 교반하였다. 상기 반응기에 메틸알루미녹산(10wt% in toluene, Albemarle사제) 5.4 kg을 투입하고, 온도를 70 ℃ 로 올린 후, 약 200rpm으로 약 12시간 교반하였다. 이후 반응기의 온도를 40 ℃로 낮추고, 교반을 중지시켰다. 그리고, 반응 생성물을 약 10분동안 정치시킨 후, decantation 하였다. 다시 상기 반응 생성물에 톨루엔 2.0 kg 투입하여 약 10분간 교반하고, 교반을 중지하여 약 30분 동안 정치시킨 후, decantation 하였다.
상기 반응기에 톨루엔 2.0 kg 투입하고, 이어서 제1전이금속 화합물로서 상기 합성예 1에서 제조한 화합물(A-1)(40.2 mmol)과 제2전이금속 화합물로서 상기 합성예 7에서 제조한 화합물(rac B-1) (20.5 mmol), 그리고 톨루엔 1000 mL 를 투입하였다. 반응기의 온도를 85 ℃로 올리고, 약 90분간 교반하였다.
이후, 반응기의 온도를 상온으로 낮추고, 교반을 중지하여 반응 생성물을 약 30분간 정치시킨 후, 반응 생성물을 decantation 하였다. 이어서, 반응기에 헥산 3kg을 투입하고, 헥산 슬러리 용액을 20L filter dryer 로 이송하여 용액을 여과하고, 50 ℃에서 약 4시간 동안 감압 건조하여 1.5 kg의 혼성 메탈로센 촉매를 얻었다.
제조예 2 내지 15, 및 비교제조예 1-14
하기 표 1 및 표 2에 기재된 바와 같이, 제1 및 제2전이금속 화합물의 종류 및 혼합 몰비를 변경하는 것을 제외하고는 상기 제조예 1에서와 동일한 방법으로 수행하여 혼성 메탈로센 촉매를 제조하였다.
촉매 제1전이금속 화합물 제2전이금속 화합물 제1/제2전이금속 화합물의 투입량(mmol)
제조예 1 A-1 rac B-1 40.2/20.5
제조예 2 A-1 rac B-2 40.2/20.5
제조예 3 A-1 rac B-3 40.2/20.5
제조예 4 A-1 rac B-4 40.2/20.5
제조예 5 A-2 rac B-1 51.5/20.5
제조예 6 A-2 rac B-2 51.5/20.5
제조예 7 A-2 rac B-3 51.5/20.5
제조예 8 A-2 rac B-4 51.5/20.5
제조예 9 A-3 rac B-1 38.5/20.5
제조예 10 A-3 rac B-2 38.5/20.5
제조예 11 A-3 rac B-3 38.5/20.5
제조예 12 A-3 rac B-4 38.5/20.5
제조예 13 A-4 rac B-4 42.5/20.5
제조예 14 A-5 rac B-4 54.5/20.5
제조예 15 A-6 rac B-4 41.5/20.5
촉매 제1전이금속 화합물 제2전이금속 화합물 제1/제2전이금속 화합물의 투입량(mmol)
비교제조예 1 A-3 C-1 40.2/20.5
비교제조예 2 A-3 C-2 40.2/20.5
비교제조예 3 A-3 C-3 40.2/20.5
비교제조예 4 A-3 C-4 40.2/20.5
비교제조예 5 A-3 C-5 40.2/20.5
비교제조예 6 A-3 C-6 40.2/20.5
비교제조예 7 A-3 C-7 40.2/20.5
비교제조예 8 A-3 C-8 40.2/20.5
비교제조예 9 A-3 C-9 40.2/20.5
비교제조예 10 C-3 rac B-1 40.2/20.5
비교제조예 11 C-3 rac B-2 40.2/20.5
비교제조예 12 C-10 rac B-1 40.2/20.5
비교제조예 13 C-10 rac B-2 40.2/20.5
비교제조예 14 A-1 meso B-1 40.2/20.5
<폴리에틸렌의 제조>
실시예 1 내지 15, 및 비교예 1 내지 15
중합 반응기로 isobutene slurry loop process가 가능하며, 약 7m/s의 반응 유속으로 운전되는 140L 연속 중합기를 준비하였다. 그리고, 반응기에 표 2 및 표 3에 기재된 바와 같이 폴리에틸렌 중합에 필요한 반응물들을 연속적으로 투입하였다. 각 중합 반응에서 사용된 촉매는 표 1 또는 표 2에 기재된 제조예 또는 비교제조예에서 제조한 것을 사용하였으며, 촉매는 isobutene slurry에 혼합하여 투입하였다. 또 상기 중합 반응은 약 40 bar의 압력 및 약 85℃의 온도에서 수행하였다.
상기 중합 반응의 주요 조건을 표 3 및 표 4에 나타내었다.
촉매 에틸렌 투입량 (kg/hr) 1-Hexene 투입량1 (wt%) 수소 투입량2 (ppm) 활성
(kgPE/kgSiO2·hr)
실시예 1 제조예 1 25.0 14.0 11 7.6
실시예 2 제조예 2 25.0 14.0 10 5.1
실시예 3 제조예 3 24.5 12.5 20 3.2
실시예 4 제조예 4 20.3 14.0 14 3.9
실시예 5 제조예 5 20.4 11.5 28 4.5
실시예 6 제조예 6 20.0 13.1 16 2.8
실시예 7 제조예 7 20.0 11.7 11 4.9
실시예 8 제조예 8 20.0 13.5 9 4.8
실시예 9 제조예 9 20.0 13.5 38 3.4
실시예 10 제조예 10 20.0 11.9 33 3.0
실시예 11 제조예 11 20.2 12.1 8 5.5
실시예 12 제조예 12 20.1 13.4 8 4.8
실시예 13 제조예 13 18.7 12.0 10 4.4
실시예 14 제조예 14 20.0 12.0 10 5.0
실시예 15 제조예 15 23.0 11.0 25 3.0
촉매 에틸렌 투입량 (kg/hr) 1-Hexene 투입량1 (wt%) 수소 투입량2 (ppm) 활성
(kgPE/kgSiO2·hr)
비교예 1 비교제조예 1 20.2 13.5 11 4.0
비교예 2 비교제조예 2 17.8 14.2 11 3.7
비교예 3 비교제조예 3 19.3 14.0 28 1.4
비교예 4 비교제조예 4 20.2 11.2 17 4.5
비교예 5 비교제조예 5 21.0 14.4 17 1.5
비교예 6 비교제조예 6 20.1 12.0 38 2.0
비교예 7 비교제조예 7 20.0 8.3 30 2.0
비교예 8 비교제조예 8 20.0 9.4 8 2.7
비교예 9 비교제조예 9 21.2 10.1 11 5.6
비교예 10 비교제조예 10 19.9 10.9 40 1.8
비교예 11 비교제조예 11 21.1 9.5 17 1.8
비교예 12 비교제조예 12 20.0 14.9 0 0.8
비교예 13 비교제조예 13 19.5 15.0 0 0.7
비교예 14 비교제조예 14 20.0 13.5 10 1.5
비교예 15 제조예 1 22.0 13.0 0 4.5
상기 표 3 및 표 4에서, 활성 (Activity, kgPE/kgSiO2·hr)은 단위 시간(hr)을 기준으로 사용된 담지 촉매 중량(kg)당 생성된 중합체의 중량(kg PE)의 비로 계산하였다.
또 1-Hexene 투입량(wt%)는 에틸렌 및 1-헥센을 포함하는 단량체 총 중량을 기준으로 1-Hexene 투입량을 백분율로 계산한 것이고, 수소 투입량(ppm)은 에틸렌 및 1-헥센을 포함하는 단량체 총 중량을 기준으로 한 것이다.
실험예
실시예 및 비교예에서 제조된 폴리에틸렌에 대해 하기와 같이 물성을 측정하여 그 결과를 하기 표 5 및 표 6에 나타내었다.
(1) 밀도(density): ASTM D1505 규격에 따라 측정하였다
(2) Melt Index (MI2.16): ASTM D1238 (조건 E, 190 ℃, 2.16kg 하중) 규격에 따라 측정하였다.
(3) BOCF
상기 실시예 및 비교예에서 제조한 폴리에틸렌에 대하여 하기와 같은 방법으로 교차 분획 크로마토그래피(Cross Fractionation Chromatography, CFC) 분석을 수행하고, 그 결과로부터 BOCF (broad orthogonal crystalline fraction) index를 산출하였다.
[교차 분획 크로마토그래피(CFC) 측정 조건 (TREF 및 GPC 분석 포함)
- 분석장비: Polymer Char CFC - 7890B (G3440D)
(Detector: Intergrated Detector IR5 MCT)
- 샘플 준비 및 투입: 상기 실시예 또는 비교예에서 제조한 폴리올레핀 32 mg을 10 mL vial에 넣어 autosampler에 배치하고, 1,2,4-트리클로로벤젠 (1,2,4-trichlorobenzene, TCB) 8 mL 투입 후 160℃에서 90분 동안 용해하고, 140℃에서 20분간 안정화(stabilization) 시켰다. Nitrogen purge 후 추출하여 온도 상승 용출 분별 컬럼(TREF column: temperature rising elution temperature column)에 loading하였다.
- 결정화(crystallization): 앞서 TREF column에 loading 한 샘플 온도를 140℃로 맞춘 후, 140 ℃에서 35 ℃ 까지 0.5 ℃/min 속도로 냉각하고, 15분간 유지하였다.
상기 안정화 및 결정화시의 상세 조건은 하기와 같다:
Figure PCTKR2023018154-appb-img-000031
- 온도 상승 용출 분별 (TREF, temperature rising elution temperature) 분석: 앞서 Crystallization 한 샘플을 35 ℃ 부터 120 ℃까지 1 ℃/min의 속도로 하기 fraction temperature까지 승온한 후 고정하고, 해당 온도에서 5분 동안 용출되는 분획들의 농도를 측정하였다. 이러한 농도 측정 결과로부터 용리온도(Te)(℃)를 x축으로 하고, 중합체의 중량평균 분자량(Mw)(g/mol)을 y축으로 하는 TREF 분석 그래프를 도출하였다.
TREF 분석 그래프로부터, 용리온도 35℃ 미만의 영역에서 용출되는 가용성분획(soluble fraction; SF)의 함량 비율(<35℃), 용리온도 35℃ 이상이고 55℃ 미만의 영역에서 용출되는 분획의 함량 비율, 용리온도 55℃ 이상이고 75℃ 이하의 영역에서 용출되는 분획의 함량 비율, 그리고 75℃ 초과의 영역에서 용출되는 분획의 함량 비율(>75℃)을 각각 산출하였다(wt%).
또, 상기 TREF 분석 그래프에서 SF를 제외한 용리온도 75℃ 이하의 영역에서 용출되는 저결정성 중합체의 함량 비율(WL)과, 용리온도 75℃ 초과의 영역에서 용출되는 고결정성 중합체의 함량 비율(WH)을 산출하였다(wt%).
또, TREF 분석 그래프에서 가장 낮은 피크의 용리 온도 값(TeL)과, 가장 높은 피크의 용리 온도 값(TeH)를 확인하였다.
< fraction temperature>
35℃/40℃/43℃/46℃/49℃/52℃/55℃/58℃/61℃/64℃/67℃/70℃/73℃/76℃/79℃/82℃/85℃/88℃/91℃/94℃/97℃/100℃/105℃/120℃
<측정 조건>
Figure PCTKR2023018154-appb-img-000032
- GPC 분석: 앞서 TREF 분석에서 각 온도별 용출된 분획들을 GPC 장치(PL-GPC220)의 GPC Column으로 이동시킨 후, 하기 측정 조건에 따라 용출된 분자들의 분자량을 측정하였다.
또 측정 결과로부터, 상기 TREF 분석 그래프에서 SF를 제외한 용리온도 75℃ 이하의 영역에서 용출되는 저결정성 중합체의 중량평균 분자량(ML)과, 용리온도 75℃ 초과의 영역에서 용출된 고결정성 중합체의 중량평균 분자량(MH)를 각각 산출하였다.
<측정 조건>
Figure PCTKR2023018154-appb-img-000033
분석 결과를 토대로, 하기 수학식 1에 따라 산출된 BOCF (broad orthogonal crystalline fraction) index를 산출하였다:
[수학식 1]
BOCF index = {영역합/188.5560176} + {1/297.9631479}
상기 수학식 1에서, 영역합은, 폴리에틸렌에 대한 CFC 분석을 통해 용리 온도(Te)와 중량평균 분자량(Log M)에 따른 분획의 함량을 등고선 그림으로 수득하는 단계; 상기 Te와 Log M에 따른 분획을 임의로 복수개의 영역으로 구분하고, 낙하 충격 강도에 대한 분획의 기여도에 따라 상기 각 영역에 대해 임의의 계수를 부여하여 영역합 계수 맵을 도출하는 단계; 상기 등고선 그림에 상기 영역합 계수 맵을 대입하고, 각 영역 별 signal의 넓이를 계산하여 각 영역 별 실 원소 값을 구하는 단계; 및 각 영역 별 실 원소 값에 상기에서 부여한 각 영역 별 계수 값을 곱한 후, 총 합을 구하여 영역합을 계산하는 단계;를 통해 산출한다.구체적으로 본 실험예에서는 상기 영역합은 하기와 같은 방법으로 산출하였다.
먼저 상기 폴리에틸렌에 대한 CFC 분석을 통해 용리 온도(Te)와 중량평균 분자량(Log M)에 따른 분획의 함량을 등고선 그림으로 수득하였다.
다음으로, Te와 Log M에 따라 분획을 하기와 같이 13개 영역으로 구분하고, 낙하 충격 강도에 대한 분획의 기여도에 따라 각각의 영역에 대해 60, 40, 40, 40, 30, 0, 0, 0, 0, -10, -10, -25, 및 20의 계수를 임의로 부여하여 영역합 계수 맵을 도출하였다.
LCHW(저결정-고분자량) 영역: Te(℃) 35~52, 및 Log M(=n/10) 55/10~80/10에 해당:
MCHW(중결정-고분자량) 영역: Te(℃) 53~74, 및 Log M(=n/10) 55/10~80/10에 해당;
HCHW(고결정-고분자량) 영역: Te(℃) 75~93, 및 Log M(=n/10) 55/10~80/10에 해당;
LCMW(저결정-중분자량) 영역: Te(℃) 35~52, 및 Log M(=n/10) 45/10~54/10에 해당;
MCMW(중결정-중분자량) 영역: Te(℃) 53~74, 및 Log M(=n/10) 45/10~54/10에 해당;
HCMW(고결정-중분자량) 영역: Te(℃) 75~93, 및 Log M(=n/10) 45/10~54/10에 해당;
LCLW(저결정-저분자량) 영역: Te(℃) 35~52, 및 Log M(=n/10) 35/10~44/10에 해당;
MCLW(중결정-저분자량) 영역: Te(℃) 53~74, 및 Log M(=n/10) 35/10~44/10에 해당;
HCLW(고결정-저분자량) 영역: Te(℃) 75~93, 및 Log M(=n/10) 35/10~44/10에 해당;
LW(저분자량) 영역: Te(℃) 30~93, 및 Log M(=n/10) 20/10~34/10에 해당;
HC(고결정) 영역: Te(℃) 94~120, 및 Log M(=n/10) 35/10~80/10에 해당;
HC&LW(고결정&저분자량) 영역: Te(℃) 94~120, 및 Log M(=n/10) 20/10~34/10에 해당; 및
SF(soluble fraction) 영역: Te(℃) 30~34, 및 Log M(=n/10) 35/10~80/10에 해당.
다음으로, 상기 등고선 그림에 상기 영역합 계수 맵을 대입하고, 각 영역별 실 원소 값, 즉 각 영역 별 signal의 넓이를 하기 sigma 수식을 이용하여 산출하였다:
[수학식 2]
Figure PCTKR2023018154-appb-img-000034
상기 수학식 2에서, Te는 용리 온도이고, n=10 x LogM이며, 이때 M은 중량평균 분자량(g/mol)이다.
구체적으로, 각 영역별 실 원소 값을 하기 수식에서와 같이 계산하였다:
Figure PCTKR2023018154-appb-img-000035
Figure PCTKR2023018154-appb-img-000036
영역 별 계수 값으로 0을 부여한 HCMW 영역, LCLW 영역, MCLW 영역, 및 HCLW 영역에서의 실 원소 값 계산 식은 생략하였다.
다음으로, 상기에서 계산한 각 영역별 실 원소 값에 상기에서 부여한 각 영역 별 계수 값을 곱한 후, 총 합을 구하여 영역합을 계산하였다.
일례로, 하기 수학식 3에서와 같이 영역 합을 계산하였다.
[수학식 3]
영역 합= (LCHW×60) + (MCHW×40) + (HCHW×40) + (LCMW×40) + (MCMW×30) + (HCMW×0) + (LCLW×0) + (MCLW×0) + ((HCLW×0) + (LW×(-10)) + (HC×(-10)) + (HC&LW×(-25)) + (SF×20)
상기 수학식 3에서, LCHW, MCHW, HCHW, LCMW, MCMW, HCMW, LCLW, MCLW, HCLW, LW, HC, HC&LW 및 SF 는, 각각 상기에서 계산한 LCHW 영역, MCHW 영역, HCHW 영역, LCMW 영역, MCMW 영역, HCMW 영역, LCLW 영역, MCLW 영역, HCLW 영역, LW 영역, HC 영역, HC&LW 영역 및 SF 영역에서의 실 원소 값이다.
상기한 방법으로 산출한 영역 합을 상기 수학식 1에 대입하여 BOCF index 값을 계산하였다.
(4) 필름 제조
상기 실시예 또는 비교예에서 제조한 폴리에틸렌 총 중량 기준 산화방지제(Songnox 1076 (Songwon):Songnox 1680(Songwon)=1:2중량비) 1500ppm 및 3M Dynamar Polymer Processing Additive FX5929 300ppm을 투입하여 혼합하고, 이축압출기(Twin screw extruder; TEK 30 MHS, SMPLATECH CO.사제, 직경 32 파이 , L/D=40)를 이용하여 190℃ 압출 온도에서 35kg/hr의 압출량으로 압출하여, 약 18kg의 펠렛상 필름 형성용 조성물을 제조하였다.
상기에서 제조한 필름 형성용 조성물을 하기 필름 압출 조건으로 인플레이션 성형하여 필름을 제조하였다.
<필름 성형 조건>
단축압출기(유진엔지니어링 Single Screw Extruder, Blown Film M/C, 50 파이, L/D=32)
용융온도(또는 압출온도): 180℃
Die Gap: 2.0mm
Die diameter: 120mm
팽창비(Blown-Up Ratio): 2.5
Frost Line Height 200~250mm 유지
샘플 압출량: 300~500g/min
냉각: dual air-ring을 사용
필름 두께: 50㎛
(5) 낙하 충격 강도(Dart drop impact strength)
상기 (4)에서 제조한 실시예 및 비교예의 폴리에틸렌 필름에 대해, ASTM D1709 [Method A] 규격에 따라 낙하 충격 강도를 측정하였다. 이때, 필름 시료당 20회 이상 측정하여 그 평균값을 취하였다.
(6) 헤이즈(HAZE)
상기 (4)에서 제조한 실시예 및 비교예의 폴리에틸렌 필름에 대해, ISO 13468 기준에 따라 필름의 헤이즈를 측정하였다.
밀도
(g/cm3)
MI2.16
(g/10min)
BOCF index 낙하충격강도
(gf)
HAZE
(%)
실시예 1 0.9180 0.95 1.077 1980 11
실시예 2 0.9181 0.97 1.044 1890 10
실시예 3 0.9170 0.89 1.121 2015 12
실시예 4 0.9160 1.01 1.190 2180 10
실시예 5 0.9161 0.98 1.059 1965 11
실시예 6 0.9159 0.98 1.131 1895 11
실시예 7 0.9156 1.00 1.059 2050 13
실시예 8 0.9175 1.01 1.056 1960 10
실시예 9 0.9192 1.11 1.102 2080 9
실시예 10 0.9175 0.95 1.103 2100 11
실시예 11 0.9190 0.97 1.046 1980 12
실시예 12 0.9189 0.98 1.025 1875 10
실시예 13 0.9167 0.98 1.093 1950 10
실시예 14 0.9185 1.05 1.035 1849 10
실시예 15 0.9175 0.89 1.141 1980 11
밀도
(g/cm3)
MI2.16
(g/10min)
BOCF index 낙하충격강도
(gf)
HAZE
(%)
비교예 1 0.9165 1.05 0.665 1200 23
비교예 2 0.9165 1.08 0.777 1420 25
비교예 3 0.9174 1.00 0.622 1150 18
비교예 4 0.9155 0.99 0.663 1240 24
비교예 5 0.9161 0.96 0.894 1650 24
비교예 6 0.9168 1.05 0.562 1050 15
비교예 7 0.9180 1.00 0.767 1450 28
비교예 8 0.9174 0.89 0.719 1340 24
비교예 9 0.9163 1.08 0.609 1120 21
비교예 10 0.9171 0.98 0.891 1640 28
비교예 11 0.9165 0.89 0.911 1685 32
비교예 12 0.9208 1.28 0.640 1150 16
비교예 13 0.9216 1.35 0.558 1050 14
비교예 14 0.9180 1.02 0.886 1640 15
비교예 15 0.9178 0.15 1.254 2206 23
실시예 1 내지 15의 폴리에틸렌은, 중합시 고분자량 고공중합성의 제1전이금속 화합물과, 저분자량 저공중합성의 제2전이금속 화합물을 포함하는 혼성 메탈로센 촉매의 사용으로 인해 높은 낙하 충격 강도를 나타내었으며, 이와 더불어 고분자의 결정 구조에 기인한 낮은 HAZE로 우수한 투명성을 나타내었다.
그러나 비교예 1 및 2의 경우, 본 발명에서의 제2전이금속 화합물의 조건을 만족하지 않는 전이금속 화합물을 포함하는 촉매의 사용으로 인해, 제조되는 폴리에틸렌 내 공단량체의 함량이 상대적으로 증가하였고, 결과 낙하 충격 강도의 감소와 높은 HAZE를 나타내었다.
또 비교예 3 내지 9의 경우에도, 본 발명에서의 제2전이금속 화합물의 조건을 만족하지 않는 전이금속 화합물을 포함하는 촉매의 사용으로 인해 제조되는 폴리에틸렌 내 공단량체의 분배가 불균일하고, 또 균일한 라멜라 구조를 형성하지 못하였다. 결과 낮은 낙하 충격 강도와 높은 HAZE를 나타내었다.
한편, 비교예 10의 경우, 높은 낙하 충격 강도를 나타내었지만, 지나치게 높은 HAZE로 인해 필름용으로는 적합하지 않았다.
비교예 10 및 11의 경우, 본 발명에서의 제1전이금속 화합물의 조건을 만족하지 않는 전이금속 화합물을 포함하는 촉매의 사용으로 인해, 고분자량 고공중합이 불리하였고, 결과 동일 밀도를 갖는 폴리에틸렌과 비교하여 저하된 낙하 충격 강도와 높은 HAZE를 나타내었다.
비교예 12 및 13의 경우, 저분자량 저공중합성의 전이금속 화합물의 조합 사용으로, 높은 MI 및 밀도를 나타내었다. 결과 낙하 충격 강도가 크게 저하되었다.
또, 비교예 14의 경우, 본 발명에서의 제2전이금속 화합물(B-1)의 메조(meso) 이성질체에 해당하는 화합물을 포함하는 촉매를 사용하였으나, 매우 낮은 촉매 활성으로 인해 낙하 충격 강도가 저하되고, HAZE는 증가하였다.
비교예 15의 경우, MI가 크게 저하되었고, 결과 실시예와 비교하여 HAZE가 크게 증가하였다.
상기 실험결과로부터, 필름의 높은 낙하 충격 강도와 낮은 HAZE는 폴리에틸렌이 적정 수준의 결정성과, 균일한 라멜라 구조를 동시에 가질 때 구현될 수 있음을 확인하였다.

Claims (17)

  1. 하기 화학식 1로 표시되는 제1전이금속 화합물; 및
    하기 화학식 2로 표시되는 제2전이금속 화합물;을 포함하는,
    혼성 메탈로센 촉매:
    [화학식 1]
    Figure PCTKR2023018154-appb-img-000037
    상기 화학식 1에서,
    M1은 4족 전이금속이고,
    A1는 C, Si, 또는 Ge이며,
    R11 내지 R14는 각각 독립적으로 수소, C1-20 알킬, C2-20 알케닐, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
    R15 및 R16 중 하나는 C2-20 알콕시알킬이고, 나머지는 C1-20 알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이며,
    R은 C1-20 알킬이고,
    X11 및 X12은 각각 독립적으로 할로겐 또는 C1-20 알킬이며,
    [화학식 2]
    Figure PCTKR2023018154-appb-img-000038
    상기 화학식 2에서,
    M2는 4족 전이금속이고,
    A2는 C2-20 알킬렌이며,
    R21, R22, R21' 및 R22'는 각각 독립적으로 수소, C1-20 알킬, C1-20 알콕시, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, C7-20 아릴알킬, 또는 C2-20 알콕시알킬이거나, 또는 R21과 R22, 및 R21'과 R22'가 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성하고, 상기 지방족 고리, 방향족 고리, 또는 헤테로 고리는 비치환되거나 또는 C1-20 알킬로 치환되며,
    R23 및 R23'은 각각 독립적으로 수소, C1-20 알킬, 또는 C2-20 알콕시알킬이고,
    X21 및 X22는 각각 독립적으로 할로겐 또는 C1-20 알킬이다.
  2. 제1항에 있어서,
    상기 제1전이금속 화합물은, 상기 화학식 1에서,
    M1은 Ti, Zr, 또는 Hf이고,
    A1은 Si이며,
    R11 내지 R14는 각각 독립적으로 수소, 또는 C1-8 알킬이고,
    R15 및 R16 중 하나는 C2-12 알콕시알킬이고, 나머지는 C1-8 알킬 또는 C6-12 아릴이며,
    R은 C1-8 알킬이고,
    X11 및 X12은 각각 독립적으로 할로겐 또는 메틸인 화합물인,
    혼성 메탈로센 촉매.
  3. 제1항에 있어서,
    상기 제1전이금속 화합물은, 상기 화학식 1에서,
    M1은 Ti, 또는 Zr이고,
    A1은 Si이며,
    R11 내지 R14는 각각 독립적으로 수소 또는 메틸이고,
    R15 및 R16 중 하나는 t-부톡시에틸, t-부톡시부틸, 또는 t-부톡시헥실이고, 나머지는 메틸 또는 페닐이며,
    R은 t-부틸이고,
    X11 및 X12은 각각 클로로인 화합물인,
    혼성 메탈로센 촉매.
  4. 제1항에 있어서,
    상기 제1전이금속 화합물은 하기 화합물들로 이루어진 군에서 선택되는 어느 하나인,
    혼성 메탈로센 촉매:
    Figure PCTKR2023018154-appb-img-000039
    .
  5. 제1항에 있어서,
    제2전이금속 화합물은 하기 화학식 2-1 또는 2-2로 표시되는 화합물인,
    혼성 메탈로센 촉매:
    [화학식 2-1]
    Figure PCTKR2023018154-appb-img-000040
    [화학식 2-2]
    Figure PCTKR2023018154-appb-img-000041
    상기 화학식 2-1 및 2-2에 있어서,
    M2는 Ti, Zr 또는 Hf이고,
    A2는 C2-6 알킬렌이며,
    R23 및 R23'은 각각 독립적으로 수소, C1-8 알킬, 또는 C2-12 알콕시알킬이고,
    X21 및 X22는 각각 독립적으로 클로로 또는 메틸이다.
  6. 제5항에 있어서,
    M2는 Zr이고,
    A2는 에틸렌, 프로필렌, 또는 부틸렌이며,
    R23 및 R23'은 각각 독립적으로 수소, n-부틸, 또는 t-부톡시헥실이고,
    X21 및 X22는 각각 독립적으로 클로로인,
    혼성 메탈로센 촉매.
  7. 제1항에 있어서,
    상기 제2전이금속 화합물은 하기 화합물들로 이루어진 군에서 선택되는 어느 하나인,
    혼성 메탈로센 촉매:
    Figure PCTKR2023018154-appb-img-000042
    .
  8. 제1항에 있어서,
    상기 제1전이금속 화합물과 제2전이금속 화합물은 4:1 내지 3:2의 몰비로 포함되는,
    혼성 메탈로센 촉매.
  9. 제1항에 있어서,
    조촉매 및 담체 중 1 이상을 더 포함하는,
    혼성 메탈로센 촉매.
  10. 제9항에 있어서,
    상기 조촉매는 하기 화학식 3으로 표시되는 화합물을 포함하는,
    혼성 메탈로센 촉매:
    [화학식 3]
    -[Al(R41)-O]a-
    상기 화학식 3에서,
    R41는 할로겐; 또는 할로겐으로 치환 또는 비치환된 C1-20 하이드로카빌이고;
    a는 2 이상의 정수이다.
  11. 제9항에 있어서,
    상기 담체는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물을 포함하는,
    혼성 메탈로센 촉매.
  12. 제1항에 따른 혼성 메탈로센 촉매의 존재 하에, 수소를 투입하며 에틸렌 단량체와 올레핀 단량체를 슬러리 중합하는 단계를 포함하는,
    폴리에틸렌의 제조방법.
  13. 제12항에 있어서,
    상기 중합시, 에틸렌 단량체와 올레핀 단량체를 포함하는 단량체 총 중량을 기준으로 수소를 5 내지 40ppm으로 투입하는,
    폴리에틸렌의 제조방법.
  14. 제12항에 있어서,
    상기 올레핀 단량체는, 에틸렌 단량체와 올레핀 단량체를 포함하는 단량체 총 중량 기준 10 내지 15중량%로 투입되는,
    폴리에틸렌의 제조방법.
  15. 제12항에 있어서,
    상기 올레핀 단량체는 1-헥센인,
    폴리에틸렌의 제조방법.
  16. 제12항에 있어서,
    상기 폴리에틸렌은 하기 (i) 내지 (iii)의 조건을 만족하는,
    폴리에틸렌의 제조방법:
    (i) ASTM D1505 규격에 따라 측정한 밀도: 0.915 내지 0.920 g/cm3
    (ii) ASTM D1238 규격에 따라 190℃ 및 2.16kg의 조건에서 측정한 용융지수(MI): 0.8 내지 1.2 g/10min
    (iii) 하기 수학식 1에 따라 산출된 BOCF (broad orthogonal crystalline fraction) index: 1 이상
    [수학식 1]
    BOCF index = {영역합/188.5560176} + {1/297.9631479}
    상기 수학식 1에서,
    영역합은 상기 폴리에틸렌에 대한 CFC 분석을 통해 용리 온도(Te)와 중량평균 분자량(Log M)에 따른 분획의 함량을 등고선 그림으로 수득하는 단계; 상기 Te와 Log M에 따른 분획을 임의로 복수개의 영역으로 구분하고, 낙하 충격 강도에 대한 분획의 기여도에 따라 상기 각 영역에 대해 임의의 계수를 부여하여 영역합 계수 맵을 도출하는 단계; 상기 등고선 그림에 상기 영역합 계수 맵을 대입하고, 각 영역 별 signal의 넓이를 계산하여 각 영역별 실 원소 값을 구하는 단계; 및 각 영역별 실 원소 값에 상기에서 부여한 각 영역 별 계수 값을 곱한 후, 총 합을 구하여 영역합을 계산하는 단계;를 통해 산출한다.
  17. 제12항에 있어서,
    상기 폴리에틸렌은, 필름 제막기를 이용하여 폴리에틸렌 필름(BUR 2 내지 3, 및 필름 두께 45 내지 55㎛)을 제조한 후, ASTM D 1709 [Method A]에 따라 측정한 낙하 충격 강도가 1800 gf 이상이고, ISO 13468에 의거하여 측정한 필름의 헤이즈(haze)가 13% 이하인,
    폴리에틸렌의 제조방법.
PCT/KR2023/018154 2022-12-15 2023-11-13 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법 WO2024128572A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0176238 2022-12-15
KR20220176238 2022-12-15
KR1020230154258A KR20240093329A (ko) 2022-12-15 2023-11-09 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법
KR10-2023-0154258 2023-11-09

Publications (1)

Publication Number Publication Date
WO2024128572A1 true WO2024128572A1 (ko) 2024-06-20

Family

ID=91485220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018154 WO2024128572A1 (ko) 2022-12-15 2023-11-13 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법

Country Status (1)

Country Link
WO (1) WO2024128572A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050318A1 (en) * 1998-03-30 1999-10-07 E.I. Du Pont De Nemours And Company Polymerization of olefins
US20050113243A1 (en) * 2003-11-21 2005-05-26 Thorn Matthew G. Catalyst compositions for producing polyolefins in the absence of cocatalysts
US20050288178A1 (en) * 2004-06-25 2005-12-29 Jensen Michael D Acidic activator-supports and catalysts for olefin polymerization
KR20170106110A (ko) * 2016-03-11 2017-09-20 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법
KR20220101481A (ko) * 2021-01-11 2022-07-19 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050318A1 (en) * 1998-03-30 1999-10-07 E.I. Du Pont De Nemours And Company Polymerization of olefins
US20050113243A1 (en) * 2003-11-21 2005-05-26 Thorn Matthew G. Catalyst compositions for producing polyolefins in the absence of cocatalysts
US20050288178A1 (en) * 2004-06-25 2005-12-29 Jensen Michael D Acidic activator-supports and catalysts for olefin polymerization
KR20170106110A (ko) * 2016-03-11 2017-09-20 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법
KR20220101481A (ko) * 2021-01-11 2022-07-19 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법

Similar Documents

Publication Publication Date Title
WO2016072783A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2015046931A1 (ko) 올레핀계 중합체의 제조방법 및 이에 의해 제조된 올레핀계 중합체
WO2018088820A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020251264A1 (ko) 프로필렌-에틸렌 랜덤 공중합체
WO2019132471A1 (ko) 올레핀계 중합체
WO2019234637A1 (en) Ethylene polymer mixture, method of preparing the same, and molded article using the same
WO2022071744A1 (ko) 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체
WO2024128572A1 (ko) 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법
WO2024128573A1 (ko) 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법
WO2022071735A1 (ko) 폴리에틸렌 조성물 및 그의 제조 방법
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2024096400A1 (ko) 폴리올레핀 및 이를 포함하는 필름
WO2020218874A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2024096399A1 (ko) 폴리올레핀 및 이를 포함하는 필름
WO2021060907A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2024128846A1 (ko) 폴리에틸렌 및 이를 포함하는 필름
WO2022035132A1 (ko) 메탈로센 담지 촉매의 제조 방법, 메탈로센 담지 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2019132477A1 (ko) 올레핀계 중합체
WO2024063415A1 (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
WO2022114910A1 (ko) 메탈로센 담지 촉매의 제조방법
WO2020122562A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2022203461A1 (ko) 폴리프로필렌 수지 조성물 및 그의 제조방법
WO2022108167A1 (ko) 폴리올레핀
WO2022039425A1 (ko) 펠렛형 폴리에틸렌 수지 조성물 및 그 제조방법
WO2022114710A1 (ko) 유무기 하이브리드 폴리올레핀 복합체 및 그의 제조 방법