WO2016072783A1 - 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물 - Google Patents

리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물 Download PDF

Info

Publication number
WO2016072783A1
WO2016072783A1 PCT/KR2015/011892 KR2015011892W WO2016072783A1 WO 2016072783 A1 WO2016072783 A1 WO 2016072783A1 KR 2015011892 W KR2015011892 W KR 2015011892W WO 2016072783 A1 WO2016072783 A1 WO 2016072783A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
alkyl
aryl
alkylaryl
Prior art date
Application number
PCT/KR2015/011892
Other languages
English (en)
French (fr)
Inventor
김동은
김아림
공진삼
정승환
박해웅
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017501402A priority Critical patent/JP6469832B2/ja
Priority to EP15857360.0A priority patent/EP3216795B1/en
Priority to CN201580041488.5A priority patent/CN106661142B/zh
Priority to US15/110,596 priority patent/US9822200B2/en
Publication of WO2016072783A1 publication Critical patent/WO2016072783A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+

Definitions

  • the present specification relates to a ligand compound of a novel structure, a transition metal compound and a catalyst composition comprising the same.
  • CGC Constrained-Geometry Catalyst
  • US Pat. No. 5,064,802 In the copolymerization reaction of ethylene and alpha-olefin, the CGC is superior to the metallocene catalysts known to the prior art. It can be summarized in two ways: (1) to produce high molecular weight polymers with high activity even at high polymerization temperatures, and (2) to high sterically hindered alpha-olefins such as 1-hexene and 1-octene. The copolymerizability is also very good.
  • various characteristics of CGC are gradually known, and efforts to synthesize derivatives thereof and use them as polymerization catalysts have been actively conducted in academia and industry.
  • the first technical problem to be solved of the present invention is to provide a novel transition metal compound.
  • the second technical problem to be solved of the present invention is to provide a novel ligand compound.
  • the third technical problem to be solved of the present invention is to provide a catalyst composition comprising the transition metal compound.
  • An exemplary embodiment of the present specification provides a transition metal compound represented by Formula 1:
  • R 1 is hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 2 and R 3 are each independently hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 6 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkyl amido having 1 to 20 carbon atoms; Aryl amido having 6 to 20 carbon atoms; Or alkylidene having 1 to 20 carbon atoms,
  • R 4 to R 9 are each independently hydrogen; Silyl; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Or a metalloid radical of a Group 14 metal substituted with hydrocarbyl having 1 to 20 carbon atoms,
  • Two or more adjacent to each other of the R 2 to R 9 may be connected to each other to form a ring
  • Q is Si, C, N, P or S
  • M is a Group 4 transition metal
  • X 1 and X 2 are each independently hydrogen, halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, and arylalkyl having 7 to 20 carbon atoms. , Alkylamino having 1 to 20 carbon atoms, arylamino having 6 to 20 carbon atoms or alkylidene having 1 to 20 carbon atoms.
  • Another embodiment of the present specification provides a ligand compound represented by Formula 2:
  • R 1 , R 10 and R 11 are hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 2 and R 3 are each independently hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 6 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkyl amido having 1 to 20 carbon atoms; Aryl amido having 6 to 20 carbon atoms; Or alkylidene having 1 to 20 carbon atoms,
  • R 4 to R 9 are each independently hydrogen; Silyl; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Or a metalloid radical of a Group 14 metal substituted with hydrocarbyl having 1 to 20 carbon atoms,
  • Two or more adjacent to each other of the R 2 to R 9 may be connected to each other to form a ring
  • Q is Si, C, N, P or S.
  • Another embodiment of the present specification provides a catalyst composition including the transition metal compound of Formula 1.
  • novel ligand compound and transition metal compound of the present invention can be usefully used as a catalyst for the polymerization reaction in the preparation of olefin polymers having a high molecular weight in the low density region, to obtain a high molecular weight polymer having a low melt index (MI). Can be.
  • R 1 is hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 2 and R 3 are each independently hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 6 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkyl amido having 1 to 20 carbon atoms; Aryl amido having 6 to 20 carbon atoms; Or alkylidene having 1 to 20 carbon atoms,
  • R 4 to R 9 are each independently hydrogen; Silyl; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Or a metalloid radical of a Group 14 metal substituted with hydrocarbyl having 1 to 20 carbon atoms,
  • Two or more adjacent to each other of the R 2 to R 9 may be connected to each other to form a ring
  • Q is Si, C, N, P or S
  • M is a Group 4 transition metal
  • X 1 and X 2 are each independently hydrogen, halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, and arylalkyl having 7 to 20 carbon atoms. , Alkylamino having 1 to 20 carbon atoms, arylamino having 6 to 20 carbon atoms or alkylidene having 1 to 20 carbon atoms.
  • the transition metal compound of Formula 1 described herein is a cyclopentadiene fused to benzothiophene by cyclic bonds, and the amido group (NR 1 ) is stably by Q (Si, C, N or P) Crosslinked to form a structure in which the Group 4 transition metal is coordinated.
  • alkyl and alkenyl are alkyl having 1 to 20 carbon atoms and alkenyl having 2 to 20 carbon atoms, respectively, and may be linear or branched chains.
  • silyl may be silyl substituted with alkyl having 1 to 20 carbon atoms, for example, trimethylsilyl or triethylsilyl.
  • aryl includes monocyclic or polycyclic aryl, and specifically phenyl, naphthyl, anthryl, phenanthryl, chrysenyl, pyrenyl and the like.
  • R 1 to R 9 may be each independently unsubstituted or substituted, and when substituted, the substituent may be, for example, halogen, alkyl having 1 to 20 carbon atoms, hydrocarbyl having 1 to 20 carbon atoms, and having 1 to 20 carbon atoms. Alkoxy, or aryloxy having 6 to 20 carbon atoms.
  • R 1 is alkyl having 1 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Or alkylaryl having 7 to 20 carbon atoms.
  • R 1 is alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms.
  • R 1 is methyl, ethyl, propyl, butyl, isobutyl, thibutyl, isopropyl, cyclohexyl, benzyl, phenyl, methoxyphenyl, ethoxyphenyl, Fluorophenyl, bromophenyl, chlorophenyl, dimethylphenyl or diethylphenyl.
  • R 2 and R 3 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Or alkylaryl having 6 to 20 carbon atoms.
  • R 2 and R 3 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Or aryl having 6 to 20 carbon atoms.
  • R 4 to R 9 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms.
  • R 4 and R 5 are the same as or different from each other, and each independently, alkyl having 1 to 20 carbon atoms; Or aryl having 6 to 20 carbon atoms.
  • R 4 and R 5 are the same as or different from each other, and each independently, may be alkyl having 1 to 6 carbon atoms.
  • R 4 and R 5 may be methyl, ethyl or propyl.
  • R 6 to R 9 are the same as or different from each other, and each independently, hydrogen; Alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms.
  • R 6 to R 9 are the same as or different from each other, and each independently, hydrogen; Or alkyl having 1 to 20 carbon atoms.
  • R 6 to R 9 are the same as or different from each other, and each independently, may be hydrogen or methyl.
  • M may be Ti, Hf or Zr.
  • X 1 and X 2 may be the same as or different from each other, and each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, and an alkenyl having 2 to 20 carbon atoms.
  • R 1 is hydrogen; Alkyl having 1 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 2 and R 3 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Or alkylaryl having 6 to 20 carbon atoms,
  • R 4 to R 9 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 2 to R 9 Two or more adjacent to each other of R 2 to R 9 may be connected to each other to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms;
  • the aliphatic ring or aromatic ring may be substituted with halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, or aryl having 6 to 20 carbon atoms,
  • Q can be Si, C, N or P.
  • R 1 is alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 2 and R 3 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Or aryl having 6 to 20 carbon atoms,
  • R 4 to R 9 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Or aryl having 6 to 20 carbon atoms,
  • Q may be Si.
  • the compound represented by Formula 1 may be represented by any one of the following formula:
  • a ligand compound represented by the following Chemical Formula 2 may be provided:
  • R 1 , R 10 and R 11 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms,
  • R 2 and R 3 are each independently hydrogen; halogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 6 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Alkyl amido having 1 to 20 carbon atoms; Aryl amido having 6 to 20 carbon atoms; Or alkylidene having 1 to 20 carbon atoms,
  • R 4 to R 9 are each independently hydrogen; Silyl; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Arylalkyl having 7 to 20 carbon atoms; Or a metalloid radical of a Group 14 metal substituted with hydrocarbyl having 1 to 20 carbon atoms,
  • Two or more adjacent to each other of the R 2 to R 9 may be connected to each other to form a ring
  • Q can be Si, C, N, P or S.
  • Ligand compounds of formula (2) described herein have a cyclopentadiene fused with benzothiophene by cyclic bonds, and the amido group (NR 1 ) is stably stabilized by Q (Si, C, N, or P). It has a crosslinked structure.
  • the definition of R 1 to R 9 of the compound represented by Formula 2 may be the same as the definition in the compound represented by Formula 1 that is a transition metal compound.
  • R 10 and R 11 are each independently hydrogen; Alkyl having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Or alkylaryl having 6 to 20 carbon atoms.
  • R 10 and R 11 may be hydrogen.
  • the compound represented by Formula 1 is preferably represented by any one of the following formula:
  • the transition metal compound of Formula 1 and the ligand compound of Formula 2 are preferably used to prepare a catalyst for polymerization of olefin monomers, but are not limited thereto, and other transition metal compounds may be used in all fields. .
  • Ligand compound represented by the formula (2) of the present invention can be prepared, as shown in Scheme 1.
  • the ligand compound of Formula 2 may be prepared by the following steps a) and b):
  • R 1 to R 11 and Q are as defined in Formula 2,
  • R 12 is hydrogen; Alkyl having 1 to 20 carbon atoms; Alkenyl having 2 to 20 carbon atoms; Alkoxy having 1 to 20 carbon atoms; Aryl having 6 to 20 carbon atoms; Arylalkoxy having 7 to 20 carbon atoms; Alkylaryl having 7 to 20 carbon atoms; Or arylalkyl having 7 to 20 carbon atoms.
  • the transition metal compound represented by Chemical Formula 1 of the present invention may be prepared by using the ligand compound represented by Chemical Formula 2, as in Scheme 2 below.
  • R 1 to R 11 , Q, M, X 1 and X 2 are the same as defined in Formula 1 or Formula 2.
  • the transition metal compound represented by Formula 1 may be in the form of coordination bond with a Group 4 transition metal using the compound represented by Formula 2 as a ligand.
  • R 1 to R 11 , Q, M, X 1 and X 2 are the same as defined in Chemical Formula 1.
  • the organolithium compound is, for example, n-butyllithium, sec-butyllithium, methyllithium, ethyllithium, isopropyllithium, cyclohexyllithium, allyllithium, vinyllithium, phenyllithium and benzyllithium It may be selected from the group consisting of one or more.
  • the compound represented by Formula 2 and the compound represented by Formula 5 may be mixed in a molar ratio of 1: 0.8 to 1: 1.5, preferably in a molar ratio of 1: 1.0 to 1: 1.1.
  • the organolithium compound may be used at 180 to 250 parts by weight based on 100 parts by weight of the compound represented by Formula 2.
  • the reaction is preferably performed for 1 to 48 hours in the temperature range of -80 °C to 140 °C.
  • the compound represented by Chemical Formula 3 and the compound represented by Chemical Formula 6 may have a molar ratio of 1: 0.8 to 1: 5.0, preferably a molar ratio of 1: 0.9 to 1: 4.5, and more preferably. Preferably 1: 1 to 1: 4.0.
  • the compound represented by the formula (4) and the compound represented by the formula (5) is a molar ratio of 1: 0.8 to 1: 5.0, preferably a molar ratio of 1: 0.9 to 1: 4.0, More preferably 1: 1 to 1: 3.0 are preferred.
  • reaction is preferably carried out for 1 to 48 hours in the temperature range of -80 °C to 140 °C.
  • the present invention also provides a catalyst composition comprising the compound of formula (1).
  • the catalyst composition may further comprise a promoter.
  • a promoter those known in the art may be used.
  • the catalyst composition may further include at least one of the following Chemical Formulas 10 to 12 as a cocatalyst.
  • each R 22 is independently a halogen radical; Hydrocarbyl radicals having 1 to 20 carbon atoms; Or a hydrocarbyl radical having 1 to 20 carbon atoms substituted with halogen; a is an integer of 2 or more;
  • D is aluminum or boron;
  • R 22 is independently as defined above;
  • L is a neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 element
  • A is each independently aryl having 6 to 20 carbon atoms or alkyl having 1 to 20 carbon atoms, in which one or more hydrogen atoms may be substituted with a substituent;
  • the substituent is halogen, hydrocarbyl having 1 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, or aryloxy having 6 to 20 carbon atoms.
  • a method of preparing the catalyst composition comprising: first contacting a transition metal compound represented by Formula 1 with a compound represented by Formula 8 or Formula 9 to obtain a mixture; And adding the compound represented by Chemical Formula 10 to the mixture.
  • a method of preparing a catalyst composition is provided by contacting a transition metal compound represented by Chemical Formula 1 with a compound represented by Chemical Formula 10.
  • the molar ratio of the compound represented by Formula 8 or Formula 9 to the transition metal compound of Formula 1 is preferably 1: 2 to 1: 5,000, more preferably, Is 1:10 to 1: 1,000, and most preferably 1:20 to 1: 500.
  • the molar ratio of the compound represented by Formula 10 to the transition metal compound of Formula 1 is preferably 1: 1 to 1:25, more preferably 1: 1 to 1:10, and most preferably 1: 1 to 1: 5.
  • the amount of the alkylating agent is very small so that alkylation of the metal compound does not proceed completely and is greater than 1: 5,000. In this case, the alkylation of the metal compound is performed, but there is a problem in that the activation of the alkylated metal compound is not completely performed due to a side reaction between the remaining excess alkylating agent and the activator of Formula 10.
  • the ratio of the compound represented by Chemical Formula 10 to the transition metal compound of Chemical Formula 2 is less than 1: 1, the amount of the activator is relatively small, so that the activity of the catalyst composition generated due to incomplete activation of the metal compound is inferior. If the problem is greater than 1:25, the metal compound is fully activated, but there is a problem in that the unit price of the catalyst composition is not economically economical due to the excess activator remaining or the purity of the produced polymer is inferior.
  • the molar ratio of the compound represented by Formula 10 to the transition metal compound of Formula 1 is preferably 1: 1 to 1: 500, and more preferably 1: 1 to 1: 500. 1:50, most preferably 1: 2 to 1:25.
  • the molar ratio is less than 1: 1, the amount of the activator is relatively small, so that the activation of the metal compound is not fully performed, and thus the activity of the catalyst composition generated is inferior.
  • the molar ratio is greater than 1: 500, the activation of the metal compound is Although completely made, there is a problem that the cost of the catalyst composition is not economically low or the purity of the resulting polymer is low due to the excess activator remaining.
  • Hydrocarbon solvents such as pentane, hexane, heptane and the like or aromatic solvents such as benzene and toluene may be used as the reaction solvent in the preparation of the composition, but the solvent is not necessarily limited thereto and any solvents available in the art may be used. Can be.
  • transition metal compound and the cocatalyst of the formula (1) may be used in a form supported on a carrier.
  • a carrier silica or alumina may be used.
  • the compound represented by the formula (8) is not particularly limited as long as it is an alkyl aluminoxane.
  • Preferred examples include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and the like, and particularly preferred compound is methyl aluminoxane.
  • the compound represented by the formula (9) is not particularly limited, but a preferred example is trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum , Tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum Ethoxide, trimethylboron, triethylboron, triisobutylboron, tripropylboron, tributylboron and the like, and particularly preferred compounds are selected from trimethylaluminum, triethylaluminum and triisobutylaluminum.
  • Examples of the compound represented by Formula 10 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, and trimethylammonium tetra (p-tolyl) Boron, trimethylammonium tetra (o, p-dimethylphenyl) boron, tributylammonium tetra (p-trifluoromethylphenyl) boron, trimethylammonium tetra (p-trifluoromethylphenyl) boron, tributylammonium tetra Pentafluorophenylboron, N, N-diethylanilidedium tetrapetylboron, N, N-diethylanilidediumtetraphenylboron, N, N-diethylanilinium t
  • a transition metal compound of Chemical Formula 1 It is possible to prepare a polyolefin homo polymer or copolymer by contacting a catalyst composition comprising at least one compound selected from compounds represented by formulas (8) to (10) with at least one olefin monomer.
  • the most preferable manufacturing process using the catalyst composition is a solution process, and when the composition is used together with an inorganic carrier such as silica, it is also applicable to a slurry or a gas phase process.
  • the activated catalyst composition is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms suitable for the olefin polymerization process, for example, pentane, hexane, heptane, nonane, decan, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloro It can be dissolved or diluted in hydrocarbon solvents substituted with chlorine atoms such as methane and chlorobenzene.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
  • olefin monomer examples include ethylene, alpha-olefin, cyclic olefin, and the like, and diene olefin monomers or triene olefin monomers having two or more double bonds. Polymerization is also possible.
  • the monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1-tetradecene, 1-hexadecene, 1-ikocene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1, 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethyl styrene, etc., These monomers may be mixed and copolymerized.
  • the catalyst composition has a high molecular weight and has a high molecular weight of 0.89 g / cc or less in the copolymerization reaction of a monomer having high steric hindrance such as ethylene and 1-octene even at a high reaction temperature of 90 ° C. or higher. It is characterized in that the preparation of the coalescence is possible.
  • the polymer produced by the production process of the invention has a density of less than 0.891 g / cc.
  • the polymer produced by the production method of the present invention has a density of 0.88 g / cc or less.
  • the polymer produced by the production process of the invention has a density of less than 0.87 g / cc.
  • the peak of Tm melting temperature
  • the peak of Tm melting temperature
  • Tm can be obtained using a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 6000) manufactured by PerkinElmer. After increasing to °C, hold at that temperature for 1 minute and then -100 It is possible to measure the melting point (melting temperature) of the top of the DSC curve by lowering it to °C and increasing the temperature again.
  • DSC Differential Scanning Calorimeter 6000
  • the polymer produced by the production method of the present invention has a Tm of 92 or less.
  • the polymer prepared by the production method of the present invention may have one or two peaks of Tm.
  • the polymer produced by the production method of the present invention may have a melt index (Mi) of less than 4.
  • the polymer produced by the production method of the present invention may have a melt index (Mi) of 2 or less.
  • the polymer produced by the production method of the present invention may have a melt index (Mi) of 1 or less.
  • melt index when the melt index is lower than 2, high molecular weight polymers may be generated.
  • the polymer may be usefully used as a multilayer film for coating requiring a high molecular weight polymer.
  • the Schlenk flask was immersed in a -78 ° C low temperature bath made of dry ice and acetone and stirred for 30 minutes. Subsequently, the reaction liquid of the Schlenk flask was slowly added dropwise to this Schlenk flask. The temperature was gradually raised to room temperature and stirred. Subsequently, after removing all the solvents, the mixture was filtered through diethyl ether to obtain the filtrate and the solvents were removed. As a result, an orange liquid was obtained in a yield of 692.0 mg (58%).
  • Anicidine (1.02 g, 8.25 mmol) and THF (20 ml) were mixed and stirred in a 250 ml Schlenk flask.
  • the Schlenk flask was immersed in a -78 ° C low temperature bath made of dry ice and acetone and stirred for 30 minutes. Subsequently, n-BuLi (2.20 ml, 2.5 M, 5.50 mmol) was slowly added dropwise, followed by stirring for 1 hour while raising the temperature to room temperature.
  • Another Schlenk flask was mixed and stirred with Formula 3 (1.61 g, 5.50 mmol) and THF (20 ml).
  • the Schlenk flask was immersed in a -78 ° C low temperature bath made of dry ice and acetone and stirred for 30 minutes. Subsequently, the reaction liquid of the Schlenk flask was slowly added dropwise to this Schlenk flask. The temperature was gradually raised to room temperature and stirred. Subsequently, after removing all the solvents, the mixture was filtered through diethyl ether to obtain the filtrate and the solvents were removed. As a result, an orange liquid was obtained in a yield of 1.15 g (55%).
  • 2,6-dimethylaniline (0.45ml, 3.66mmol) and THF (25ml) were mixed and stirred in a 250ml Schlenk flask.
  • the Schlenk flask was immersed in a -78 ° C low temperature bath made of dry ice and acetone and stirred for 30 minutes. Subsequently, n-BuLi (0.98 ml, 2.5 M, 2.44 mmol) was slowly added dropwise, followed by stirring for 1 hour while gradually raising the temperature to room temperature.
  • Another Schlenk flask was mixed and stirred with Formula 3 (720.0 mg, 2.44 mmol) and THF (20 ml).
  • the Schlenk flask was immersed in a -78 ° C low temperature bath made of dry ice and acetone and stirred for 30 minutes. Subsequently, the reaction liquid of the Schlenk flask was slowly added dropwise to this Schlenk flask. The temperature was gradually raised to room temperature and stirred. Subsequently, after removing all the solvents, the mixture was filtered through diethyl ether to obtain the filtrate and the solvents were removed. As a result, an orange liquid was obtained in a yield of 636.0 mg (69%).
  • Comparative ligand compound (2.36g, 9.39mmol / 1.0eq) and MTBE 50mL (0.2M) were put into a 100ml Schlenk flask and stirred. N-BuLi (7.6ml, 19.25mmol / 2.05eq, 2.5M in THF) was added at -40 ° C and reacted at room temperature overnight. Then, MeMgBr (6.4ml, 19.25mmol / 2.05eq, 3.0M in diethyl ether) was slowly added dropwise at -40 o C, and then TiCl 4 (9.4ml, 9.39mmol / 1.0eq, 1.0M in toluene) was added in this order. Put and react overnight at room temperature. The reaction mixture was then filtered through Celite using hexane. After drying the solvent a yellow solid was obtained in a yield of 2.52 g (82%).
  • MI Melt Index
  • the melting temperature (Tm) of the polymer can be obtained by using a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 6000) manufactured by PerkinElmer, and the melting temperature of the polymer is about 0.5 mg to 10 mg of a sample filled in a measuring vessel, and nitrogen gas.
  • the flow rate was 20 ml / min, and in order to make the thermal history of the polyolefin resin the same, the sample was heated at a rate of 20 ° C./min from 0 ° C. to 150 ° C., and then the sample was again heated at 150 ° C. to ⁇ 100 ° C.
  • the temperature of the heating curve of the heat flow measured by DSC while raising the sample at a rate of 10 ° C./min from -100 ° C. to 150 ° C. That is, the endothermic peak temperature at the time of heating can be measured as melting temperature.
  • Density of the polymer A sheet having a thickness of 3 mm and a radius of 2 cm was prepared by a press mold, and after annealing at room temperature for 24 hours, it was measured on a Mettler balance.
  • Example 1 Physical properties of the polymers prepared in Example 1 (Examples 1-1 to 1-4) and Comparative Example 1 are shown in Table 1 below.
  • Example 1-1 Formula 1-1 150 AB 48.1 0.891 0.61 88.6
  • Example 1-2 Formula 1-1 150 TB 45.8 0.893 0.005 90.4
  • Example 1-3 Formula 1-1 120 AB 76.1 0.894 0.47 89.2
  • Example 1-4 Formula 1-1 120 TB 75.6 0.894 0.016 91.5
  • Example 1 of the present invention As shown in Table 1, in the case of Example 1 of the present invention at 150 o C it can be seen that the low density, high molecular weight compared to the comparative example. In the polymerization at 120 o C, the basic physical properties were similar, but the yield was greatly increased.
  • melt index of 0.891 to 0.894 g / cc and 0.61 g / 10min or less can be maintained when the cocatalyst is changed or the polymerization temperature is lowered.
  • Example 1 150 AB 45.4 0.900 13.8 102.4
  • Example 1 150 AB 48.1 0.891 0.61 88.6
  • Example 2 150 AB 47.6 0.876 0.37 (55.5) /89.4
  • Example 3 150 AB 21.5 0.869 0.52 46.0 / 87.2
  • Example 4 150 AB 26.5 0.861 2.79 39.1
  • Example 5 150 AB 22.7 0.863 3.50 46.8
  • the density of the polymer is reduced compared to the case of using Comparative Example 1.
  • the density is 0.900 g / cc or more
  • the density of the polymer is 0.862 g / cc to A low density value of 0.891 g / cc was obtained.
  • melt index when the polymer is formed using the transition metal compound prepared in Examples 1 to 5 of the present invention, the melt index of the polymer was 0.37 to 3.50 (g / 10 min), in particular Examples 1 to When the polymer is formed using the transition metal compound prepared in 5, it can be seen that it is lowered by about 30 times or more compared with Comparative Example 1.
  • the low melt index means that high molecular weight polymers can be produced.
  • the compound according to the present invention can produce a low density polymer and a high molecular weight polymer having excellent copolymerizability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 신규한 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물에 관한 것이다. 본 발명의 신규한 리간드 화합물 및 전이금속 화합물은 저밀도를 가지는 올레핀계 중합체의 제조에 있어 중합 반응의 촉매로 유용하게 사용될 수 있다. 또한, 상기 전이금속 화합물을 포함하는 촉매 조성물을 이용하여 중합한 올레핀 중합체는 용융지수(MI)가 낮은 고분자량의 제품 제조가 가능하다.

Description

리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
관련출원과의 상호인용
본 출원은 2014년 11월 07일자 한국 특허 출원 제10-2014-0154389호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 명세서에는 신규한 구조의 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물에 관한 것이다.
다우(Dow) 사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2 (Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데(미국 특허 등록 제5,064,802호), 에틸렌과 알파-올레핀의 공중합 반응에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다: (1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 중합체를 생성하며, (2) 1-헥센 및 1-옥텐과 같은 입체적 장애가 큰 알파-올레핀의 공중합성도 매우 뛰어나다는 점이다. 그 외에도 중합 반응 시, CGC의 여러 가지 특성들이 점차 알려지면서 이의 유도체를 합성하여 중합 촉매로 사용하고자 하는 노력이 학계 및 산업계에서 활발히 이루어졌다.
그 중 하나의 접근 방법으로 실리콘 브릿지 대신에 다른 다양한 브릿지 및 질소 치환체가 도입된 금속 화합물의 합성과 이의 중합이 시도되었다. 최근까지 알려진 대표적인 금속 화합물들을 열거하면 하기 화합물 (1) 내지 (4) 와 같다 (Chem. Rev. 2003, 103, 283).
Figure PCTKR2015011892-appb-I000001
(1)
Figure PCTKR2015011892-appb-I000002
(2)
Figure PCTKR2015011892-appb-I000003
(3)
Figure PCTKR2015011892-appb-I000004
(4)
상기 화합물 (1) 내지 (4)는 CGC 구조의 실리콘 브릿지 대신에 포스포러스(1), 에틸렌 또는 프로필렌(2), 메틸리덴(3), 및 메틸렌(4) 브릿지가 각각 도입되어 있으나, 에틸렌 중합 또는 알파-올레핀과의 공중합 적용시에 CGC 대비하여 활성도 또는 공중합 성능 등의 측면에서 향상된 결과들을 얻지 못했다.
또한, 다른 접근 방법으로는 상기 CGC 의 아미도 리간드 대신에 옥시도 리간드로 구성된 화합물들 많이 합성되었으며, 이를 이용한 중합도 일부 시도되었다. 그 예들을 정리하면 다음과 같다.
Figure PCTKR2015011892-appb-I000005
(5)
Figure PCTKR2015011892-appb-I000006
(6)
Figure PCTKR2015011892-appb-I000007
(7)
Figure PCTKR2015011892-appb-I000008
(8)
화합물 (5)는 T. J. Marks 등에 의해 보고된 내용으로 Cp(시클로펜타디엔) 유도체와 옥시도 리간드가 오르토-페닐렌기에 의해 가교된 것이 특징이다 (Organometallics 1997, 16, 5958). 동일한 가교를 가지고 있는 화합물 및 이를 이용한 중합이 Mu 등에 의해서도 보고되었다(Organometallics 2004, 23, 540). 또한, 인데닐 리간드와 옥시도 리간드가 동일한 오르토-펜닐렌기에 의해 가교된 것이 Rothwell 등에 의해 발표되었다(Chem. Commun. 2003, 1034). 화합물 (6)은 Whitby 등이 보고한 내용으로 탄소 3개에 의해 시클로펜타니엔닐 리간드와 옥시도 리간드가 교각된 것이 특징인데(Organometallics 1999, 18, 348), 이런 촉매들이 신디오탁틱(syndiotactic) 폴리스티렌 중합에 활성을 보인다고 보고 되었다. 유사한 화합물이 또한 Hessen등에 의해서도 보고되었다(Organometallics 1998, 17, 1652). 화합물(7)은 Rau 등이 보고한 것으로 고온 및 고압(210 ℃, 150MPa)에서 에틸렌 중합 및 에틸렌/1-헥센 공중합에 활성을 보이는 것이 특징이다(J. Organomet. Chem. 2000, 608, 71). 또한, 이후 이와 유사한 구조의 촉매 합성(8) 및 이를 이용한 고온, 고압 중합이 스미토모 (Sumitomo)사에 의하여 특허 출원되었다(미국 특허 등록 제6,548,686호). 그러나, 상기 시도들 중에서 실제로 상업 공장에 적용되고 있는 촉매들은 소수이다. 따라서, 보다 향상된 중합 성능을 보여주는 촉매가 요구되며, 이러한 촉매들을 간단하게 제조하는 방법이 요구된다.
[선행기술문헌]
미국 특허 등록 제5,064,802호
미국 특허 등록 제6,548,686호
[비특허문헌]
Chem. Rev. 2003, 103, 283
Organometallics 1997, 16, 5958
Organometallics 2004, 23, 540
Chem. Commun. 2003, 1034
Organometallics 1999, 18, 348
Organometallics 1998, 17, 1652
J. Organomet. Chem. 2000, 608, 71
본 발명의 해결하고자 하는 해결하고자 하는 제1 기술적 과제는 신규한 전이금속 화합물을 제공하는 것이다.
본 발명의 해결하고자 하는 제2 기술적 과제는 신규한 리간드 화합물을 제공하는 것이다.
본 발명의 해결하고자 하는 제3 기술적 과제는 상기 전이금속 화합물을 포함하는 촉매 조성물을 제공하는 것이다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 전이금속 화합물을 제공한다:
[화학식 1]
Figure PCTKR2015011892-appb-I000009
상기 화학식 1에서,
R1은 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
R2 및 R3은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
R4 내지 R9는 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고,
상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 고리를 형성할 수 있고,
Q는 Si, C, N, P 또는 S 이며,
M은 4족 전이금속이고,
X1 및 X2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미노, 탄소수 6 내지 20의 아릴아미노 또는 탄소수 1 내지 20의 알킬리덴이다.
본 명세서에서 또 하나의 실시상태는 하기 화학식 2로 표시되는 리간드 화합물을 제공한다:
[화학식 2]
Figure PCTKR2015011892-appb-I000010
상기 화학식 2에서,
R1, R10 및 R11은 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
R2 및 R3은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
R4 내지 R9는 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고,
상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 고리를 형성할 수 있고,
Q는 Si, C, N, P 또는 S 이다.
본 명세서의 또 하나의 실시상태는 상기 화학식 1의 전이금속 화합물을 포함하는 촉매 조성물을 제공한다.
본 발명의 신규한 리간드 화합물 및 전이금속 화합물은 저밀도 영역의 높은 분자량을 가지는 올레핀계 중합체의 제조에 있어 중합 반응의 촉매로 유용하게 사용될 수 있으며, 용융 지수(MI)가 낮은 고분자량의 중합체를 얻을 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 또 다른 기술적 과제를 달성하기 위하여, 하기 화학식 1로 표시되는 전이금속 화합물을 제공한다:
[화학식 1]
Figure PCTKR2015011892-appb-I000011
상기 화학식 1에서,
R1은 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
R2 및 R3은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
R4 내지 R9는 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고,
상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 고리를 형성할 수 있고,
Q는 Si, C, N, P 또는 S 이며,
M은 4족 전이금속이고,
X1 및 X2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미노, 탄소수 6 내지 20의 아릴아미노 또는 탄소수 1 내지 20의 알킬리덴이다.
본 명세서에 기재된 화학식 1의 전이금속 화합물은 고리형태의 결합에 의해 벤조티오펜이 융합된 시클로펜타디엔, 및 아미도 그룹(N-R1)이 Q (Si, C, N 또는 P)에 의해 안정적으로 가교되고, 4족 전이금속이 배위결합된 구조를 형성한다.
상기 촉매 조성물을 이용하여 올리펜 중합에 적용시, 높은 중합 온도에서도 고활성, 고분자량 및 높은 공중합성 등의 특징을 갖는 폴리올레핀을 생성하는 것이 가능하다. 특히, 촉매의 구조적인 특징상 밀도 0.850~ 0.930 g/cc 수준의 선형 저밀도 폴리에틸렌뿐만 아니라 많은 양의 알파-올레핀이 도입 가능하기 때문에 밀도 0.910 g/cc 미만의 초저밀도 영역의 중합체(엘라스토머)도 제조할 수 있다.
본 명세서에 있어서, 알킬 및 알케닐은 각각 탄소수 1 내지 20의 알킬 및 탄소수 2 내지 20의 알케닐로서, 직쇄 또는 분지쇄일 수 있다.
본 명세서에 있어서, 실릴은 탄소수 1 내지 20의 알킬로 치환된 실릴일 수 있으며, 예컨대 트리메틸실릴 또는 트리에틸실릴일 수 있다.
본 명세서에 있어서, 아릴은 단환 또는 다환의 아릴을 포함하며, 구체적으로 페닐, 나프틸, 안트릴, 페난트릴, 크라이세닐, 파이레닐 등이 있다.
상기 R1 내지 R9는 각각 독립적으로 비치환 또는 치환될 수 있으며, 치환된 경우, 치환기는 예를 들어, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 R1은 탄소수 1 내지 20의 알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 7 내지 20의 알킬아릴일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 R1은 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 또는 탄소수 7 내지 20의 아릴알킬일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 R1은 메틸, 에틸, 프로필, 부틸, 아이소부틸, 티부틸, 아이소프로필, 사이클로헥실, 벤질, 페닐, 메톡시페닐, 에톡시페닐, 플루오르페닐, 브로모페닐, 클로로페닐, 디메틸페닐 또는 디에틸페닐일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 R2 및 R3은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 또는 탄소수 6 내지 20의 알킬아릴일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 R2 및 R3은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 6 내지 20의 아릴일 수 있다.
본 발명의 일 실시예에 따르면, R4 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬일 수 있다.
본 발명의 일 실시예에 따르면, R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로, 탄소수 1 내지 20의 알킬; 또는 탄소수 6 내지 20의 아릴일 수 있다.
본 발명의 일 실시예에 따르면, R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로, 탄소수 1 내지 6의 알킬일 수 있다.
본 발명의 일 실시예에 따르면, R4 및 R5는 메틸, 에틸 또는 프로필일 수 이다.
본 발명의 일 실시예에 따르면, R6 내지 R9는 서로 같거나 상이하고, 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬일 수 있다.
본 발명의 일 실시예에 따르면, R6 내지 R9는 서로 같거나 상이하고, 각각 독립적으로, 수소; 또는 탄소수 1 내지 20의 알킬이다.
본 발명의 일 실시예에 따르면, R6 내지 R9는 서로 같거나 상이하고, 각각 독립적으로, 수소 또는 메틸일 수 있다.
본 발명의 일 실시예에 따르면, M은 Ti, Hf 또는 Zr일 수 있다.
본 발명의 일 실시예에 따르면, X1 및 X2는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 R1은 수소; 탄소수 1 내지 20의 알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
R2 및 R3은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 또는 탄소수 6 내지 20의 알킬아릴이며,
R4 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
Q는 Si, C, N 또는 P일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, 상기 R1은 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 또는 탄소수 7 내지 20의 아릴알킬이고,
R2 및 R3은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 6 내지 20의 아릴이며,
R4 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 6 내지 20의 아릴이고,
Q는 Si일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 중 어느 하나로 표시되는 것이 바람직할 수 있다:
[화학식 1-1]
Figure PCTKR2015011892-appb-I000012
[화학식 1-2]
Figure PCTKR2015011892-appb-I000013
[화학식 1-3]
Figure PCTKR2015011892-appb-I000014
[화학식 1-4]
Figure PCTKR2015011892-appb-I000015
[화학식 1-5]
Figure PCTKR2015011892-appb-I000016
[화학식 1-6]
Figure PCTKR2015011892-appb-I000017
본 발명의 제 2 기술적 과제를 달성하기 위하여,
하기 하기 화학식 2로 표시되는 리간드 화합물을 제공할 수 있다:
[화학식 2]
Figure PCTKR2015011892-appb-I000018
상기 화학식 2에서,
R1, R10 및 R11은 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
R2 및 R3은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
R4 내지 R9는 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고,
상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 고리를 형성할 수 있고,
Q는 Si, C, N, P 또는 S 일 수 있다.
본 명세서에 기재된 화학식 2의 리간드 화합물은 고리형태의 결합에 의해 벤조티오펜이 융합된 시클로펜타디엔, 및 아미도 그룹(N-R1)이 Q (Si, C, N, 또는 P)에 의해 안정적으로 가교된 구조를 갖는다.
상기 리간드 화합물에 있어서, 화학식 2로 표시되는 화합물의 R1 내지 R9의 정의는 전이금속 화합물인 상기 화학식 1로 표시되는 화합물에서의 정의와 동일할 수 있다.
본 발명의 일 실시예에 따른 리간드 화합물에 따르면, 상기 화학식 2에서, 상기 R10 및 R11은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 또는 탄소수 6 내지 20의 알킬아릴일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, 상기 R10 및 R11은 수소 일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 중 어느 하나로 표시되는 것이 바람직하다:
[화학식 2-1]
Figure PCTKR2015011892-appb-I000019
[화학식 2-2]
Figure PCTKR2015011892-appb-I000020
[화학식 2-3]
Figure PCTKR2015011892-appb-I000021
[화학식 2-4]
Figure PCTKR2015011892-appb-I000022
[화학식 2-5]
Figure PCTKR2015011892-appb-I000023
[화학식 2-6]
Figure PCTKR2015011892-appb-I000024
상기 화학식 1의 전이금속 화합물 및 화학식 2의 리간드 화합물은 올레핀 단량체의 중합용 촉매를 제조하는 데 사용되는 것이 바람직하나 이에 한정되지는 않으며 기타 상기 전이금속 화합물이 사용될 수 있는 모든 분야에 적용이 가능하다.
본 발명의 화학식 2로 표시되는 리간드 화합물은 하기 반응식 1과 같이, 제조할 수 있다.
[반응식 1]
Figure PCTKR2015011892-appb-I000025
상기 반응식 1에서, R1 내지 R11 및 Q는 상기 화학식 2에서 정의한 바와 같다.
구체적으로 살펴보면, 상기 화학식 2의 리간드 화합물은 하기 a) 및 b) 단계에 의하여 제조될 수 있다:
a) 하기 [화학식 4]로 표시되는 화합물을 하기 [화학식 5]로 표시되는 화합물과 반응하여 하기 [화학식 3]으로 표시되는 화합물을 제조하는 단계;
b) 하기 [화학식 3]으로 표시되는 화합물을 하기 [화학식 6]로 표시되는 화합물과 반응하여 하기 [화학식 2]로 표시되는 화합물을 제조하는 단계를 포함할 수 있다.
[화학식 4]
Figure PCTKR2015011892-appb-I000026
[화학식 5]
Figure PCTKR2015011892-appb-I000027
[화학식 3]
Figure PCTKR2015011892-appb-I000028
[화학식 6]
R1R10NH
[화학식 2]
Figure PCTKR2015011892-appb-I000029
상기 식에서, R1 내지 R11 및 Q는 상기 화학식 2에서 정의한 바와 같고,
R12는 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이다.
본 발명의 화학식 1로 표시되는 전이금속 화합물은 상기 화학식 2로 표시되는 리간드 화합물을 이용하여 하기 반응식 2와 같이, 제조할 수 있다.
[반응식 2]
Figure PCTKR2015011892-appb-I000030
상기 식에서, R1 내지 R11, Q, M, X1 및 X2는 상기 화학식 1 또는 화학식 2에서 정의한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 전이금속 화합물은 상기 화학식 2로 표시되는 화합물을 리간드로 하여 4족 전이금속이 배위 결합된 형태일 수 있다.
구체적으로 살펴보면, 하기 반응식 2와 같이, 상기 화학식 2로 표시되는 화합물을 금속 전구체인 하기 화학식 7로 표시되는 화합물 및 유기 리튬 화합물과 반응시켜 재결정화(recrystallization)시킴으로써, 화학식 2로 표시되는 화합물을 리간드로 하여 4족 전이금속이 배위 결합된 화학식 1의 전이금속 화합물을 얻을 수 있다.
[화학식 2]
Figure PCTKR2015011892-appb-I000031
[화학식 7]
M(X1X2)2
[화학식 1]
Figure PCTKR2015011892-appb-I000032
상기 식에서, R1 내지 R11, Q, M, X1 및 X2는 상기 화학식 1에서 정의한 바와 같다.
상기 반응식 2에서, 상기 유기 리튬 화합물은 예를 들어, n-부틸리튬, sec-부틸리튬, 메틸리튬, 에틸리튬, 이소프로필리튬, 사이클로헥실리튬, 알릴리튬, 비닐리튬, 페닐리튬 및 벤질리튬으로 이루어진 군으로부터 1종 이상 선택될 수 있다.
상기 화학식 2로 표시되는 화합물과 상기 화학식 5로 표시되는 화합물은 1: 0.8 내지 1: 1.5의 몰비, 바람직하게는 1: 1.0 내지 1: 1.1의 몰비로 혼합하는 것이 좋다.
또한, 상기 유기 리튬 화합물은 화학식 2로 표시되는 화합물 100 중량부를 기준으로 180 내지 250 중량부로 사용할 수 있다.
본 발명의 일 실시예에 따른 상기 제조방법에 따르면, 상기 반응은 -80 ℃ 내지 140 ℃의 온도 범위에서 1 내지 48 시간 동안 수행되는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 상기 화학식 3로 표시되는 화합물과 상기 화학식 6으로 표시되는 화합물은 1: 0.8 내지 1: 5.0 의 몰비, 바람직하게는 1: 0.9 내지 1: 4.5의 몰비, 더욱 바람직하게는 1:1 내지 1:4.0이 좋다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 4로 표시되는 화합물과 상기 화학식 5으로 표시되는 화합물은 1: 0.8 내지 1: 5.0 의 몰비, 바람직하게는 1: 0.9 내지 1: 4.0의 몰비, 더욱 바람직하게는 1:1 내지 1:3.0이 좋다.
또한, 상기 반응은 -80℃ 내지 140 ℃의 온도 범위에서 1 내지 48 시간 동안 수행되는 것이 바람직하다.
본 발명은 또한 상기 화학식 1의 화합물을 포함하는 촉매 조성물을 제공한다.
상기 촉매 조성물은 조촉매를 더 포함할 수 있다. 조촉매로는 당 기술분야에 알려져 있는 것을 사용할 수 있다.
예컨대, 상기 촉매 조성물은 조촉매로서 하기 화학식 10 내지 12 중 적어도 하나를 더 포함할 수 있다.
[화학식 8]
-[Al(R22)-O]a-
상기 식에서, R22은 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이며; a는 2 이상의 정수이며;
[화학식 9]
D(R22)3
상기 식에서, D가 알루미늄 또는 보론이며; R22이 각각 독립적으로 상기에 정의된 대로이며;
[화학식 10]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 식에서, L이 중성 또는 양이온성 루이스 산이고; H가 수소 원자이며; Z가 13족 원소이고; A는 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이며; 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
상기 촉매 조성물을 제조하는 방법으로서, 첫번째로 상기 화학식 1로 표시되는 전이금속 화합물과 상기 화학식 8 또는 화학식 9로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 10로 표시되는 화합물을 첨가하는 단계를 포함하는 제조 방법을 제공한다.
그리고, 두 번째로 상기 화학식 1로 표시되는 전이금속 화합물과 상기 화학식 10으로 표시되는 화합물을 접촉시켜 촉매 조성물을 제조하는 방법을 제공한다.
상기 촉매 조성물 제조 방법들 중에서 첫 번째 방법의 경우에, 상기 화학식 1의 전이금속 화합물 대비 상기 화학식 8 또는 화학식 9로 표시되는 화합물의 몰비는 각각 1:2 내지 1:5,000 이 바람직하고, 더욱 바람직하게는 1:10 내지 1:1,000 이고, 가장 바람직하게는 1:20 내지 1:500 이다.
한편, 상기 화학식 1의 전이금속 화합물 대비 상기 화학식 10으로 표시되는 화합물의 몰비는 1:1 내지 1:25이 바람직하고, 더욱 바람직하게는 1:1 내지 1:10 이고, 가장 바람직하게는 1:1 내지 1:5 이다.
상기 화학식 1의 전이금속 화합물 대비 상기 화학식 8 또는 화학식 9로 표시되는 화합물의 몰비가 1:2 미만일 경우에는 알킬화제의 양이 매우 작아 금속 화합물의 알킬화가 완전히 진행되지 못하는 문제가 있고 1:5,000 초과인 경우에는 금속 화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 10의 활성화제 간의 부반응으로 인하여 알킬화된 금속 화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다. 또한 상기 화학식 2의 전이금속 화합물에 대비 상기 화학식 10로 표시되는 화합물의 비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고 1:25 초과인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
상기 촉매 조성물 제조 방법들 중에서 두 번째 방법의 경우에, 상기 화학식 1의 전이금속 화합물 대비 화학식 10으로 표시되는 화합물의 몰비는 1:1 내지 1:500 이 바람직하며, 더욱 바람직하게는 1:1 내지 1:50이고, 가장 바람직하게는 1:2 내지 1:25이다. 상기 몰비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고, 1:500 초과인 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아 있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.
상기 조성물의 제조 시에 반응 용매로서 펜탄, 헥산, 헵탄 등과 같은 탄화수소계 용매나, 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술 분야에서 사용 가능한 모든 용매가 사용될 수 있다.
또한, 상기 화학식 1의 전이금속 화합물과 조촉매는 담체에 담지된 형태로도 이용할 수 있다. 담체로는 실리카나 알루미나가 사용될 수 있다.
상기 화학식 8으로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않는다. 바람직한 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 특히 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 9로 표시되는 화합물은 특별히 한정되지 않으나 바람직한 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 특히 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 10로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리디움테트라페틸보론, N,N-디에틸아닐리디움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플루오로페닐알루미늄, 디에틸암모니움테트라펜타텐트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론,트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리페닐카보니움테트라(p-트리플루오로메틸페닐)보론, 트리페닐카보니움테트라펜타플루오로페닐보론 등이 있다.
상기 화학식 1의 전이금속 화합물; 및 화학식 8 내지 화학식 10로 표시되는 화합물로부터 선택되는 하나 이상의 화합물을 포함하는 촉매 조성물을 하나 이상의 올레핀 단량체와 접촉시켜 폴리올레핀 호모 중합체 또는 공중합체를 제조하는 것이 가능하다.
상기 촉매 조성물을 이용한 가장 바람직한 제조 공정은 용액 공정이며, 또한 이러한 조성물을 실리카와 같은 무기 담체와 함께 사용하면 슬러리 또는 기상 공정에도 적용 가능하다.
제조 공정에서 상기 활성화 촉매 조성물은 올레핀 중합 공정에 적합한 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
상기 금속 화합물들과 조촉매를 사용하여 중합 가능한 올레핀계 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀계 단량체 또는 트리엔 올레핀계 단량체등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 혼합하여 공중합할 수도 있다.
특히, 본 발명의 제조 방법에서 상기 촉매 조성물은 90 ℃ 이상의 높은 반응온도에서도 에틸렌과 1-옥텐과 같은 입체적 장애가 큰 단량체의 공중합 반응에서 높은 분자량을 가지면서도 고분자 밀도 0.89 g/cc 이하의 초저밀도 공중합체의 제조가 가능하다는 특징을 가진다.
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.891 g/cc 미만이다.
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.88 g/cc 이하이다.
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 밀도가 0.87 g/cc 미만이다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 1의 전이금속 촉매를 이용하여 중합체를 형성하는 경우, Tm(용융 온도)의 피크가 단일상 또는 2개의 피크를 가질 수 있다.
Tm은 PerkinElmer사에서 제조한 시차주사열량계(DSC : Differential Scanning Calorimeter 6000)를 이용하여 얻을 수 있으며, 중합체 온도를 100 ℃까지 증가시킨 후, 1 분 동안 그 온도에서 유지하고 그 다음 -100 ℃까지 내리고, 다시 온도를 증가시켜 DSC 곡선의 꼭대기를 녹는점(용융온도)으로 측정할 수 있다
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 92 이하이다.
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 Tm이 1개 또는 2개의 피크를 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 용융지수(Mi)가 4 미만일 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 용융지수(Mi)가 2 이하일 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 제조 방법에 의하여 제조된 중합체는 용융지수(Mi)가 1 이하일 수 있다.
본 발명의 실시예에 따라 용융지수가 2 미만으로 낮은 경우 고분자량의 중합체 생성이 가능할 수 있으므로, 특히 상기 중합체를 고분자량의 중합체를 요구하는 코팅용 다층필름으로 유용하게 사용될 수 있다.
이하, 하기 실시예에 의거하여 본 발명을 보다 구체적으로 설명한다. 이들 실시예는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.
리간드 및 전이금속 화합물의 합성
유기 시약 및 용매는 특별한 언급이 없으면 알드리치(Aldrich)사에서 구입하여 표준 방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다. 화학식 1에서 케톤류 화합물중 테트라 메틸 사이클로 부타디엔이 치환된 화합물은 문헌 [Organometallics 2002, 21, 2842-2855]에 따라, 비교예 1의 CGC(Me2Si(Me4C5)NtBu]TiMel2(Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다)는 미국 특허 등록 제6,015,916호에 따라, 합성하였다.
<리간드 화합물의 제조>
[화학식 2-1]
Figure PCTKR2015011892-appb-I000033
<N-tert-butyl-1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-1,1-dimethylsilanamine의 합성>
100ml 쉬렝크 플라스크에 화학식 3의 화합물 4.65g (15.88mmol)을 정량하여 첨가한 후, 여기에 THF 80 ml를 투입하였다. 상온에서 tBuNH2(4eq, 6.68ml)을 투입한 후, 상온에서 3일 동안 반응시켰다. 반응 후, THF를 제거한 후, 헥산으로 여과하였다. 용매 건조 후 노란색 액체를 4.50g (86%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz):
7.99 (d, 1H), 7.83 (d, 1H), 7.35 (dd, 1H), 7.24 (dd, 1H), 3.49 (s, 1H), 2.37 (s, 3H), 2.17 (s, 3H), 1.27 (s, 9H), 0.19 (s, 3H), -0.17 (s, 3H).
[화학식 2-2]
Figure PCTKR2015011892-appb-I000034
<1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-N-isopropyl-1,1-dimethylsilanamine의 합성>
100ml 쉬렝크 플라스크에 화학식 3 의 화합물 1.00g (3.44mmol)을 정량하여 첨가한 후, 여기에 THF 25ml를 투입하였다. 상기 쉬렝크 플라스크를 드라이 아이스와 아세톤으로 만든 -78℃ 저온조에 담궈 30분간 교반하였다. 이어서, THF (7ml)에 아이소프로필아민(0.4g, 6.88mmol)을 녹여, 아르곤 하에 상기 플라스크로 천천히 투입하였다. 한 시간동안 -78℃에서 교반한 후, 점차 온도를 상온으로 올려서 교반하였다. 이어서, 디에틸에테르로 여과하여 그 여액을 취하고 용매건조 후, 노란색 액체를 597.0mg (55%)의 수율로 얻었다.
1H-NMR (in C6D6, 500 MHz):
7.98 (d, 2H), 7.72 (d, 1H), 7.24 (dd, 1H), 7.10 (dd, 1H), 3.23 (s, 1H), 2.89 -2.83 (m, 1H), 2.25 (s, 3H), 2.00 (s, 3H), 0.98 (d, 3H), 0.92 (d, 3H), 0.05 (s, 3H), -0.14 (s, 3H).
[화학식 2-3]
Figure PCTKR2015011892-appb-I000035
<1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-N-ethyl-1,1-dimethylsilanamine합성>
100ml 쉬렝크 플라스크에 화학식 3의 화합물 1.40g (4.78mmol)을 정량하여 첨가한 후, 여기에 THF 30ml를 투입하였다. 상온에서 tBuNH2(2eq, 4.78ml, 2.0M in THF)을 투입한 후, 상온에서 3시간동안 반응시켰다. 반응 후, THF를 제거한 후, 헥산으로 여과하였다. 용매 건조 후 노란색 액체를 1.41g (98%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz):
7.99 (d, 1H), 7.83 (d, 1H), 7.36 (dd, 1H), 7.24 (dd, 1H), 3.49 (s, 1H), 2.84 (m, 2H), 2.37 (s, 3H), 2.16 (s, 3H), 1.11 (t, 3H), 0.09 (s, 3H), -0.09 (s, 3H).
[화학식 2-4]
Figure PCTKR2015011892-appb-I000036
<1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-1,1-dimethyl-N-phenylsilanamine 합성>
250ml 쉬렝크 플라스크에 아닐린 (1.47g, 5.12mmol)과 THF (25ml)을 혼합 교반하였다. 상기 쉬렝크 플라스크를 드라이 아이스와 아세톤으로 만든 -78℃ 저온조에 담궈 30분간 교반하였다. 이어서, n-BuLi(1.36ml, 2.5M, 3.41mmol)을 천천히 적가하였다. 이 때, 반응 혼합물의 색깔이 서서히 노란색으로 변했다. 점차 온도를 상온으로 올려가면서 1시간 교반하였다. 다른 쉬렝크 플라스크에 화학식 3 (1.0g, 3.41mmol)과 THF (20ml)을 혼합 교반하였다. 이 쉴렝크 플라스크를 드라이 아이스와 아세톤으로 만든 -78℃ 저온조에 담궈 30분간 교반하였다. 이어서, 이 쉬렝크 플라스크에 상기 쉬렝크 플라스크의 반응액을 천천히 적가하였다. 점차 온도를 상온으로 올려서 교반하였다. 이어서, 용매를 모두 제거한 뒤, 디에틸에테르로 여과하여 그 여액을 취하고 용매를 제거하였다. 그 결과 주황색 액체를 692.0mg (58%)의 수율로 얻었다.
1H-NMR (in C6D3, 500 MHz):
7.93 (d, 1H), 7.65 (d, 1H), 7.21 (dd, 1H), 7.13 (dd, 2H), 7.06 (dd, 1H), 6.78 (dd, 1H), 6.59 (dd, 2H), 3.51 (s, 1H), 3.13 (br, 1H), 2.16 (s, 3H), 1.88 (s, 3H), 0.07 (s, 3H), -0.15 (s, 3H).
[화학식 2-5]
Figure PCTKR2015011892-appb-I000037
<1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-N-(4-methoxyphenyl)-1,1-dimethylsilanamine 합성>
250ml 쉬렝크 플라스크에 아니시딘 (1.02g, 8.25mmol)과 THF (20ml)을 혼합 교반하였다. 상기 쉬렝크 플라스크를 드라이 아이스와 아세톤으로 만든 -78℃ 저온조에 담궈 30분간 교반하였다. 이어서, n-BuLi(2.20ml, 2.5M, 5.50mmol)을 천천히 적가한 후, 온도를 상온으로 올려가면서 1시간 교반하였다. 다른 쉬렝크 플라스크에 화학식 3 (1.61g, 5.50mmol)과 THF (20ml)을 혼합 교반하였다. 이 쉴렝크 플라스크를 드라이 아이스와 아세톤으로 만든 -78℃ 저온조에 담궈 30분간 교반하였다. 이어서, 이 쉬렝크 플라스크에 상기 쉬렝크 플라스크의 반응액을 천천히 적가하였다. 점차 온도를 상온으로 올려서 교반하였다. 이어서, 용매를 모두 제거한 뒤, 디에틸에테르로 여과하여 그 여액을 취하고 용매를 제거하였다. 그 결과 주황색 액체를 1.15g (55%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz):
7.96 (d, 1H), 7.69 (d, 1H), 7.24 (dd, 1H), 7.09 (dd, 1H), 6.78 (m, 2H), 6.56 (m, 2H), 3.55 (s, 1H), 3.39 (s, 3H), 2.97 (br, 1H), 2.21 (s, 3H), 1.94 (s, 3H), 0.10 (s, 3H), -0.08 (s, 3H).
[화학식 2-6]
Figure PCTKR2015011892-appb-I000038
<1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-N-(2,6-dimethylphenyl)-1,1-dimethylsilanamine 합성>
250ml 쉬렝크 플라스크에 2,6-다이메틸아닐린(0.45ml, 3.66mmol)과 THF (25ml)을 혼합 교반하였다. 상기 쉬렝크 플라스크를 드라이 아이스와 아세톤으로 만든 -78℃ 저온조에 담궈 30분간 교반하였다. 이어서, n-BuLi(0.98ml, 2.5M, 2.44mmol)을 천천히 적가한 후, 점차 온도를 상온으로 올려가면서 1시간 교반하였다. 다른 쉬렝크 플라스크에 화학식 3 (720.0mg, 2.44mmol)과 THF (20ml)을 혼합 교반하였다. 이 쉴렝크 플라스크를 드라이 아이스와 아세톤으로 만든 -78℃ 저온조에 담궈 30분간 교반하였다. 이어서, 이 쉬렝크 플라스크에 상기 쉬렝크 플라스크의 반응액을 천천히 적가하였다. 점차 온도를 상온으로 올려서 교반하였다. 이어서, 용매를 모두 제거한 뒤, 디에틸에테르로 여과하여 그 여액을 취하고 용매를 제거하였다. 그 결과 주황색 액체를 636.0mg (69%)의 수율로 얻었다.
1H-NMR (in C6D6, 500 MHz):
7.97 (d, 1H), 7.69 (d, 1H), 7.26 (dd, 1H), 7.10 (dd, 1H), 6.93 (d, 2H), 6.85 (dd, 1H), 3.26 (s, 1H), 2.91 (br, 1H), 2.21 (s, 3H), 1.94 (s, 3H), 1.87 (s, 6H), 0.07 (s, 3H), -0.05 (s, 3H).
<전이금속 화합물의 제조>
실시예 1, 화학식 1-1
Figure PCTKR2015011892-appb-I000039
50ml 쉬렝크 플라스크에 상기 화학식 2-1 리간드 화합물 (1.06g, 3.22mmol/1.0eq) 및 MTBE 16.0mL (0.2M)를 넣고 먼저 교반시켰다. -40oC 에서 n-BuLi(2.64ml, 6.60mmol/2.05eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40oC 에서 MeMgBr (2.68ml, 8.05 mmol/2.5eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4 (2.68ml, 3.22 mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 1.07g (82%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz):
7.99 (d, 1H), 7.68 (d, 1H), 7.40 (dd, 1H), 7.30 (dd, 1H), 3.22 (s, 1H), 2.67 (s, 3H), 2.05 (s, 3H), 1.54 (s, 9H), 0.58 (s, 3H), 0.57 (s, 3H), 0.40 (s, 3H), -0.45 (s, 3H).
실시예 2, 화학식 1-2
Figure PCTKR2015011892-appb-I000040
10ml 쉬렝크 플라스크에 상기 화학식 2-2 리간드 화합물 (134.0mg, 0.43mmol/1.0eq) 및 MTBE 2.6mL (0.2M)를 넣고 교반시켰다. -40oC 에서 n-BuLi(0.34ml, 0.86mmol/2.0eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40oC 에서 MeMgBr (0.85ml, 1.3mmol/3.0eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4 (0.43ml, 0.43mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 60.6mg (36%)의 수율로 얻었다.
1H-NMR (in C6D6, 500 MHz):
7.80 (d, 1H), 7.39 (d, 1H), 7.17 (dd, 1H), 7.01 (dd, 1H), 5.02 (m, 1H), 2.36 (s, 3H), 1.89 (s, 3H), 1.22 (m, 6H), 0.61 (s, 3H), 0.58 (s, 3H), 0.40 (s, 3H), -0.03 (s, 3H).
실시예 3, 화학식 1-3
Figure PCTKR2015011892-appb-I000041
50ml 쉬렝크 플라스크에 상기 화학식 2-3 리간드 화합물 (1.45g, 4.81mmol/1.0eq) 및 MTBE 25mL (0.2M)를 넣고 교반시켰다. -40oC 에서 n-BuLi(3.94ml, 9.86mmol/2.5eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40oC 에서 MeMgBr (4.0ml, 12.02mmol/2.5eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4 (4.81ml, 4.81mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 NMR결과 반응이 완결되지 않아 MeLi (3.0ml, 4.81mmol/1.0eq, 1.6M in diethyl ether)를 천천히 적가한후 반응을 완결하였다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 1.02g (56%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz):
8.03 (d, 1H), 7.68 (d, 1H), 7.42 (dd, 1H), 7.30 (dd, 1H), 4.23 (q, 2H), 2.70 (s, 3H), 2.08 (s, 3H), 1.30 (t, 3H), 0.83 (s, 3H), 0.54 (s, 3H), 0.53 (s, 3H), 0.35 (s, 3H), 0.09 (s, 3H), -0.46 (s, 3H).
실시예 4, 화학식 1-4
Figure PCTKR2015011892-appb-I000042
10ml 쉬렝크 플라스크에 상기 화학식 2-4 리간드 화합물 (388.6mg, 1.11mmol/1.0eq) 및 MTBE 5.6mL (0.2M)를 넣고 교반시켰다. -40oC 에서 n-BuLi(0.89ml, 2.22mmol/2.0eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40oC 에서 MeMgBr (1.11ml, 3.33mmol/3.0eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4 (1.11ml, 1.11mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 175.0mg (37%)의 수율로 얻었다.
1H-NMR (in C6D6, 500 MHz):
7.76 (d, 1H), 7.39 (d, 1H), 7.26 (m, 4H), 7.18 (m, 1H), 7.01 (dd, 1H), 6.92 (dd, 1H), 2.33 (s, 3H), 1.94 (s, 3H), 0.85 (s, 3H), 0.62 (s, 3H), 0.43 (s, 3H), 0.23 (s, 3H).
실시예 5, 화학식 1-5
Figure PCTKR2015011892-appb-I000043
10ml 쉬렝크 플라스크에 상기 화학식 2-5 리간드 화합물 (242.0mg, 0.64mmol/1.0eq) 및 MTBE 3.2mL (0.2M)를 넣고 교반시켰다. -40oC 에서 n-BuLi(0.51ml, 1.28mmol/2.0eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40oC 에서 MeMgBr (0.64ml, 1.92mmol/3.0eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4 (0.64ml, 0.64mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 152.0mg (52%)의 수율로 얻었다.
1H-NMR (in C6D6, 500 MHz):
7.78 (d, 1H), 7.41 (d, 1H), 7.19-6.84 (m, 6H), 3.34 (s, 3H), 3.35 (s, 3H), 1.98 (s, 3H), 0.83 (s, 3H), 0.63 (s, 3H), 0.44 (s, 3H), 0.21 (s, 3H).
실시예 6, 화학식 1-6
Figure PCTKR2015011892-appb-I000044
10ml 쉬렝크 플라스크에 상기 화학식 2-5 리간드 화합물 (116.0mg, 0.31mmol/1.0eq) 및 MTBE 2.0mL (0.2M)를 넣고 교반시켰다. -40oC 에서 n-BuLi(0.25ml, 0.61mmol/2.0eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40oC 에서 MeMgBr (0.31ml, 0.93mmol/3.0eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4 (0.31ml, 0.31mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 79.0mg (56%)의 수율로 얻었다.
1H-NMR (in C6D6, 500 MHz):
7.74 (d, 1H), 7.37 (d, 1H), 7.19 - 6.97 (m, 5H), 2.32 (s, 3H), 2.26 (s, 3H), 2.25 (s, 3H), 2.03 (s, 3H), 0.67 (s, 3H), 0.55 (s, 3H), 0.34 (s, 3H), 0.05 (s, 3H).
비교예 1
Figure PCTKR2015011892-appb-I000045
<(tert-butyl(dimethyl(2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)silyl)amino)dimethyltitanium의 합성>
100ml 쉬렝크 플라스크에 비교예 리간드 화합물 (2.36g, 9.39mmol/1.0eq) 및 MTBE 50mL (0.2M)를 넣고 교반시켰다. -40oC 에서 n-BuLi(7.6ml, 19.25mmol/2.05eq, 2.5M in THF)을 넣고, 상온에서 밤새 반응시켰다. 이후, -40oC 에서 MeMgBr (6.4ml, 19.25mmol/2.05eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4 (9.4ml, 9.39mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 노란색 고체를 2.52g (82%)의 수율로 얻었다.
1H-NMR (in CDCl3, 500 MHz):
2.17 (s, 6H), 1.92 (s, 6H), 1.57 (s, 9H), 0.48 (s, 6H), 0.17 (s, 6H).
중합체의 제조예
실시예 1( 실시예 1-1 내지 1-4) 내지 실시예 6, 및 비교예 1
2L 오토클레이브 반응기에 헥산 용매(1.0L)와 1-옥텐(210ml)을 가한 후, 반응기의 온도를 150℃로 예열하였다. 그와 동시에 반응기의 압력을 에틸렌(35bar)으로 미리 채워 놓았다. 디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트 조촉매(20 μmol)와 트리이소부틸알루미늄 화합물로 처리된 하기 표 1의 2번째 열의 화합물(2.0μmol)를 차례로 고압 아르곤 압력을 가하여 반응기에 넣었다(Al:Ti의 몰비=10:1). 이어서, 공중합 반응을 8분간 진행하였다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 과량의 에탄올에 가하여 침전을 유도하였다. 침전된 고분자를 에탄올으로 2 내지 3회 세척한 후, 90℃ 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.
하기 표 1의 중합 온도, 및 주촉매와 촉매에 따라 다양한 중합체를 제조하였으며, 그 결과를 표 1 및 2에 나타내었다.
물성 평가(무게, 활성도, 용융 지수, 녹는점, 밀도)
<고분자의 용융지수>
고분자의 용융지수 (Melt Index, MI) 는 ASTM D-1238 (조건 E, 190℃, 2.16 Kg 하중)로 측정하였다.
<고분자의 용융온도>
고분자의 용융온도(Tm)는 PerkinElmer사에서 제조한 시차주사열량계(DSC : Differential Scanning Calorimeter 6000)를 이용하여 얻을 수 있으며, 고분자 용융온도는 측정 용기에 시료를 약 0.5mg 내지 10mg 충전하여, 질소 가스 유량을 20ml/min으로 하고, 상기 폴리올레핀 수지의 열이력을 동일하게 하기 위하여 시료를 0℃ 에서 150℃의 온도까지 20℃/min의 속도로 승온시킨 후, 다시 상기 시료를 150℃ 에서 -100℃의 온도까지 10℃/min의 속도로 냉각한 후 다시 상기 시료를 -100℃ 에서 150℃의 온도까지 10℃/min의 속도로 승온시키면서 DSC로 측정한 열류량(Heat flow)의 가열 곡선의 피크, 즉, 가열 시의 흡열 피크 온도를 용융 온도로 하여 측정할 수 있다.
<고분자의 밀도>
고분자의 밀도(Density)는 샘플을 190 ℃ 프레스 몰드(Press Mold)로 두께 3 mm, 반지름 2 cm 의 시트를 제작하고 상온에서 24시간 어닐링 후 메틀러(Mettler) 저울에서 측정하였다.
상기 실시예 1(실시예 1-1 내지 1-4) 및 비교예 1에서 제조한 중합체의 물성을 하기 표 1에 나타내었다.
<온도에 따른 저밀도, 고분자량 제품의 용이성 측정>
Cat. Cat. 중합 온도(℃) Cocat 수율 (g) 밀도(g/cc) 용융지수(MI)(g/10min) Tm(℃)
비교예 1 CGC 150 AB 45.4 0.900 13.8 102.4
실시예1-1 화학식 1-1 150 AB 48.1 0.891 0.61 88.6
실시예1-2 화학식 1-1 150 TB 45.8 0.893 0.005 90.4
실시예 1-3 화학식 1-1 120 AB 76.1 0.894 0.47 89.2
실시예 1-4 화학식 1-1 120 TB 75.6 0.894 0.016 91.5
Polymerization condition: hexane (1.0 L), Ethylene (35 bar), Cocat : 10 equiv, 1-C8 210ml,
t = 8 min
AB:디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트 조촉매
TB:트리이소부틸알루미늄 화합물
상기 표 1에 나타난 바와 같이, 150 oC에서 본 발명의 실시예 1의 경우 비교예 대비 저밀도, 고분자량이 나타남을 확인할 수 있다. 120 oC에서의 중합에서는 기본 물성은 비슷하나 수율이 대폭 증가됨을 확인할 수 있다.
또한, 비교예 1의 경우, 0.900g/cc의 높은 밀도이고, MI가 13 이상으로 고분자량의 제품을 제조하는데 어려움이 있을 수 있으나, 본 발명의 실시예 1과 같이 용융지수(MI)가 낮은 경우, 고분자량의 제품의 제조가 가능할 수 있다.
또한, 조촉매를 달리하거나, 중합온도를 낮추었을 때 0.891 내지 0.894 g/cc 및 0.61 g/10min 이하의 용융지수를 유지할 수 있음을 확인하였다.
실시예 1-1 내지 1-4의 중합체의 경우, 비교예 1에 비해 용융지수가 0.005 g/10min로서 비교예 1 대비 25배 이상 까지도 현저하게 낮아질 수 있음을 확인하였다.
<밀도 및 용융지수에 따른 고분자량의 엘라스토머 제조 용이성 측정>
Cat. 중합 온도(℃) Cocat. 수율 (g) 밀도(g/cc) 용융지수(MI)(g/10min) Tm(℃)
비교예1 150 AB 45.4 0.900 13.8 102.4
실시예1 150 AB 48.1 0.891 0.61 88.6
실시예2 150 AB 47.6 0.876 0.37 (55.5)/89.4
실시예3 150 AB 21.5 0.869 0.52 46.0/87.2
실시예4 150 AB 26.5 0.861 2.79 39.1
실시예5 150 AB 22.7 0.863 3.50 46.8
Polymerization condition: hexane (1.0 L), Ethylene (35 bar), Cocat : AB 10 equiv, 1-C8 210ml,
t = 8 min
상기 표 2에서 살펴 본 바와 같이, 실시예 1 내지 5에서 제조된 전이금속 화합물을 이용하여 중합체를 형성하는 경우, 비교예 1에 비해 밀도 및 용융지수가 현저히 낮음을 알 수 있다.
구체적으로 살펴보면, 실시예 1 및 5에서 제조된 전이금속 화합물을 이용하여 중합체를 형성하는 경우, 중합체의 밀도가 비교예 1을 사용한 경우에 비해 감소함을 알 수 있었다. 예를 들어 비교예 1의 경우 밀도가 0.900 g/cc 이상인데 반해, 본 발명의 실시예 1 내지 5에서 제조된 전이금속 화합물을 이용하여 중합체를 형성하는 경우, 중합체의 밀도가 0.862 g/cc 내지 0.891 g/cc로서 낮은 밀도값을 얻을 수 있었다.
또한, 용융지수의 경우, 본 발명의 실시예 1 내지 5 에서 제조된 전이금속 화합물을 이용하여 중합체를 형성하는 경우, 중합체의 용융지수는 0.37 내지 3.50 (g/10min)이었고, 특히 실시예 1 내지 5에서 제조된 전이금속 화합물을 이용하여 중합체를 형성하는 경우 비교예 1에 비해 약 30배 이상까지 낮아짐을 알 수 있다. 용융지수가 낮다는 것은 고분자량의 중합체 생성이 가능함을 의미한다.
따라서, 본 발명의 실시예 1 내지 5에서 제조된 전이금속 화합물을 이용하여 중합체를 형성하는 경우, 본 발명에 따른 화합물은 공중합성이 우수한 저밀도영역의 중합체 및 고분자량의 중합체를 제조할 수 있다.

Claims (18)

  1. 하기 화학식 1로 표시되는 전이금속 화합물:
    [화학식 1]
    Figure PCTKR2015011892-appb-I000046
    상기 화학식 1에서,
    R1은 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    R2 및 R3은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
    R4 내지 R9는 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고,
    상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 고리를 형성할 수 있고,
    Q는 Si, C, N, P 또는 S 이며,
    M은 4족 전이금속이고,
    X1 및 X2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미노, 탄소수 6 내지 20의 아릴아미노 또는 탄소수 1 내지 20의 알킬리덴이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서, 상기 R1은 수소; 탄소수 1 내지 20의 알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    R2 및 R3은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 또는 탄소수 6 내지 20의 알킬아릴이며,
    R4 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
    상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
    Q는 Si, C, N 또는 P인 것을 특징으로 하는 전이금속 화합물.
  3. 청구항 2에 있어서,
    상기 화학식 1에서, 상기 R1은 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 또는 탄소수 7 내지 20의 아릴알킬이고,
    R2 및 R3은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 6 내지 20의 아릴이며,
    R4 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 또는 탄소수 6 내지 20의 아릴이고,
    Q는 Si인 것을 특징으로 하는 전이금속 화합물.
  4. 청구항 3에 있어서,
    M은 Ti, Hf 또는 Zr인 것을 특징으로 하는 전이금속 화합물.
  5. 청구항 4에 있어서,
    상기 화학식으로 표시되는 화합물은 하기 화학식 중 어느 하나로 표시되는 것을 특징으로 하는 전이금속 화합물:
    [화학식 1-1]
    Figure PCTKR2015011892-appb-I000047
    [화학식 1-2]
    Figure PCTKR2015011892-appb-I000048
    [화학식 1-3]
    Figure PCTKR2015011892-appb-I000049
    [화학식 1-4]
    Figure PCTKR2015011892-appb-I000050
    [화학식 1-5]
    Figure PCTKR2015011892-appb-I000051
    [화학식 1-6]
    Figure PCTKR2015011892-appb-I000052
  6. 하기 화학식 2로 표시되는 리간드 화합물:
    [화학식 2]
    Figure PCTKR2015011892-appb-I000053
    상기 화학식 2에서,
    R1, R10 및 R11은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    R2 및 R3은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 6 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이며,
    R4 내지 R9는 각각 독립적으로, 수소; 실릴; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 또는 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼이고,
    상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 고리를 형성할 수 있고,
    Q는 Si, C, N, P 또는 S 이다.
  7. 청구항 6에 있어서,
    상기 화학식 2에서, 상기 R1, R10 및 R11은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    R2 및 R3은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 또는 탄소수 6 내지 20의 알킬아릴이며,
    R4 내지 R9는 각각 독립적으로, 수소; 탄소수 1 내지 20의 알킬; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이고,
    상기 R2 내지 R9 중 서로 인접하는 2개 이상은 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있으며;
    상기 지방족 고리 또는 방향족 고리는 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 또는 탄소수 6 내지 20의 아릴로 치환될 수 있고,
    Q는 Si, C, N 또는 P인 것을 특징으로 하는 리간드 화합물.
  8. 청구항 7에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 중 어느 하나로 표시되는 것을 특징으로 하는 리간드 화합물:
    [화학식 2-1]
    Figure PCTKR2015011892-appb-I000054
    [화학식 2-2]
    Figure PCTKR2015011892-appb-I000055
    [화학식 2-3]
    Figure PCTKR2015011892-appb-I000056
    [화학식 2-4]
    Figure PCTKR2015011892-appb-I000057
    [화학식 2-5]
    Figure PCTKR2015011892-appb-I000058
    [화학식 2-6]
    Figure PCTKR2015011892-appb-I000059
  9. a) 하기 [화학식 4]로 표시되는 화합물을 하기 [화학식 5]로 표시되는 화합물과 반응하여 하기 [화학식 3]으로 표시되는 화합물을 준비하는 단계;
    b) 하기 [화학식 3]으로 표시되는 화합물을 하기 [화학식 6]로 표시되는 화합물과 반응하여 하기 [화학식 2]로 표시되는 화합물을 준비하는 단계를 포함하는 화학식 2의 리간드 화합물의 제조방법:
    [화학식 4]
    Figure PCTKR2015011892-appb-I000060
    [화학식 5]
    [화학식 3]
    Figure PCTKR2015011892-appb-I000062
    [화학식 6]
    R1R10NH
    [화학식 2]
    Figure PCTKR2015011892-appb-I000063
    상기 식에서, R1 내지 R11 및 Q는 상기 화학식 2에서 정의한 바와 같고,
    R12는 수소; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 1 내지 20의 알콕시; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 아릴알콕시; 탄소수 7 내지 20의 알킬아릴; 또는 탄소수 7 내지 20의 아릴알킬이다.
  10. 하기 화학식 2로 표시되는 화합물을 하기 화학식 7로 표시되는 화합물 및 유기 리튬 화합물과 반응시켜 화학식 1의 전이금속 화합물을 제조하는 방법:
    [화학식 2]
    Figure PCTKR2015011892-appb-I000064
    [화학식 7]
    M(X1X2)2
    [화학식 1]
    Figure PCTKR2015011892-appb-I000065
    상기 식에서, R1 내지 R11, Q, M, X1 및 X2는 상기 화학식 1에서 정의한 바와 같다.
  11. 청구항 1 내지 5 중 어느 하나의 항에 따른 전이금속 화합물을 포함하는 것을 특징으로 하는 촉매 조성물.
  12. 청구항 11에 있어서,
    1 종 이상의 조촉매를 더 포함하는 것을 특징으로 하는 촉매 조성물.
  13. 청구항 12에 있어서,
    상기 조촉매는 하기 화학식 8 내지 10 중에서 선택되는 하나 이상을 포함하는 것을 특징으로 하는 촉매 조성물.
    [화학식 8]
    -[Al(R22)-O]a-
    상기 식에서, R22은 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이며; a는 2 이상의 정수이며;
    [화학식 9]
    D(R22)3
    상기 식에서, D가 알루미늄 또는 보론이며; R22이 각각 독립적으로 상기에 정의된 대로이며;
    [화학식 10]
    [L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
    상기 식에서, L이 중성 또는 양이온성 루이스 산이고; H가 수소 원자이며; Z가 13족 원소이고; A는 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴 또는 탄소수 1 내지 20의 알킬이며; 상기 치환기는 할로겐, 탄소수 1 내지 20의 하이드로카르빌, 탄소수 1 내지 20의 알콕시, 또는 탄소수 6 내지 20의 아릴옥시이다.
  14. 청구항 12에 있어서,
    상기 촉매 조성물은 반응 용매를 더 포함하는 것을 특징으로 하는 촉매 조성물.
  15. 청구항 11에 따른 촉매 조성물을 이용한 것을 특징으로 하는 중합체의 제조방법.
  16. 청구항 15에 있어서,
    상기 중합체는 폴리올레핀의 호모중합체 또는 공중합체인 것을 특징으로 하는 중합체의 제조방법.
  17. 청구항 11에 따른 촉매 조성물을 이용하여 제조된 중합체.
  18. 청구항 17에 있어서,
    상기 중합체는 용융지수(Mi)가 3.5 이하이고, 밀도가 0.90 g/cc 미만인 것을 특징으로 하는 중합체.
PCT/KR2015/011892 2014-11-07 2015-11-06 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물 WO2016072783A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017501402A JP6469832B2 (ja) 2014-11-07 2015-11-06 リガンド化合物、遷移金属化合物及びこれを含む触媒組成物
EP15857360.0A EP3216795B1 (en) 2014-11-07 2015-11-06 Ligand compound, transition metal compound, and catalyst composition containing same
CN201580041488.5A CN106661142B (zh) 2014-11-07 2015-11-06 配体化合物、过渡金属化合物和包含该化合物的催化剂组合物
US15/110,596 US9822200B2 (en) 2014-11-07 2015-11-06 Ligand compound, transition metal compound, and catalystic composition including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140154389A KR101637982B1 (ko) 2014-11-07 2014-11-07 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR10-2014-0154389 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016072783A1 true WO2016072783A1 (ko) 2016-05-12

Family

ID=55909424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011892 WO2016072783A1 (ko) 2014-11-07 2015-11-06 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물

Country Status (6)

Country Link
US (1) US9822200B2 (ko)
EP (1) EP3216795B1 (ko)
JP (1) JP6469832B2 (ko)
KR (1) KR101637982B1 (ko)
CN (1) CN106661142B (ko)
WO (1) WO2016072783A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505751A (ja) * 2017-12-26 2021-02-18 エルジー・ケム・リミテッド オレフィン系重合体

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038375B1 (ja) * 2016-06-29 2016-12-07 ポリプラスチックス株式会社 触媒の製造方法
KR102140690B1 (ko) * 2016-11-14 2020-08-04 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102223719B1 (ko) * 2016-11-14 2021-03-05 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102223718B1 (ko) * 2016-11-14 2021-03-05 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102236921B1 (ko) * 2016-11-16 2021-04-07 주식회사 엘지화학 전이금속 화합물 및 알킬알루미녹산을 포함하는 촉매 조성물, 이를 이용한 중합체의 제조방법, 및 이를 이용하여 제조된 중합체
KR101920401B1 (ko) * 2016-12-06 2019-02-08 한화케미칼 주식회사 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
KR102227351B1 (ko) * 2016-12-23 2021-03-11 주식회사 엘지화학 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조 방법
KR102303745B1 (ko) * 2017-06-15 2021-09-16 주식회사 엘지화학 신규한 리간드 화합물 및 이를 포함하는 전이금속 화합물
WO2019022569A1 (ko) 2017-07-27 2019-01-31 주식회사 엘지화학 신규한 전이금속 화합물 및 이를 제조하는 방법
KR102294874B1 (ko) * 2017-09-11 2021-08-26 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체
KR102259746B1 (ko) * 2017-12-26 2021-06-02 주식회사 엘지화학 올레핀계 중합체
KR102117624B1 (ko) * 2018-05-04 2020-06-02 주식회사 엘지화학 올레핀계 공중합체 및 이의 제조방법
KR102281114B1 (ko) * 2018-05-04 2021-07-26 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체를 포함하는 접착제 조성물
JP7086432B2 (ja) * 2018-05-04 2022-06-20 エルジー・ケム・リミテッド エチレン/α-オレフィン共重合体およびその製造方法
US11505725B2 (en) 2018-05-04 2022-11-22 Lg Chem, Ltd. Adhesive composition including ethylene/alpha-olefin copolymer
KR102527751B1 (ko) * 2018-05-04 2023-05-03 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체를 포함하는 광학필름용 수지 조성물 및 이를 포함하는 광학필름
WO2019212304A1 (ko) * 2018-05-04 2019-11-07 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
KR102622329B1 (ko) * 2018-05-04 2024-01-09 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체, 이의 제조방법 및 이를 포함하는 광학필름용 수지 조성물
KR102282280B1 (ko) * 2018-05-04 2021-07-27 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2019212307A1 (ko) * 2018-05-04 2019-11-07 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체, 이의 제조방법
JP7187097B2 (ja) * 2018-05-04 2022-12-12 エルジー・ケム・リミテッド オレフィン系共重合体及びその製造方法
KR102447201B1 (ko) * 2019-08-28 2022-09-27 주식회사 엘지화학 폴리프로필렌계 복합재 및 이의 제조방법
KR102348516B1 (ko) * 2020-04-16 2022-01-10 주식회사 엘지화학 전기 절연성이 우수한 에틸렌/알파-올레핀 공중합체
WO2021210749A1 (ko) 2020-04-16 2021-10-21 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체를 포함하는 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112350A (ko) * 2000-01-18 2001-12-20 간디 지오프레이 에이치. 실질적으로 무정형인 프로필렌 기재 중합체의 제조
JP2004530689A (ja) * 2001-05-15 2004-10-07 バセル ポリオレフィン ジーエムビーエイチ シクロペンタジエン誘導体の合成
US20070135623A1 (en) * 2005-12-14 2007-06-14 Voskoboynikov Alexander Z Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization
KR101271904B1 (ko) * 2009-08-13 2013-06-05 주식회사 엘지화학 폴리올레핀 중합체 제조용 메탈로센 촉매 및 이의 제조방법
KR20130116395A (ko) * 2012-03-06 2013-10-24 에스케이이노베이션 주식회사 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
US6015916A (en) 1999-02-02 2000-01-18 Boulder Scientific Company Constrained geometry metallocene catalyst complexes
SG99905A1 (en) 2000-06-21 2003-11-27 Sumitomo Chemical Co Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
WO2003078480A2 (en) 2002-03-14 2003-09-25 Dow Global Technologies Inc. Polycyclic, fused heteroring compounds, metal complexes and polymerization process
US6559251B1 (en) * 2002-08-02 2003-05-06 Equistar Chemicals, Lp Process for making low-density polyolefins
US6861485B2 (en) * 2003-06-20 2005-03-01 Equistar Chemicals, Lp Multi-catalyst system for olefin polymerization
KR100994252B1 (ko) * 2007-05-09 2010-11-12 주식회사 엘지화학 에틸렌 알파-올레핀 공중합체
KR100986301B1 (ko) 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합
WO2015046930A1 (ko) 2013-09-26 2015-04-02 주식회사 엘지화학 촉매 조성물 및 이를 포함하는 중합체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112350A (ko) * 2000-01-18 2001-12-20 간디 지오프레이 에이치. 실질적으로 무정형인 프로필렌 기재 중합체의 제조
JP2004530689A (ja) * 2001-05-15 2004-10-07 バセル ポリオレフィン ジーエムビーエイチ シクロペンタジエン誘導体の合成
US20070135623A1 (en) * 2005-12-14 2007-06-14 Voskoboynikov Alexander Z Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization
KR101271904B1 (ko) * 2009-08-13 2013-06-05 주식회사 엘지화학 폴리올레핀 중합체 제조용 메탈로센 촉매 및 이의 제조방법
KR20130116395A (ko) * 2012-03-06 2013-10-24 에스케이이노베이션 주식회사 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALEXEY N. RYABOV ET AL.: "Constrained geometry complexes of titanium (IV) and zirconium (IV) involving cydopentadienyl fused to thiophene ring", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 690, 5 August 2005 (2005-08-05), pages 4213 - 4221, XP027708856 *
See also references of EP3216795A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505751A (ja) * 2017-12-26 2021-02-18 エルジー・ケム・リミテッド オレフィン系重合体
JP7055482B2 (ja) 2017-12-26 2022-04-18 エルジー・ケム・リミテッド オレフィン系重合体
US11542352B2 (en) 2017-12-26 2023-01-03 Lg Chem, Ltd. Olefin-based polymer

Also Published As

Publication number Publication date
EP3216795B1 (en) 2020-01-01
JP6469832B2 (ja) 2019-02-13
JP2018502819A (ja) 2018-02-01
EP3216795A4 (en) 2017-10-18
KR101637982B1 (ko) 2016-07-11
US9822200B2 (en) 2017-11-21
CN106661142B (zh) 2019-06-25
KR20160054849A (ko) 2016-05-17
US20160326281A1 (en) 2016-11-10
CN106661142A (zh) 2017-05-10
EP3216795A1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
WO2016072783A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2015046932A1 (ko) 올레핀계 중합체
WO2018088820A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2017099491A1 (ko) 올레핀계 중합체
WO2015046930A1 (ko) 촉매 조성물 및 이를 포함하는 중합체의 제조방법
WO2019132471A1 (ko) 올레핀계 중합체
WO2020184888A1 (ko) 전이 금속 화합물, 촉매 조성물 및 이를 이용한 폴리프로필렌의 제조 방법
WO2021210948A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2022071744A1 (ko) 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체
WO2018106028A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2020235882A1 (ko) 폴리올레핀-폴리스티렌계 다중블록 공중합체 및 이의 제조방법
WO2020235892A1 (ko) 폴리올레핀-폴리스티렌계 다중블록 공중합체 및 이의 제조방법
WO2016076509A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020218874A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019059665A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2022108167A1 (ko) 폴리올레핀
WO2019132477A1 (ko) 올레핀계 중합체
WO2019212302A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2021251766A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020235887A1 (ko) 폴리올레핀-폴리스티렌계 다중블록 공중합체 및 이의 제조방법
WO2020251247A1 (ko) 신규 전이금속 화합물 및 이를 이용한 폴리프로필렌의 제조방법
WO2022203461A1 (ko) 폴리프로필렌 수지 조성물 및 그의 제조방법
WO2023055205A1 (ko) 다중블록 공중합체 및 이의 제조방법
WO2024063415A1 (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857360

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15110596

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015857360

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017501402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE