WO2024109122A1 - 电风机和终端设备 - Google Patents

电风机和终端设备 Download PDF

Info

Publication number
WO2024109122A1
WO2024109122A1 PCT/CN2023/108181 CN2023108181W WO2024109122A1 WO 2024109122 A1 WO2024109122 A1 WO 2024109122A1 CN 2023108181 W CN2023108181 W CN 2023108181W WO 2024109122 A1 WO2024109122 A1 WO 2024109122A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
diffuser
support
impeller
output shaft
Prior art date
Application number
PCT/CN2023/108181
Other languages
English (en)
French (fr)
Inventor
戴龙珍
胡小文
莫赛法
胡斯特
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2024109122A1 publication Critical patent/WO2024109122A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps

Definitions

  • the present application relates to the technical field of electric blowers, and in particular to an electric blower and a terminal device.
  • an electric fan includes an impeller assembly, a diffuser and a motor.
  • the diffuser is located downstream of the impeller assembly and is mounted on the outside of the entire motor.
  • the electric fan When the electric fan is working, air flows into the impeller assembly from the air inlet of the impeller assembly. Driven by the motor, the impeller assembly accelerates the air flow. The accelerated air flow flows into the diffuser from the air outlet of the impeller assembly and finally flows to the outside of the electric fan from the air outlet of the diffuser.
  • the motor as a driving device will release a large amount of heat energy. Since the diffuser is mounted on the outside of the motor, it affects the heat dissipation of the motor, which ultimately leads to poor operating reliability and short service life of the electric blower.
  • the embodiment of the present application provides an electric blower and terminal equipment, which can solve the problems of poor working reliability and short service life of motor components in related technologies.
  • the technical solution is as follows:
  • the present application provides an electric blower, the electric blower comprising a motor assembly, an impeller assembly and a diffuser assembly, the motor assembly comprising an output shaft, a bracket and a stator and rotor assembly;
  • the bracket and the stator-rotor assembly are sleeved on the output shaft, the bracket has a receiving area, and the stator-rotor assembly is located in the receiving area;
  • the impeller assembly is located on one side of the bracket and is sleeved on the output shaft;
  • the diffuser assembly is sleeved on the output shaft and is located between the bracket and the impeller assembly, and is connected to the bracket and the impeller assembly respectively.
  • the bracket includes a bracket body and a support member
  • the bracket body is sleeved on the output shaft
  • the support member is located between the pressure diffuser assembly and the support body, and is connected to the pressure diffuser assembly and the support body respectively.
  • the support member includes at least one support arm and a support connection portion
  • the at least one support arm is located on a side of the diffuser assembly close to the support body and is connected to the diffuser assembly;
  • the support connection portion is located on a side of the at least one support arm away from the diffuser assembly, and is respectively connected to the at least one support arm and the support body.
  • the support member includes a plurality of support arms
  • the plurality of support arms are distributed at equal intervals along the circumferential direction of the output shaft.
  • one end of the support arm away from the support connection portion is located in the flow channel of the diffuser assembly.
  • the motor assembly further includes a connecting member
  • the connecting piece is sleeved on the output shaft and is located on a side of the support arm away from the support connection portion, and the diffuser assembly is sleeved on the connecting piece;
  • the support arm is recessed toward the output shaft, and one end of the support arm away from the support connection portion is connected to the connection member.
  • the stent body includes a body ring and at least one connecting arm
  • the body ring is sleeved on the output shaft
  • the at least one connecting arm is located on the outer wall of the main body ring and is connected to the main body ring.
  • One end of the at least one connecting arm away from the main body ring is bent toward the support member and is connected to the support member.
  • the support member when the support member includes at least one support arm, in the extension direction of the axis of the output shaft, the orthographic projection of the support arm coincides with the orthographic projection of the connecting arm.
  • the impeller assembly includes an impeller assembly housing, a first impeller, a return flow device, and a second impeller;
  • the first impeller, the return flow device and the second impeller are all located in the impeller assembly housing, and the first impeller, the return flow device and the second impeller are sequentially sleeved on the output shaft.
  • the diffuser assembly includes a first axial flow diffuser and a second axial flow diffuser
  • the first axial flow diffuser and the second axial flow diffuser are distributed along the axial direction of the output shaft, the first axial flow diffuser is sealed and connected to the second axial flow diffuser, and are interconnected, and one end of the first axial flow diffuser away from the second axial flow diffuser is connected to the impeller assembly.
  • the present application provides a terminal device, wherein the terminal device comprises an electric wind machine as described in any one of the first aspect and possible implementations thereof.
  • the terminal device is a vacuum cleaner
  • the vacuum cleaner further includes: an air intake device, a dust collection chamber, and an exhaust duct;
  • the air intake device, the dust collecting chamber, the electric blower and the exhaust duct are connected in sequence, and one end of the air intake device away from the dust collecting chamber is connected to the outside, and one end of the exhaust duct away from the electric blower is connected to the outside.
  • the stator-rotor assembly is located in the accommodating area of the bracket, the diffuser assembly is located outside the accommodating area of the bracket, and the stator-rotor assembly and the diffuser assembly are spaced apart by at least part of the structure of the bracket, that is, it can be considered that there is a distance between the stator-rotor assembly and the diffuser assembly in the axial direction of the output shaft. At this time, after the gas flows out of the diffuser assembly, it can flow toward the stator-rotor assembly.
  • part of the gas flowing out of the diffuser assembly will flow through the outer wall of the bracket, taking away the heat transferred from the stator-rotor assembly to the outer wall of the bracket, and the other part will flow through the inside of the stator-rotor assembly, taking away the heat inside the stator-rotor assembly, which is beneficial to improve the heat dissipation effect of the stator-rotor assembly, thereby further improving the working reliability and service life of the entire electric blower.
  • FIG1 is a schematic structural diagram of an electric blower provided in an embodiment of the present application.
  • FIG2 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG3 is a schematic structural diagram of an electric blower provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a bracket provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG8 is an orthographic projection schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • Words such as "connect” or “connected” and similar words are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up”, “down”, “left”, “right” and the like are only used to indicate relative positional relationships. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • the electric fan includes an impeller assembly, a diffuser assembly and a motor assembly.
  • the diffuser assembly is located downstream of the impeller assembly, and the diffuser assembly is sleeved on the entire motor.
  • the electric fan When the electric fan is working, the airflow flows into the impeller assembly from the air inlet of the impeller assembly. Driven by the motor, the impeller assembly accelerates the airflow. The accelerated airflow flows into the diffuser from the air outlet of the impeller assembly, and finally flows to the outside of the electric fan from the air outlet of the diffuser.
  • the embodiment of the present application provides an electric blower that can solve the problem of poor heat dissipation of the motor assembly in the related art.
  • the electric blower provided in the embodiment of the present application is introduced below.
  • FIG1 is a schematic diagram of the structure of an electric fan provided in an embodiment of the present application
  • FIG2 is a schematic diagram of the cross-sectional structure of an electric fan provided in an embodiment of the present application.
  • the electric fan includes a motor assembly 1, an impeller assembly 2, and a diffuser assembly 3, wherein the motor assembly 1 includes an output shaft 11, a bracket 12, and a stator-rotor assembly 13.
  • the bracket 12 and the stator-rotor assembly 13 are both sleeved on the output shaft 11, and the bracket 12 and the stator-rotor assembly 13 are located at one end of the output shaft 11.
  • the bracket 12 has a receiving area 12A, the stator-rotor assembly 13 is located in the receiving area 12A, and the stator-rotor assembly 13 is fixedly connected to the bracket 12.
  • the stator-rotor assembly 13 includes a rotor 131 and a stator 132, and the rotor 131 is connected by interference fit or key connection.
  • the stator 132 is fixed to the output shaft 11 by a connection or the like, and the stator 132 is fixedly connected to the inner wall of the bracket 12.
  • the stator 132 is sleeved outside the rotor 131, and there is an air gap between the stator 132 and the rotor 131. At this time, the inner wall of the stator 132 is opposite to the outer wall of the rotor 131.
  • stator 132 and the rotor 131 are both mounted on the output shaft 11, with a gap between the stator 132 and the output shaft 11, and an air gap between the stator 132 and the rotor 131 in the extension direction of the axis m of the output shaft 11.
  • the end face of the stator 132 is opposite to the end face of the rotor 131.
  • the impeller assembly 2 is located on one side of the stator-rotor assembly 13 , and the impeller assembly 2 is sleeved on the output shaft 11 and connected to the output shaft 11 .
  • the diffuser assembly 3 is located between the bracket 12 and the impeller assembly 2 , and is sleeved on the output shaft 11 , and the diffuser assembly 3 is connected to the bracket 12 and the impeller assembly 2 , respectively.
  • the stator-rotor assembly 13 is located in the accommodating area 12A of the bracket 12, and the diffuser assembly 3 is located outside the accommodating area 12A of the bracket 12.
  • the stator-rotor assembly 13 and the diffuser assembly 3 are at least separated by a part of the structure of the bracket 12, that is, it can be considered that there is a distance between the stator-rotor assembly 13 and the diffuser assembly 3 in the axial direction of the output shaft 11. At this time, after the gas flows out of the diffuser assembly 3, it can flow toward the stator-rotor assembly 13.
  • a part of the gas flowing out of the diffuser assembly 3 will flow through the outer wall of the bracket 12, taking away the heat transferred from the stator-rotor assembly 13 to the outer wall of the bracket 12, and the other part will flow through the inside of the stator-rotor assembly 13, taking away the heat inside the stator-rotor assembly 13, which is beneficial to improve the heat dissipation effect of the stator-rotor assembly 13, thereby further improving the working reliability and service life of the entire electric fan.
  • Fig. 3 is a schematic diagram of the structure of an electric fan provided in an embodiment of the present application
  • Fig. 4 is a schematic diagram of the structure of a bracket provided in an embodiment of the present application.
  • the bracket 12 includes a bracket body 121 and a support member 122, and the bracket body 121 and the support member 122 form (or enclose) the above-mentioned accommodation area 12A.
  • the bracket body 121 is sleeved on the output shaft 11 and is rotatably connected to the output shaft 11 , wherein the bracket body 121 can be rotatably connected to the output shaft 11 by a bearing connection or the like.
  • the support member 122 is located between the diffuser assembly 3 and the bracket body 121, that is, the support member 122 is located on the side of the bracket body 121 close to the diffuser assembly 3, and the support member 122 is respectively connected to the diffuser assembly 3 and the bracket body 121.
  • the support member 122 and the bracket body 121 can be integrally formed, or can be connected by welding, threaded connection, or bolt connection.
  • the support member 122 and the diffuser assembly 3 can be connected by clamping, welding, or bolt connection.
  • the support member 122 includes at least one support arm 1221 and a support connection portion 1222.
  • the support arm 1221 has a strip-shaped structure or a plate-shaped structure, and the width of the support arm 1221 is small to reduce the obstruction to the gas flowing out of the diffuser assembly 3.
  • the support connection portion 1222 has an annular structure, which can be a circular ring structure, that is, on a cross section perpendicular to the axis m of the output shaft 11, the projection of the support connection portion 1222 is a circular ring.
  • At least one support arm 1221 is located on a side of the diffuser assembly 3 close to the bracket body 121, and each support arm 1221 is respectively connected to the diffuser assembly 3.
  • the support connection portion 1222 is located on a side of at least one support arm 1221 away from the diffuser assembly 3, and the support connection portion 1222 is respectively connected to at least one support arm 1221 and the bracket body 121.
  • the support connection portion 1222 and the support arm 1221 may be integrally formed, or may be fixedly connected by welding or gluing; the support connection portion 1222 and the bracket body 121 may be integrally formed, or may be connected by welding, threaded connection, bolt connection, or the like.
  • the support member 122 may include only one support arm 1221 , in which case the obstruction to the gas may be reduced as much as possible.
  • the support member 122 may include a plurality of support arms 1221, in which case the plurality of support arms 1221 are distributed at equal intervals along the circumferential direction of the output shaft 11.
  • the support connection portion 1222 is a circular ring structure, it can also be considered that the plurality of support arms 1221 are distributed at equal intervals around the circumferential direction of the support connection portion 1222.
  • This solution is beneficial to improving the stability and reliability of the electric fan structure after assembly.
  • the plurality of support arms 1221 may also be distributed at non-equal intervals along the circumferential direction of the output shaft 11, and this situation will not be described in detail here.
  • FIG5 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • one end of the support arm 1221 away from the support connection portion 1222 is located in the flow channel of the diffuser assembly 3 and is connected to the diffuser assembly 3.
  • the support arm 1221 extends from the flow channel of the diffuser assembly 3 along the extension direction of the axis m of the output shaft 11 to the bracket body 121, and then is connected to the bracket body 121 through the support connection portion 1222.
  • the diffuser assembly 3 can be connected to the bracket body 121 or the stator-rotor assembly 13 of any size through the support connection portion 1222, which is conducive to improving the expandability and versatility of the diffuser assembly 3, and is conducive to improving the stability of the electric blower after assembly.
  • FIG. 6 is a schematic diagram of a partial structure of an electric fan provided in an embodiment of the present application.
  • one end of the support arm 1221 away from the support connection portion 1222 is located at the diffuser assembly 3.
  • the outer part of the flow channel is connected to the outer wall or end surface of the diffuser assembly 3.
  • the support member 122 is parallel to the axis m of the output shaft 11 , and specifically, the center line h of the support member 122 is parallel to the axis m of the output shaft 11 . In this case, the difficulty of processing and assembling the support member 122 is reduced.
  • FIG. 7 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • the motor assembly 1 also includes a connector 14.
  • the connector 14 is sleeved on the output shaft 11 and is located on the side of the support arm 1221 away from the support connection portion 1222.
  • the diffuser assembly 3 is sleeved on the connector 14, and the diffuser assembly 3 is connected to the connector 14.
  • the support arm 1221 is recessed toward the direction of the output shaft 11, and one end of the support arm 1221 away from the support connection portion 1222 is connected to the connector 14.
  • the occupation of the flow channel of the diffuser assembly 3 can be reduced, thereby reducing the blocking effect on the gas, which is conducive to improving the flow efficiency of the gas.
  • the support arm 1221 has a bent shape, which can guide a part of the gas, so that the gas flows to the outside of the bracket body 121, which is conducive to improving the heat dissipation effect of the stator and rotor assembly.
  • the motor assembly 1 also includes a connector 14
  • the end of the support arm 1221 away from the support connection portion 1222 can also be directly connected to the diffuser assembly 3.
  • no limitation is imposed on the connection relationship between the support arm 1221 and the diffuser assembly 3.
  • the support body 121 includes a body ring 1211 and at least one connecting arm 1212.
  • the body ring 1211 is sleeved on the output shaft 11 and is rotatably connected to the output shaft 11, wherein the body ring 1211 and the output shaft 11 can be connected by a bearing connection.
  • At least one connecting arm 1212 is located on the outer wall of the body ring 1211 and is connected to the body ring 1211, wherein the connecting arm 1212 is located on the outer wall of the body ring 1211 and is connected to the body ring 1211, wherein the connecting arm 1212 can be integrally formed with the body ring 1211, or can be fixed by welding, hinge, plug-in or threaded connection.
  • At least one connecting arm 1212 is bent away from the body ring 1211 at one end toward the support member 122 to ensure connection with the support member 122.
  • the orthographic projection of the diffuser assembly 3 coincides with the orthographic projection of the bracket 12. At this time, the gas flowing out of the diffuser assembly 3 can be diverted more smoothly, so that part of the gas flows through the outer wall of the bracket 12, and the other part of the gas flows inside the stator and rotor assembly 13, thereby helping to improve the heat dissipation effect of the motor assembly 1.
  • FIG8 is a schematic diagram of an orthographic projection of a local structure of an electric fan provided in an embodiment of the present application.
  • the support member 122 includes at least one support arm 1221
  • the orthographic projection of the support arm (1221) coincides with the orthographic projection of the connecting arm 1212 in the extension direction of the axis m of the output shaft 11.
  • the radial dimension of the support connection portion 1222 of the support member 122 is similar to the radial dimension of the bracket body 121
  • the number of the support arms 1221 of the support member 122 is the same as the number of the connecting arms 1212 of the bracket body 121
  • the orthographic projection of the support arm 1221 coincides with the orthographic projection of the connecting arm 1212.
  • This solution is beneficial, on the one hand, to ensure the coaxiality between the support member 122 and the bracket body 121 during assembly, thereby ensuring the reliability of the electric blower during operation; on the other hand, it is beneficial to reduce the overall obstruction of the bracket 12 to the gas, maximize the reduction of the aerodynamic resistance of the bracket 12, and allow more gas to pass through the interior of the stator and rotor assembly 13, further improving the heat dissipation effect.
  • the support member 122 when the support member 122 is parallel to the output shaft 11, it is only necessary to ensure that in the extension direction of the axis m of the output shaft 11, the radial dimension of the support connection portion 1222 of the support member 122 is close to the radial dimension of the bracket body 121, and, in the extension direction of the axis m of the output shaft 11, the orthographic projection of the support arm 1221 at least partially overlaps with the orthographic projection of the connecting arm 1212.
  • the support member 122 may have a mesh structure or a shell structure.
  • the support member 122 is a mesh structure or a hollow shell structure (a shell with through holes)
  • part of the gas blown out from the diffuser assembly 3 flows to the inside of the stator-rotor assembly 13, and the other part can flow to the outside of the support body 121 through the pores on the mesh structure.
  • the support member 122 is a sealed shell structure (i.e., a shell without through holes)
  • all the gas flowing out of the diffuser assembly 3 flows to the stator-rotor assembly 13. No limitation is made here on the specific structure of the support member 122.
  • the connecting arm 1212 As for the morphological structure of the connecting arm 1212 , it only needs to ensure that the gas passing through the stator-rotor assembly 13 can flow from the connecting arm 1212 to the outside, such as a mesh structure or a hollow shell structure, etc., and no limitation is made here.
  • the impeller assembly 2 may include an impeller assembly housing 21, a first The impeller 22, the return flow device 23 and the second impeller 24, the impeller assembly housing 21 has openings at both ends along the axis m, wherein the opening of the impeller assembly housing 21 away from the diffuser assembly 3 serves as the air inlet of the entire electric fan, and the opening of the impeller assembly housing 21 close to the diffuser assembly 3 is connected to the diffuser assembly 3.
  • the impeller assembly housing 21 is sealed and connected to the diffuser assembly 3 to ensure that the airflow accelerated by the impeller assembly 2 flows into the diffuser assembly 3 completely.
  • the first impeller 22, the return flow device 23 and the second impeller 24 are all located in the impeller assembly housing 21, and the first impeller 22, the return flow device 23 and the second impeller 24 are sequentially sleeved on the output shaft 11.
  • the first impeller 22 or the second impeller 24 is fixedly connected to the output shaft 11, and the return flow device 23 is rotationally connected to the output shaft 11.
  • the first impeller 22 and the impeller assembly housing 21 and the second impeller 24 and the impeller assembly housing 21 are filled with sealing cotton, which can prevent gas from flowing out from the gap between the first impeller 22 and the impeller assembly housing 21 and the gap between the second impeller 24 and the impeller assembly housing 21, which is beneficial to improve the gas flow efficiency, thereby improving the working efficiency of the electric fan.
  • the first impeller 22 has a first flow channel
  • the return flow channel is formed by the return flow channel formed by the return flow device 23 and the inner wall of the impeller assembly housing 21
  • the second impeller 24 has a second flow channel
  • the first flow channel, the return flow channel and the second flow channel are connected in sequence.
  • the gas enters the first flow channel from the air inlet of the above-mentioned electric blower (i.e., the opening of the impeller assembly housing 21 away from the diffuser assembly 3), enters the return flow channel after being accelerated by the first impeller 22, enters the second flow channel after being returned or guided by the return flow device, and enters the diffuser assembly 3 after being accelerated by the second impeller.
  • the impeller assembly housing 21 includes a first housing 211 and a second housing 212, wherein the second housing 212 is located between the first housing 211 and the diffuser assembly 3, and is sealed and connected to the first housing 211 and the diffuser assembly 3, respectively, wherein the second housing 212 and the first housing 211 can be detachably connected by welding, clamping, etc.
  • the first impeller 22 is located in the first housing 211, and the returner 23 and the second impeller 24 are located in the second housing 212.
  • the specific positional relationship is similar to that described above and will not be repeated here.
  • the use of a detachable connection between the first housing 211 and the second housing 212 is conducive to reducing the difficulty of assembling the impeller assembly 2, thereby improving production efficiency, and is also conducive to later maintenance.
  • first impeller 22 and the return flow device 23 are located in the first housing 211, and the second impeller 24 is located in the second housing 212. This structure will not be described in detail here.
  • the impeller assembly 2 may include only one impeller, or may include more than two impellers.
  • the impeller assembly 2 in these two cases is similar to the above-mentioned case of having the first impeller 22 and the second impeller 24, and will not be described in detail here.
  • the multi-stage impeller solution is conducive to improving the suction power of the electric fan to meet the needs of product development. Moreover, it is helpful to reduce the radial size of the electric blower under the same suction force, thereby helping to improve the applicability of the electric blower.
  • the diffuser assembly 3 may include a first axial flow diffuser 31 and a second axial flow diffuser 32.
  • the first axial flow diffuser 31 and the second axial flow diffuser 32 are distributed along the extension direction of the axis m of the output shaft 11.
  • the first axial flow diffuser 31 and the second axial flow diffuser 32 are both sleeved outside the stator and rotor assembly 13.
  • the first axial flow diffuser 31 and the second axial flow diffuser 32 can be sleeved outside the above-mentioned output shaft 11.
  • the first axial flow diffuser 31 is sealedly connected to the second axial flow diffuser 32 and communicated with each other.
  • One end of the first axial flow diffuser 31 away from the second axial flow diffuser 32 is sealedly connected to the impeller assembly 2 and communicated with the impeller assembly 2.
  • the first axial diffuser 31 includes a first diffuser impeller 311 and a first diffuser housing 312, and the second axial diffuser 32 includes a second diffuser impeller 321 and a second diffuser housing 322.
  • the first diffuser housing 312 and the second diffuser housing 322 are distributed along the extension direction of the axis m of the output shaft 11.
  • the first diffuser impeller 311 is located in the first diffuser housing 312, and the first diffuser impeller 311 is sleeved outside the output shaft 11, and the first diffuser impeller 311 and the inner wall of the first diffuser housing 312 form a first diffuser flow channel;
  • the second diffuser impeller 321 is located in the second diffuser housing 322, and the second diffuser impeller 321 is sleeved outside the output shaft 11, and the second diffuser impeller 321 and the inner wall of the second diffuser housing 322 form a second diffuser flow channel, and the second diffuser flow channel is connected to the first diffuser flow channel.
  • both ends of the first pressure diffuser shell 312 and the second pressure diffuser shell 322 have openings, one end of the first pressure diffuser shell 312 away from the second pressure diffuser shell 322 is sealed and connected to the impeller assembly 2, and the opening on the first pressure diffuser shell 312 away from the second pressure diffuser shell 322 is connected to the impeller assembly 2, the second pressure diffuser shell 322 is sealed and connected to the first pressure diffuser shell 312, and the opening of the second pressure diffuser shell 322 away from the first pressure diffuser shell 312 serves as the air outlet 3A.
  • the first diffuser housing 312 and the second diffuser housing 322 may be connected by threaded connection, welding, clamping, etc., or may be integrally formed.
  • the first diffuser housing 312 and the second diffuser housing 322 may be detachably connected, which is beneficial to reducing the assembly difficulty of the diffuser assembly 3, thereby improving production efficiency and facilitating later maintenance.
  • the gas accelerated by the impeller assembly 2 flows into the first diffuser channel, and then enters the second diffuser channel. After two diffusions, it flows from the air outlet of the above-mentioned electric blower (i.e., the opening of the second diffuser shell 322 away from the first diffuser shell 312) to the stator and rotor assembly 13.
  • the diffuser assembly 3 may include only one axial flow diffuser, or may include more than two axial flow diffusers. Axial flow diffuser.
  • the diffuser assembly 3 includes more than two axial flow diffusers, the distribution and connection relationship of the multiple axial flow diffusers are similar to the above-mentioned case of the first axial flow diffuser 31 and the second axial flow diffuser 32, and will not be described in detail here.
  • the solution of adopting a multi-stage axial flow diffuser is beneficial to improving the pressure diffusion and deceleration capability of the electric fan to meet the needs of product development. Moreover, it is beneficial to reduce the radial size of the electric fan under the same pressure diffusion capability, thereby improving the applicability of the electric fan.
  • the stator-rotor assembly 13 is located in the accommodating area 12A of the bracket 12, and the diffuser assembly 3 is located outside the accommodating area 12A of the bracket 12.
  • the stator-rotor assembly 13 and the diffuser assembly 3 are at least separated by a part of the structure of the bracket 12, that is, it can be considered that there is a distance between the stator-rotor assembly 13 and the diffuser assembly 3 in the axial direction of the output shaft 11. At this time, after the gas flows out of the diffuser assembly 3, it can flow toward the stator-rotor assembly 13.
  • a part of the gas flowing out of the diffuser assembly 3 will flow through the outer wall of the bracket 12, taking away the heat transferred from the stator-rotor assembly 13 to the outer wall of the bracket 12, and the other part will flow through the inside of the stator-rotor assembly 13, taking away the heat inside the stator-rotor assembly 13, which is beneficial to improve the heat dissipation effect of the stator-rotor assembly 13, thereby further improving the working reliability and service life of the entire electric fan.
  • FIG. 9 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present application, and the terminal device includes any electric blower 01 provided by an embodiment of the present application.
  • the terminal device can be a cleaning device, such as a vacuum cleaner, a sweeper, etc.
  • the terminal device is a vacuum cleaner, as shown in FIG9 , the vacuum cleaner may further include an air intake device 02, a dust collecting chamber 03, and an exhaust duct 04.
  • the air intake device 02, the dust collecting chamber 03, the electric fan 01, and the exhaust duct 04 are connected in sequence, wherein an end of the air intake device 02 away from the dust collecting chamber 03 (i.e., an end of the air intake device 02 not connected to the dust collecting chamber 03) is connected to the outside, and an end of the exhaust duct 04 away from the electric fan 01 (i.e., an end of the exhaust duct 04 not connected to the electric fan 01) is connected to the outside.
  • the dust collecting chamber 03 may be provided with a filtering device, and the dust collecting chamber 03 filters the target objects and gas.
  • the target objects are retained in the dust collecting chamber 03, and the filtered gas enters the electric fan 01, and flows out from the above-mentioned diffuser component 3 after acceleration and diffusion.
  • the outflowing gas passes through the outer surface and/or the interior of the above-mentioned stator and rotor assembly 13, takes away the heat generated by the stator and rotor assembly 13 and flows to the exhaust duct 04, and finally flows into the atmosphere.
  • the vacuum cleaner completes the cleaning function of the target object, it makes full use of the gas flowing out of the diffuser component 3 to dissipate the heat from the stator and rotor assembly 13, which is beneficial to improve the heat dissipation effect of the stator and rotor assembly 13, thereby helping to improve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种电风机,包括电机组件(1)、叶轮组件(2)和扩压组件(3),电机组件(1)包括输出轴(11)、支架(12)和定转子合件(13);支架(12)和定转子合件(13)套设在输出轴(11)上,支架(12)具有容纳区(12A),定转子合件(13)位于容纳区(12A)内;叶轮组件(2)位于支架(12)的一侧,且套设在输出轴(11)上;扩压组件(3)套设在输出轴(11)上,且位于支架(12)和叶轮组件(2)之间,且分别与支架(12)、叶轮组件(2)相连。提高了对定转子合件的散热效果,从而,进一步提高整个电风机的工作可靠性和使用寿命。另外,还涉及一种采用该电风机的终端设备。

Description

电风机和终端设备
本申请要求于2022年11月22日提交的申请号为202211465862.2、发明名称为“电风机和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电风机技术领域,特别涉及一种电风机和终端设备。
背景技术
由于电风机具有通风换气效果好等特点,被广泛应用在以吸尘器为代表的终端设备中。
通常,电风机包括叶轮组件、扩压器和电机,扩压器位于叶轮组件的下游,并且扩压器套装在整个电机外部。电风机在工作时,气流从叶轮组件的进风口流入叶轮组件,在电机的驱动下,叶轮组件对气流进行加速,加速后的气流由叶轮组件的出风口流入扩压器中,最终由扩压器的出风口流向电风机外部。
在电风机的工作过程中,电机作为驱动装置会释放大量的热能,由于扩压器套在电机外部,影响电机散热,最终导致电风机工作可靠性差、使用寿命短。
发明内容
本申请实施例提供了一种电风机和终端设备,能解决相关技术中电机组件工作可靠性差、使用寿命短的问题。技术方案如下:
第一方面,本申请提供了一种电风机,所述电风机包括电机组件、叶轮组件和扩压组件,所述电机组件包括输出轴、支架和定转子合件;
所述支架和所述定转子合件套设在所述输出轴上,所述支架具有容纳区,所述定转子合件位于所述容纳区内;
所述叶轮组件位于所述支架的一侧,且套设在所述输出轴上;
所述扩压组件套设在所述输出轴上,且位于所述支架和所述叶轮组件之间,且分别与所述支架、所述叶轮组件相连。
在一种可能的实现方式中,所述支架包括支架本体和支撑件;
支架本体套设在所述输出轴上;
所述支撑件位于所述扩压组件和所述支架本体之间,且分别与所述扩压组件和所述支架本体相连。
在一种可能的实现方式中,所述支撑件包括至少一个支撑臂和支撑连接部;
所述至少一个支撑臂位于所述扩压组件靠近所述支架本体的一侧,且与所述扩压组件相连;
所述支撑连接部位于所述至少一个支撑臂远离所述扩压组件的一侧,且分别与所述至少一个支撑臂、所述支架本体相连。
在一种可能的实现方式中,所述支撑件包括多个支撑臂;
所述多个支撑臂沿所述输出轴的圆周方向等间距分布。
在一种可能的实现方式中,所述支撑臂远离所述支撑连接部的一端位于所述扩压组件的流道内。
在一种可能的实现方式中,所述电机组件还包括连接件;
所述连接件套设在所述输出轴上,且位于所述支撑臂远离所述支撑连接部的一侧,所述扩压组件套设在所述连接件上;
所述支撑臂朝向所述输出轴的方向凹陷,且所述支撑臂远离所述支撑连接部的一端与所述连接件相连。
在一种可能的实现方式中,所述支架本体包括本体环和至少一个连接臂;
所述本体环套设在所述输出轴上;
所述至少一个连接臂位于所述本体环外壁,且与所述本体环相连,所述至少一个连接臂远离所述本体环的一端朝向所述支撑件的方向弯折,并与所述支撑件相连。
在一种可能的实现方式中,当所述支撑件包括至少一个支撑臂时,在所述输出轴的轴线的延伸方向上,所述支撑臂的正投影与所述连接臂的正投影重合。
在一种可能的实现方式中,所述叶轮组件包括叶轮组件壳体、第一叶轮、回流器和第二叶轮;
所述第一叶轮、所述回流器和所述第二叶轮均位于所述叶轮组件壳体内,且所述第一叶轮、所述回流器和所述第二叶轮依次套在所述输出轴上。
在一种可能的实现方式中,所述扩压组件包括第一轴流扩压器和第二轴流扩压器;
所述第一轴流扩压器和所述第二轴流扩压器沿所述输出轴的轴线方向分布,所述第一轴流扩压器与所述第二轴流扩压器密封相连,且相互连通,所述第一轴流扩压器远离所述第二轴流扩压器的一端与所述叶轮组件相连。
第二方面,本申请提供了一种终端设备,所述终端设备包括如第一方面及其可能的实现方式中任一项所述的电风机。
在一种可能的实现方式中,所述终端设备为吸尘器,所述吸尘器还包括:进气装置、集尘室和排气管道;
所述进气装置、所述集尘室、所述电风机和所述排气管道依次连通,且所述进气装置远离所述集尘室的一端与外部连通,且所述排气管道远离所述电风机的一端与外部连通。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的方案中,定转子合件位于支架的容纳区内,扩压组件位于支架的容纳区外,定转子合件与扩压组件之间至少间隔支架的部分结构,即可以认为定转子合件与扩压组件在输出轴的轴向上存在间距。此时,气体从扩压组件流出后,可以朝向定转子合件流动。在一些情况下,从扩压组件流出的气体一部分会从支架的外壁流过,带走定转子合件传递给支架的外壁的热量,另一部分会从定转子合件的内部流过,带走定转子合件内部的热量,有利于提高对定转子合件的散热效果,从而,进一步提高整个电风机的工作可靠性和使用寿命。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电风机的结构示意图;
图2是本申请实施例提供的一种电风机的剖面结构示意图;
图3是本申请实施例提供的一种电风机的结构示意图;
图4是本申请实施例提供的一种支架的结构示意图;
图5是本申请实施例提供的一种电风机的局部结构示意图;
图6是本申请实施例提供的一种电风机的局部结构示意图;
图7是本申请实施例提供的一种电风机的局部结构示意图;
图8是本申请实施例提供的一种电风机的局部结构的正投影示意图;
图9是本申请实施例提供的一种终端设备的结构示意图。
图例说明
1、电机组件;2、叶轮组件;3、扩压组件;
11、输出轴;12、支架;13、定转子合件;14、连接件;21、叶轮组件壳
体;22、第一叶轮;23、回流器;24、第二叶轮;31、第一轴流扩压器;32、第二轴流扩压器;
12A、容纳区;121、支架本体;122、支撑件;131、转子;132、定子;211、
第一壳体;212、第二壳体;
1221、支撑臂;1222、支撑连接部;1211、本体环;1212、连接臂;
m、轴线;
01、电风机;02、进气装置;03、集尘室;04、排气管道。
具体实施方式
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域 内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
电风机包括叶轮组件、扩压组件和电机组件,通常,扩压组件位于叶轮组件的下游,并且扩压组件套在整个电机外部。电风机在工作时,气流从叶轮组件的进风口流入经叶轮组件,在电机的驱动下,叶轮组件对气流进行加速,加速后的气流由叶轮组件的出风口流入扩压器中,最终由扩压器的出风口流向电风机外部。
然而,在电风机的工作过程中,电机作为驱动装置会释放大量的热能,由于扩压器套在电机外部,影响电机散热,最终导致电风机工作可靠性差、使用寿命短。本申请实施例提供了一种电风机,可以解决相关技术中电机组件散热效果差的问题。下面,对本申请实施例提供的电风机进行介绍。
图1是本申请实施例提供的一种电风机的结构示意图,图2是本申请实施例提供一种电风机的剖面结构示意图。参考图1和图2所示,该电风机包括电机组件1、叶轮组件2和扩压组件3,其中,电机组件1包括输出轴11、支架12和定转子合件13。
在电机组件1中,参考图2所示,支架12和定转子合件13均套设在输出轴11上,且支架12和定转子合件13位于输出轴11的一端。支架12具有容纳区12A,定转子合件13位于容纳区12A内,并且定转子合件13与支架12固定相连。定转子合件13包括转子131和定子132,转子131通过过盈配合或键连 接等方式与输出轴11固定,定子132则与支架12的内壁固定相连。作为示例,如图2所示,定子132套设在转子131外,且定子132与转子131之间具有气隙,此时,定子132的内壁与转子131的外壁相对。
可选地,定子132和转子131均套在输出轴11上,定子132与输出轴11之间具有间隙,在输出轴11的轴线m的延伸方向上,定子132与转子131之间具有气隙,此时,定子132的端面与转子131的端面相对。
参考图1和图2所示,叶轮组件2位于定转子合件13的一侧,叶轮组件2套设在输出轴11上,并与输出轴11相连。
参考图1和图2所示,扩压组件3位于支架12和叶轮组件2之间,且套设在输出轴11上,并且扩压组件3分别与支架12、叶轮组件2相连。
本申请实施例提供的方案中,定转子合件13位于支架12的容纳区12A内,扩压组件3位于支架12的容纳区12A外,定转子合件13与扩压组件3之间至少间隔支架12的部分结构,即可以认为定转子合件13与扩压组件3在输出轴11的轴向上存在间距。此时,气体从扩压组件3流出后,可以朝向定转子合件13流动。在一些情况下,从扩压组件3流出的气体一部分会从支架12的外壁流过,带走定转子合件13传递给支架12的外壁的热量,另一部分会从定转子合件13的内部流过,带走定转子合件13内部的热量,有利于提高对定转子合件13的散热效果,从而,进一步提高整个电风机的工作可靠性和使用寿命。
图3是本申请实施例提供的一种电风机的结构示意图,图4是本申请实施例提供的一种支架的结构示意图。作为示例,参考图3和图4所示,支架12包括支架本体121和支撑件122,支架本体121与支撑件122形成(或围成)上述容纳区12A。
支架本体121套设在输出轴11上,并与输出轴11转动相连,其中,支架本体121可以与输出轴11通过轴承连接等方式转动相连。
支撑件122位于扩压组件3和支架本体121之间,也即,支撑件122位于支架本体121靠近扩压组件3的一侧,支撑件122分别与扩压组件3和支架本体121相连。其中,支撑件122与支架本体121可以是一体成型的,也可以是通过焊接、螺纹连接或螺栓连接等方式相连。支撑件122与扩压组件3之间可以通过卡接、焊接或螺栓连接等方式相连。
作为示例,支撑件122与支架本体121之间、支撑件122与扩压组件3之 间均可以是可拆卸相连,采用该方案,有利于降低装配难度,并有利于零部件的替换和维修保养。
在一些示例中,如图4所示,支撑件122包括至少一个支撑臂1221和一个支撑连接部1222。支撑臂1221具有条状结构或板状结构,支撑臂1221的宽度较小,以减小对从扩压组件3中流出的气体的阻挡。支撑连接部1222具有环状结构,该环状结构可以是圆环状结构,即在垂直于输出轴11的轴线m的截面上,支撑连接部1222的投影为圆环。
参考图3和图4所示,至少一个支撑臂1221位于扩压组件3靠近支架本体121的一侧,且每个支撑臂1221分别与扩压组件3相连。支撑连接部1222则位于至少一个支撑臂1221远离扩压组件3的一侧,支撑连接部1222分别与至少一个支撑臂1221、支架本体121相连。其中,支撑连接部1222与支撑臂1221之间可以是一体成型的,也可以通过焊接或胶接等方式固定相连;支撑连接部1222与支架本体121可以是一体成型的,也可以通过焊接、螺纹连接或螺栓连接等方式相连。
在一些示例中,支撑件122可以只包括一个支撑臂1221,此时,可以尽量减弱对气体的阻碍。
在另一些示例中,支撑件122可以包括多个支撑臂1221,此种情况下,多个支撑臂1221沿输出轴11的圆周方向等间距分布。当支撑连接部1222为圆环状结构时,也可以认为多个支撑臂1221绕支撑连接部1222的圆周方向等间距分布。采用该方案,有利于提高装配后电风机结构的稳定性和可靠性。可选地,多个支撑臂1221也可以沿输出轴11的圆周方向非等间距分布,对于此种情况,此处不予赘述。
在一些示例中,图5是本申请实施例提供的一种电风机的局部结构示意图,如图5所示,支撑臂1221远离支撑连接部1222的一端位于扩压组件3的流道内,并与扩压组件3相连。换句话说,支撑臂1221是从扩压组件3的流道中沿输出轴11的轴线m的延伸方向延伸至支架本体121,再通过支撑连接部1222与支架本体121相连。采用该方案,通过支撑连接部1222可以使扩压组件3与任意尺寸的支架本体121或定转子合件13相连,有利于提高扩压组件3的拓展性和通用性,而且有利于提高装配后电风机稳定性。
在另一些示例中,图6是本申请实施例提供的一种电风机的局部结构示意图,如图6所示,支撑臂1221远离支撑连接部1222的一端位于扩压组件3的 流道外部,且与扩压组件3的外壁或端面相连。采用该方案,有利于减少对扩压组件3的流道的占用,从而,减弱对气体的阻挡作用,有利于提高气体的流动效率,进一步的,有利于提高电风机的工作效率并有利于提高定转子合件13的散热效果。
在一些示例中,参考图4所示,支撑件122平行与输出轴11的轴线m,具体的,支撑件122的中心线h与输出轴11的轴线m平行。此种情况下,有利于降低支撑件122的加工难度和装配难度。
在另一些示例中,图7是本申请实施例提供的一种电风机的局部结构示意图,参考图2和图7所示,电机组件1还包括连接件14。连接件14套设在输出轴11上,且位于支撑臂1221远离支撑连接部1222的一侧,扩压组件3套设在连接件14上,并且扩压组件3与连接件14相连。此种情况下,支撑臂1221朝向输出轴11的方向凹陷,并且,支撑臂1221远离支撑连接部1222的一端与连接件14相连。采用该方案,可以减少对扩压组件3的流道的占用,从而,减弱对气体的阻挡作用,有利于提高气体的流动效率。而且,支撑臂1221具有弯折形态,可以对一部分气体起到导流作用,使得气体流向支架本体121的外部,从而有利于提高定转子合件的散热效果。
可选地,当电机组件1还包括连接件14时,支撑臂1221远离支撑连接部1222的一端直接也可以与扩压组件3相连,此时,对于支撑臂1221与扩压组件3之间的连接关系,此处不进行任何限定。
在一些示例中,参考图4和图5所示,支架本体121包括本体环1211和至少一个连接臂1212。本体环1211套设在输出轴11上,并与输出轴11转动相连,其中,本体环1211与输出轴11之间可以通过轴承连接的方式相连。至少一个连接臂1212位于本体环1211外壁,且与本体环1211相连,其中,连接臂1212位于与本体环1211可以是一体成型的,也可以通过焊接、铰接、插接或螺纹连接等方式固定。作为示例,如图4所示,当本体环1211的径向尺寸与支撑连接部1222的径向尺寸相差较大时,至少一个连接臂1212远离本体环1211的一端朝向支撑件122的方向弯折,以保证与支撑件122相连。
采用该方案,可以尽量保证在支架本体121处留有较大的空白区域,即在定转子合件13远离扩压组件3的一侧留有较大的空白区域,以保证气体可以顺利穿过定转子合件13,实现对定转子合件13的散热。
在一些示例中,在输出轴11的轴线m的延伸方向上,扩压组件3的正投影与支架12的正投影重合,此时,从扩压组件3流出的气体可以更顺畅的进行分流,使得一部分气体流经支架12外壁,另一部分气体流程定转子合件13内部,从而,有利于提高电机组件1的散热效果。
作为示例,图8是本申请实施例提供的一种电风机的局部结构的正投影示意图,参考图8所示,当支撑件122包括至少一个支撑臂1221时,在输出轴11的轴线m的延伸方向上,支撑臂(1221)的正投影与连接臂1212的正投影重合。具体的,当支撑件122朝向输出轴11弯折且与连接件14相连时,支撑件122的支撑连接部1222的径向尺寸与支架本体121的径向尺寸相近,支撑件122的支撑臂1221的数量与支架本体121的连接臂1212的数量相同,并且在输出轴11的轴线m的延伸方向上,支撑臂1221的正投影与连接臂1212的正投影重合。
采用该方案,一方面有利于在装配时保证支撑件122与支架本体121之间的同轴度,从而,有利于保证电风机工作时的可靠性;另一方面,有利于降低支架12整体对气体的阻挡,最大化的降低支架12的气动阻力,使更多的气体能够穿过定转子合件13的内部,进一步提升散热效果。
可选地,当支撑件122平行于输出轴11时,只需保证在输出轴11的轴线m的延伸方向上,支撑件122的支撑连接部1222的径向尺寸与支架本体121的径向尺寸相近,并且,在输出轴11的轴线m的延伸方向上,支撑臂1221的正投影与连接臂1212的正投影的至少部分重合。
在另一些示例中,支撑件122可以具有网状结构或壳体结构等。当支撑件122为网状结构或镂空的壳体结构(具有通孔的壳体)时,从扩压组件3吹出的气体一部分流向定转子合件13内部,另一部分可以由网状结构上的孔隙流向支架本体121的外部。当支撑件122为密封的壳体结构(即不具有通孔的壳体)时,从扩压组件3流出的气体全部流向定转子合件13。对于支撑件122的具体结构,此处不进行任何限定。
对于连接臂1212的形态结构,只需要保证经过定转子合件13的气体能够从连接臂1212处流向外部即可,如网状结构或镂空的壳体结构等,此处不进行任何限定。
在一些示例中,如图2所示,叶轮组件2可以包括叶轮组件壳体21、第一 叶轮22、回流器23和第二叶轮24,叶轮组件壳体21沿轴线m方向的两端开口,其中,叶轮组件壳体21远离扩压组件3的开口作为整个电风机的进风口,叶轮组件壳体21靠近扩压组件3的开口与扩压组件3相连通。叶轮组件壳体21与扩压组件3密封相连,保证经叶轮组件2加速后的气流全部流入扩压组件3。
作为示例,如图2所示,第一叶轮22、回流器23和第二叶轮24均位于叶轮组件壳体21内,且第一叶轮22、回流器23和第二叶轮24依次套在输出轴11上。其中,第一叶轮22或第二叶轮24与输出轴11之间固定相连,回流器23与输出轴11之间转动相连。第一叶轮22与叶轮组件壳体21之间和第二叶轮24与叶轮组件壳体21之间均填充有密封棉,密封棉可以防止气体从第一叶轮22与叶轮组件壳体21之间的间隙、第二叶轮24与叶轮组件壳体21之间的间隙流出,有利于提高气体流动效率,从而有利于提高电风机的工作效率。对于第一叶轮22、回流器23、第二叶轮24分别与输出轴11之间的连接方式,此处不进行任何限定。
作为示例,如图2所示,第一叶轮22具有第一流道,回流器23与叶轮组件壳体21的内壁形成回流流道,第二叶轮24具有第二流道,第一流道、回流流道和第二流道依次连通。气体由上述电风机的进风口(即叶轮组件壳体21远离扩压组件3的开口)进入第一流道,经过第一叶轮22加速后进入回流流道,经过回流器回流或导流后进入第二流道,经第二叶轮加速后进入扩压组件3。
在一些示例中,叶轮组件壳体21包括第一壳体211和第二壳体212,第二壳体212位于第一壳体211与扩压组件3之间,且分别与第一壳体211、扩压组件3密封相连,其中,第二壳体212与第一壳体211之间可以通过焊接、卡接等方式可拆卸相连。第一叶轮22位于第一壳体211内,回流器23和第二叶轮24位于第二壳体212内,具***置关系与上文相似,此处不进行赘述。采用第一壳体211与第二壳体212之间可拆卸相连的方案,有利于降低叶轮组件2的装配难度,从而,提高生产效率,也有利于后期的维修养护。
可选地,第一叶轮22和回流器23位于第一壳体211内,第二叶轮24位于第二壳体212内,对于此种结构,此处不进行赘述。
可选地,叶轮组件2可以只包括一个叶轮,也可以包括两个以上的叶轮,对于这两种情况下的叶轮组件2,与上述具有第一叶轮22和第二叶轮24的情况相似,此处不进行赘述。
采用多级叶轮的方案,有利于提高电风机的吸力以满足产品开发需求,而 且,有利于在相同吸力下减小电风机的径向尺寸,从而,有利于提高电风机的适用性。
在一些示例中,如图2所示,该扩压组件3可以包括第一轴流扩压器31和第二轴流扩压器32。第一轴流扩压器31和第二轴流扩压器32沿输出轴11的轴线m的延伸方向分布。第一轴流扩压器31和第二轴流扩压器32均套在定转子合件13外,具体的,第一轴流扩压器31和第二轴流扩压器32可以套在上述输出轴11外。第一轴流扩压器31与第二轴流扩压器32密封相连,且相互连通。第一轴流扩压器31远离第二轴流扩压器32的一端与叶轮组件2密封相连,且与叶轮组件2相连通。
作为示例,参考图2所示,第一轴流扩压器31包括第一扩压叶轮311和第一扩压壳体312,第二轴流扩压器32包括第二扩压叶轮321和第二扩压壳体322。第一扩压壳体312和第二扩压壳体322沿输出轴11的轴线m的延伸方向分布。第一扩压叶轮311位于第一扩压壳体312内,且第一扩压叶轮311套在输出轴11外,第一扩压叶轮311与第一扩压壳体312的内壁形成第一扩压流道;第二扩压叶轮321位于第二扩压壳体322内,且第二扩压叶轮321套在输出轴11外,第二扩压叶轮321与第二扩压壳体322的内壁形成第二扩压流道,第二扩压器流道与第一扩压流道相连通。
其中,第一扩压壳体312、第二扩压壳体322的两端均具有开口,第一扩压壳体312远离第二扩压壳体322的一端与叶轮组件2密封相连,且第一扩压壳体312上远离第二扩压壳体322的开口与叶轮组件2相连通,第二扩压壳体322与第一扩压壳体312密封相连且相连通,第二扩压壳体322远离第一扩压壳体312的开口作为出风口3A。
第一扩压壳体312和第二扩压壳体322可以通过螺纹连接、焊接、卡接等方式相连,也可以是一体成型的。其中,第一扩压壳体312和第二扩压壳体322之间可以可拆卸地相连,有利于降低扩压组件3的装配难度,从而,提高生产效率,也有利于后期的维修养护。
在电风机工作过程中,由叶轮组件2加速后的气体流入第一扩压流道,然后进入第二扩压流道,经过两次扩压后由上述电风机的出气口(即第二扩压壳体322远离第一扩压壳体312的开口)流向定转子合件13。
可选地,扩压组件3可以只包括一个轴流扩压器,也可以包括两个以上的 轴流扩压器。扩压组件3包括两个以上轴流扩压器时,多个轴流扩压器的分布情况和连接关系与上述具有第一轴流扩压器31和第二轴流扩压器32的情况相似,此处不进行赘述。
采用多级轴流扩压器的方案,有利于提高电风机的扩压减速能力,以满足产品开发需求,而且,有利于在相同扩压能力下减小电风机的径向尺寸,从而,有利于提高电风机的适用性。
本申请实施例提供的方案中,定转子合件13位于支架12的容纳区12A内,扩压组件3位于支架12的容纳区12A外,定转子合件13与扩压组件3之间至少间隔支架12的部分结构,即可以认为定转子合件13与扩压组件3在输出轴11的轴向上存在间距。此时,气体从扩压组件3流出后,可以朝向定转子合件13流动。在一些情况下,从扩压组件3流出的气体一部分会从支架12的外壁流过,带走定转子合件13传递给支架12的外壁的热量,另一部分会从定转子合件13的内部流过,带走定转子合件13内部的热量,有利于提高对定转子合件13的散热效果,从而,进一步提高整个电风机的工作可靠性和使用寿命。
基于相同的技术构思,本申请实施例提供了一种终端设备。图9是本申请实施例提供的一种终端设备的结构示意图,该终端设备包括本申请实施例提供的任一种电风机01。该终端设备可以是清洁设备,如吸尘器、扫地机等。
作为示例,该终端设备为吸尘器,参考图9所示,该吸尘器还可以包括进气装置02、集尘室03和排气管道04。进气装置02、集尘室03、电风机01和排气管道04依次连通,其中,进气装置02远离集尘室03的一端(即进气装置02未与集尘室03相连的一端)与外部连通,并且排气管道04远离电风机01的一端(即排气管道04未与电风机01相连的一端)与外部连通。
吸尘器在工作时,在电风机01的驱动下,外部的气体和目标物(如灰尘、洒落的水、掉落的食物等)被吸入进气装置02中,随后目标物随着气体进入集尘室03中,集尘室03中可以设置有过滤装置,集尘室03对目标物和气体进行过滤,目标物被留在集尘室03中,过滤后的气体进入电风机01中,经过加速、扩压后由上述扩压组件3流出,流出的气体经过上述定转子合件13的外表面和/或内部,带走定转子合件13产生的热量流向排气管道04,最中流入大气。吸尘器在完成对目标物的清洁功能室,充分利用扩压组件3流出的气体对定转子合件13进行散热,有利于提高定转子合件13的散热效果,从而,有利于提高 整个电风机(和吸尘器)的工作可靠性和使用寿命。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种电风机,其特征在于,所述电风机包括电机组件(1)、叶轮组件(2)和扩压组件(3),所述电机组件(1)包括输出轴(11)、支架(12)和定转子合件(13);
    所述支架(12)和所述定转子合件(13)套设在所述输出轴(11)上,所述支架(12)具有容纳区(12A),所述定转子合件(13)位于所述容纳区(12A)内;
    所述叶轮组件(2)位于所述支架(12)的一侧,且套设在所述输出轴(11)上;
    所述扩压组件(3)套设在所述输出轴(11)上,且位于所述支架(12)和所述叶轮组件(2)之间,且分别与所述支架(12)、所述叶轮组件(2)相连。
  2. 根据权利要求1所述的电风机,其特征在于,所述支架(12)包括支架本体(121)和支撑件(122);
    支架本体(121)套设在所述输出轴(11)上;
    所述支撑件(122)位于所述扩压组件(3)和所述支架本体(121)之间,且分别与所述扩压组件(3)和所述支架本体(121)相连。
  3. 根据权利要求2所述的电风机,其特征在于,所述支撑件(122)包括至少一个支撑臂(1221)和支撑连接部(1222);
    所述至少一个支撑臂(1221)位于所述扩压组件(3)靠近所述支架本体(121)的一侧,且与所述扩压组件(3)相连;
    所述支撑连接部(1222)位于所述至少一个支撑臂(1221)远离所述扩压组件(3)的一侧,且分别与所述至少一个支撑臂(1221)、所述支架本体(121)相连。
  4. 根据权利要求3所述的电风机,其特征在于,所述支撑件(122)包括多个支撑臂(1221);
    所述多个支撑臂(1221)沿所述输出轴(11)的圆周方向等间距分布。
  5. 根据权利要求3或4所述的电风机,其特征在于,所述支撑臂(1221)远离所述支撑连接部(1222)的一端位于所述扩压组件(3)的流道内。
  6. 根据权利要求3或4所述的电风机,其特征在于,所述电机组件(1)还包括连接件(14);
    所述连接件(14)套设在所述输出轴(11)上,且位于所述支撑臂(1221)远离所述支撑连接部(1222)的一侧,所述扩压组件(3)套设在所述连接件(14)上;
    所述支撑臂(1221)朝向所述输出轴(11)的方向凹陷,且所述支撑臂(1221)远离所述支撑连接部(1222)的一端与所述连接件(14)相连。
  7. 根据权利要求2-4任一项所述的电风机,其特征在于,所述支架本体(121)包括本体环(1211)和至少一个连接臂(1212);
    所述本体环(1211)套设在所述输出轴(11)上;
    所述至少一个连接臂(1212)位于所述本体环(1211)外壁,且与所述本体环(1211)相连,所述至少一个连接臂(1212)远离所述本体环(1211)的一端朝向所述支撑件(122)的方向弯折,并与所述支撑件(122)相连。
  8. 根据权利要求7所述的电风机,其特征在于,当所述支撑件(122)包括至少一个支撑臂(1221)时,在所述输出轴(11)的轴线(m)的延伸方向上,所述支撑臂(1221)的正投影与所述连接臂(1212)的正投影重合。
  9. 根据权利要求1-4任一项所述的电风机,其特征在于,所述叶轮组件(2)包括叶轮组件壳体(21)、第一叶轮(22)、回流器(23)和第二叶轮(24);
    所述第一叶轮(22)、所述回流器(23)和所述第二叶轮(24)均位于所述叶轮组件壳体(21)内,且所述第一叶轮(22)、所述回流器(23)和所述第二叶轮(24)依次套在所述输出轴(11)上。
  10. 根据权利要求1-4任一项所述的电风机,其特征在于,所述扩压组件(3)包括第一轴流扩压器(31)和第二轴流扩压器(32);
    所述第一轴流扩压器(31)和所述第二轴流扩压器(32)沿所述输出轴(11)的轴线方向分布,所述第一轴流扩压器(31)与所述第二轴流扩压器(32)密封相连,且相互连通,所述第一轴流扩压器(31)远离所述第二轴流扩压器(32)的一端与所述叶轮组件(2)相连。
  11. 一种终端设备,其特征在于,所述终端设备包括如权利要求1-10任一项所述的电风机(01)。
  12. 根据权利要求11所述的终端设备,其特征在于,所述终端设备为吸尘器,所述吸尘器还包括:进气装置(02)、集尘室(03)和排气管道(04);
    所述进气装置(02)、所述集尘室(03)、所述电风机(01)和所述排气管道(04)依次连通,且所述进气装置(02)远离所述集尘室(03)的一端与外部连通,且所述排气管道(04)远离所述电风机(01)的一端与外部连通。
PCT/CN2023/108181 2022-11-22 2023-07-19 电风机和终端设备 WO2024109122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211465862.2 2022-11-22
CN202211465862.2A CN115898911A (zh) 2022-11-22 2022-11-22 电风机和终端设备

Publications (1)

Publication Number Publication Date
WO2024109122A1 true WO2024109122A1 (zh) 2024-05-30

Family

ID=86495921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108181 WO2024109122A1 (zh) 2022-11-22 2023-07-19 电风机和终端设备

Country Status (2)

Country Link
CN (1) CN115898911A (zh)
WO (1) WO2024109122A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898909A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093479A1 (en) * 2004-11-01 2006-05-04 Sunonwealth Electric Machine Industry Co., Ltd. Pressure-boosting axial-flow heat-dissipating fan
US20110142698A1 (en) * 2009-12-16 2011-06-16 Pc-Fan Technology Inc. Heat-Dissipating Fan Assembly
US20120027567A1 (en) * 2010-07-27 2012-02-02 R&D Dynamics Corporation Mechanically-coupled turbomachinery configurations and cooling methods for hermetically-sealed high-temperature operation
CN113775547A (zh) * 2021-09-06 2021-12-10 广东威灵电机制造有限公司 一种电风机及清洁设备
CN215521344U (zh) * 2021-09-06 2022-01-14 广东威灵电机制造有限公司 一种电风机及清洁设备
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093479A1 (en) * 2004-11-01 2006-05-04 Sunonwealth Electric Machine Industry Co., Ltd. Pressure-boosting axial-flow heat-dissipating fan
US20110142698A1 (en) * 2009-12-16 2011-06-16 Pc-Fan Technology Inc. Heat-Dissipating Fan Assembly
US20120027567A1 (en) * 2010-07-27 2012-02-02 R&D Dynamics Corporation Mechanically-coupled turbomachinery configurations and cooling methods for hermetically-sealed high-temperature operation
CN113775547A (zh) * 2021-09-06 2021-12-10 广东威灵电机制造有限公司 一种电风机及清洁设备
CN215521344U (zh) * 2021-09-06 2022-01-14 广东威灵电机制造有限公司 一种电风机及清洁设备
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Also Published As

Publication number Publication date
CN115898911A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2024109122A1 (zh) 电风机和终端设备
JP4366092B2 (ja) ブロワー電動機
TWI821000B (zh) 馬達風扇組件
WO2024109123A1 (zh) 电风机和终端设备
CN112610525B (zh) 用于吸尘器的风机以及吸尘器
JP3981813B2 (ja) バイパス吐出しモータアセンブリ、モータアセンブリ用マフラ及びモータアセンブリ用冷却ファンハウジング
JP2007192034A (ja) 電動送風機及びそれを用いた電気掃除機
WO2024109121A1 (zh) 电风机和终端设备
CN113027791A (zh) 电风机及具有其的吸尘器
TW201016979A (en) Electric blower and vacuum cleaner equipped with the same
WO2021084875A1 (ja) 電動送風機及びそれを備えた電気掃除機
CN211692882U (zh) 电风机及具有其的吸尘器
JP2007146746A (ja) 電動送風機及びそれを用いた電気掃除機
JP4942795B2 (ja) 電気掃除機
TW201934890A (zh) 具有改良氣流及降低噪音特性的馬達風扇組件
TWI812263B (zh) 風機及清潔設備
CN115898910A (zh) 电风机和终端设备
CN214837284U (zh) 一种自循环风冷鼓风机
JP2007002769A (ja) 電動送風機及びこれを備えた電気掃除機
WO2018235221A1 (ja) 電動送風機、電気掃除機、及び手乾燥装置
CN209789745U (zh) 地刷组件及扫地机器人
JP2022012979A (ja) 電動送風機、及び、それを搭載した電気掃除機
CN214118591U (zh) 一种柜式高效净化风机
JP2001003898A (ja) 電動送風機及びそれを用いた電気掃除機
JP7500345B2 (ja) 電動送風機及びそれを備えた電気掃除機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893222

Country of ref document: EP

Kind code of ref document: A1