WO2024109123A1 - 电风机和终端设备 - Google Patents

电风机和终端设备 Download PDF

Info

Publication number
WO2024109123A1
WO2024109123A1 PCT/CN2023/108184 CN2023108184W WO2024109123A1 WO 2024109123 A1 WO2024109123 A1 WO 2024109123A1 CN 2023108184 W CN2023108184 W CN 2023108184W WO 2024109123 A1 WO2024109123 A1 WO 2024109123A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
diffuser
output shaft
impeller
stator
Prior art date
Application number
PCT/CN2023/108184
Other languages
English (en)
French (fr)
Inventor
戴龙珍
胡小文
莫赛法
胡斯特
曾振杰
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2024109123A1 publication Critical patent/WO2024109123A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps

Definitions

  • the present application relates to the technical field of electric blowers, and in particular to an electric blower and a terminal device.
  • Electric fans are widely used in terminal devices represented by vacuum cleaners.
  • electric fans include an impeller assembly, a diffuser and a motor.
  • the diffuser is located downstream of the impeller assembly and is mounted on the outside of the motor.
  • the impeller assembly accelerates the airflow.
  • the accelerated airflow flows from the air outlet of the impeller assembly into the diffuser, and finally flows from the air outlet of the diffuser to the outside of the electric fan.
  • the embodiment of the present application provides an electric blower and terminal equipment, which can solve the problems of poor working reliability and short service life of motor components in related technologies.
  • the technical solution is as follows:
  • the present application provides an electric blower, the electric blower comprising a motor assembly, an impeller assembly and a diffuser assembly, the motor assembly comprising an output shaft, a bracket and a stator and rotor assembly;
  • the bracket and the stator-rotor assembly are sleeved on the output shaft, the bracket has a receiving area, and the stator-rotor assembly is located in the receiving area;
  • the impeller assembly is located on one side of the stator-rotor assembly and is sleeved on the output shaft;
  • the diffuser assembly is sleeved on the output shaft and is located between the stator-rotor assembly and the impeller assembly.
  • the diffuser assembly has an air outlet at one end close to the stator-rotor assembly, and an orthographic projection of the air outlet at least partially overlaps with an orthographic projection of the stator-rotor assembly in an extension direction along the axis of the output shaft.
  • the stator-rotor assembly includes a rotor and a stator
  • the rotor is sleeved on the output shaft, and the stator is sleeved outside the rotor.
  • the orthographic projection of the air outlet at least partially overlaps with the orthographic projection of the stator.
  • the orthographic projection of the air outlet is a first projection
  • the orthographic projection of the stator is a second projection
  • an area where the first projection overlaps with the second projection is greater than or equal to half of an area of the smaller projection between the first projection and the second projection.
  • the bracket includes a bracket body and a support member
  • the bracket body is sleeved on the output shaft
  • the support member is located on a side of the support body close to the diffuser assembly and is respectively connected to the support body and the diffuser assembly.
  • the motor assembly further includes a connecting member
  • the connecting piece is sleeved on the output shaft and is located on a side of the supporting piece away from the bracket body and on the radial inner side of the diffuser assembly.
  • the connecting piece is respectively connected to the supporting piece and the diffuser assembly.
  • the support member includes at least one support arm and a support connection portion
  • the at least one support arm is located on a side of the diffuser assembly close to the support body;
  • the support connection portion is located on a side of the at least one support arm away from the diffuser assembly, and is respectively connected to the at least one support arm and the support body.
  • the support arm is recessed toward the output shaft.
  • the bracket includes a plurality of support arms.
  • the output shafts are distributed at equal intervals in the circumferential direction.
  • the motor assembly further includes a first bearing and a second bearing, the connecting member has a first bearing chamber, and the bracket body has a second bearing chamber;
  • the first bearing and the second bearing are both sleeved on the output shaft, and the first bearing is located in the first bearing chamber, and the second bearing is located in the second bearing chamber.
  • the motor assembly further includes a plurality of elastic members
  • a portion of the multiple elastic members is located between the first bearing and the inner wall of the first bearing chamber, and is respectively abutted against the first bearing and the first bearing chamber, and another portion of the multiple elastic members is located between the second bearing and the inner wall of the second bearing chamber, and is respectively abutted against the second bearing and the second bearing chamber.
  • the electric fan further includes a deflector, and a first end surface is formed at one end of the bracket adjacent to the diffuser assembly;
  • the air deflector is disposed on the first end surface, and in the extension direction of the axis of the output shaft, the orthographic projection of the air deflector at least partially overlaps with the orthographic projection of the air outlet.
  • the air guide cover includes an air guide portion
  • the air guide portion protrudes in a direction toward the air outlet, and in the extending direction of the axis of the output shaft, the orthographic projection of the point on the air guide portion farthest from the first end surface is located within the orthographic projection of the air outlet.
  • a surface of the air guide portion close to the air outlet is a curved surface.
  • the electric blower further includes a mesh structure
  • the mesh structure covers the distance between the stator and rotor assembly and the diffuser assembly, and is connected to the bracket and the diffuser assembly respectively.
  • the impeller assembly includes an impeller assembly housing, a first impeller, a return flow device, and a second impeller;
  • the first impeller, the return flow device and the second impeller are all located in the impeller assembly housing, and the first impeller, the return flow device and the second impeller are sequentially sleeved on the output shaft, the first impeller has a first flow channel, a return flow channel is formed between the return flow device and the inner wall of the impeller assembly housing, the second impeller has a second flow channel, and the first flow channel, the return flow channel and the second flow channel are sequentially connected.
  • the impeller assembly further includes an elastic sealing ring, and the elastic sealing ring includes a sealing ring body and elastic sealing teeth;
  • the sealing ring body and the elastic sealing tooth both have an annular structure, and are both sleeved on the output shaft.
  • the sealing ring body is located between the return device and the elastic sealing tooth, and is fixedly connected to the return device and the elastic sealing tooth respectively.
  • the elastic sealing tooth is rotationally connected to the output shaft, and in the extension direction of the axis of the output shaft, the width of the elastic sealing tooth is positively correlated with the distance from the elastic sealing tooth to the axis of the output shaft.
  • the impeller assembly further includes sealing cotton
  • the sealing cotton is filled between the impeller assembly housing and the first impeller and/or between the impeller assembly housing and the second impeller.
  • the diffuser assembly includes a first axial flow diffuser and a second axial flow diffuser
  • the first axial flow diffuser and the second axial flow diffuser are distributed along the axial direction of the output shaft, the first axial flow diffuser is sealed and connected to the second axial flow diffuser, and are communicated with each other, and one end of the first axial flow diffuser away from the second axial flow diffuser is sealed and connected to the impeller assembly, and is communicated with the impeller assembly.
  • the present application provides a terminal device, wherein the terminal device comprises an electric wind machine as described in any one of the first aspect and possible implementations thereof.
  • the terminal device is a vacuum cleaner.
  • the diffuser assembly is located between the impeller assembly and the stator-rotor assembly.
  • the heat generated by the stator-rotor assembly can be transferred to the outside without being hindered by the diffuser assembly, which is beneficial to improving the heat dissipation effect of the stator-rotor assembly, thereby helping to improve the reliability and service life of the motor assembly during operation, and further, helping to improve the working reliability and service life of the entire electric blower.
  • FIG1 is a schematic structural diagram of an electric blower provided in an embodiment of the present application.
  • FIG2 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG3 is a schematic structural diagram of a bracket provided in an embodiment of the present application.
  • FIG4 is an orthographic projection schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG5 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG6 is a schematic structural diagram of an elastic member provided in an embodiment of the present application.
  • FIG7 is a schematic structural diagram of an elastic member provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a bearing chamber provided in an embodiment of the application.
  • FIG9 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a reflux device provided in an embodiment of the present application.
  • FIG11 is a schematic structural diagram of an elastic sealing ring provided in an embodiment of the present application.
  • Fig. 12 is a cross-sectional view of Fig. 11 along the A-A direction;
  • FIG13 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of a partial structure of a pressure diffuser assembly provided in an embodiment of the present application.
  • FIG15 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG16 is a schematic structural diagram of a deflector provided in an embodiment of the present application.
  • FIG17 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG19 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • FIG20 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • FIG21 is a schematic diagram of gas flow without a mesh structure provided in an embodiment of the present application.
  • FIG22 is a schematic diagram of gas flow when there is a mesh structure provided in an embodiment of the present application.
  • FIG23 is a schematic structural diagram of an electric blower provided in an embodiment of the present application.
  • FIG24 is a schematic cross-sectional view of an electric blower provided in an embodiment of the present application.
  • Figure 25 is a structural diagram of a terminal device provided in an embodiment of the present application.
  • connecting part 12A, accommodating area; 12B, first end surface; 14A, first bearing chamber; 14B, first mounting groove; 121, Support body; 122, support member; 131, rotor; 132, stator; 211, first housing; 212, second housing; 231, middle partition; 232, return blade; 233, fixed protrusion; 251, sealing ring body; 252, elastic sealing tooth; 311, first diffuser impeller; 312, first diffuser housing; 321, second diffuser impeller; 322, second diffuser housing; 121A, second bearing chamber; 1221, support arm; 1222, support connection portion; 1211, body ring; 1212, connecting arm; 231A, mounting cavity; 251A, positioning protrusion; 3111, first inner shell; 3112, first diffuser blade; 3211, second inner shell; 3212, second diffuser blade; m, axis; O, first direction; 01. Electric fan; 02. Air intake device; 03. Dust collection chamber; 04. Exhaust duct.
  • Words such as “connected” or “connected” and the like are not limited to physical or mechanical connections, but also include electrical connections, whether direct or indirect. "Up”, “down”, “left”, “right”, etc. are only used to indicate relative positional relationships. When the absolute position of the object being described changes, the relative positional relationship may also change accordingly.
  • the electric fan includes an impeller assembly, a diffuser assembly and a motor assembly.
  • the diffuser assembly is located downstream of the impeller assembly, and the diffuser assembly is sleeved outside the motor.
  • the electric fan When the electric fan is working, the airflow flows into the impeller assembly from the air inlet of the impeller assembly.
  • the impeller assembly accelerates the airflow, and the accelerated airflow flows into the diffuser from the air outlet of the impeller assembly, and finally flows to the outside of the electric fan from the air outlet of the diffuser.
  • the embodiment of the present application provides an electric blower that can solve the problem of poor heat dissipation of the motor assembly in the related art.
  • the electric blower provided in the embodiment of the present application is introduced below.
  • FIG1 is a schematic diagram of the structure of an electric fan provided in an embodiment of the present application
  • FIG2 is a schematic diagram of the cross-sectional structure of an electric fan provided in an embodiment of the present application.
  • the electric fan includes a motor assembly 1, an impeller assembly 2, and a diffuser assembly 3, wherein the motor assembly 1 includes an output shaft 11, a bracket 12, and a stator-rotor assembly 13.
  • the bracket 12 and the stator-rotor assembly 13 are both sleeved on the output shaft 11, and the bracket 12 and the stator-rotor assembly 13 are located at one end of the output shaft 11.
  • the bracket 12 has a receiving area 12A, the stator-rotor assembly 13 is located in the receiving area 12A, and at least a portion of the stator-rotor assembly 13 is fixedly connected to the bracket 12.
  • the impeller assembly 2 is located on one side of the stator-rotor assembly 13 , and the impeller assembly 2 is sleeved on the output shaft 11 and connected to the output shaft 11 .
  • the diffuser assembly 3 is sleeved on the output shaft 11 and is located between the stator-rotor assembly 13 and the impeller assembly 2, and the diffuser assembly 3 is respectively connected to the bracket 12 and the impeller assembly 2.
  • the diffuser assembly 3 and the stator-rotor assembly 13 are located on the same side of the impeller assembly 2.
  • the stator-rotor assembly 13 provides power to drive the impeller assembly 2 to work by driving the output shaft 11, and air is sucked in from the side of the impeller assembly 2 away from the diffuser assembly 3, and flows into the diffuser assembly 3 after being accelerated by the impeller assembly 2, and flows out after being diffused by the diffuser assembly 3. At least part of the gas flowing out of the diffuser assembly 3 flows to the stator-rotor assembly 13, and finally flows into the outside of the electric blower.
  • the diffuser assembly 3 is located between the impeller assembly 2 and the stator-rotor assembly 13.
  • the heat generated by the stator-rotor assembly 13 can be transferred to the outside without being hindered by the diffuser assembly 3, which is beneficial to improving the heat dissipation effect of the stator-rotor assembly 13, thereby helping to improve the reliability and service life of the motor assembly 1 during operation, and further, helping to improve the working reliability and service life of the entire electric blower.
  • Fig. 3 is a schematic diagram of the structure of a bracket provided in an embodiment of the present application.
  • the bracket 12 includes a bracket body 121 and a support member 122, and the bracket body 121 and the support member 122 form (or enclose) the above-mentioned accommodation area 12A.
  • the bracket body 121 is sleeved on the output shaft 11 and is rotatably connected to the output shaft 11 , wherein the bracket body 121 can be rotatably connected to the output shaft 11 by a bearing connection or the like.
  • the support member 122 is located between the diffuser assembly 3 and the bracket body 121, that is, the support member 122 is located on the side of the bracket body 121 close to the diffuser assembly 3, and the support member 122 is respectively connected to the diffuser assembly 3 and the bracket body 121.
  • the support member 122 and the bracket body 121 can be integrally formed, or can be connected by welding, threaded connection, or bolt connection.
  • the support member 122 and the diffuser assembly 3 can be connected by clamping, welding, or bolt connection.
  • the support member 122 and the bracket body 121, as well as the support member 122 and the diffuser assembly 3, can be detachably connected. This solution is helpful to reduce the difficulty of assembly and facilitate the replacement and maintenance of parts.
  • Bracket body 121
  • the support body 121 includes a body ring 1211 and at least one connecting arm 1212.
  • the body ring 1211 is sleeved on the output shaft 11 and is rotatably connected to the output shaft 11, wherein the body ring 1211 and the output shaft 11 can be connected by a bearing connection.
  • At least one connecting arm 1212 is located on the outer wall of the body ring 1211 and is connected to the body ring 1211, wherein the connecting arm 1212 is located on the outer wall of the body ring 1211 and is connected to the body ring 1211, wherein the connecting arm 1212 can be integrally formed with the body ring 1211, or can be fixed by welding, hinged, plug-in or threaded connection.
  • At least one connecting arm 1212 is bent away from the body ring 1211 at one end toward the support member 122 to ensure connection with the support member 122.
  • the orthographic projection of the diffuser assembly 3 coincides with the orthographic projection of the bracket 12.
  • the gas flowing out of the diffuser assembly 3 can be more smoothly diverted, so that part of the gas flows through the outer wall of the bracket 12, and the other part of the gas flows through the inside of the stator and rotor assembly 13, thereby helping to improve the heat dissipation effect of the motor assembly 1.
  • the orthographic projection of the diffuser assembly 3 represents the projection of the diffuser assembly 3 along the extension direction of the axis m of the output shaft 11 on a plane perpendicular to the axis m
  • the orthographic projection of the bracket 12 represents the projection of the bracket 12 along the extension direction of the axis m of the output shaft 11 on a plane perpendicular to the axis m.
  • the meaning of the orthographic projection in the following text is the same or similar to the meaning of the orthographic projection here, so the orthographic projection appearing in the following text will not be repeated.
  • the support member 122 includes at least one support arm 1221 and a support connection portion 1222.
  • the support arm 1221 has a strip-shaped structure or a plate-shaped structure, and the width of the support arm 1221 is small to reduce the obstruction to the gas flowing out of the diffuser assembly 3.
  • the support connection portion 1222 has an annular structure, which can be a circular ring structure, that is, on a cross section perpendicular to the axis m of the output shaft 11, the projection of the support connection portion 1222 is a circular ring.
  • At least one support arm 1221 is located on a side of the diffuser assembly 3 close to the bracket body 121, and each support arm 1221 is respectively connected to the diffuser assembly 3.
  • the support connection portion 1222 is located on a side of at least one support arm 1221 away from the diffuser assembly 3, and the support connection portion 1222 is respectively connected to at least one support arm 1221 and the bracket body 121.
  • the support connection portion 1222 and the support arm 1221 may be integrally formed, or may be fixedly connected by welding or gluing; the support connection portion 1222 and the bracket body 121 may be integrally formed, or may be connected by welding, threading or bolting. Connected by other means.
  • the support member 122 may include only one support arm 1221 , in which case the obstruction to the gas may be reduced as much as possible.
  • the support member 122 may include a plurality of support arms 1221, in which case the plurality of support arms 1221 are distributed at equal intervals along the circumferential direction of the output shaft 11.
  • the support connection portion 1222 is a circular ring structure, it can also be considered that the plurality of support arms 1221 are distributed at equal intervals around the circumferential direction of the support connection portion 1222.
  • This solution is beneficial to improving the stability and reliability of the electric fan structure after assembly.
  • the plurality of support arms 1221 may also be distributed at non-equal intervals along the circumferential direction of the output shaft 11, and this situation will not be described in detail here.
  • FIG4 is a schematic diagram of an orthographic projection of a partial structure of an electric fan provided in an embodiment of the present application.
  • the orthographic projection of the support arm 1221 coincides with the orthographic projection of the connecting arm 1212.
  • the radial dimension of the support connection portion 1222 of the support member 122 is similar to the radial dimension of the bracket body 121
  • the number of the support arms 1221 of the support member 122 is the same as the number of the connecting arms 1212 of the bracket body 121
  • the orthographic projection of the support arm 1221 coincides with the orthographic projection of the connecting arm 1212.
  • This solution is beneficial, on the one hand, to ensure the coaxiality between the support member 122 and the bracket body 121 during assembly, thereby ensuring the reliability of the electric blower during operation; on the other hand, it is beneficial to reduce the overall obstruction of the bracket 12 to the gas, maximize the reduction of the aerodynamic resistance of the bracket 12, and allow more gas to pass through the interior of the stator and rotor assembly 13, further improving the heat dissipation effect.
  • the support member 122 may have a mesh structure or a shell structure, etc.
  • the support member 122 is a mesh structure or a hollow shell structure (a shell with through holes)
  • part of the gas blown out from the diffuser assembly 3 flows to the inside of the stator-rotor assembly 13, and the other part can flow to the outside of the bracket body 121 through the pores on the mesh structure.
  • the support member 122 is a sealed shell structure (i.e., a shell without through holes)
  • all the gas flowing out of the diffuser assembly 3 flows to the stator-rotor assembly 13. No limitation is made here for the specific structure of the support member 122.
  • connecting arm 1212 For the morphological structure of the connecting arm 1212, it is only necessary to ensure that the gas passing through the stator-rotor assembly 13 can flow to the outside from the connecting arm 1212, such as a mesh structure or a hollow shell structure, etc., and no limitation is made here.
  • the spacing can play a certain degree of deceleration effect on the gas flowing out of the diffuser assembly 3, thereby reducing the noise generated by the gas impacting the stator-rotor assembly 13.
  • the stator-rotor assembly 13 includes a rotor 131 and a stator 132.
  • the rotor 131 is fixed to the output shaft 11 by means of interference fit or key connection, and the stator 132 is fixedly connected to the inner wall of the bracket 12.
  • the stator 132 is sleeved outside the rotor 131, and there is an air gap between the stator 132 and the rotor 131.
  • the inner wall of the stator 132 is opposite to the outer wall of the rotor 131.
  • the orthographic projection of the air outlet 3A at least partially overlaps with the orthographic projection of the stator 132.
  • the size of the motor assembly 1 in the extension direction of the axis m of the output shaft 11, that is, the axial size of the motor assembly can be controlled, and thus, it is helpful to reduce the axial length of the electric fan.
  • stator 132 and the rotor 131 are both sleeved on the output shaft 11, and there is a gap between the stator 132 and the output shaft 11.
  • the end face of the stator 132 is opposite to the end face of the rotor 131.
  • the diffuser assembly 3 has an air outlet 3A at one end close to the stator-rotor assembly 13 , and the orthographic projection of the air outlet 3A at least partially overlaps with the orthographic projection of the stator-rotor assembly 13 in the extension direction along the axis m of the output shaft 11 .
  • the air outlet 3A is axially opposite to the stator 132.
  • the positive projection of the air outlet 3A is the first projection
  • the positive projection of the stator 132 is the second projection.
  • the area of the first projection and the second projection overlap is greater than or equal to half of the area of the smaller projection of the first projection and the second projection.
  • the area of the first projection is 10 square centimeters and the area of the second projection is 15 square centimeters, it is necessary to ensure that the area of the first projection and the second projection overlap is greater than or equal to 5 square centimeters, and so on.
  • the adoption of this solution is conducive to ensuring that the gas flowing out of the air outlet 3A of the diffuser assembly 3 diffuses into the stator-rotor assembly 13, thereby helping to improve the heat dissipation effect of the stator-rotor assembly 13.
  • the radial dimension of the diffuser assembly 3 is approximately equal to the radial dimension of the motor assembly 1.
  • the outer contour line of the orthographic projection of the air outlet 3A can just coincide with the outer contour line of the orthographic projection of the stator 132, and so on.
  • the motor assembly 1 further includes a connection member 14.
  • the component 14 is sleeved on the output shaft 11 and is located on the side of the support arm 1221 away from the support connection portion 1222.
  • the diffuser assembly 3 is sleeved on the connection portion 14, and the diffuser assembly 3 is connected to the connection portion 14.
  • the support arm 1221 is recessed toward the direction of the output shaft 11, and one end of the support arm 1221 away from the support connection portion 1222 is connected to the connection portion 14.
  • the support arm 1221 has a bent shape, which can guide a part of the gas, so that the gas flows to the outside of the bracket body 121, which is conducive to improving the heat dissipation effect of the stator and rotor assembly.
  • the motor assembly 1 also includes a connector 14
  • the end of the support arm 1221 away from the support connection portion 1222 can also be directly connected to the diffuser assembly 3.
  • no limitation is imposed on the connection relationship between the support arm 1221 and the diffuser assembly 3.
  • the first bearing 15 and the elastic member 17 are The first bearing 15 and the elastic member 17
  • FIG5 is a schematic diagram of a cross-sectional structure of an electric fan provided by an embodiment of the present application.
  • the motor assembly 1 further includes a first bearing 15 and at least one elastic member 17, and the connecting member 14 has a first bearing chamber 14A.
  • the output shaft 11 is located in the first bearing chamber 14A, and there is a gap between the output shaft 11 and the inner wall of the first bearing chamber 14A.
  • the first bearing 15 is sleeved on the output shaft 11 and is located in the first bearing chamber 14A, wherein the first bearing 15 and the output shaft 11 can be connected by interference fit or key connection, and there is a gap between the first bearing 15 and the inner wall of the first bearing chamber 14A.
  • At least one elastic member 17 is located between the first bearing 15 and the inner wall of the first bearing chamber 14A, and is respectively in contact with the first bearing 15 and the first bearing chamber 14A to provide the preload required for the first bearing 15 when assembling, wherein there is a gap between the outer wall of the first bearing 15 and the inner wall of the first bearing chamber 14A, or the outer wall of the first bearing 15 is in contact with the inner wall of the first bearing chamber 14A but does not generate interaction force.
  • the total preload force i.e., the total elastic force, which refers to the sum of the elastic forces provided by all elastic members 17 in a certain direction
  • the total elastic force of the elastic member 17 can be determined based on the preload force required for the normal operation of the bearing and the output shaft in the actual product, and no limitation is imposed here.
  • the output shaft and the bearing are fixedly connected by means of interference fit, key connection, etc., while the bearing and the bearing chamber are connected by means of clearance fit.
  • the output shaft speed increases or when the output shaft length increases, the output shaft is prone to Unbalanced stress, excessive vibration, and severe deformation will eventually lead to product failure.
  • At least one elastic member 17 is arranged between the first bearing 15 and the first bearing chamber 14A, and the elastic member 17 abuts against the inner wall of the first bearing 15 and the first bearing chamber 14A respectively, so as to provide a certain preload force for the first bearing 15, which is conducive to ensuring the coaxiality between the first bearing 15 and related components during assembly. Furthermore, during the high-speed rotation of the output shaft 11, the elastic member 17 can generate elastic force through deformation to slow down the displacement and vibration of the output shaft 11, thereby helping to prevent stress imbalance, improve the vibration reduction effect, and further, help to prevent the output shaft 11 from failing and increase the service life of the product.
  • FIG6 is a schematic diagram of the structure of an elastic member provided in an embodiment of the present application
  • FIG7 is a schematic diagram of the structure of an elastic member provided in an embodiment of the present application.
  • the elastic member 17 may have an annular structure, and the elastic member 17 may be an O-ring (i.e., an O-ring) as shown in FIG6 , or a square ring (inner circle and outer square) as shown in FIG7 .
  • the elastic member 17 is sleeved outside the first bearing 15, and the surface of the elastic member 17 away from the first bearing 15 abuts against the inner wall of the first bearing chamber 14A.
  • the elastic member 17 may have a block structure, in which case the motor assembly 1 includes a plurality of elastic members 17, such as 3, 4, 8, etc.
  • the plurality of elastic members 17 are evenly distributed in the circumferential direction of the outer wall of the second bearing 121A, and each elastic member 17 is respectively in contact with the first bearing 15 and the first bearing chamber 14A to provide a corresponding preload force.
  • FIG8 is a schematic diagram of the structure of a bearing chamber provided in an embodiment of the application.
  • the inner wall of the first bearing chamber 14A has at least one first mounting groove 14B, and the number of the first mounting grooves 14B is equal to the number of elastic members 17.
  • the elastic member 17 matches the first mounting groove 14B, and a portion of an elastic member 17 is located in a first mounting groove 14B.
  • the first bearing 15 squeezes the elastic member 17 to deform the elastic member 17, and there is a gap between the outer wall of the first bearing 15 and the inner wall of the first bearing chamber 14A, or the outer wall of the first bearing 15 contacts the inner wall of the first bearing chamber 14A but does not generate an interaction force (i.e., no friction force is generated).
  • the first installation groove 14B is an O-ring groove, and a portion of each O-ring is stuck in the first installation groove 14B.
  • the outer wall arc of the O-ring i.e., the elastic member 17
  • the bottom arc of the O-ring groove i.e., the first installation groove 14B
  • the two end faces of the O-ring are respectively
  • the O-ring is respectively fitted with two groove walls of the O-ring groove, and the inner wall of the O-ring protrudes from the first bearing chamber 14A in the direction toward the output shaft 11, that is, the radial thickness of the O-ring is greater than the depth of the O-ring groove.
  • the elastic member 17 is a square ring as shown in Figure 7
  • the first mounting groove 14B is a square ring groove matching the square ring.
  • the assembly relationship between the square ring and the square ring groove is similar to the assembly relationship between the above-mentioned O-ring and the O-ring groove, which will not be described in detail here.
  • the first mounting groove 14B is a groove matching the block structure (i.e., the elastic member 17).
  • the assembly relationship between the block structure and the groove is similar to the assembly relationship between the above-mentioned O-ring and the O-ring groove, and will not be repeated here.
  • first bearing chamber 14A There is no limitation on the morphological structure of the first bearing chamber 14A. It is only necessary to ensure that the first bearing chamber 14A matches the elastic member 17 and the surface of the elastic member 17 away from the bottom of the first mounting groove 14B protrudes from the first bearing chamber 14A.
  • the elastic member 17 is located in the first installation groove 14B, which is conducive to preventing the elastic member 17 from being displaced along the extension direction of the axis m of the output shaft 11 during the high-speed rotation of the output shaft 11. Since the elastic member 17 abuts against the outer wall of the first bearing 15, a certain friction force can be generated, thereby, during the high-speed rotation of the output shaft 11, it is conducive to preventing the first bearing 15 from being displaced along the extension direction of the axis m of the output shaft 11, and further, it is conducive to ensuring the working stability of the motor assembly 1 and the working stability of the electric fan.
  • the outer wall of the first bearing 15 has at least one first bearing installation groove, and the number of the first bearing installation grooves is equal to the number of the elastic members 17.
  • the elastic members 17 match the first bearing installation grooves, and a portion of one elastic member 17 is located in one first bearing installation groove.
  • the first bearing mounting groove is an O-ring groove
  • a portion of each O-ring is stuck in the first bearing mounting groove.
  • the inner wall arc of the O-ring i.e., the elastic member 17
  • the groove bottom arc of the O-ring groove i.e., the first bearing mounting groove
  • the two end faces of the O-ring fit with the two groove walls of the O-ring groove respectively
  • the outer wall of the O-ring protrudes from the first bearing 15 in the direction away from the output shaft 11, that is, the radial thickness of the O-ring is greater than the depth of the O-ring groove.
  • the assembly relationship between the elastic member 17 and the first bearing mounting groove is similar to the assembly relationship when the elastic member 17 is an O-ring, and is not described in detail here.
  • the motor assembly 1 may include only one elastic member 17, wherein the axial length of the first bearing 15 refers to the length of the first bearing 15 in the extension direction of the axis m of the output shaft 11, and can also be understood as the width of the first bearing 15.
  • the axial length of the first bearing 15 is 3 mm, and the outer diameter of the first bearing 15 is 12 mm.
  • the motor assembly 1 may include only one O-ring.
  • the axial length of the first bearing 15 is 6 mm, and the outer diameter of the first bearing 15 is 12 mm.
  • the motor assembly 1 may include two O-rings, and so on.
  • the axial length of the first bearing 15 is in the range of 3 mm to 6 mm, and the outer diameter of the first bearing 15 is in the range of 12 mm to 16 mm.
  • the size of the first bearing 15 can be set according to actual product requirements and is not limited here.
  • This solution is conducive to reasonably controlling the number of elastic members 17, preventing the reduction of vibration reduction effect due to excessive number of elastic members 17, and is conducive to controlling costs and reducing assembly complexity.
  • a method for determining the number of elastic members 17 is only provided as an example, and no limitation is made here on the method for determining the number of elastic members 17.
  • the elastic member 17 is made of a soft rubber material, such as nitrile rubber, silicone, polyethylene or polypropylene.
  • the axial length of the elastic member 17, that is, the thickness of the elastic member 17, is in the range of 0.1 mm to 0.15 mm.
  • the size of the elastic member 17 can be set according to actual product requirements and is not limited here.
  • the motor assembly 1 may include a second bearing 16 and a plurality of elastic members 17, and the bracket 12 has a second bearing chamber 121A, specifically, the body ring 1211 of the bracket body 121 of the bracket 12 has a second bearing chamber 121A.
  • the output shaft 11 is located in the second bearing chamber 121A, and there is a gap between the outer wall of the output shaft 11 and the inner wall or surface of the second bearing chamber 121A.
  • the second bearing 16 is sleeved on the output shaft 11 and located in the second bearing chamber 121A.
  • Some of the plurality of elastic members 17 are located between the second bearing 16 and the inner wall of the second bearing chamber 121A, and these elastic members 17 are respectively in contact with the second bearing 16 and the second bearing chamber 121A to provide the preload force required for the second bearing 16 when it is assembled, wherein there is a gap between the outer wall of the second bearing 16 and the inner wall of the second bearing chamber 121A, or the outer wall of the second bearing 16 is in contact with the inner wall of the second bearing chamber 121A but does not generate interaction force.
  • the elastic member 17 is an O-ring and the motor assembly 1 includes three O-rings
  • two O-rings are sleeved on the second bearing 16
  • another O-ring is sleeved on the second bearing 16
  • one O-ring is sleeved on the second bearing 16.
  • a 2-ring is mounted on the second bearing 16
  • two O-rings are mounted on the second bearing 16 , and so on.
  • the elastic member 17 is a block structure and the motor assembly 1 includes ten elastic members 17, 5 elastic members 17 are evenly distributed along the circumferential direction of the outer wall of the second bearing 16, 5 elastic members 17 are evenly distributed along the circumferential direction of the outer wall of the second bearing 16, or 4 elastic members 17 are evenly distributed along the circumferential direction of the outer wall of the second bearing 16, 6 elastic members 17 are evenly distributed along the circumferential direction of the outer wall of the second bearing 16, and so on.
  • the size of the second bearing 16 when the size of the second bearing 16 is the same as the size of the second bearing 16, the size of the elastic member 17 located on the outer wall of the second bearing 16 is the same as the size of the elastic member 17 located on the outer wall of the second bearing 16. In other examples, when the size of the second bearing 16 is different from the size of the second bearing 16, the size of the elastic member 17 located on the outer wall of the second bearing 16 is different from the size of the elastic member 17 located on the outer wall of the second bearing 16.
  • the inner wall of the second bearing chamber 121A has at least one second mounting groove 121B
  • the number of the second mounting grooves 121B is the same as the number of the elastic members 17 arranged on the outer wall of the second bearing 16
  • the second mounting groove 121B is the same as or similar to the elastic member 17.
  • the morphological structure of the second mounting groove 121B is the same as or similar to the morphological structure of the second mounting groove 121B
  • the assembly relationship between the second mounting groove 121B and the elastic member 17 is the same as or similar to the assembly relationship between the second mounting groove 121B and the elastic member 17, which will not be described in detail here.
  • the outer wall of the second bearing 16 has at least one second bearing mounting groove
  • the number of the second bearing mounting grooves is equal to the number of elastic members 17 arranged on the outer wall of the second bearing 16
  • the second bearing mounting groove matches the elastic member 17.
  • the morphological structure of the second bearing mounting groove is the same as or similar to the morphological structure of the second bearing mounting groove
  • the assembly relationship between the second bearing mounting groove and the elastic member 17 is the same as or similar to the assembly relationship between the second bearing mounting groove and the elastic member 17, which will not be described in detail here.
  • FIG9 is a schematic diagram of the cross-sectional structure of an electric blower provided in an embodiment of the present application.
  • the impeller assembly 2 may include an impeller assembly housing 21, a first impeller 22, a return flow device 23, and a second impeller 24.
  • the impeller assembly housing 21 has openings at both ends along the axis m, wherein the opening of the impeller assembly housing 21 away from the diffuser assembly 3 serves as the air inlet of the entire electric blower, and the opening of the impeller assembly housing 21 close to the diffuser assembly 3 is connected to the diffuser assembly 3.
  • the impeller assembly housing 21 is sealed and connected to the diffuser assembly 3 to ensure that the airflow accelerated by the impeller assembly 2 flows into the diffuser assembly 3 completely.
  • the first impeller 22, the return flow device 23 and the second impeller 24 are all located in the impeller assembly housing 21, and the first impeller 22, the return flow device 23 and the second impeller 24 are sequentially sleeved on the output shaft. 11.
  • the first impeller 22 or the second impeller 24 is fixedly connected to the output shaft 11, and the return flow device 23 is rotationally connected to the output shaft 11.
  • the first impeller 22 and the impeller assembly housing 21 and the second impeller 24 and the impeller assembly housing 21 are filled with sealing cotton, which can prevent the gas from flowing out from the gap between the first impeller 22 and the impeller assembly housing 21 and the gap between the second impeller 24 and the impeller assembly housing 21, which is beneficial to improve the gas flow efficiency, thereby helping to improve the working efficiency of the electric blower.
  • the first impeller 22 has a first flow channel
  • the return flow channel is formed by the return flow channel formed by the return flow device 23 and the inner wall of the impeller assembly housing 21
  • the second impeller 24 has a second flow channel
  • the first flow channel, the return flow channel and the second flow channel are connected in sequence.
  • the gas enters the first flow channel from the air inlet of the above-mentioned electric blower (i.e., the opening of the impeller assembly housing 21 away from the diffuser assembly 3), enters the return flow channel after being accelerated by the first impeller 22, enters the second flow channel after being returned or guided by the return flow device, and enters the diffuser assembly 3 after being accelerated by the second impeller.
  • the impeller assembly 2 may include only one impeller, or may include more than two impellers.
  • the impeller assembly 2 in these two cases is similar to the above-mentioned case of having the first impeller 22 and the second impeller 24, and will not be described in detail here.
  • the diffuser assembly is sleeved on the motor assembly.
  • the outer diameter of the electric blower is equivalent to the sum of the outer diameter of the motor assembly and the radial dimension of the diffuser assembly.
  • the radial dimension of the electric blower is equivalent to the radial dimension of the motor assembly or the radial dimension of the diffuser assembly.
  • the electric blower in this solution has a smaller radial dimension than the electric blower in the related art, which is conducive to achieving product miniaturization.
  • the multi-stage impeller solution is conducive to improving the suction of the electric blower to meet the needs of product development, and is conducive to reducing the radial dimension of the electric blower under the same suction, thereby helping to improve the applicability of the electric blower.
  • the impeller assembly housing 21 includes a first housing 211 and a second housing 212, wherein the second housing 212 is located between the first housing 211 and the diffuser assembly 3, and is sealed and connected to the first housing 211 and the diffuser assembly 3, respectively, wherein the second housing 212 and the first housing 211 can be detachably connected by welding, clamping, etc.
  • the first impeller 22 is located in the first housing 211
  • the returner 23 and the second impeller 24 are located in the second housing 212.
  • the specific positional relationship is similar to that described above and will not be repeated here.
  • the use of a detachable connection between the first housing 211 and the second housing 212 is conducive to reducing the difficulty of assembling the impeller assembly 2, thereby improving production efficiency, and is also conducive to later maintenance.
  • first impeller 22 and the return flow device 23 are located in the first housing 211, and the second impeller 24 is located in The structure in the second shell 212 is not described in detail here.
  • FIG10 is a schematic diagram of the structure of a return flow device provided in an embodiment of the present application.
  • the return flow device 23 includes a middle partition 231 and a plurality of return flow blades 232.
  • the middle partition 231 is sleeved on the output shaft 11, and the plurality of return flow blades 232 are located on the side of the middle partition 231 close to the diffuser assembly 3, and are unevenly distributed along the circumferential direction of the output shaft 11, and are connected to the middle partition 231.
  • the return flow blades 232 and the middle partition 231 can be integrally formed, or can be connected by welding, gluing or plugging.
  • the returner 23 further includes a plurality of fixing protrusions 233, one fixing protrusion 233 may be located on a side of a return blade 232 away from the middle partition 231, and connected to the return blade 232, and one end of the fixing protrusion 233 away from the return blade 232 is fixedly connected to the impeller assembly housing 21 to ensure the stability of the middle partition 231 and the return blade 232.
  • the number of fixing protrusions 233 is less than the number of return blades 232, such as the number of fixing protrusions 233 is 4, the number of return blades 232 is 16, and the like.
  • the fixing protrusions 233 may also be fixedly connected to the middle partition plate 231 and the impeller assembly housing 21 respectively, but not connected to the return blades 232.
  • the number of fixing protrusions 233 may also be greater than or equal to the number of return blades 232.
  • the number and distribution of the fixing protrusions 233 are not limited here.
  • the impeller assembly 2 also includes an elastic sealing ring 25, the middle partition 231 of the return flow device 23 has an installation cavity 231A, the elastic sealing ring 25 and the output shaft 11 are both located in the installation cavity 231A, the elastic sealing ring 25 is sleeved on the output shaft 11, and is located between the return flow device 23 and the output shaft 11, the elastic sealing ring 25 is fixedly connected to the return flow device 23, and is rotatably connected to the output shaft 11.
  • FIG11 is a schematic diagram of the structure of an elastic sealing ring provided in an embodiment of the present application
  • FIG12 is a cross-sectional view of FIG11 along the A-A direction.
  • the elastic sealing ring 25 may include a sealing ring body 251 and an elastic sealing tooth 252.
  • the sealing ring body 251 and the elastic sealing tooth 252 both have an annular structure, and the sealing ring body 251 and the elastic sealing tooth 252 are both sleeved on the output shaft 11.
  • the sealing ring body 251 is located between the reflux device 23 and the elastic sealing tooth 252, and is fixedly connected to the reflux device 23 and the elastic sealing tooth 252, respectively.
  • the elastic sealing tooth 252 is located between the sealing ring body 251 and the output shaft 11, and the elastic sealing tooth 252 is rotationally connected to the output shaft 11 while being fixedly connected to the sealing ring body 251.
  • the sealing ring body 251 can be fixedly connected to the returner 23 by welding, gluing, clamping or plugging.
  • the sealing ring body 251 and the returner 23 can also be detachably connected to facilitate the assembly of the sealing ring body 251 and the returner 23.
  • the sealing ring body 251 and the elastic sealing teeth 252 can be integrally formed, or can be fixedly connected by means of clamping, gluing, etc.
  • the elastic sealing teeth 252 and the output shaft 11 may be clearance-fitted to ensure that the position of the return flow device 23 in the impeller assembly 2 remains unchanged during high-speed rotation of the output shaft 11, that is, the return flow device 23 does not rotate with the output shaft 11.
  • the elastic sealing tooth 252 can be rotatably connected to the output shaft 11 via a bearing.
  • sealing rings are provided at the two end faces of the bearing perpendicular to the axis m of the output shaft 11. The sealing rings seal the bearings. On the one hand, they can prevent the lubricating fluid in the bearings from overflowing, and on the other hand, they can prevent the gas in the reflux channel or the second channel from flowing back to the first channel through the inside of the bearing.
  • any elastic sealing ring 25 provided in the embodiments of the present application can be made of soft rubber material, such as nitrile rubber, silicone, polyethylene or polypropylene.
  • the material of the elastic sealing ring 25 is only exemplarily described here, and no limitation is imposed on it.
  • the size of the elastic sealing ring 25 can be determined according to actual product requirements, and no limitation is imposed on it here.
  • the impeller assembly may further include sealing cotton 26.
  • the sealing cotton 26 is filled between the impeller assembly housing 21 and the first impeller 22 and/or between the impeller assembly housing 21 and the second impeller 24, thereby preventing the gas from flowing back through the gap between the first impeller 22 and the impeller assembly housing 21, and also preventing the gas from flowing back through the gap between the second impeller 24 and the impeller assembly housing 21.
  • FIG13 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • the impeller assembly 2 does not include the elastic sealing ring 25 mentioned above but includes a sealing bearing 27.
  • the sealing bearing 27 is sleeved on the output shaft 11 and is located between the elastic sealing ring 25 and the output shaft 11.
  • the sealing bearing 27 is fixedly connected to the output shaft 11 and the elastic sealing ring 25, respectively, wherein the sealing bearing 27 and the output shaft 11 can be connected by interference fit or key connection, and the sealing bearing 27 and the elastic sealing ring 25 can be connected by interference fit, adhesive connection, plug-in connection or welding.
  • the sealing bearing 27 is provided with sealing rings at both end faces perpendicular to the axis m of the output shaft 11, and the sealing ring plays a sealing role on the sealing bearing 27, which can prevent the lubricating fluid in the sealing bearing 27 from overflowing on the one hand, and prevent the gas in the return flow channel or the second flow channel from flowing back to the first flow channel through the inside of the sealing bearing 27.
  • This solution can ensure the rotation connection between the return device 23 and the output shaft 11 and Good sealing is ensured between the return flow device 23 and the output shaft 11, and the elastic sealing ring 25 can have a certain vibration reduction effect on the output shaft 11, thereby being beneficial to improving the working efficiency of the electric fan and improving the service life of the electric fan.
  • FIG14 is a partial structural diagram of a diffuser assembly provided in an embodiment of the present application.
  • the diffuser assembly 3 includes a first axial diffuser 31, the first axial diffuser 31 includes a first diffuser impeller 311 and a first diffuser housing 312, and the first diffuser impeller 311 includes a first inner housing 3111 and a plurality of first diffuser blades 3112.
  • the first diffuser impeller 311 The first diffuser impeller 311
  • the first inner shell 3111 may have an annular structure to be sleeved outside the output shaft 11.
  • the first inner shell 3111 is located on the side of the impeller assembly 2 close to the stator and rotor assembly 13, and the first inner shell 3111 is sealed and connected to the impeller assembly 2.
  • the first inner shell 3111 and the impeller assembly 2 may be connected by welding or the like.
  • the first inner shell 3111 has an annular structure, that is, the radial cross-sectional shape of the first inner shell 3111 is an annular structure, and no limitation is made here on the cross-sectional shape of the annular structure.
  • first diffuser blades 3112 are distributed along the circumferential direction of the outer wall of the first inner shell 3111, and each first diffuser blade 3112 is connected to the first inner shell 3111.
  • the first diffuser blades 3112 and the first inner shell 3111 may be integrally formed, or may be connected by welding, clamping, or gluing.
  • the first diffuser housing 312 has an annular structure.
  • the first diffuser housing 312 is sleeved on a plurality of first diffuser blades 3112.
  • the first diffuser housing 312 and the plurality of first diffuser blades 3112 may be sealed and connected by integral molding, welding or gluing, or may have a certain installation gap between the first diffuser blades 3112.
  • the first diffuser housing 312 is also sealed and connected to the impeller assembly 2 to prevent gas leakage.
  • a first diffuser flow channel is formed between the first diffuser impeller 311 and the inner wall of the first diffuser housing 312, and the first diffuser flow channel is connected to the flow channel in the impeller assembly 2. Since the first inner shell 3111 and the first diffuser housing 312 are respectively sealed and connected to the impeller assembly 2, during the operation of the electric blower, the gas first enters the flow channel in the impeller assembly 2, and after being accelerated by the impeller assembly 2, it flows into the first diffuser flow channel and undergoes a first-level diffuser deceleration process. This solution can ensure that the electric blower can operate normally. Work and ensure the working efficiency of the electric fan.
  • the first diffuser blades 3112 are unevenly distributed along the circumferential direction of the outer wall of the first inner shell 3111, that is, in the first axial flow diffuser 31, the flow channel formed between two adjacent first diffuser blades 3112 has different sizes in the circumferential direction of the outer wall of the first inner shell 3111.
  • the pressure pulsations generated by the gas on both sides of the first diffuser blades 3112 will not be superimposed on each other, and may even cancel each other out, thereby helping to reduce the noise generated by the diffuser assembly 3 during the operation of the electric fan, and helping to reduce the operating noise of the electric fan.
  • the diffuser assembly 3 may further include a second axial diffuser 32 , which includes a second diffuser impeller 321 and a second diffuser housing 322 .
  • the second diffuser impeller 321 includes a second inner housing 3211 and a plurality of second diffuser blades 3212 .
  • the second inner shell 3211 has an annular structure, and is sleeved outside the output shaft 11.
  • the second inner shell 3211 is located on the side of the first inner shell 3111 away from the impeller assembly 2, and is sealed and connected to the first inner shell 3111.
  • the second inner shell 3211 and the first inner shell 3111 can be integrally formed, or connected by threaded connection, welding or riveting. Among them, the second inner shell 3211 and the first inner shell 3111 can be detachably connected, which is conducive to reducing the difficulty of assembling the diffuser assembly 3, thereby improving production efficiency and facilitating later maintenance.
  • a plurality of second diffuser blades 3212 are located on the outer wall of the second inner shell 3211 and distributed along the circumferential direction of the outer wall of the second inner shell 3211, and the plurality of second diffuser blades 3212 are respectively connected to the second inner shell 3211.
  • the second diffuser blades 3212 and the second diffuser blades 3212 may be integrally formed, or may be connected by welding, clamping, plugging or gluing.
  • the second diffuser shell 322 has an annular structure, the second diffuser shell 322 is sleeved on a plurality of second diffuser blades 3212, and the second diffuser shell 322 is sealed and connected to the first diffuser shell 312.
  • the second diffuser shell 322 and the first diffuser shell 312 can be connected by threaded connection, welding, clamping, etc., or can be integrally formed.
  • the first diffuser shell 312 and the second diffuser shell 322 can be detachably connected, which is beneficial to reduce the difficulty of assembling the diffuser assembly 3, thereby improving production efficiency and facilitating later maintenance.
  • the second diffuser shell 322 and the second diffuser blades 3212 can be It is fixedly connected by integral molding, welding or gluing, and a certain gap may be left between the second diffuser blade 3212. As an example, there is a gap of 0.5 mm (or 0.2 mm, 1 mm, etc.) between the inner wall of the second diffuser housing 322 and the surface of the second diffuser blade 3212 away from the second inner shell 3211.
  • the second diffuser impeller 321 and the inner wall of the second diffuser housing 322 form a second diffuser flow channel, and the second diffuser flow channel is connected to the first diffuser flow channel.
  • the gas first flows into the first diffuser flow channel, undergoes a primary diffuser deceleration process, and then enters the second diffuser flow channel, undergoes a secondary diffuser deceleration process, and the gas after the two diffuser deceleration processes flows to the outside of the diffuser assembly 3.
  • the pressure diffuser assembly 3 may include more than two axial flow diffusers.
  • the solution of using a multi-stage axial flow diffuser is more conducive to improving the pressure diffusion of the electric fan to meet the product development requirements.
  • the pressure diffuser assembly 3 includes more than two axial flow diffusers, the two or more axial flow diffusers are coaxially distributed and connected in sequence. It is only necessary to ensure that the blades in the two adjacent axial flow diffusers are distributed with gaps.
  • the specific distribution of the blades and the connection relationship of the multiple axial flow diffusers are similar to the above-mentioned case of the first axial flow diffuser 31 and the second axial flow diffuser 32, and will not be repeated here.
  • the solution of adopting a multi-stage axial flow diffuser is beneficial to improving the pressure diffusion and deceleration capability of the electric fan to meet the needs of product development. Moreover, it is beneficial to reduce the radial size of the electric fan under the same pressure diffusion capability, thereby improving the applicability of the electric fan.
  • FIG15 is a schematic diagram of the cross-sectional structure of an electric blower provided in an embodiment of the present application.
  • a first end face 12B is formed at one end of the bracket 12 adjacent to the diffuser assembly 3, and a distance is provided between the air outlet 3A of the diffuser assembly 3 and the first end face 12B in the extension direction of the axis m of the output shaft 11.
  • the air deflector 4 is disposed on the first end face, that is, the air deflector 4 is located on the first end face 12A of the bracket 12 and is connected to the first end face 12A.
  • at least a portion of the air deflector 4 is opposite to the air outlet 3A to adjust the flow direction of the gas flowing out of the air outlet 3A.
  • the air deflector 4 is opposite to the air outlet 3A, and it can be considered that, in the extension direction of the axis m of the output shaft 11, the orthographic projection of the air deflector 4 at least partially overlaps with the orthographic projection of the air outlet 3A.
  • the orthographic projection of the air deflector 4 completely overlaps with the orthographic projection of the air outlet 3A. In other examples, the orthographic projection of the air deflector 4 is located within the orthographic projection of the air outlet 3A, that is, the orthographic projection of the air deflector 4 partially overlaps with the orthographic projection of the air outlet 3A. In other examples, the orthographic projection of the air outlet 3A is located within the orthographic projection of the air deflector 4, that is, the orthographic projection of the air outlet 3A partially overlaps with the orthographic projection of the air deflector 4. In some other examples, the orthographic projection of the air outlet 3A overlaps with the orthographic projection of the air deflector 4.
  • a deflector 4 is provided between the diffuser assembly 3 and the bracket 12, and at least a portion of the deflector 4 is opposite to the air outlet 3A of the diffuser assembly 3.
  • the deflector 4 can adjust the flow direction of the gas, so that under the action of the deflector 4, the gas flowing out of the air outlet 3A of the diffuser assembly 3 is gradually guided to be turned and diverted, and will no longer be blown vertically toward the above-mentioned first end face 12B and the stator-rotor assembly 13 (that is, it will not be blown vertically toward the motor assembly 1), thereby helping to reduce the impact of the airflow on the motor assembly 1 to eliminate the impact noise generated by the airflow impacting the motor assembly 1, and further, helping to reduce the working noise of the electric fan during operation.
  • FIG16 is a schematic diagram of the structure of a deflector provided in an embodiment of the present application.
  • the deflector 4 includes a deflector 41, which is used to adjust the flow direction of the gas flowing out of the air outlet 3A.
  • the deflector 41 is a convex structure, and the convex structure (i.e., the deflector 41) convexly protrudes in the direction toward the air outlet 3A.
  • the radial width of the deflector 41 gradually decreases, wherein the first direction O is parallel to the extension direction of the axis m of the output shaft 11, and is pointed from the first end face 12B to the air outlet 3A, and the radial width is the width of the deflector 41 perpendicular to the first direction O.
  • the point on the deflector 41 that is farthest from the first end face 12B is opposite to the air outlet 3A, that is, in the extension direction of the axis m of the output shaft 11, the orthographic projection of the point on the deflector 41 that is farthest from the first end face 12B is located within the orthographic projection of the air outlet 3A.
  • the adoption of this solution is conducive to improving the flow diversion and flow diversion effect of the air guide 4 on the gas by the air guide cover 4, thereby further reducing aerodynamic losses and reducing the working noise of the electric fan.
  • the radial width of the air guide portion 41 gradually decreases along the first direction O, it can be considered that the two side surfaces of the air guide portion 41 perpendicular to the first direction O are smooth surfaces. In this way, it is beneficial to reduce wind resistance, so that when the airflow flows through the two sides of the air guide portion 41, the aerodynamic loss is reduced to improve the gas flow efficiency.
  • the point on the guide portion 41 that is farthest from the first end face 12B is located inside the diffuser assembly 3, so that the flow splitting action is placed in front, further reducing the aerodynamic loss to improve the gas flow efficiency.
  • the gas flow efficiency can be improved, the impact of the gas on the guide portion 41 is likely to increase the wear of the guide portion 41 and generate some noise.
  • the distance between the point on the guide portion 41 that is farthest from the first end face 12B and the air outlet 3A there is a distance between the point on the guide portion 41 that is farthest from the first end face 12B and the air outlet 3A.
  • This distance can be determined according to actual product requirements, such as the distance can be half of the distance between the first end face 12B and the air outlet 3A.
  • the guide portion 41 protrudes toward the air outlet 3A, and the surface of the guide portion 41 close to the air outlet 3A is an arc surface.
  • the surface of the guide portion 41 close to the air outlet 3A is an arc.
  • the arc surface is an arc surface of equal radius, that is, the radius corresponding to any point on the arc surface is equal, and in this case, the radius of the arc surface can be considered as the axial length of the air guide portion 41 in the extension direction of the axis m of the output shaft 11.
  • the arc formed by the surface of the air guide portion 41 close to the air outlet 3A is a semicircular arc.
  • the radius of the arc surface can be equal to half of the radial distance from the outer wall of the stator winding in the stator 132 to the outer wall of the bracket.
  • the radius of the arc surface can also be equal to the radial size of the air outlet 3A, and can also be equal to half of the radial size of the guide portion 41, etc.
  • the axial length of the guide portion 41 is not limited here.
  • the arc surface is a variable radius arc surface.
  • the radius corresponding to any point on the arc surface is negatively correlated with the distance from any point to the axis m.
  • the arc formed by the surface of the guide portion 41 close to the air outlet 3A is a variable radius arc, and on the variable radius arc, the farther the point from the axis m is, the smaller the radius corresponding to the point, and the closer the point from the axis m is, the larger the radius corresponding to the point.
  • the radius corresponding to any point on the arc surface is negatively correlated with the distance from any point to the axis m.
  • the distance from a point to the axis m can also be positively correlated.
  • the average radius of the above-mentioned variable radius arc surface can be equal to half of the radial distance from the outer wall of the stator winding in the stator 132 to the outer wall of the bracket, or it can be equal to the radial dimension of the air outlet 3A, or it can be equal to half of the radial dimension of the guide portion 41, and so on.
  • FIG17 is a schematic diagram of the cross-sectional structure of an electric blower provided in an embodiment of the present application.
  • the radial cross-section of the above-mentioned air guide 41 is a triangle, that is, the air guide 41 is a triangle in the radial cross-section of the electric blower.
  • the radial cross-section of the air guide 41 is an equilateral triangle, wherein the height of the equilateral triangle may be equal to half of the radial distance from the outer wall of the stator winding in the stator 132 to the outer wall of the bracket, or may be equal to the radial dimension of the air outlet 3A, or may be equal to half of the radial dimension of the air guide 41, and so on.
  • the radial cross-section of the air guide 41 is a triangle
  • the shape and size of the triangle may be determined according to actual product requirements, and no limitation is made here.
  • the air deflector 4 may further include a fixing portion 42.
  • the fixing portion 42 is located on a side of the air deflector 41 away from the diffuser assembly 3, and is sleeved on the radial outer side of the bracket 12, wherein the radial direction of the bracket 12 is perpendicular to the axis m of the output shaft 11.
  • the fixing portion 42 is connected to the air deflector 41 and the bracket 12 respectively, and the fixing portion 42 and the air deflector 41 may be integrally formed, or may be fixed by welding, riveting or gluing, and the fixing portion 42 and the bracket 12 may also be integrally formed, or may be fixed by welding, clamping, or the like.
  • the guide portion 41 and the fixing portion 42 are integrally formed, and the fixing portion 42 and the bracket 12 are welded together. In this case, the guide portion 41 and the bracket 12 can be fixedly connected or only in contact but not connected.
  • the air guide portion 41, the fixing portion 42 and the bracket 12 may be integrally formed, thereby facilitating improvement of the integration of components.
  • the connection method between the air guide portion 41, the fixing portion 42 and the bracket 12 is not limited herein.
  • Fig. 18 is a schematic diagram of a partial structure of an electric blower provided in an embodiment of the present application.
  • the electric blower can include a plurality of any of the above-mentioned air deflectors 4, and an air deflector 4 is disposed between each of two adjacent support arms 1221.
  • a plurality of support arms 1221 are distributed at equal intervals along the circumference of the output shaft 11
  • a plurality of air deflectors 4 are also distributed at equal intervals along the circumference of the output shaft 11 .
  • the plurality of support arms 1221 may also be distributed at unequal intervals along the circumferential direction of the output shaft 11. In this case, the air deflector 4 only needs to be disposed between two adjacent support arms 1221.
  • the number and distribution of the air deflector 4 are not limited herein.
  • FIG19 is a schematic diagram of a partial structure of an electric fan provided in an embodiment of the present application.
  • the air guide cover 4 may include a plurality of air guide portions 41 and a fixing portion 42.
  • the plurality of air guide portions 41 are respectively distributed between two adjacent support arms 1221 and are respectively connected to the fixing portion 42.
  • the air deflector 4 may include a plurality of connecting parts 43, as shown in FIG19, the connecting parts 43 correspond to the support arms 1221 one by one, and the connecting parts 43 are located outside the support arms 1221 and between two adjacent air deflectors 41, and the connecting parts 43 may be connected to the air deflector 41 and the fixing parts 42, respectively, to improve the strength and rigidity of the entire air deflector 4.
  • the connecting parts 43 may also be connected to the support arms 1221, thereby facilitating the stability of the air deflector 4 installed on the bracket 12.
  • a deflector 4 is provided between the diffuser assembly 3 and the bracket 12, and at least a portion of the deflector 4 is opposite to the air outlet 3A of the diffuser assembly 3.
  • the deflector 4 can adjust the flow direction of the gas, so that under the action of the deflector 4, the gas flowing out of the air outlet 3A of the diffuser assembly 3 is gradually guided to be turned and diverted, and will no longer be blown vertically toward the above-mentioned first end face 12B and the stator-rotor assembly 13 (that is, it will not be blown vertically toward the motor assembly 1), thereby helping to reduce the impact of the airflow on the motor assembly 1 to eliminate the impact noise generated by the airflow impacting the motor assembly 1, and further, helping to reduce the working noise of the electric fan during operation.
  • FIG20 is a schematic diagram of the cross-sectional structure of an electric blower provided in an embodiment of the present application.
  • the electric blower further includes a mesh structure 5, which is located on the side of the diffuser assembly 3 away from the impeller assembly 2 and is connected to the diffuser assembly 3.
  • the gas flowing out of the air outlet 3A of the diffuser assembly 3 contacts the mesh structure 5, and the flow velocity and flow direction are adjusted under the action of the mesh structure 5.
  • the diffuser assembly 3 and the stator-rotor assembly 13 are spaced apart along the extension direction of the axis m of the output shaft 11.
  • the mesh structure 5 covers the spacing between the diffuser assembly 3 and the stator-rotor assembly 13, and the mesh structure 5 is respectively connected to the diffuser assembly 3 and the bracket 12.
  • the mesh structure 5 can adjust the velocity distribution of the gas at the air outlet 3A of the diffuser assembly 3, so that the velocity distribution of the gas at the air outlet 3A is uniform.
  • the mesh structure 5 has the function of decelerating and adjusting the flow direction of the gas, thereby helping to reduce the impact of the gas on the surface of the motor or the surface of the electric control board, and further, helping to reduce or even eliminate the impact noise, and helping to reduce the working noise of the electric fan when it is working.
  • FIG21 is a schematic diagram of gas flow without a mesh structure according to an embodiment of the present application
  • FIG22 is a schematic diagram of gas flow with a mesh structure according to an embodiment of the present application.
  • the gas flowing out of the air outlet 3A of the diffuser assembly 3 can be gradually decelerated under the action of the mesh structure 5, and under the action of the mesh structure 5, the gas will gradually diffuse toward the side away from the output shaft 11 before reaching the end face of the stator-rotor assembly 13.
  • the airflow bending angle of the gas is less than or equal to 45 degrees when it diffuses.
  • the spacing between the diffuser assembly 3 and the stator-rotor assembly 13 may be equal to or more than twice the radial thickness of the stator 132; or, when the stator 132 and the rotor 131 are coaxially distributed along the axis of the output shaft, the spacing between the diffuser assembly 3 and the stator-rotor assembly 13 may be equal to the radius of the stator 132.
  • the above is just an example of the spacing between the diffuser assembly 3 and the stator-rotor assembly 13.
  • the spacing between the diffuser assembly 3 and the stator-rotor assembly 13 can be set according to the gas flow rate discharged by the diffuser assembly 3 in the actual product, and no limitation is made here.
  • the gas flowing out of the air outlet 3A of the diffuser assembly 3 can reduce the flow velocity under the action of the mesh structure 5 before reaching the stator-rotor assembly 13.
  • the flow direction can be adjusted under the action of the mesh structure 5, thereby reducing the impact of the gas on the stator-rotor assembly 13, thereby reducing the impact noise and the working noise of the electric fan.
  • the length of the mesh structure 5 in the extension direction of the axis m of the output shaft 11 can be greater than the spacing between the stator and rotor assembly 13 and the diffuser assembly 3.
  • the two ends of the mesh structure 5 can be respectively wrapped on the outer wall of the diffuser assembly 3 and the outer wall of the bracket 12, and the mesh structure 5 and the outer wall of the diffuser assembly 3, and the mesh structure 5 and the outer wall of the bracket 12 can be fixedly connected by welding, gluing or riveting, so as to improve the stability of the mesh structure 5 in the electric fan.
  • the mesh structure 5 and the outer wall of the diffuser assembly 3, and the mesh structure 5 and the outer wall of the bracket 12 can also be fixedly connected by snap-fitting, plug-in or threaded connection, so as to reduce the difficulty of assembly and facilitate the replacement of the mesh structure 5.
  • one end of the mesh structure 5 is connected to the end surface where the air outlet 3A is located, and the other end is wrapped around the bracket. 12; or, one end of the mesh structure 5 is wrapped around the outer wall of the diffuser assembly 3, and the other end is connected to the end face of the bracket 12 close to the diffuser assembly 3; or, the two ends of the mesh structure 5 are respectively connected to the end face where the air outlet 3A is located and the end face of the bracket 12 close to the diffuser assembly 3.
  • FIG23 is a schematic diagram of the structure of an electric blower provided in an embodiment of the present application
  • FIG24 is a schematic diagram of the cross-sectional structure of an electric blower provided in an embodiment of the present application.
  • the motor assembly 1 also includes an electric control board 18.
  • the stator and rotor assembly 13 is located on the inner side of the diffuser assembly 3, that is, the diffuser assembly 3 is sleeved on the bracket 12, and the inner wall of the diffuser assembly 3 is connected to the outer wall of the bracket 12.
  • the electric control board 18 is located on the side of the mesh structure 5 away from the diffuser assembly 3, and the electric control board 18 is opposite to the air outlet 3A of the diffuser assembly 3, and the electric control board 18 is respectively connected to the mesh structure 5 and the bracket 12.
  • the electric control board 18 is located on the side of the bracket 12 away from the impeller assembly 2, and in the extension direction of the axis m of the output shaft 11, there is a spacing between the air outlet 3A and the electric control board 18, and the mesh structure 5 covers the spacing.
  • the electric control board 18 can also be electrically connected to the stator-rotor assembly 13 to control the rotation of the rotor 131 in the stator-rotor assembly 13 , thereby driving the impeller in the impeller assembly 2 to work.
  • the spacing between the pressure diffuser assembly 3 and the electric control board 18 may be equal to or more than twice the radial thickness of the stator 132; or, when the stator 132 and the rotor 131 are coaxially distributed along the axis of the output shaft, the spacing between the pressure diffuser assembly 3 and the electric control board 18 may be equal to the radius of the stator 132.
  • the above is only an example of the spacing between the pressure diffuser assembly 3 and the electric control board 18.
  • the spacing between the pressure diffuser assembly 3 and the electric control board 18 can be set according to the gas flow rate discharged by the pressure diffuser assembly 3 in the actual product, and no limitation is made here.
  • the pressure diffuser assembly 3 is sleeved outside the bracket 12, and it can be considered that the pressure diffuser assembly 3 is sleeved outside the entire motor assembly 1, which is conducive to reducing the length of the electric blower in the extension direction of the axis m of the output shaft 11. Moreover, before the gas flowing out of the air outlet 3A of the pressure diffuser assembly 3 reaches the stator control board 18, the flow velocity can be reduced and the flow direction can be adjusted under the action of the mesh structure 5, thereby reducing the impact of the gas on the stator and rotor assembly 13, thereby reducing the impact noise and the working noise of the electric blower.
  • the porosity of the mesh structure 5 provided in the embodiment of the present application is in the range of 60% to 85%.
  • the total area occupied by the through holes is 60% to 85% of the total area of the outer wall of the mesh structure 5.
  • the porosity of the mesh structure 5 is not limited here.
  • FIG25 is a schematic diagram of the structure of a terminal device provided by the embodiment of the present application, the terminal device includes the embodiment of the present application Any electric fan 01.
  • the terminal device can be a cleaning device, such as a vacuum cleaner, a sweeper, etc.
  • the terminal device is a vacuum cleaner, as shown in FIG25, the vacuum cleaner may further include an air intake device 02, a dust collecting chamber 03, and an exhaust duct 04.
  • the air intake device 02, the dust collecting chamber 03, the electric fan 01, and the exhaust duct 04 are connected in sequence, wherein an end of the air intake device 02 away from the dust collecting chamber 03 (i.e., an end of the air intake device 02 not connected to the dust collecting chamber 03) is connected to the outside, and an end of the exhaust duct 04 away from the electric fan 01 (i.e., an end of the exhaust duct 04 not connected to the electric fan 01) is connected to the outside.
  • the dust collecting chamber 03 may be provided with a filtering device, and the dust collecting chamber 03 filters the target objects and gas, and the target objects are retained in the dust collecting chamber 03.
  • the filtered gas enters the electric fan 01, and flows out from the above-mentioned diffuser assembly 3 after acceleration and pressure expansion.
  • the outflowing gas passes through the outer surface and/or the inside of the above-mentioned stator-rotor assembly 13, takes away the heat generated by the stator-rotor assembly 13 and flows to the exhaust pipe 04, and finally flows into the atmosphere.
  • the vacuum cleaner completes the cleaning function room of the target object, it makes full use of the gas flowing out of the diffuser assembly 3 to dissipate the heat of the stator-rotor assembly 13, which is beneficial to improve the heat dissipation effect of the stator-rotor assembly 13, thereby, it is beneficial to improve the working reliability and service life of the entire electric fan (and vacuum cleaner).
  • the radial dimension of the electric fan is affected by the diffuser assembly 3. Since the diffuser assembly 3 is sleeved outside the motor, the radial dimension of the entire electric fan is usually large. In this solution, the stator and rotor assembly 13 is located outside the diffuser assembly 3, so that the radial dimension of the diffuser assembly 3 can be reduced, thereby reducing the radial dimension of the entire electric fan, which is conducive to applying the electric fan to more products, thereby improving the applicability of the electric fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种电风机和终端设备,电风机包括电机组件(1)、叶轮组件(2)和扩压组件(3),电机组件包括输出轴(11)、支架(12)和定转子合件(13);支架和定转子合件套设在输出轴上,支架具有容纳区(12A),定转子合件位于容纳区内;叶轮组件位于定转子合件的一侧,且套设在输出轴上;扩压组件套设在输出轴上,且位于定转子合件和叶轮组件之间。该电风机有利于提高对定转子合件的散热效果,从而进一步提高整个电风机的工作可靠性和使用寿命。

Description

电风机和终端设备
本申请要求于2022年11月22日提交的申请号为202211465831.7、发明名称为“电风机和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电风机技术领域,特别涉及一种电风机和终端设备。
背景技术
电风机被广泛应用在以吸尘器为代表的终端设备中。通常,电风机包括叶轮组件、扩压器和电机,扩压器位于叶轮组件的下游,并且扩压器套装在电机外部。电风机在工作时,气流从叶轮组件的进风口流入,在电机的驱动下,叶轮组件对气流进行加速,加速后的气流由叶轮组件的出风口流入扩压器中,最终由扩压器的出风口流向电风机外部。
发明内容
本申请实施例提供了一种电风机和终端设备,能解决相关技术中电机组件工作可靠性差、使用寿命短的问题。技术方案如下:
第一方面,本申请提供了一种电风机,所述电风机包括电机组件、叶轮组件和扩压组件,所述电机组件包括输出轴、支架和定转子合件;
所述支架和所述定转子合件套设在所述输出轴上,所述支架具有容纳区,所述定转子合件位于所述容纳区内;
所述叶轮组件位于所述定转子合件的一侧,且套设在所述输出轴上;
所述扩压组件套设在所述输出轴上,且位于所述定转子合件和所述叶轮组件之间。
在一种可能的实现方式中,在所述输出轴的轴线的延伸方向上,所述扩压组件与所述定转子合件之间具有间距。
在一种可能的实现方式中,所述扩压组件靠近所述定转子合件的一端具有出风口,在沿所述输出轴的轴线的延伸方向上,所述出风口的正投影与所述定转子合件的正投影至少部分重合。
在一种可能的实现方式中,所述定转子合件包括转子和定子;
所述转子套设在所述输出轴上,所述定子套在所述转子外,在所述输出轴的轴线的延伸方向上,所述出风口的正投影与所述定子的正投影至少部分重合。
在一种可能的实现方式中,在所述输出轴的轴线的延伸方向上,所述出风口的正投影为第一投影,所述定子的正投影为第二投影,所述第一投影与所述第二投影重合的面积大于或等于所述第一投影和所述第二投影中面积更小的投影的面积的一半。
在一种可能的实现方式中,所述支架包括支架本体和支撑件;
所述支架本体套设在所述输出轴上;
所述支撑件位于所述支架本体靠近所述扩压组件的一侧,且分别与所述支架本体、所述扩压组件相连。
在一种可能的实现方式中,所述电机组件还包括连接件;
所述连接件套设在所述输出轴上,且位于所述支撑件远离所述支架本体的一侧,且位于所述扩压组件的径向内侧,所述连接件分别与所述支撑件、所述扩压组件相连。
在一种可能的实现方式中,所述支撑件包括至少一个支撑臂和支撑连接部;
所述至少一个支撑臂位于所述扩压组件靠近所述支架本体的一侧;
所述支撑连接部位于所述至少一个支撑臂远离所述扩压组件的一侧,且分别与所述至少一个支撑臂、所述支架本体相连。
在一种可能的实现方式中,所述支撑臂朝向所述输出轴的方向凹陷。
在一种可能的实现方式中,所述支架包括多个支撑臂,所述多个支撑臂沿 所述输出轴的圆周方向等间距分布。
在一种可能的实现方式中,所述电机组件还包括第一轴承和第二轴承,所述连接件具有第一轴承室,所述支架本体具有第二轴承室;
所述第一轴承和所述第二轴承均套在所述输出轴上,且所述第一轴承位于所述第一轴承室内,且所述第二轴承位于所述第二轴承室内。
在一种可能的实现方式中,所述电机组件还包括多个弹性件;
所述多个弹性件中的一部分位于所述第一轴承与第一轴承室的内壁之间,且分别与所述第一轴承、所述第一轴承室抵接,所述多个弹性件中的另一部分位于所述第二轴承与第二轴承室的内壁之间,且分别与所述第二轴承、所述第二轴承室抵接。
在一种可能的实现方式中,所述电风机还包括导流罩,所述支架邻近所述扩压组件的一端形成有第一端面;
所述导流罩设置于所述第一端面上,在所述输出轴的轴线的延伸方向上,所述导流罩的正投影与所述出风口的正投影至少部分重合。
在一种可能的实现方式中,所述导流罩包括导流部;
所述导流部沿朝向所述出风口的方向凸起,在所述输出轴的轴线的延伸方向上,所述导流部上距离所述第一端面最远的点的正投影位于所述出风口的正投影内。
在一种可能的实现方式中,所述导流部靠近所述出风口的表面为弧形面。
在一种可能的实现方式中,所述电风机还包括网状结构;
所述网状结构覆盖所述定转子合件与所述扩压组件之间的间距,且分别与所述支架、所述扩压组件相连。
在一种可能的实现方式中,所述叶轮组件包括叶轮组件壳体、第一叶轮、回流器和第二叶轮;
所述第一叶轮、所述回流器和所述第二叶轮均位于所述叶轮组件壳体内,且所述第一叶轮、所述回流器和所述第二叶轮依次套在所述输出轴上,所述第一叶轮内具有第一流道,所述回流器与所述叶轮组件壳体的内壁之间形成回流流道,所述第二叶轮内具有第二流道,所述第一流道、所述回流流道和所述第二流道依次连通。
在一种可能的实现方式中,所述叶轮组件还包括弹性密封环,所述弹性密封环包括密封环本体和弹性密封齿;
所述密封环本体和所述弹性密封齿均具有环状结构,所述密封环本体和所述弹性密封齿均套设在所述输出轴上,所述密封环本***于所述回流器和所述弹性密封齿之间,且分别与所述回流器、所述弹性密封齿固定相连,所述弹性密封齿与所述输出轴转动相连,在所述输出轴的轴线的延伸方向上,所述弹性密封齿的宽度与所述弹性密封齿到输出轴的轴线的距离呈正相关关系。
在一种可能的实现方式中,所述叶轮组件还包括密封棉;
所述密封棉填充于所述叶轮组件壳体与所述第一叶轮和/或所述叶轮组件壳体与所述第二叶轮之间。
在一种可能的实现方式中,所述扩压组件包括第一轴流扩压器和第二轴流扩压器;
所述第一轴流扩压器和所述第二轴流扩压器沿所述输出轴的轴线方向分布,所述第一轴流扩压器与所述第二轴流扩压器密封相连,且相互连通,所述第一轴流扩压器远离所述第二轴流扩压器的一端与所述叶轮组件密封相连,且与所述叶轮组件相连通。
第二方面,本申请提供了一种终端设备,所述终端设备包括如第一方面及其可能的实现方式中任一项所述的电风机。
在一种可能的实现方式中,所述终端设备为吸尘器。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的方案中,扩压组件位于叶轮组件和定转子合件之间,电风机工作过程中,定转子合件所产生的热量可以向外部传递,不受扩压组件的阻碍,有利于提高定转子合件的散热效果,从而,有利于提高电机组件工作过程中的可靠性和使用寿命,进一步的,有利于提高整个电风机的工作可靠性和使用寿命。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电风机的结构示意图;
图2是本申请实施例提供一种电风机的剖面结构示意图;
图3是本申请实施例提供的一种支架的结构示意图;
图4是本申请实施例提供的一种电风机的局部结构的正投影示意图;
图5是本申请实施例提供的一种电风机的剖面结构示意图;
图6是本申请实施例提供的一种弹性件的结构示意图;
图7是本申请实施例提供的一种弹性件的结构示意图;
图8是申请实施例提供的一种轴承室的结构示意图;
图9是本申请实施例提供的一种电风机的剖面结构示意图;
图10是本申请实施例提供的一种回流器的结构示意图;
图11是本申请实施例提供的一种弹性密封环的结构示意图;
图12是图11沿A-A方向的剖视图;
图13是本申请实施例提供的一种电风机的局部结构示意图;
图14是本申请实施例提供的一种扩压组件的局部结构示意图;
图15是本申请实施例提供的一种电风机的剖面结构示意图;
图16是本申请实施例提供的一种导流罩的结构示意图;
图17是本申请实施例提供的一种电风机的剖面结构示意图;
图18是本申请实施例提供的一种电风机的局部结构示意图;
图19是本申请实施例提供的一种电风机的局部结构示意图;
图20是本申请实施例提供一种电风机的剖面结构示意图;
图21是本申请实施例提供的一种无网状结构时气体流向示意图;
图22是本申请实施例提供的有网状结构时气体流向示意图;
图23是本申请实施例提供的一种电风机的结构示意图;
图24是本申请实施例提供的一种电风机的剖面结构示意图;
图25是本申请实施例提供的一种终端设备的结构示意图。
图例说明
1、电机组件;2、叶轮组件;3、扩压组件;4、导流罩;5、网状结构;
11、输出轴;12、支架;13、定转子合件;14、连接件;15、第一轴承;
16、第二轴承;17、弹性件;18、电控板;21、叶轮组件壳体;22、第一叶轮;23、回流器;24、第二叶轮;25、弹性密封环;26、密封棉;27、密封轴承;31、第一轴流扩压器;32、第二轴流扩压器;3A、出风口;41、导流部;42、固定部;43、连接部;
12A、容纳区;12B、第一端面;14A、第一轴承室;14B、第一安装槽;121、
支架本体;122、支撑件;131、转子;132、定子;211、第一壳体;212、第二壳体;231、中隔板;232、回流叶片;233、固定凸起;251、密封环本体;252、弹性密封齿;311、第一扩压叶轮;312、第一扩压壳体;321、第二扩压叶轮;322、第二扩压壳体;
121A、第二轴承室;1221、支撑臂;1222、支撑连接部;1211、本体环;
1212、连接臂;231A、安装腔;251A、定位凸起;3111、第一内壳;3112、第一扩压叶片;3211、第二内壳;3212、第二扩压叶片;
m、轴线;O、第一方向;
01、电风机;02、进气装置;03、集尘室;04、排气管道。
具体实施方式
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,还包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
电风机包括叶轮组件、扩压组件和电机组件,通常,扩压组件位于叶轮组件的下游,并且扩压组件套在电机外部。电风机在工作时,气流从叶轮组件的进风口流入叶轮组件,在电机的驱动下,叶轮组件对气流进行加速,加速后的气流由叶轮组件的出风口流入扩压器中,最终由扩压器的出风口流向电风机外部。
然而,在电风机的工作过程中,电机作为驱动装置会释放大量的热能,由于扩压器套在电机外部,影响电机散热,最终导致电风机工作可靠性差、使用寿命短。本申请实施例提供了一种电风机,可以解决相关技术中电机组件散热效果差的问题。下面,对本申请实施例提供的电风机进行介绍。
图1是本申请实施例提供的一种电风机的结构示意图,图2是本申请实施例提供一种电风机的剖面结构示意图。参考如1和图2所示,该电风机包括电机组件1、叶轮组件2、扩压组件3,其中,电机组件1包括输出轴11、支架12和定转子合件13。
在电机组件1中,参考图2所示,支架12和定转子合件13均套设在输出轴11上,且支架12和定转子合件13位于输出轴11的一端。支架12具有容纳区12A,定转子合件13位于容纳区12A内,并且定转子合件13的至少部分与支架12固定相连。
参考图2所示,叶轮组件2位于定转子合件13的一侧,且叶轮组件2套设在输出轴11上并与输出轴11相连。
参考图2所示,扩压组件3套设在输出轴11上,且位于定转子合件13和叶轮组件2之间,且扩压组件3分别与支架12、叶轮组件2相连。换言之,扩压组件3与定转子合件13位于叶轮组件2的同一侧。
电风机工作过程中,定转子合件13提供动力,通过驱动输出轴11带动叶轮组件2工作,空气由叶轮组件2远离扩压组件3的一侧吸入,经过叶轮组件2加速后流入扩压组件3中,经过扩压组件3扩压后流出。由扩压组件3流出的气体至少部分流向定转子合件13,最终流入电风机外部。
本申请实施例提供的方案中,扩压组件3位于叶轮组件2和定转子合件13之间,电风机工作过程中,定转子合件13所产生的热量可以向外部传递,不受扩压组件3的阻碍,有利于提高定转子合件13的散热效果,从而,有利于提高电机组件1工作过程中的可靠性和使用寿命,进一步的,有利于提高整个电风机的工作可靠性和使用寿命。
下面,对本申请实施例提供的电风机中的各部件及各部件之间的连接关系进行详细说明。
电机组件1
支架12
图3是本申请实施例提供的一种支架的结构示意图。作为示例,参考图2和图3所示,支架12包括支架本体121和支撑件122,支架本体121与支撑件122形成(或围成)上述容纳区12A。
支架本体121套设在输出轴11上,并与输出轴11转动相连,其中,支架本体121可以与输出轴11通过轴承连接等方式转动相连。
支撑件122位于扩压组件3和支架本体121之间,也即,支撑件122位于支架本体121靠近扩压组件3的一侧,支撑件122分别与扩压组件3和支架本体121相连。其中,支撑件122与支架本体121可以是一体成型的,也可以是通过焊接、螺纹连接或螺栓连接等方式相连。支撑件122与扩压组件3之间可以通过卡接、焊接或螺栓连接等方式相连。
作为示例,支撑件122与支架本体121之间、支撑件122与扩压组件3之间均可拆卸相连,采用该方案,有利于降低装配难度,并有利于零部件的替换和维修保养。
支架本体121
在一些示例中,参考图2和图3所示,支架本体121包括本体环1211和至少一个连接臂1212。本体环1211套设在输出轴11上,并与输出轴11转动相连,其中,本体环1211与输出轴11之间可以通过轴承连接的方式相连。至少一个连接臂1212位于本体环1211外壁,且与本体环1211相连,其中,连接臂1212位于与本体环1211可以是一体成型的,也可以通过焊接、铰接、插接或螺纹连接等方式固定。作为示例,如图4所示,当本体环1211的径向尺寸与支撑连接部1222的径向尺寸相差较大时,至少一个连接臂1212远离本体环1211的一端朝向支撑件122的方向弯折,以保证与支撑件122相连。
采用该方案,可以尽量保证在支架本体121处留有较大的空白区域,即在定转子合件13远离扩压组件3的一侧留有较大的空白区域,以保证气体可以顺利穿过定转子合件13,实现对定转子合件13的散热。
在一些示例中,在输出轴11的轴线m的延伸方向上,扩压组件3的正投影与支架12的正投影重合,此时,从扩压组件3流出的气体可以更顺畅的进行分流,使得一部分气体流经支架12外壁,另一部分气体流经定转子合件13内部,从而,有利于提高电机组件1的散热效果。其中,扩压组件3的正投影表示扩压组件3沿输出轴11的轴线m的延伸方向在垂直于该轴线m的平面上的投影,支架12的正投影则表示支架12沿输出轴11的轴线m的延伸方向在垂直于该轴线m的平面上的投影,后文中的正投影的含义与此处正投影的含义相同或相似,因此,对于后文中出现的正投影便不再赘述。
支撑件122
在一些示例中,参考图2和图3所示,支撑件122包括至少一个支撑臂1221和一个支撑连接部1222。支撑臂1221具有条状结构或板状结构,支撑臂1221的宽度较小,以减小对从扩压组件3中流出的气体的阻挡。支撑连接部1222具有环状结构,该环状结构可以是圆环状结构,即在垂直于输出轴11的轴线m的截面上,支撑连接部1222的投影为圆环。
参考图3和图4所示,至少一个支撑臂1221位于扩压组件3靠近支架本体121的一侧,且每个支撑臂1221分别与扩压组件3相连。支撑连接部1222则位于至少一个支撑臂1221远离扩压组件3的一侧,支撑连接部1222分别与至少一个支撑臂1221、支架本体121相连。其中,支撑连接部1222与支撑臂1221之间可以是一体成型的,也可以通过焊接或胶接等方式固定相连;支撑连接部1222与支架本体121可以是一体成型的,也可以通过焊接、螺纹连接或螺栓连 接等方式相连。
在一些示例中,支撑件122可以只包括一个支撑臂1221,此时,可以尽量减弱对气体的阻碍。
在另一些示例中,支撑件122可以包括多个支撑臂1221,此种情况下,多个支撑臂1221沿输出轴11的圆周方向等间距分布。当支撑连接部1222为圆环状结构时,也可以认为多个支撑臂1221绕支撑连接部1222的圆周方向等间距分布。采用该方案,有利于提高装配后电风机结构的稳定性和可靠性。可选地,多个支撑臂1221也可以沿输出轴11的圆周方向非等间距分布,对于此种情况,此处不予赘述。
作为示例,图4是本申请实施例提供的一种电风机的局部结构的正投影示意图,参考图4所示,在输出轴11的轴线m的延伸方向上,支撑臂1221的正投影与连接臂1212的正投影重合。具体的,支撑件122的支撑连接部1222的径向尺寸与支架本体121的径向尺寸相近,支撑件122的支撑臂1221的数量与支架本体121的连接臂1212的数量相同,并且在输出轴11的轴线m的延伸方向上,支撑臂1221的正投影与连接臂1212的正投影重合。
采用该方案,一方面有利于在装配时保证支撑件122与支架本体121之间的同轴度,从而,有利于保证电风机工作时的可靠性;另一方面,有利于降低支架12整体对气体的阻挡,最大化的降低支架12的气动阻力,使更多的气体能够穿过定转子合件13的内部,进一步提升散热效果。
可选地,支撑件122可以具有网状结构或壳体结构等。当支撑件122为网状结构或镂空的壳体结构(具有通孔的壳体)时,从扩压组件3吹出的气体一部分流向定转子合件13内部,另一部分可以由网状结构上的孔隙流向支架本体121的外部。当支撑件122为密封的壳体结构(即不具有通孔的壳体)时,从扩压组件3流出的气体全部流向定转子合件13。对于支撑件122的具体结构,此处不进行任何限定。对于连接臂1212的形态结构,只需要保证经过定转子合件13的气体能够从连接臂1212处流向外部即可,如网状结构或镂空的壳体结构等,此处不进行任何限定。
定转子合件13
参考图2所示,在输出轴11的轴线m的延伸方向(即输出轴11的轴向)上,定转子合件13与扩压组件3之间具有间距。从扩压组件3流出的气体会在该间距中扩散,一部分气体会从定转子合件13的外壁流过,带走外壁的热量, 一部分气体会从定转子合件13的内部流过,带走内部的热量,更加有利于提高定转子合件13的散热效果,从而,进一步提高整个电风机的工作可靠性和使用寿命。而且,该间距可以对从扩压组件3流出的气体起到一定程度的减速作用,从而降低气体冲击定转子合件13产生的噪音。
参考图2所示,定转子合件13包括转子131和定子132,转子131通过过盈配合或键连接等方式与输出轴11固定,定子132则与支架12的内壁固定相连。作为示例,如图2所示,定子132套设在转子131外,且定子132与转子131之间具有气隙,此时,定子132的内壁与转子131的外壁相对。此种情况下,在输出轴11的轴线m的延伸方向上,出风口3A的正投影与定子132的正投影至少部分重合。采用该方案,可以控制电机组件1在输出轴11的轴线m的延伸方向上的尺寸,即电机组件的轴向尺寸,进而,有利于减小电风机的轴向长度。
可选地,定子132和转子131均套在输出轴11上,定子132与输出轴11之间具有间隙,在输出轴11的轴线m的延伸方向上,定子132与转子131之间具有气隙,此时,定子132的端面与转子131的端面相对。采用该方案,则有利于减小电风机的径向尺寸。
在一些示例中,扩压组件3靠近定转子合件13的一端具有出风口3A,在沿输出轴11的轴线m的延伸方向上,出风口3A的正投影与定转子合件13的正投影至少部分重合。
作为示例,参考图2所示,当定子132套设在转子131外时,出风口3A轴向正对定子132,具体的,在输出轴11的轴线m的延伸方向上,出风口3A的正投影为第一投影,定子132的正投影为第二投影,第一投影与第二投影重合的面积大于或等于第一投影和第二投影中面积小的投影的面积的一半。例如,第一投影的面积为10平方厘米,第一投影的面积为15平方厘米,则需要保证第一投影与第二投影重合的面积大于或等于5平方厘米,等等。采用该方案,有利于保证从扩压组件3的出风口3A流出的气体向定转子合件13内部扩散,从而,有利于提高对定转子合件13的散热效果。
可选地,扩压组件3的径向尺寸与电机组件1的径向尺寸近似相等,此时,在输出轴11的轴线m的延伸方向上,出风口3A的正投影的外轮廓线可以刚好与定子132的正投影的外轮廓线重合,等等。
连接件14
在一些示例中,参考图2和图3所示,电机组件1还包括连接件14。连接 件14套设在输出轴11上,且位于支撑臂1221远离支撑连接部1222的一侧,扩压组件3套设在连接件14上,并且扩压组件3与连接件14相连。此种情况下,支撑臂1221朝向输出轴11的方向凹陷,并且,支撑臂1221远离支撑连接部1222的一端与连接件14相连。采用该方案,可以减少对扩压组件3的流道的占用,从而,减弱对气体的阻挡作用,有利于提高气体的流动效率。而且,支撑臂1221具有弯折形态,可以对一部分气体起到导流作用,使得气体流向支架本体121的外部,从而有利于提高定转子合件的散热效果。
可选地,当电机组件1还包括连接件14时,支撑臂1221远离支撑连接部1222的一端直接也可以与扩压组件3相连,此时,对于支撑臂1221与扩压组件3之间的连接关系,此处不进行任何限定。
作为示例,如图4所示,当支撑臂1221朝向输出轴11的方向凹陷且与连接件14相连时,在输出轴11的轴线m的延伸方向上,支撑臂1221的正投影与连接臂1212的正投影重合,从而,最大化的降低支架12的气动阻力,使更多的气体能够穿过定转子合件13的内部,进一步提升散热效果。
第一轴承15和弹性件17
图5是本申请实施例提供的一种电风机的剖面结构示意图。在一些示例中,参考图3和图5所示,电机组件1还包括第一轴承15和至少一个弹性件17,连接件14具有第一轴承室14A。输出轴11位于第一轴承室14A内,且与第一轴承室14A的内壁之间具有间隙。第一轴承15套在输出轴11上,且位于第一轴承室14A内,其中,第一轴承15与输出轴11可以采用过盈配合或键连接等方式相连,第一轴承15与第一轴承室14A的内壁之间具有间隙。至少一个弹性件17中位于第一轴承15与第一轴承室14A的内壁之间,且分别与第一轴承15、第一轴承室14A抵接以提供第一轴承15装配时所需的预紧力,其中,第一轴承15的外壁与第一轴承室14A的内壁之间具有间隙,或者第一轴承15的外壁与第一轴承室14A的内壁相接触但不会产生相互作用力。作为示例,弹性件17所能提供的总预紧力(即总弹力,指沿某一方向所有弹性件17所能提供的弹力的总和)的范围为10牛-20牛。对于弹性件17的总弹力,可以根据实际产品中轴承和输出轴正常工作时所需的预紧力确定,此处不进行任何限定。
相关技术的电风机中,输出轴与轴承之间采用过盈配合、键连接等方式固定相连,而轴承与轴承室之间则采用间隙配合的方式相连。当输出轴的转速增加或者当输出轴的长度增加时,在输出轴告诉转动的过程中,输出轴容易发生 应力不平衡、振动过大、形变严重,最终导致产品失效。
本申请实施例提供的方案中,在第一轴承15与第一轴承室14A之间设置至少一个弹性件17,弹性件17分别与第一轴承15、第一轴承室14A的内壁相抵接,从而可以为第一轴承15提供一定的预紧力,在预紧力的作用下有利于保证装配时第一轴承15与相关部件之间的同轴度。进一步地,在输出轴11高速转动过程中,弹性件17可以通过形变产生弹力以减缓输出轴11的偏移和振动,从而,有利于防止应力不平衡、提高减振效果,进而,有利于防止输出轴11失效,增加产品的使用寿命。
弹性件17
图6是本申请实施例提供的一种弹性件的结构示意图,图7是本申请实施例提供的一种弹性件的结构示意图。参考图6和图7所示,弹性件17可以具有环状结构,弹性件17可以是如图6所示O型环(即O型圈),也可以是如图7所示的方型环(内圆外方)。此时,弹性件17套在第一轴承15外,且弹性件17远离第一轴承15的表面与第一轴承室14A的内壁相抵接。对于弹性件17的形态结构,此处不进行任何限定,只需保证弹性件17可以套在第一轴承15上即可。
可选地,弹性件17可以具有块状结构,此时,电机组件1包括多个弹性件17,如3个、4个、8个等。多个弹性件17在第二轴承121A的外壁的圆周方向上均分分布,每个弹性件17均分别与第一轴承15、第一轴承室14A相抵接以提供相应的预紧力。
第一安装槽14B与弹性件17
图8是申请实施例提供的一种轴承室的结构示意图。在一些示例中,如图8所示,第一轴承室14A的内壁具有至少一个第一安装槽14B,第一安装槽14B的数量等于弹性件17的数量。弹性件17与第一安装槽14B相匹配,且一个弹性件17的部分位于一个第一安装槽14B内。在装配过程中,第一轴承15挤压弹性件17使弹性件17发生形变,而且,第一轴承15的外壁与第一轴承室14A的内壁之间具有间隙,或者第一轴承15的外壁与第一轴承室14A的内壁相接触但不产生相互作用力(即不产生摩擦力)。
作为示例,弹性件17为O型圈时,第一安装槽14B为O型环槽,每个O型圈的部分卡在第一安装槽14B中。具体的,O型圈(即弹性件17)的外壁圆弧与O型环槽(即第一安装槽14B)的槽底圆弧相贴合,O型圈的两个端面分 别与O型环槽的两个槽壁相贴合,并且,O型圈的内壁沿朝向输出轴11的方向突出于第一轴承室14A,即O型圈的径向厚度大于O型环槽的深度。
可选地,弹性件17为如图7所示的方型环时,第一安装槽14B则为与方型环相匹配的方型环槽。此时,方型环和方型环槽之间的装配关系与上述O型圈和O型环槽之间的装配关系相似,此处不进行赘述。
可选地,弹性件17具有块状结构时,第一安装槽14B则为与块状结构(即弹性件17)相匹配的凹槽。此时,块状结构与凹槽的装配关系与上述O型圈和O型环槽之间的装配关系相似,此处不进行赘述。
对于第一轴承室14A的形态结构,此处不进行任何限定,只需保证第一轴承室14A与弹性件17相匹配,并且弹性件17远离第一安装槽14B的槽底的表面突出于第一轴承室14A即可。
采用该方案,弹性件17的至少部分位于第一安装槽14B中,在输出轴11高速转动过程中,有利于防止弹性件17沿输出轴11的轴线m的延伸方向发生位移。由于弹性件17与第一轴承15外壁相抵接,可以产生一定的摩擦力,从而,在输出轴11高速转动过程中,有利于防止第一轴承15沿输出轴11的轴线m的延伸方向发生位移,进而,有利于保证电机组件1的工作稳定性,有利于保证电风机的工作稳定性。
在另一些示例中,第一轴承15的外壁具有至少一个第一轴承安装槽,第一轴承安装槽的数量等于弹性件17的数量。弹性件17与第一轴承安装槽相匹配,且一个弹性件17的部分位于一个第一轴承安装槽内。
作为示例,弹性件17为O型圈时,第一轴承安装槽为O型环槽,每个O型圈的部分卡在第一轴承安装槽中。具体的,O型圈(即弹性件17)的内壁圆弧与O型环槽(即第一轴承安装槽)的槽底圆弧相贴合,O型圈的两个端面分别与O型环槽的两个槽壁相贴合,并且,O型圈的外壁沿远离输出轴11的方向突出于第一轴承15,即O型圈的径向厚度大于O型环槽的深度。装配完成后,第一轴承15的外壁与第一轴承室14A的内壁之间具有间隙,或者第一轴承15的外壁与第一轴承室14A的内壁相接触但不产生相互作用力(即不产生摩擦力)。
对于弹性件17为方型圈或者弹性件17为块状结构时,弹性件17与第一轴承安装槽之间的装配关系与弹性件17为O型圈时的装配关系相似,此处不进行赘述。
在一些示例中,以弹性件17为O型圈为例,当第一轴承15的轴向长度与第一轴承15的外径的比值小于0.5时,电机组件1可以仅包括一个弹性件17,其中第一轴承15的轴向长度是指第一轴承15在输出轴11的轴线m的延伸方向上的长度,也可以理解为第一轴承15的宽度。例如,第一轴承15的轴向长度为3毫米,第一轴承15的外径为12毫米,此时,电机组件1可以仅包括一个O型圈,再例如,第一轴承15的轴向长度为6毫米,第一轴承15的外径为12毫米,此时,电机组件1可以包括两个O型圈,等等。
作为示例,第一轴承15的轴向长度范围在3毫米-6毫米之间,第一轴承15的外径范围在12毫米-16毫米之间。对于第一轴承15的尺寸,可以根据实际产品需求进行设定,此处不进行任何限定。
采用该方案,有利于合理控制弹性件17的数量,防止因弹性件17数量过多导致减振效果降低的情况发生,而且,有利于控制成本,降低装配复杂度。此处只是示例性地提供一种确定弹性件17的数量的方法,对于确定弹性件17数量的方法,此处不进行任何限定。
作为示例,弹性件17采用软胶材料制成,如采用丁腈橡胶、硅胶、聚乙烯或聚丙烯等材料制成。
作为示例,弹性件17的轴向长度,也即弹性件17的厚度范围在0.1毫米-0.15毫米之间。对于弹性件17的尺寸,可以根据实际产品需求进行设定,此处不进行任何限定。
第二轴承16和弹性件17
参考图3和图5所示,电机组件1可以包括第二轴承16和多个弹性件17,并且,支架12具有第二轴承室121A,具体的,支架12的支架本体121的本体环1211具有第二轴承室121A。输出轴11位于第二轴承室121A内,且输出轴11的外壁与第二轴承室121A的内壁或表面具有间隙。第二轴承16套设在输出轴11上,且位于第二轴承室121A。多个弹性件17中的部分位于第二轴承16与第二轴承室121A的内壁之间,且这部分弹性件17分别与第二轴承16、第二轴承室121A抵接,以提供第二轴承16装配时所需的预紧力,其中,第二轴承16的外壁与第二轴承室121A的内壁之间具有间隙,或者第二轴承16的外壁与第二轴承室121A的内壁相接触但不会产生相互作用力。
作为示例,当弹性件17为O型圈且电机组件1包括三个O型圈时,两个O型圈套在第二轴承16上,另外一个O型圈套在第二轴承16上,或者,一个O 型圈套在第二轴承16上,两个O型圈套在第二轴承16上,等等。
作为示例,当弹性件17为块状结构且电机组件1包括十个弹性件17时,5个弹性件17沿第二轴承16的外壁的圆周方向均匀分布,5个弹性件17沿第二轴承16的外壁的圆周方向均匀分布,或者,4个弹性件17沿第二轴承16的外壁的圆周方向均匀分布,6个弹性件17沿第二轴承16的外壁的圆周方向均匀分布,等等。
在一些示例中,第二轴承16的尺寸与第二轴承16的尺寸相同时,位于第二轴承16外壁的弹性件17的尺寸与位于第二轴承16外壁的弹性件17的尺寸相同。在另一些示例中,第二轴承16的尺寸与第二轴承16的尺寸不同时,位于第二轴承16外壁的弹性件17的尺寸与位于第二轴承16外壁的弹性件17的尺寸不相同。
在一些示例中,参考图8所示,第二轴承室121A的内壁具有至少一个第二安装槽121B,第二安装槽121B的数量与第二轴承16的外壁上布置的弹性件17的数量相同,并且第二安装槽121B与弹性件17。对于第二安装槽121B的形态结构与第二安装槽121B的形态结构相同或相似,第二安装槽121B与弹性件17之间的装配关系与第二安装槽121B与弹性件17之间的装配关系相同或相似,此处不进行赘述。
在另一些示例中,第二轴承16的外壁具有至少一个第二轴承安装槽,第二轴承安装槽的数量等于第二轴承16的外壁上布置的弹性件17的数量,并且第二轴承安装槽与弹性件17相匹配。对于第二轴承安装槽的形态结构与第二轴承安装槽的形态结构相同或相似,第二轴承安装槽与弹性件17之间的装配关系与第二轴承安装槽与弹性件17之间的装配关系相同或相似,此处不进行赘述。
叶轮组件2
图9是本申请实施例提供的一种电风机的剖面结构示意图。如图9所示,该叶轮组件2可以包括叶轮组件壳体21、第一叶轮22、回流器23和第二叶轮24。叶轮组件壳体21沿轴线m方向的两端开口,其中,叶轮组件壳体21远离扩压组件3的开口作为整个电风机的进风口,叶轮组件壳体21靠近扩压组件3的开口与扩压组件3相连通。叶轮组件壳体21与扩压组件3密封相连,保证经叶轮组件2加速后的气流全部流入扩压组件3。
作为示例,如图9所示,第一叶轮22、回流器23和第二叶轮24均位于叶轮组件壳体21内,且第一叶轮22、回流器23和第二叶轮24依次套在输出轴 11上。其中,第一叶轮22或第二叶轮24与输出轴11之间固定相连,回流器23与输出轴11之间转动相连。第一叶轮22与叶轮组件壳体21之间和第二叶轮24与叶轮组件壳体21之间均填充有密封棉,密封棉可以防止气体从第一叶轮22与叶轮组件壳体21之间的间隙、第二叶轮24与叶轮组件壳体21之间的间隙流出,有利于提高气体流动效率,从而有利于提高电风机的工作效率。对于第一叶轮22、回流器23、第二叶轮24分别与输出轴11之间的连接方式,此处不进行任何限定。
作为示例,如图9所示,第一叶轮22具有第一流道,回流器23与叶轮组件壳体21的内壁形成回流流道,第二叶轮24具有第二流道,第一流道、回流流道和第二流道依次连通。气体由上述电风机的进风口(即叶轮组件壳体21远离扩压组件3的开口)进入第一流道,经过第一叶轮22加速后进入回流流道,经过回流器回流或导流后进入第二流道,经第二叶轮加速后进入扩压组件3。
可选地,叶轮组件2可以只包括一个叶轮,也可以包括两个以上的叶轮,对于这两种情况下的叶轮组件2,与上述具有第一叶轮22和第二叶轮24的情况相似,此处不进行赘述。
相关技术的电风机中,扩压组件套设在电机组件上,此时,电风机的外径相当于电机组件的外径和扩压组件的径向尺寸之和,而采用本申请实施例提供的多级叶轮的方案,电风机的径向尺寸相当于电机组件的径向尺寸或扩压组件的径向尺寸,本方案中的电风机相比于相关技术中的电风机具有更小的径向尺寸,从而有利于实现产品小型化。而且,采用多级叶轮的方案,有利于提高电风机的吸力以满足产品开发需求,有利于在相同吸力下减小电风机的径向尺寸,从而,有利于提高电风机的适用性。
叶轮组件壳体21
在一些示例中,如图9所示,叶轮组件壳体21包括第一壳体211和第二壳体212,第二壳体212位于第一壳体211与扩压组件3之间,且分别与第一壳体211、扩压组件3密封相连,其中,第二壳体212与第一壳体211之间可以通过焊接、卡接等方式可拆卸相连。第一叶轮22位于第一壳体211内,回流器23和第二叶轮24位于第二壳体212内,具***置关系与上文相似,此处不进行赘述。采用第一壳体211与第二壳体212之间可拆卸相连的方案,有利于降低叶轮组件2的装配难度,从而,提高生产效率,也有利于后期的维修养护。
可选地,第一叶轮22和回流器23位于第一壳体211内,第二叶轮24位于 第二壳体212内,对于此种结构,此处不进行赘述。
回流器23
图10是本申请实施例提供的一种回流器的结构示意图。作为示例,参考图9和图10所示,回流器23包括中隔板231和多个回流叶片232。中隔板231套设在输出轴11上,多个回流叶片232位于中隔板231靠近扩压组件3的一侧,且沿输出轴11的圆周方向不均匀分布,并与中隔板231相连。回流叶片232与中隔板231之间可以是一体成型的,也可以通过焊接、胶接或插接等方式相连。
在另一些示例中,如图10所示,回流器23还包括多个固定凸起233,一个固定凸起233可以位于一个回流叶片232远离中隔板231的一侧,且与回流叶片232相连,并且固定凸起233远离回流叶片232的一端与叶轮组件壳体21固定相连,以保证中隔板231和回流叶片232的稳定性。固定凸起233的数量小于回流叶片232的数量,如固定凸起233的数量为4、回流叶片232的数量为16等。
可选地,固定凸起233也可以分别与中隔板231、叶轮组件壳体21固定相连,而不与回流叶片232相连。固定凸起233的数量也可以大于或等于回流叶片232的数量。对于固定凸起233的数量和分布情况,此处不进行任何限定。
弹性密封环25
在一些示例中,如图9所示,该叶轮组件2还包括弹性密封环25,回流器23的中隔板231具有安装腔231A,弹性密封环25和输出轴11均位于安装腔231A内,弹性密封环25套设在输出轴11上,且位于回流器23述输出轴11之间,弹性密封环25与回流器23固定相连,并与输出轴11转动相连。
图11是本申请实施例提供的一种弹性密封环的结构示意图,图12是图11沿A-A方向的剖视图。参考图9、图11和图12所示,弹性密封环25可以包括密封环本体251和弹性密封齿252。密封环本体251和弹性密封齿252均具有环状结构,密封环本体251和弹性密封齿252均套设在输出轴11上。密封环本体251位于回流器23和弹性密封齿252之间,且分别与回流器23、弹性密封齿252固定相连。弹性密封齿252位于密封环本体251和输出轴11之间,弹性密封齿252在与密封环本体251固定相连的同时与输出轴11转动相连。
密封环本体251可以通过焊接、胶接、卡接或插接等方式与回流器23固定相连。密封环本体251与回流器23之间也可以是可拆卸相连的,以便于密封环本体251与回流器23之间的装配。而且,采用可拆卸相连的方式,当密封环本 体251或弹性密封齿252发生损坏时,有利于对弹性密封环25进行替换。密封环本体251与弹性密封齿252之间可以是一体成型的,也可以通过卡接、胶接等方式固定相连。
在一些示例中,弹性密封齿252与输出轴11之间可以采用间隙配合的方式,以保证输出轴11在高速旋转的过程中,回流器23在叶轮组件2中的位置不变,即回流器23不跟随输出轴11旋转。
可选地,弹性密封齿252与输出轴11之间可以通过轴承转动相连,此种情况下,在该轴承垂直于输出轴11的轴线m的两个端面处均设置有密封圈,密封圈对轴承起到密封作用,一方面可以防止轴承中的润滑液溢出,另一方面可以防止回流流道或第二流道中的气体通过轴承内部流回第一流道。
在一些示例中,本申请实施例提供的任一种弹性密封环25可以采用软胶材料制成,如采用丁腈橡胶、硅胶、聚乙烯或聚丙烯等材料制成。此处只是示例性地对弹性密封环25的材料进行说明,并不对其进行任何限定。而且,对于弹性密封环25的尺寸,可以根据实际产品需求确定,此处不对其进行任何限定。
密封棉26
在一些示例中,参考图9所示,叶轮组件还可以包括密封棉26。密封棉26填充于叶轮组件壳体21与第一叶轮22和/或叶轮组件壳体21与第二叶轮24之间,从而,防止气体由第一叶轮22与叶轮组件壳体21之间的缝隙回流,也防止气体由第二叶轮24与叶轮组件壳体21之间的缝隙回流。采用本方案,可以进一步提高叶轮组件2的密封性,从而,进一步提高电风机的工作效率。
密封轴承27
图13是本申请实施例提供的一种电风机的局部结构示意图。作为示例,如图13所示,叶轮组件2不包括上述弹性密封环25而是包括密封轴承27。密封轴承27套设在输出轴11上,且位于弹性密封环25和输出轴11之间。密封轴承27分别与输出轴11、弹性密封环25固定相连,其中,密封轴承27与输出轴11可以采用过盈配合或键连接等方式相连,密封轴承27与弹性密封环25可以采用过盈配合、胶接、插接或焊接等方式相连。密封轴承27垂直于输出轴11的轴线m的两个端面处均设置有密封圈,密封圈对密封轴承27起到密封作用,一方面可以防止密封轴承27中的润滑液溢出,另一方面可以防止回流流道或第二流道中的气体通过密封轴承27内部流回第一流道。
采用该方案,既可以保证回流器23与输出轴11之间的转动连接,又可以 保证回流器23与输出轴11之间具有良好的密封性,而且弹性密封环25可以对输出轴11起到一定的减振效果,从而,既有利于提高电风机的工作效率,又有利于提高电风机的使用寿命。
扩压组件3
第一轴流扩压器31
图14是本申请实施例提供的一种扩压组件的局部结构示意图。参考图9和图14所示,扩压组件3包括第一轴流扩压器31,第一轴流扩压器31包括第一扩压叶轮311和第一扩压壳体312,第一扩压叶轮311则包括第一内壳3111和多个第一扩压叶片3112。
第一扩压叶轮311
参考图9和图14所示,第一内壳3111可以具有环状结构,以套设在输出轴11外。第一内壳3111位于叶轮组件2靠近定转子合件13的一侧,并且第一内壳3111与叶轮组件2密封相连。其中,第一内壳3111与叶轮组件2之间可以通过焊接等方式相连。作为示例,第一内壳3111具有圆环形结构,即第一内壳3111的径向截面形状为圆环,对于环形结构的截面形状,此处不进行任何限定。
参考图9和图14所示,以第一内壳3111具有圆环形结构为例,多个第一扩压叶片3112沿第一内壳3111的外壁的圆周方向分布,且每个第一扩压叶片3112均与第一内壳3111相连。其中,第一扩压叶片3112与第一内壳3111可以是一体成型的,也可以通过焊接、卡接或胶接等方式相连。
第一扩压壳体312
参考图9所示,第一扩压壳体312具有环状结构,第一扩压壳体312套设在多个第一扩压叶片3112上,第一扩压壳体312与多个第一扩压叶片3112可以采用一体成型、焊接或胶接等方式密封相连,也可以与第一扩压叶片3112之间留有一定的安装缝隙。作为示例,第一扩压壳体312的内壁与第一扩压叶片3112远离第一内壳3111的表面之间具有0.5毫米(也可以是0.2毫米、1毫米等)的缝隙。第一扩压壳体312同时还与叶轮组件2密封相连,以防止气体泄露。
在该扩压组件3中,第一扩压叶轮311与第一扩压壳体312的内壁之间形成第一扩压流道,该第一扩压流道与叶轮组件2中的流道相连通。由于第一内壳3111和第一扩压壳体312分别与叶轮组件2密封相连,因此,在电风机的工作过程中,气体先进入叶轮组件2中的流道,经过叶轮组件2加速后,流入第一扩压流道,进行一级扩压减速处理。采用该方案,可以保证电风机可以正常 工作,并保证电风机的工作效率。
本申请实施例提供的方案,在第一轴流扩压器31中,第一扩压叶片3112沿第一内壳3111的外壁的圆周方向不均匀分布,也就是说,在第一轴流扩压器31中,相邻两个第一扩压叶片3112之间形成的流道在第一内壳3111的外壁的圆周方向上的尺寸不同。由于在不同宽度(即不同尺寸)的流道中,气体流动的频率不一致,因此,气体在第一扩压叶片3112两侧产生的压力脉动不会相互叠加,甚至会相互抵消,从而,在电风机工作过程中,有利于降低扩压组件3所产生的噪音,有利于降低电风机的工作噪音。
第二轴流扩压器32
参考图9所示,扩压组件3还可以包括第二轴流扩压器32,第二轴流扩压器32包括第二扩压叶轮321和第二扩压壳体322,第二扩压叶轮321则包括第二内壳3211和多个第二扩压叶片3212。
第二扩压叶轮321
参考图9和图14所示,第二内壳3211具有环状结构,以套设在输出轴11外,并且,第二内壳3211位于第一内壳3111远离叶轮组件2的一侧,且与第一内壳3111密封相连。第二内壳3211与第一内壳3111可以是一体成型的,也可以通过螺纹连接、焊接或铆接等方式相连。其中,第二内壳3211与第一内壳3111之间可以可拆卸地相连,有利于降低扩压组件3的装配难度,从而,提高生产效率,也有利于后期的维修养护。
参考图9和图14所示,以第二内壳3211为圆环形结构为例,多个第二扩压叶片3212则位于第二内壳3211的外壁,且沿第二内壳3211的外壁的圆周方向分布,且多个第二扩压叶片3212分别与第二内壳3211相连。其中,第二扩压叶片3212与第二扩压叶片3212可以是一体成型的,也可以通过焊接、卡接、插接或胶接等方式相连。
第二扩压壳体322
参考图9所示,第二扩压壳体322具有环状结构,第二扩压壳体322套设在多个第二扩压叶片3212上,且第二扩压壳体322与第一扩压壳体312密封相连。第二扩压壳体322和第一扩压壳体312可以通过螺纹连接、焊接、卡接等方式相连,也可以是一体成型的。其中,第一扩压壳体312和第二扩压壳体322之间可以可拆卸地相连,有利于降低扩压组件3的装配难度,从而,提高生产效率,也有利于后期的维修养护。第二扩压壳体322与第二扩压叶片3212可以 采用一体成型、焊接或胶接等方式固定相连,也可以与第二扩压叶片3212之间留有一定的缝隙。作为示例,第二扩压壳体322的内壁与第二扩压叶片3212远离第二内壳3211的表面之间具有0.5毫米(也可以是0.2毫米、1毫米等)的缝隙。
在该扩压组件3中,第二扩压叶轮321与第二扩压壳体322的内壁形成第二扩压流道,第二扩压器流道与第一扩压流道相连通。在电风机的工作过程中,气体先流入第一扩压流道,进行一级扩压减速处理,然后再进入第二扩压流道,进行二级扩压减速处理,经过两次扩压减速处理后的气体流向扩压组件3的外部。
在另一些示例中,扩压组件3可以包括两个以上的轴流扩压器,采用多级轴流扩压器的方案,更加有利于提高电风机的扩压以满足产品开发需求。扩压组件3包括两个以上轴流扩压器时,两个以上轴流扩压器同轴分布且依次相连,需要保证相邻两个轴流扩压器中的叶片插空分布即可,对于叶片的具体分布方式,以及多个轴流扩压器的连接关系与上述具有第一轴流扩压器31和第二轴流扩压器32的情况相似,此处不进行赘述。
采用多级轴流扩压器的方案,有利于提高电风机的扩压减速能力,以满足产品开发需求,而且,有利于在相同扩压能力下减小电风机的径向尺寸,从而,有利于提高电风机的适用性。
导流罩4
图15是本申请实施例提供的一种电风机的剖面结构示意图。参考图15所示,支架12邻近扩压组件3的一端形成有第一端面12B,而且,在输出轴11的轴线m的延伸方向上,扩压组件3的出风口3A与第一端面12B之间具有间距。导流罩4设置于第一端面上,也即,导流罩4位于支架12的第一端面12A,且与第一端面12A相连。而且,导流罩4的至少部分与出风口3A相对以调整出风口3A流出的气体的流向。其中,导流罩4的至少部分与出风口3A相对,可以认为是,在输出轴11的轴线m的延伸方向上,导流罩4的正投影与出风口3A的正投影至少部分重合。
在一些示例中,导流罩4的正投影与出风口3A的正投影完全重合。在另一些示例中,导流罩4的正投影位于出风口3A的正投影内,即导流罩4的正投影与出风口3A的正投影的部分重合。在其他一些示例中,出风口3A的正投影位于导流罩4的正投影内,即出风口3A的正投影与的导流罩4的正投影的部分重 合。在其他一些示例中,出风口3A的正投影的部分与导流罩4的正投影的部分重合。
相关技术中,在将电机设置在扩压器的下游的电风机中,从扩压器流出的气体近似垂直地吹向电机,气流冲击电机后被迫垂直转向并分流,气动损失较大,而且气流冲击电机会产生较大的冲击噪音,从而,导致电风机工作时的工作噪音增大。
本申请实施例提供的方案中,在扩压组件3与支架12之间设置有导流罩4,并且,导流罩4的至少部分与扩压组件3的出风口3A相对。导流罩4可以调整气体的流动方向,因此,在导流罩4的作用下,从扩压组件3的出风口3A流出的气体被逐步引导进行折转和分流,不会再垂直的吹向上述第一端面12B和定转子合件13(即不会垂直的吹向电机组件1),从而,有利于减弱气流冲击电机组件1以消除因气流冲击电机组件1所产生的冲击噪音,进一步的,有利于降低电风机在工作过程中的工作噪音。
导流部41
图16是本申请实施例提供的一种导流罩的结构示意图。参考图15和图16所示,导流罩4包括导流部41,导流部41用于调整出风口3A流出的气体的流向。作为示例,导流部41为凸起结构,并且该凸起结构(即导流部41)沿朝向出风口3A的方向凸起。换句话说,在第一方向O上,所述导流部41的径向宽度逐渐减小,其中,第一方向O平行于输出轴11的轴线m的延伸方向,且由第一端面12B指向出风口3A,径向宽度则为导流部41在垂直于第一方向O上的宽度。在一些示例中,导流部41上距离第一端面12B最远的点与出风口3A相对,即,在输出轴11的轴线m的延伸方向上,导流部41上距离第一端面12B最远的点的正投影位于出风口3A的正投影内。
导流部41上距离出风口3A越近的部分径向尺寸越小,也就是说,导流部41靠近出风口3A的部分相对于远离出风口的部分更尖锐。通常,尖锐的部分能够产生更好的分流效果,因此,采用该方案,有利于提高导流部41提高导流罩4对气体的分流和导流效果,从而,有利于进一步降低气动损耗,并有利于降低电风机的工作噪音。
作为示例,当导流部41的径向宽度沿第一方向O逐渐减小时,可以认为导流部41在垂直于第一方向O上的两个侧面是平滑的表面。这样,有利于降低风阻,从而,当气流流过导流部41两侧时降低气动损耗以提高气体流动效率。
在一些示例中,在输出轴11的轴线m的延伸方向上,导流部41上距离第一端面12B最远的点位于扩压组件3内,这样,将分流动作前置,进一步降低气动损耗以提高气体流动效率。不过,导流部41上距离第一端面12B最远的点伸入扩压组件3的距离越大,也就距离叶轮组件2越近,此时气体的流速也就越快,对导流部41的冲击也就越大。虽然可以提高气体流动效率,但是气体冲击导流部41时很可能会增加导流部41的磨损并产生一些噪音。
因此,在另一些示例中,在输出轴11的轴线m的延伸方向上,导流部41上距离第一端面12B最远的点与出风口3A之间具有间距。该间距可以根据实际产品需求确定,如该间距可以是第一端面12B与出风口3A之间的距离的一半等。对于导流部41上距离第一端面12B最远的点与出风口3A之间的间距,此处不进行任何限定。采用该方案,气体从出风口与3A流出后,在该间距内进行一定程度的扩散和减速,扩散和减速后的气体对导流部41的冲击明显减弱,从而,既有利于提高气体流动效率,又有利于降低导流部41的磨损,还有利于降低气体冲击导流部41所产生的噪音。
参考图15和图16所示,导流部41朝向出风口3A凸起,且导流部41靠近出风口3A的表面为弧形面。换句话说,在电风机的径向截面内,导流部41靠近出风口3A的表面为圆弧。
在一些示例中,上述弧形面为等半径弧形面,即弧形面上任一点对应的半径相等,此时,弧形面的半径可以认为是导流部41在输出轴11的轴线m的延伸方向上的轴向长度。换句话说,在电风机的径向截面内,导流部41靠近出风口3A的表面形成的圆弧为半圆弧。
作为示例,当定子132套设在转子131外且出风口3A与第一端面12B和定子132的部分相对时,弧形面的半径可以等于定子132中定子绕组的外壁到支架的外壁的径向距离的一半。可选地,弧形面的半径也可以等于出风口3A的径向尺寸,还可以等于导流部41径向尺寸的一半,等等。对于导流部41的轴向长度,此处不进行任何限定。
在另一些示例中,上述弧形面为变半径弧形面。作为示例,参考图15所示,弧形面上任一点对应的半径与任一点到轴线m的距离呈负相关关系。换句话说,在电风机的径向截面内,导流部41靠近出风口3A的表面形成的圆弧为变半径圆弧,且在变半径圆弧上,与轴线m距离越远的点所对应的半径越小,与轴线m距离越仅的点所对应的半径越大。可选地,弧形面上任一点对应的半径与任 一点到轴线m的距离也可以呈正相关关系。
作为示例,当定子132套设在转子131外且出风口3A与第一端面12B和定子132的部分相对时,上述变半径弧形面的平均半径可以等于定子132中定子绕组的外壁到支架的外壁的径向距离的一半,也可以等于出风口3A的径向尺寸,还可以等于导流部41径向尺寸的一半,等等。
图17是本申请实施例提供的一种电风机的剖面结构示意图。作为示例,如图17所示,上述导流部41的径向截面为三角形,也即,在电风机的径向截面内导流部41为三角形。作为示例,导流部41的径向截面为等边三角形,其中,该等边三角形的高可以等于定子132中定子绕组的外壁到支架的外壁的径向距离的一半,也可以等于出风口3A的径向尺寸,还可以等于导流部41径向尺寸的一半,等等。当导流部41的径向截面为三角形时,对于三角形的形状以及尺寸,可以根据实际产品需求确定,此处不进行任何限定。
固定部42
在一些示例中,参考图15和图16所示,导流罩4还可以包括固定部42。固定部42位于导流部41远离扩压组件3的一侧,且套设在支架12的径向外侧,其中,支架12的径向即垂直于输出轴11的轴线m的方向。固定部42分别与导流部41、支架12相连,固定部42与导流部41可以是一体成型的,也可以通过焊接、铆接或胶接等方式固定,固定部42与支架12也可以是一体成型的,也可以通过焊接、卡接等方式固定。
在一些示例中,导流部41与固定部42一体成型,固定部42与支架12焊接在一起,此时,导流部41与支架12之间既可以固定相连,也可以仅接触但不具有连接关系。
在另一些示例中,导流部41、固定部42以及支架12可以是一体成型的,从而,有利于提高零部件的集成度。对于导流部41、固定部42以及支架12之间的连接方式,此处不进行任何限定。
连接部43和多个导流罩4
图18是本申请实施例提供的一种电风机的局部结构示意图。参考图15和图18所示,当支撑件122可以由多个支撑臂1221组成时,电风机可以包括多个上述任一种导流罩4,并且相邻两个支撑臂1221之间均设置一个导流罩4。
作为示例,参考图18所示,多个支撑臂1221沿输出轴11的圆周方向等间距分布,此时,多个导流罩4也沿输出轴11的圆周方向等间距分布。可选地, 多个支撑臂1221也可以沿输出轴11的圆周方向非等间距分布,此时,只需要将导流罩4设置在相邻两个支撑臂1221之间即可。对于导流罩4的数量和分布方式,此处不进行任何限定。
图19是本申请实施例提供的一种电风机的局部结构示意图。作为示例,如图19所示,当支架12包括多个支撑臂1221时,导流罩4可以包括多个导流部41和一个固定部42。多个导流部41分别分布在相邻两个支撑臂1221之间,且分别与固定部42相连。
在一些示例中,导流罩4和可以包括多个连接部43,如图19所示,连接部43与支撑臂1221一一对应,且连接部43位于支撑臂1221外侧,且位于相邻两个导流部41之间,连接部43可以分别与导流部41、固定部42相连,以提高整个导流罩4的强度和刚度。可选地,连接部43还可以与支撑臂1221相连,从而,有利于提高导流罩4安装在支架12上的稳定性。
本申请实施例提供的方案中,在扩压组件3与支架12之间设置有导流罩4,并且,导流罩4的至少部分与扩压组件3的出风口3A相对。导流罩4可以调整气体的流动方向,因此,在导流罩4的作用下,从扩压组件3的出风口3A流出的气体被逐步引导进行折转和分流,不会再垂直的吹向上述第一端面12B和定转子合件13(即不会垂直的吹向电机组件1),从而,有利于减弱气流冲击电机组件1以消除因气流冲击电机组件1所产生的冲击噪音,进一步的,有利于降低电风机在工作过程中的工作噪音。
网状结构5
图20是本申请实施例提供一种电风机的剖面结构示意图。参考图20所示,电风机还包括网状结构5,网状结构5位于扩压组件3远离叶轮组件2的一侧,且与扩压组件3相连。由扩压组件3的出风口3A流出的气体与网状结构5相接触,并在网状结构5的作用下调整流速和流向。作为示例,如图20所示,扩压组件3和定转子合件13沿输出轴11的轴线m的延伸方向间隔分布,此时,网状结构5覆盖扩压组件3与定转子合件13之间的间距,且网状结构5分别与扩压组件3、支架12相连。
网状结构5可以调整扩压组件3的出风口3A处气体的流速分布,使得在出风口3A处气体流速分布均匀。并且,网状结构5对气体具有减速和调整流向的作用,从而,有利于减弱气体对电机表面或电控板表面的冲击,进而,有利于减弱甚至消除冲击噪音,有利于降低电风机工作时的工作噪音。
图21是本申请实施例提供的一种无网状结构时气体流向示意图,图22是本申请实施例提供的有网状结构时气体流向示意图。
如图21所示,在未设置有网状结构5的电风机中,当扩压组件3与定转子合件13之间的间距等于6毫米时,从扩压组件3的出风口3A流出的气体会以较高的速度冲击定转子合件13的端面,气体到达定转子合件13的端面后才会向两侧扩散(主要向远离输出轴11的一侧扩散),此时,气体在扩散时气流折弯角大于或等于60度,甚至是达到90度。
如图22所示,在设置有网状结构5的电风机中,且当扩压组件3与定转子合件13之间的间距等于6毫米时,从扩压组件3的出风口3A流出的气体可以在网状结构5的作用下逐渐减速,并且在网状结构5的作用下,气体在到达定转子合件13的端面前会逐渐向远离输出轴11的一侧扩散,此时,气体在扩散时气流折弯角小于或等于45度。
可选地,当定子132套在转子131外部时,扩压组件3与定转子合件13之间的间距可以等于定子132的径向厚度的两倍或两倍以上;或者,当定子132与转子131沿输出轴的轴线同轴分布时,扩压组件3与定转子合件13之间的间距可以等于定子132的半径。上述只是对扩压组件3和定转子合件13之间的间距进行举例,扩压组件3与定转子合件13之间的间距可以根据实际产品中扩压组件3排出的气体流量进行设定,此处不进行任何限定。
结合图21和图22可知,采用该方案,从扩压组件3的出风口3A流出的气体在到达定转子合件13之前,可以在网状结构5的作用下降低流速。并且,可以在在网状结构5的作用下调整流向,从而,减少气体对定转子合件13的冲击,从而,减弱冲击噪音和电风机的工作噪音。
作为示例,网状结构5在输出轴11的轴线m的延伸方向上的长度,可以大于定转子合件13与扩压组件3之间的间距。参考图20所示,网状结构5的两端可以分别包裹在扩压组件3的外壁、支架12的外壁上,并且网状结构5与扩压组件3的外壁之间、网状结构5与支架12的外壁之间可以通过焊接、胶接或铆接等方式固定相连,从而,有利于提高网状结构5在电风机内的稳定性。可选地,网状结构5与扩压组件3的外壁之间、网状结构5与支架12的外壁之间也可以通过卡接、插接或螺纹连接等方式开拆卸地固定相连,从而,有利于降低装配难度,还有利于对网状结构5进行替换。
可选地,网状结构5的一端与出风口3A所在端面相连,另一端包裹在支架 12的外壁上;或者,网状结构5的一端包裹在扩压组件3的外壁上,另一端与支架12靠近扩压组件3的端面相连;再或者,网状结构5的两端分别与出风口3A所在端面、支架12靠近扩压组件3的端面相连。
图23是本申请实施例提供的一种电风机的结构示意图,图24是本申请实施例提供的一种电风机的剖面结构示意图。作为示例,如图24所示,电机组件1还包括电控板18。定转子合件13位于扩压组件3内侧,也即扩压组件3套设在支架12上,且扩压组件3的内壁与支架12的外壁相连。电控板18则位于网状结构5远离扩压组件3的一侧,且电控板18与扩压组件3的出风口3A相对,并且电控板18分别与网状结构5、支架12相连。换句话说,电控板18位于支架12远离叶轮组件2的一侧,并且,在输出轴11的轴线m的延伸方向上,出风口3A与电控板18之间具有间距,网状结构5则覆盖该间距。电控板18还可以与定转子合件13电性相连,用于控制定转子合件13中的转子131旋转,从而,带动叶轮组件2中的叶轮工作。
当定子132套在转子131外部时,扩压组件3与电控板18之间的间距可以等于定子132的径向厚度的两倍或两倍以上;或者,当定子132与转子131沿输出轴的轴线同轴分布时,扩压组件3与电控板18之间的间距可以等于定子132的半径。上述只是对扩压组件3和电控板18之间的间距进行举例,扩压组件3与电控板18之间的间距可以根据实际产品中扩压组件3排出的气体流量进行设定,此处不进行任何限定。
本申请实施例提供的电风机中,扩压组件3套设在支架12外,可以认为扩压组件3套在整个电机组件1外,这样,有利于降低电风机在输出轴11的轴线m的延伸方向上的长度。而且,从扩压组件3的出风口3A流出的气体在到达定电控板18之前,可以在网状结构5的作用下降低流速并调整流向,从而,减少气体对定转子合件13的冲击,从而,减弱冲击噪音和电风机的工作噪音。
参考图20和图24所示,本申请实施例提供的网状结构5的孔隙率范围为60%-85%。换句话说,在网状结构5的外壁(即网状结构5远离输出轴11的表面)上,通孔所占的总面积为网状结构5的外壁的总面积的60%-85%。对于网状结构5的孔隙率,此处不进行任何限定。
基于相同的技术构思,本申请实施例提供了一种终端设备。图25是本申请实施例提供的一种终端设备的结构示意图,该终端设备包括本申请实施例提供 的任一种电风机01。该终端设备可以是清洁设备,如吸尘器、扫地机等。
作为示例,该终端设备为吸尘器,参考图25所示,该吸尘器还可以包括进气装置02、集尘室03和排气管道04。进气装置02、集尘室03、电风机01和排气管道04依次连通,其中,进气装置02远离集尘室03的一端(即进气装置02未与集尘室03相连的一端)与外部连通,并且排气管道04远离电风机01的一端(即排气管道04未与电风机01相连的一端)与外部连通。
吸尘器在工作时,在电风机01的驱动下,外部的气体和目标物(如灰尘、洒落的水、掉落的食物等)被吸入进气装置02中,随后目标物随着气体进入集尘室03中,集尘室03中可以设置有过滤装置,集尘室03对目标物和气体进行过滤,目标物被留在集尘室03中,过滤后的气体进入电风机01中,经过加速、扩压后由上述扩压组件3流出,流出的气体经过上述定转子合件13的外表面和/或内部,带走定转子合件13产生的热量流向排气管道04,最终流入大气。吸尘器在完成对目标物的清洁功能室,充分利用扩压组件3流出的气体对定转子合件13进行散热,有利于提高定转子合件13的散热效果,从而,有利于提高整个电风机(和吸尘器)的工作可靠性和使用寿命。
而且,相关技术中,电风机的径向尺寸受扩压组件3的影响,由于扩压组件3套在电机外部,这就使得整个电风机的径向尺寸通常较大。采用本方案,定转子合件13位于扩压组件3外部,这样,可以降低扩压组件3的径向尺寸,从而,降低整个电风机的径向尺寸,有利于将电风机应用于更多产品中,从而,提高电风机的适用性。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种电风机,其特征在于,所述电风机包括电机组件(1)、叶轮组件(2)和扩压组件(3),所述电机组件(1)包括输出轴(11)、支架(12)和定转子合件(13);
    所述支架(12)和所述定转子合件(13)套设在所述输出轴(11)上,所述支架(12)具有容纳区(12A),所述定转子合件(13)位于所述容纳区(12A)内;
    所述叶轮组件(2)位于所述定转子合件(13)的一侧,且套设在所述输出轴(11)上;
    所述扩压组件(3)套设在所述输出轴(11)上,且位于所述定转子合件(13)和所述叶轮组件(2)之间。
  2. 根据权利要求1所述的电风机,其特征在于,在所述输出轴(11)的轴线(m)的延伸方向上,所述扩压组件(3)与所述定转子合件(13)之间具有间距。
  3. 根据权利要求2所述的电风机,其特征在于,所述扩压组件(3)靠近所述定转子合件(13)的一端具有出风口(3A),在沿所述输出轴(11)的轴线(m)的延伸方向上,所述出风口(3A)的正投影与所述定转子合件(13)的正投影至少部分重合。
  4. 根据权利要求3所述的电风机,其特征在于,所述定转子合件(13)包括转子(131)和定子(132);
    所述转子(131)套设在所述输出轴(11)上,所述定子(132)套在所述转子(131)外,在所述输出轴(11)的轴线(m)的延伸方向上,所述出风口(3A)的正投影与所述定子(132)的正投影至少部分重合。
  5. 根据权利要求4所述的电风机,其特征在于,在所述输出轴(11)的轴线(m)的延伸方向上,所述出风口(3A)的正投影为第一投影,所述定子(132)的正投影为第二投影,所述第一投影与所述第二投影重合的面积大于或等于所 述第一投影和所述第二投影中面积更小的投影的面积的一半。
  6. 根据权利要求1-5任一项所述的电风机,其特征在于,所述支架(12)包括支架本体(121)和支撑件(122);
    所述支架本体(121)套设在所述输出轴(11)上;
    所述支撑件(122)位于所述支架本体(121)靠近所述扩压组件(3)的一侧,且分别与所述支架本体(121)、所述扩压组件(3)相连。
  7. 根据权利要求6所述的电风机,其特征在于,所述电机组件(1)还包括连接件(14);
    所述连接件(14)套设在所述输出轴(11)上,且位于所述支撑件(122)远离所述支架本体(121)的一侧,且位于所述扩压组件(3)的径向内侧,所述连接件(14)分别与所述支撑件(122)、所述扩压组件(3)相连。
  8. 根据权利要求6所述的电风机,其特征在于,所述支撑件(122)包括至少一个支撑臂(1221)和支撑连接部(1222);
    所述至少一个支撑臂(1221)位于所述扩压组件(3)靠近所述支架本体(121)的一侧;
    所述支撑连接部(1222)位于所述至少一个支撑臂(1221)远离所述扩压组件(3)的一侧,且分别与所述至少一个支撑臂(1221)、所述支架本体(121)相连。
  9. 根据权利要求8所述的电风机,其特征在于,所述支撑臂(1221)朝向所述输出轴(11)的方向凹陷。
  10. 根据权利要求8所述的电风机,其特征在于,所述支架(12)包括多个支撑臂(1221),所述多个支撑臂(1221)沿所述输出轴(11)的圆周方向等间距分布。
  11. 根据权利要求7所述的电风机,其特征在于,所述电机组件(1)还包括 第一轴承(15)和第二轴承(16),所述连接件(14)具有第一轴承室(14A),所述支架本体(121)具有第二轴承室(121A);
    所述第一轴承(15)和所述第二轴承(16)均套在所述输出轴(11)上,且所述第一轴承(15)位于所述第一轴承室(14A)内,且所述第二轴承(16)位于所述第二轴承室(121A)内。
  12. 根据权利要求11所述的电风机,其特征在于,所述电机组件(1)还包括多个弹性件(17);
    所述多个弹性件(17)中的一部分位于所述第一轴承(15)与第一轴承室(14A)的内壁之间,且分别与所述第一轴承(15)、所述第一轴承室(14A)抵接,所述多个弹性件(17)中的另一部分位于所述第二轴承(16)与第二轴承室(121A)的内壁之间,且分别与所述第二轴承(16)、所述第二轴承室(121A)抵接。
  13. 根据权利要求3-5任一项所述的电风机,其特征在于,所述电风机还包括导流罩(4),所述支架(12)邻近所述扩压组件(3)的一端形成有第一端面(12B);
    所述导流罩(4)设置于所述第一端面(12B)上,在所述输出轴(11)的轴线(m)的延伸方向上,所述导流罩(4)的正投影与所述出风口(3A)的正投影至少部分重合。
  14. 根据权利要求13所述的电风机,其特征在于,所述导流罩(4)包括导流部(41);
    所述导流部(41)沿朝向所述出风口(3A)的方向凸起,在所述输出轴(11)的轴线(m)的延伸方向上,所述导流部(41)上距离所述第一端面(12B)最远的点的正投影位于所述出风口(3A)的正投影内。
  15. 根据权利要求14所述的电风机,其特征在于,所述导流部(41)靠近所述出风口(3A)的表面为弧形面。
  16. 根据权利要求2-5、7-12中任一项所述的电风机,其特征在于,所述电风机还包括网状结构(5);
    所述网状结构(5)覆盖所述定转子合件(13)与所述扩压组件(3)之间的间距,且分别与所述支架(12)、所述扩压组件(3)相连。
  17. 根据权利要求1-5、7-12、14、15中任一项所述的电风机,其特征在于,所述叶轮组件(2)包括叶轮组件壳体(21)、第一叶轮(22)、回流器(23)和第二叶轮(24);
    所述第一叶轮(22)、所述回流器(23)和所述第二叶轮(24)均位于所述叶轮组件壳体(21)内,且所述第一叶轮(22)、所述回流器(23)和所述第二叶轮(24)依次套在所述输出轴(11)上,所述第一叶轮(22)内具有第一流道,所述回流器(23)与所述叶轮组件壳体(21)的内壁之间形成回流流道,所述第二叶轮(24)内具有第二流道,所述第一流道、所述回流流道和所述第二流道依次连通。
  18. 根据权利要求17所述的电风机,其特征在于,所述叶轮组件(2)还包括弹性密封环(25),所述弹性密封环(25)包括密封环本体(251)和弹性密封齿(252);
    所述密封环本体(251)和所述弹性密封齿(252)均具有环状结构,所述密封环本体(251)和所述弹性密封齿(252)均套设在所述输出轴(11)上,所述密封环本体(251)位于所述回流器(23)和所述弹性密封齿(252)之间,且分别与所述回流器(23)、所述弹性密封齿(252)固定相连,所述弹性密封齿(252)与所述输出轴(11)转动相连,在所述输出轴(11)的轴线(m)的延伸方向上,所述弹性密封齿(252)的宽度与所述弹性密封齿(252)到输出轴(11)的轴线(m)的距离呈正相关关系。
  19. 根据权利要求17所述的电风机,其特征在于,所述叶轮组件(2)还包括密封棉(26);
    所述密封棉(26)填充于所述叶轮组件壳体(21)与所述第一叶轮(22)和/或所述叶轮组件壳体(21)与所述第二叶轮(24)之间。
  20. 根据权利要求1-5、7-12、14、15、18、19中任一项所述的电风机,其特征在于,所述扩压组件(3)包括第一轴流扩压器(31)和第二轴流扩压器(32);
    所述第一轴流扩压器(31)和所述第二轴流扩压器(32)沿所述输出轴(11)的轴线方向分布,所述第一轴流扩压器(31)与所述第二轴流扩压器(32)密封相连,且相互连通,所述第一轴流扩压器(31)远离所述第二轴流扩压器(32)的一端与所述叶轮组件(2)密封相连,且与所述叶轮组件(2)相连通。
  21. 一种终端设备,其特征在于,所述终端设备包括如权利要求1-20任一项所述的电风机(01)。
  22. 根据权利要求21所述的终端设备,其特征在于,所述终端设备为吸尘器。
PCT/CN2023/108184 2022-11-22 2023-07-19 电风机和终端设备 WO2024109123A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211465831.7A CN115788962A (zh) 2022-11-22 2022-11-22 电风机和终端设备
CN202211465831.7 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024109123A1 true WO2024109123A1 (zh) 2024-05-30

Family

ID=85439989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108184 WO2024109123A1 (zh) 2022-11-22 2023-07-19 电风机和终端设备

Country Status (2)

Country Link
CN (1) CN115788962A (zh)
WO (1) WO2024109123A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898909A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940311A1 (de) * 2014-04-30 2015-11-04 BSH Hausgeräte GmbH Radialgebläse mit verbesserter anströmkantengeometrie
CN108592267A (zh) * 2018-05-15 2018-09-28 广东美的暖通设备有限公司 空调器
KR20210012502A (ko) * 2019-07-25 2021-02-03 엘지전자 주식회사 팬모터
CN114688046A (zh) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 风机组件和吸尘器
CN217354846U (zh) * 2022-06-01 2022-09-02 广东威灵电机制造有限公司 风机及洗地机
CN115681200A (zh) * 2022-11-22 2023-02-03 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115681213A (zh) * 2022-11-22 2023-02-03 广东美的白色家电技术创新中心有限公司 组装电风机的方法
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898910A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940311A1 (de) * 2014-04-30 2015-11-04 BSH Hausgeräte GmbH Radialgebläse mit verbesserter anströmkantengeometrie
CN108592267A (zh) * 2018-05-15 2018-09-28 广东美的暖通设备有限公司 空调器
KR20210012502A (ko) * 2019-07-25 2021-02-03 엘지전자 주식회사 팬모터
CN114688046A (zh) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 风机组件和吸尘器
CN217354846U (zh) * 2022-06-01 2022-09-02 广东威灵电机制造有限公司 风机及洗地机
CN115681200A (zh) * 2022-11-22 2023-02-03 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115681213A (zh) * 2022-11-22 2023-02-03 广东美的白色家电技术创新中心有限公司 组装电风机的方法
CN115788962A (zh) * 2022-11-22 2023-03-14 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898911A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备
CN115898910A (zh) * 2022-11-22 2023-04-04 广东美的白色家电技术创新中心有限公司 电风机和终端设备

Also Published As

Publication number Publication date
CN115788962A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024109123A1 (zh) 电风机和终端设备
JP4366092B2 (ja) ブロワー電動機
CN113775544A (zh) 一种电风机及清洁设备
JP2011226398A (ja) 電動送風機及びそれを搭載した電気掃除機
WO1998003795A1 (en) Fan wheel for an inline centrifugal fan
WO2024109122A1 (zh) 电风机和终端设备
EP0602007B1 (en) Vacuum cleaner having an impeller and diffuser
EP0651161B1 (en) Device for cooling en electric motor for a turbo-fan
CN107061320B (zh) 电风机和具有其的吸尘器
CN113775547A (zh) 一种电风机及清洁设备
WO2024109121A1 (zh) 电风机和终端设备
CN215521344U (zh) 一种电风机及清洁设备
CN215521343U (zh) 一种电风机及清洁设备
CN113494465A (zh) 一种干湿两用的吸尘器电机以及吸尘器
KR101877306B1 (ko) 임펠러 및 상기 임펠러를 포함하는 송풍기
JP2000145690A (ja) 電動送風機及びそれを備えた電気掃除機
CN115681200A (zh) 电风机和终端设备
CN215595958U (zh) 一种电风机及清洁设备
WO2022052552A1 (zh) 风机及清洁设备
CN112577112A (zh) 风机及空调器
CN215949944U (zh) 混流风机及空调设备及家用电器
CN215409276U (zh) 一种干湿两用的吸尘器电机以及吸尘器
CN219654913U (zh) 一种圆形离心轴流式风机
EP4394186A1 (en) Electric blower and cleaning apparatus
JP2001003898A (ja) 電動送風機及びそれを用いた電気掃除機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893223

Country of ref document: EP

Kind code of ref document: A1