WO2024096023A1 - ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法 - Google Patents

ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法 Download PDF

Info

Publication number
WO2024096023A1
WO2024096023A1 PCT/JP2023/039324 JP2023039324W WO2024096023A1 WO 2024096023 A1 WO2024096023 A1 WO 2024096023A1 JP 2023039324 W JP2023039324 W JP 2023039324W WO 2024096023 A1 WO2024096023 A1 WO 2024096023A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
dibenzofulvene
fmoc
salt
Prior art date
Application number
PCT/JP2023/039324
Other languages
English (en)
French (fr)
Inventor
宏希 芹澤
志央 小宮
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Publication of WO2024096023A1 publication Critical patent/WO2024096023A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents

Definitions

  • the present invention relates to a method for removing dibenzofulvene (DBF) or dibenzofulvene derivatives.
  • DPF dibenzofulvene
  • the Fmoc (9-fluorenylmethoxycarbonyl) group is widely used in peptide synthesis as a protecting group for the amino groups of amino acids and peptides.
  • Peptide synthesis can be performed using solid-phase synthesis or liquid-phase synthesis, with liquid-phase synthesis often being used for mass production of pharmaceuticals and other products.
  • the Fmoc group can be easily deprotected under basic conditions, so it is also used as a protecting group for amino groups in liquid-phase synthesis.
  • dibenzofulvene or a compound in which the amine used in the deprotection is added to dibenzofulvene (hereinafter also referred to as the "amine adduct") is generated as a by-product. If peptide synthesis is continued while the by-product remains, it may cause side reactions such as 9-fluorenylmethylation, so the dibenzofulvene or amine adduct must be removed in this deprotection step.
  • Patent Document 1 describes a method of removing the amine adduct as a carbonate by contacting a reaction mixture containing the amine adduct with carbon dioxide.
  • the object of the present invention is to provide a new method for removing dibenzofulvene or dibenzofulvene derivatives that can capture dibenzofulvene or dibenzofulvene derivatives and remove them without regenerating them.
  • the present inventors have investigated a new method for removing dibenzofulvene or a dibenzofulvene derivative, and have found that by using sulfite ions or hydrogen sulfite ions or a compound that generates these ions as a scavenger, dibenzofulvene or a dibenzofulvene derivative can be captured and removed without regeneration, leading to the completion of the present invention.
  • the present inventors have found that the present invention can be applied to a wide variety of synthetic processes, particularly the synthesis of amino group-containing compounds, for example, the synthesis of peptides.
  • the present invention also provides a new method for deprotecting a protecting group having an Fmoc skeleton.
  • the present invention provides a new method for producing an amino group-containing compound such as a peptide.
  • the present invention includes the following.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative comprising a step of mixing the following (i) and (ii): (i) dibenzofulvene or a dibenzofulvene derivative, (ii) Sulfite or bisulfite ions or compounds which generate sulfite or bisulfite ions.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative comprising the following steps (1), (1'), or (1''): (1) mixing the following (i) and (ii): (i) dibenzofulvene or a dibenzofulvene derivative, (ii) a sulfite ion or hydrogen sulfite ion, or a compound (1') capable of generating a sulfite ion or hydrogen sulfite ion, comprising mixing the following (i) and (ii): (i) dibenzofulvene or a dibenzofulvene derivative, (ii) At least one member selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • (1′′) A step of forming (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • (1') A method for removing dibenzofulvene or a dibenzofulvene derivative, comprising a step of mixing the following (i) and (ii): (i) dibenzofulvene or a dibenzofulvene derivative, (ii) At least one member selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative from a mixture containing dibenzofulvene or a dibenzofulvene derivative comprising a step of mixing (i) dibenzofulvene or a dibenzofulvene derivative with (ii) sulfite ion or hydrogen sulfite ion, or a compound capable of generating sulfite ion or hydrogen sulfite ion, to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative from a mixture containing dibenzofulvene or a dibenzofulvene derivative comprising a step of mixing (i) dibenzofulvene or a dibenzofulvene derivative with (ii) at least one selected from the group consisting of hydrogensulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof, to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • [6-1](2) The method according to any one of [1] to [5], comprising a step of mixing a first amino-group-containing compound, in which an amino group is protected with a protecting group having an Fmoc skeleton, with a deprotecting agent capable of deprotecting the protecting group having an Fmoc skeleton, before the step (1), (1'), (1'', (1''') or (1'''').
  • a deprotecting agent capable of deprotecting the protecting group having an Fmoc skeleton
  • a method for removing dibenzofulvene or a dibenzofulvene derivative comprising a step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent, (iii) Sulfite or bisulfite ions or compounds which generate sulfite or bisulfite ions.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative comprising a step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) Sulfite or bisulfite ions or compounds which generate sulfite or bisulfite ions.
  • a method for deprotecting a protecting group having an Fmoc skeleton comprising mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) Sulfite or bisulfite ions or compounds which generate sulfite or bisulfite ions.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative comprising a step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent, (iii) At least one member selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative comprising a step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) At least one member selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • [B1-1] (3') A method for deprotecting a protecting group having an Fmoc skeleton, comprising a step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) At least one member selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative comprising the following steps (3) or (3'): (3) A step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) a step of mixing sulfite ion or hydrogen sulfite ion, or a compound capable of generating sulfite ion or hydrogen sulfite ion (3') with the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) At
  • a method for deprotecting a protecting group having an Fmoc skeleton comprising the following step (3) or (3′): (3) A step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) a step of mixing sulfite ion or hydrogen sulfite ion, or a compound capable of generating sulfite ion or hydrogen sulfite ion (3') with the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) At least one
  • a method for removing dibenzofulvene or a dibenzofulvene derivative from a mixture containing dibenzofulvene or a dibenzofulvene derivative comprising the steps of mixing the following (i) to (iii) to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof: (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) Sulfite or bisulfite ions or compounds which generate sulfite or bisulfite ions.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative from a mixture containing dibenzofulvene or a dibenzofulvene derivative comprising the step of mixing the following (i) to (iii) to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof: (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) At least one member selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • a method for removing dibenzofulvene or a dibenzofulvene derivative from a mixture containing dibenzofulvene or a dibenzofulvene derivative comprising the following steps (3) or (3'): (3) A step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) a step of mixing sulfite ion or hydrogen sulfite ion, or a compound capable of generating sulfite ion or hydrogen sulfite ion (3') with the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of de
  • a method for deprotecting a protecting group having an Fmoc skeleton comprising a step of mixing the following (i) to (iii) to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof: (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) Sulfite or bisulfite ions or compounds which generate sulfite or bisulfite ions.
  • [B1-4] (3') A method for deprotecting a protecting group having an Fmoc skeleton, comprising a step of mixing the following (i) to (iii) to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof: (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) At least one member selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • a method for deprotecting a protecting group having an Fmoc skeleton comprising the following step (3) or (3′): (3) A step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) sulfite ion or bisulfite ion or a compound which generates sulfite ion or bisulfite ion; (3') A step of mixing the following (i) to (iii): (i) a first amino group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton; (ii) a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton; (iii) At least one member selected from the group consist
  • R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl, and R 9 -R 10 are independently hydrogen or methyl.
  • [17-1] The method according to any one of [1-1], [3] to [16], and [B1], wherein the (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof is a compound represented by the following formula (2) or a salt thereof, or a compound represented by the following formula (3):
  • R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl
  • R 9 -R 10 are independently hydrogen or methyl, provided that no two of R 1 -R 8 are hydrogen.
  • R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl, and R 9 -R 10 are independently hydrogen or methyl, provided that no two of R 1 -R 8 are hydrogen.
  • [18-1] The method according to any one of [6] to [17] or [B1], wherein the protecting group having an Fmoc skeleton is a compound represented by the following formula (4): (Wherein, R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl, R 9 -R 10 are independently hydrogen or methyl, and no two of R 1 -R 8 are hydrogen. The wavy line represents the point of attachment to the amino group.
  • the protecting group having an Fmoc skeleton is a 9-fluorenylmethyloxycarbonyl (Fmoc) group, a 2,7-di-tert-butyl-Fmoc (Fmoc(2,7tb)) group, a 1-methyl-Fmoc (Fmoc(1Me)) group, a 2-fluoro-Fmoc (Fmoc(2F)) group, a 2,7-dibromo-Fmoc (Fmoc(2,7Br)) group, a 2-monoisooctyl-Fmoc (mio-Fmoc) group, a 2,7-diisooctyl-Fmoc (dio-Fmoc) group, a 2,7-(3,3,4,4,5,5,6,6,7,7,8
  • [20] The method according to any one of [6] to [19] or [B1], wherein the protecting group having an Fmoc skeleton is a 9-fluorenylmethyloxycarbonyl group.
  • the first amino group-containing compound is a peptide, an amino acid, or an amino acid amide.
  • the first amino group-containing compound is a peptide or an amino acid.
  • the first amino group-containing compound is a peptide.
  • [22-1] The method according to [21], wherein the first amino group-containing compound is an amino acid.
  • [26-1] The method according to any one of [1], [4] to [23], and [B1], wherein the sulfite ion or hydrogen sulfite ion, or the compound capable of generating sulfite ion or hydrogen sulfite ion, is at least one selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • the compound capable of generating sulfite ions or hydrogen sulfite ions is at least one selected from the group consisting of sodium hydrogen sulfite, sodium metabisulfite, potassium hydrogen sulfite, sodium dithionite, ammonium sulfite monohydrate, calcium sulfite 0.5 hydrate, sodium sulfite, and potassium sulfite.
  • [31] The method according to [25], wherein the compound generating sulfite ions or hydrogen sulfite ions is at least one selected from the group consisting of sodium hydrogen sulfite, potassium hydrogen sulfite, and sodium dithionite.
  • [31-1] The method according to any one of [1], [4] to [23], and [B1], wherein the sulfite ion or hydrogen sulfite ion, or the compound that generates the sulfite ion or hydrogen sulfite ion, is at least one selected from the group consisting of sodium hydrogen sulfite, potassium hydrogen sulfite, and sodium dithionite.
  • [32] The method according to any one of [1] to [31] or [B1], further comprising mixing an additive in the step (1), (1'), (1'', (1'''), (1'''', (3) or (3').
  • the additive is a first base.
  • the first base is a tertiary amine.
  • the tertiary amine is at least one selected from the group consisting of triethylamine, N,N-diisopropylethylamine, and 2,6-lutidine.
  • [36] The method according to any one of [1] to [35], further comprising mixing water in the step (1), (1'), (1'', (1'''), (1'''', (3) or (3').
  • [36-1] The method according to any one of [1] to [35], wherein the step (1), (1'), (1'', (1'''), (1'''', (3) or (3') does not include further mixing with water.
  • [36-2] The method according to [36], wherein the water is not water contained in an organic solvent.
  • [37] The method according to any one of [6] to [36] or [B1], wherein the deprotecting agent is a second base.
  • the second base is at least one selected from the group consisting of an organic base having an amidine skeleton, a primary amine, a secondary amine, a tertiary amine, and an inorganic base (with the proviso that none of the primary amine, secondary amine, and tertiary amine has an amidine skeleton in the molecule).
  • the second base is an organic base having an amidine skeleton.
  • the organic base having an amidine skeleton is at least one selected from the group consisting of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD).
  • DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
  • DBU 1,5-diazabicyclo[4.3.0]-5-nonene
  • MTBD 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene
  • DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
  • the second base is a primary amine.
  • [54] The method according to any one of [6] to [51] or [B1], wherein one or more of steps (1), (1'), (1'', (1'''), (1'''), and (2) are carried out in the presence of a solvent containing at least one selected from the group consisting of acetonitrile, dimethylacetamide, 2-methyltetrahydrofuran, and methanol.
  • a solvent containing at least one selected from the group consisting of acetonitrile, dimethylacetamide, 2-methyltetrahydrofuran, and methanol [54-1] The method according to any one of [6] to [51] or [B1], wherein one or more of steps (1), (1'), (1'', (1'''), (1''''), and (2) are carried out in the presence of a solvent containing acetonitrile.
  • [54-2] The method according to any one of [6] to [51] or [B1], wherein one or more steps among (3) and (3') are carried out in the presence of a solvent containing at least one selected from the group consisting of acetonitrile, methanol, 1,3-dimethyl-2-imidazolidinone, and dimethyl sulfoxide.
  • a solvent containing at least one selected from the group consisting of acetonitrile, methanol, 1,3-dimethyl-2-imidazolidinone, and dimethyl sulfoxide [54-1] The method according to any one of [6] to [51] or [B1], wherein one or more steps among (3) or (3') are carried out in the presence of a solvent containing 1,3-dimethyl-2-imidazolidinone.
  • [55] The method according to any one of [13] to [54], wherein the cleaning solution has a pH of 10 to 14.
  • a method for producing a peptide compound comprising the following steps: 1) treating a peptide protected with a protecting group having an Fmoc skeleton with a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton in the presence of sulfite ions or hydrogen sulfite ions to obtain a deprotected peptide by removing the protecting group; 2) elongating the deprotected peptide, optionally with one or more amino acids, to obtain an elongated peptide.
  • a method for producing a peptide compound comprising the following steps: 1) treating a protected peptide, in which an amino group is protected with a protecting group having an Fmoc skeleton, with a deprotecting agent capable of deprotecting the protecting group having an Fmoc skeleton to obtain (a) dibenzofulvene or a dibenzofulvene derivative, and (b) a first mixture of deprotected peptide from which the protecting group has been removed; 2) treating the first mixture with sulfite or bisulfite ions to remove the dibenzofulvene or dibenzofulvene derivative to obtain a second mixture comprising the deprotected peptide; 3) elongating the deprotected peptide, optionally with one or more amino acids, to obtain an elongated peptide.
  • [A3] The method of [A1] or [A2], wherein the deprotected peptide or the extended peptide has an amino acid residue having one reactive site on the C-terminal side and an amino acid residue having another reactive site on the N-terminal side, and further comprises a step of bonding the one reactive site and the other reactive site to form a cyclic peptide compound.
  • the first compound is an amino acid or a peptide.
  • the first compound is (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • the present invention provides a new method for removing dibenzofulvene that can capture dibenzofulvene generated during the deprotection process of a protecting group having an Fmoc skeleton and can remove the dibenzofulvene without regenerating it.
  • dibenzofulvene derivative refers to a compound in which an arbitrary substituent is introduced at an arbitrary position on the fluorene ring of dibenzofulvene.
  • dibenzofulvene derivative include compounds represented by the following formula: (Wherein, R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl, wherein at least one of R 1 -R 8 is other than hydrogen, and R 9 -R 10 are independently hydrogen or methyl.
  • the dibenzofulvene derivative is preferably one in which only one, two, three or four of R 1 to R 8 are not hydrogen, more preferably one in which only one or two of R 1 to R 8 are not hydrogen, and most preferably one in which only two of R 1 to R 8 are not hydrogen.
  • (9H-fluoren-9-yl)methanesulfonic acid and “(9H-fluoren-9-yl)methanesulfonic acid derivative” refer to compounds in which a group represented by "-SO 3 H” has been introduced at the end of the exo-olefin in dibenzofulvene and dibenzofulvene derivatives.
  • (9H-fluoren-9-yl)methanesulfonic acid and (9H-fluoren-9-yl)methanesulfonic acid derivatives include compounds represented by the following formula: (Wherein, R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl, and R 9 -R 10 are independently hydrogen or methyl.
  • the (9H-fluoren-9-yl)methanesulfonic acid derivative is preferably one in which only one, two, three or four of R 1 to R 8 are not hydrogen, more preferably one in which only one or two of R 1 to R 8 are not hydrogen, and most preferably one in which only two of R 1 to R 8 are not hydrogen.
  • salts of (9H-fluoren-9-yl)methanesulfonic acid and “salts of (9H-fluoren-9-yl)methanesulfonic acid derivatives” refer to salts of compounds in which a group represented by "-SO 3 - " has been introduced onto the exo-olefin in dibenzofulvene and dibenzofulvene derivatives, or salts of compounds in which a group represented by "-SO 3 H” has been introduced onto the terminal of the exo-olefin in dibenzofulvene and dibenzofulvene derivatives.
  • Salts of the compounds described herein can be, for example, salts with at least one selected from the group consisting of alkali metals, alkaline earth metals, and ammonium (NH 4 + ).
  • Examples of salts of (9H-fluoren-9-yl)methanesulfonic acid and salts of (9H-fluoren-9-yl)methanesulfonic acid derivatives include compounds represented by the following formula: (Wherein, R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl, and R 9 -R 10 are independently hydrogen or methyl.
  • the salt of the (9H-fluoren-9-yl)methanesulfonic acid derivative is preferably one in which only one, two, three or four of R 1 to R 8 are not hydrogen, more preferably one in which only one or two of R 1 to R 8 are not hydrogen, and most preferably one in which only two of R 1 to R 8 are not hydrogen.
  • protecting group having an Fmoc skeleton refers to an Fmoc group or a group in which an arbitrary substituent has been introduced at an arbitrary position of the structural skeleton of an Fmoc group.
  • Specific examples of such a protecting group containing an Fmoc skeleton include the protecting group represented by the following formula: (Wherein, R 1 -R 8 are independently selected from the group consisting of hydrogen, C 1 -C 8 alkyl, C 1 -C 8 fluoroalkyl, halogen, sulfo, and trimethylsilyl; R 9 -R 10 are independently hydrogen or methyl.
  • the wavy line represents the point of attachment to the amino group.
  • R 1 to R 8 are not hydrogen, more preferably only one or two of R 1 to R 8 are not hydrogen, and most preferably only two of R 1 to R 8 are not hydrogen.
  • protective groups having an Fmoc skeleton include 9-fluorenylmethyloxycarbonyl (Fmoc) group, 2,7-di-tert-butyl-Fmoc (Fmoc(2,7tb)) group, 1-methyl-Fmoc (Fmoc(1Me)) group, 2-fluoro-Fmoc (Fmoc(2F)) group, 2,7-dibromo-Fmoc (Fmoc(2,7Br)) group, 2-monoisooctyl-Fmoc (mio-Fmoc) group, 2,7-diisooctyl-Fmoc (dio-Fmoc) group, 2,7-(3,3, 4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-Fmoc (tdf-Fmoc) group, 2,7-bis(trimethylsilyl)-Fmoc (t
  • removing a protecting group is also referred to as “deprotecting a protecting group.”
  • capturing dibenzofulvene or a dibenzofulvene derivative means forming (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof through the coexistence of dibenzofulvene or a dibenzofulvene derivative and sulfite ions or hydrogen sulfite ions.
  • the term “sulfite ion” refers to an ion represented by “SO 3 2- "
  • the term “hydrogen sulfite ion” refers to an ion represented by "HSO 3 - "
  • the term “compound that generates sulfite ion or hydrogen sulfite ion” is not particularly limited as long as it is a compound that generates sulfite ion or hydrogen sulfite ion by ionization in a solution (preferably in an aqueous solution), and examples thereof include hydrogen sulfite, disulfite (H 2 S 2 O 5 ) and its salts, sulfurous acid (H 2 SO 3 ) and its salts, dithionous acid (H 2 S 2 O 4 ) and its salts, and solvates thereof.
  • Examples of hydrogen sulfite, disulfite, sulfite, and dithionite include salts with at least one selected from the group consisting of alkali metals such as sodium and potassium; alkaline earth metals such as calcium, and ammonium.
  • Specific examples of hydrogen sulfite include sodium hydrogen sulfite and potassium hydrogen sulfite.
  • Specific examples of disulfites include sodium disulfite (sodium metabisulfite), potassium disulfite (potassium metabisulfite), etc.
  • Specific examples of sulfites include sodium sulfite, potassium sulfite, ammonium sulfite, calcium sulfite, etc.
  • Specific examples of dithionites include sodium dithionite, potassium dithionite, etc.
  • halogen examples include F, Cl, Br, and I.
  • alkyl refers to a monovalent group derived by removing any one hydrogen atom from an aliphatic hydrocarbon, and is a group having a hydrocarbyl or hydrocarbon group structure subset containing hydrogen and carbon atoms, without containing heteroatoms (meaning atoms other than carbon and hydrogen atoms) or unsaturated carbon-carbon bonds in the skeleton.
  • the alkyl includes not only linear ones but also branched ones.
  • alkyl examples include alkyl having 1 to 20 carbon atoms (C 1 -C 20 , hereinafter "C p -C q " means that the number of carbon atoms is p to q), preferably C 1 -C 10 alkyl, more preferably C 1 -C 8 alkyl, and even more preferably C 1 -C 6 alkyl.
  • alkyl examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, isobutyl (2-methylpropyl), n-pentyl, s-pentyl (1-methylbutyl), t-pentyl (1,1-dimethylpropyl), neopentyl (2,2-dimethylpropyl), isopentyl (3-methylbutyl), 3-pentyl (1-ethylpropyl), 1,2-dimethylpropyl, 2-methylbutyl, n-hexyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1,1,2,2-tetramethylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylmethylprop
  • fluoroalkyl refers to a group in which one or more hydrogen atoms of the "alkyl” defined above have been substituted with fluorine atoms, and is preferably a C 1 -C 8 fluoroalkyl.
  • fluoroalkyl include monofluoromethyl, difluoromethyl, trifluoromethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 3,3-difluoropropyl, 4,4-difluorobutyl, 5,5-difluoropentyl, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl, and the like.
  • sulfo refers to a monovalent group represented by -SO3H .
  • alkenyl refers to a monovalent group having at least one double bond (two adjacent SP 2 carbon atoms). Depending on the arrangement of the double bond and the substituents (if any), the geometry of the double bond can be in an Entadel (E) or Entumble (Z), cis or trans configuration. Alkenyl includes not only linear but also branched chains.
  • Alkenyl is preferably C 2 -C 10 alkenyl, more preferably C 2 -C 6 alkenyl, and specifically includes, for example, vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl (including cis and trans), 3-butenyl, pentenyl, 3-methyl-2-butenyl, hexenyl, and the like.
  • alkynyl refers to a monovalent group having at least one triple bond (two adjacent SP carbon atoms). Alkynyl includes not only straight chain but also branched chain. Preferred examples of alkynyl include C 2 -C 10 alkynyl, more preferably C 2 -C 6 alkynyl, and specific examples thereof include ethynyl, 1-propynyl, propargyl, 3-butynyl, pentynyl, hexynyl, 3-phenyl-2-propynyl, 3-(2'-fluorophenyl)-2-propynyl, 2-hydroxy-2-propynyl, 3-(3-fluorophenyl)-2-propynyl, and 3-methyl-(5-phenyl)-4-pentynyl.
  • aryl refers to a monovalent aromatic hydrocarbon ring, preferably C 6 -C 10 aryl. Specific examples of aryl include phenyl and naphthyl (e.g., 1-naphthyl, 2-naphthyl).
  • heteroaryl refers to an aromatic cyclic monovalent group containing 1 to 5 heteroatoms in addition to carbon atoms.
  • the ring may be a single ring or a condensed ring with other rings, and may be partially saturated.
  • the number of atoms constituting the ring is preferably 5 to 10 (5- to 10-membered heteroaryl), and more preferably 5 to 7 (5- to 7-membered heteroaryl).
  • heteroaryl examples include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzothienyl, benzothiadiazolyl, benzothiazolyl, benzoxazolyl, benzoxadiazolyl, benzimidazolyl, indolyl, isoindolyl, indazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, indolizinyl, and imidazopyridyl.
  • aralkyl refers to a group in which at least one hydrogen atom of an "alkyl” as defined above is substituted with an "aryl” as defined above, preferably a C 7 -C 14 aralkyl, more preferably a C 7 -C 10 aralkyl.
  • aryl as defined above
  • Specific examples of aralkyl include benzyl, phenethyl, and 3-phenylpropyl.
  • heteroarylalkyl refers to a group in which at least one hydrogen atom of an "alkyl” as defined above is substituted with a “heteroaryl” as defined above, and is preferably a 5- to 10-membered heteroaryl C 1 -C 6 alkyl, and more preferably a 5- to 10-membered heteroaryl C 1 -C 2 alkyl.
  • heteroarylalkyl examples include 3-thienylmethyl, 4-thiazolylmethyl, 2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl, 2-(2-pyridyl)ethyl, 2-(3-pyridyl)ethyl, 2-(4-pyridyl)ethyl, 2-(6-quinolyl)ethyl, 2-(7-quinolyl)ethyl, 2-(6-indolyl)ethyl, 2-(5-indolyl)ethyl, and 2-(5-benzofuranyl)ethyl.
  • cycloalkyl refers to a saturated or partially saturated cyclic monovalent aliphatic hydrocarbon group, including monocyclic, bicyclic (fused, bridged, bicyclic spiro, etc.) and other polycyclic rings.
  • Preferred cycloalkyls include C3 - C8 cycloalkyls, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo[2.2.1]heptyl, spiro[3.3]heptyl, and the like.
  • alkoxy refers to an oxy group bonded to the above-defined “alkyl”, and is preferably a C 1 -C 6 alkoxy. Specific examples of alkoxy include methoxy, ethoxy, 1-propoxy, 2-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, and 3-methylbutoxy.
  • fluoroalkoxy refers to a group in which one or more hydrogen atoms of the "alkoxy” defined above are substituted with fluorine atoms, and is preferably a C 1 -C 8 fluoroalkoxy. Specific examples of fluoroalkoxy include monofluoromethoxy, difluoromethoxy, and trifluoromethoxy.
  • amino refers to -NRR', where R and R' are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, or R and R' are taken together with the nitrogen atom to which they are attached to form a ring.
  • Preferred examples of amino include -NH 2 , mono-C 1 -C 6 alkylamino, di-C 1 -C 6 alkylamino, and 4- to 8-membered cyclic amino.
  • aminocarbonyl refers to a carbonyl group bonded to the above-defined “amino”, and preferably includes -CONH 2 , mono-C 1 -C 6 alkylaminocarbonyl, di-C 1 -C 6 alkylaminocarbonyl, and 4- to 8-membered cyclic aminocarbonyl.
  • aminocarbonyl examples include -CONH 2 , dimethylaminocarbonyl, 1-azetidinylcarbonyl, 1-pyrrolidinylcarbonyl, 1-piperidinylcarbonyl, 1-piperazinylcarbonyl, 4-morpholinylcarbonyl, 3-oxazolidinylcarbonyl, 1,1-dioxidethiomorpholinyl-4-ylcarbonyl, and 3-oxa-8-azabicyclo[3.2.1]octan-8-ylcarbonyl.
  • alkylsulfonyl refers to a sulfonyl group having an “alkyl” bonded thereto as defined above, and is preferably C 1 -C 6 alkylsulfonyl. Specific examples of alkylsulfonyl include methylsulfonyl.
  • alkylsulfonylamino refers to an amino group having the above-defined “alkylsulfonyl” bonded thereto, and preferably includes C 1 -C 6 alkylsulfonylamino. Specific examples of alkylsulfonylamino include methylsulfonylamino.
  • heterocyclyl refers to a non-aromatic cyclic monovalent group containing 1 to 5 heteroatoms in addition to carbon atoms. Heterocyclyl may have double and/or triple bonds in the ring, and the carbon atoms in the ring may be oxidized to form a carbonyl, and may be a single ring or a condensed ring.
  • the number of atoms constituting the ring is preferably 4 to 10 (4- to 10-membered heterocyclyl), and more preferably 4 to 7 (4- to 7-membered heterocyclyl).
  • heterocyclyl examples include azetidinyl, oxiranyl, oxetanyl, azetidinyl, dihydrofuryl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, tetrahydropyridyl, tetrahydropyrimidyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, piperidinyl, piperazinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, and cyclohexyl.
  • solvate refers to a compound that forms a molecular group together with a solvent.
  • examples include solvates with a single solvent such as hydrates, alcohol solvates (ethanol solvates, methanol solvates, 1-propanol solvates, 2-propanol solvates, etc.), and dimethyl sulfoxide, as well as solvates with multiple solvents per molecule of a compound, or solvates with multiple types of solvents per molecule of a compound.
  • the solvent is water, it is called a hydrate.
  • a hydrate is preferred, and specific examples of such hydrates include 0.5 to 10 hydrates, preferably 0.5 to 5 hydrates, and more preferably 0.5 to 3 hydrates.
  • amino acid includes natural amino acids and unnatural amino acids.
  • amino acid may refer to amino acid residues.
  • natural amino acids refer to Gly, L-Ala, L-Ser, L-Thr, L-Val, L-Leu, L-Ile, L-Phe, L-Tyr, L-Trp, L-His, L-Glu, L-Asp, L-Gln, L-Asn, L-Cys, L-Met, L-Lys, L-Arg, and L-Pro.
  • unnatural amino acids include, but are not limited to, ⁇ -amino acids, D-amino acids, N-substituted amino acids, ⁇ , ⁇ -disubstituted amino acids, amino acids whose side chains are different from those of natural amino acids, and hydroxycarboxylic acids.
  • amino acids are permitted to have any stereoconfiguration.
  • the side chain of the amino acid can be freely selected from, for example, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, aralkyl groups, heteroaralkyl groups, cycloalkyl groups, and spiro-linked cycloalkyl groups.
  • alkyl groups alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, aralkyl groups, heteroaralkyl groups, cycloalkyl groups, and spiro-linked cycloalkyl groups.
  • substituents are not limited, and for example, one or more of any substituents including a halogen atom, an O atom, a S atom, a N atom, a B atom, a Si atom, or a P atom may be independently selected.
  • the amino acid in this specification may be a compound having a carboxyl group and an amino group in the same molecule (even in this case, proline, hydroxyproline, azetidine-2-carboxylic acid, etc., in which the nitrogen atom of the amino group and any atom of the side chain are combined to form a ring, are also included in the amino acid).
  • amino acid amide refers to a compound in which at least one carboxyl group of a natural or unnatural amino acid has been converted to an amide group.
  • peptide refers to a compound in which two or more amino acids are linked by amide bonds. Peptides having an ester bond in part of the main chain, such as depsipeptides, are also included in the peptides used herein. Peptides are preferably peptides of 2 to 29 residues, more preferably 3 to 20 residues, and even more preferably 4 to 14 residues. Peptides and peptide compounds may be linear or cyclic peptides.
  • amino group-containing compound means a compound having at least one primary amino group and/or secondary amino group.
  • amino group-containing compound in which the amino group is protected by a protecting group means a compound in which at least one of the primary amino group and/or secondary amino group contained in the amino group-containing compound is protected by a protecting group.
  • substituents are not limited, and may be independently selected from any substituents including, for example, a halogen atom, an oxygen atom, a sulfur atom, a nitrogen atom, a boron atom, a silicon atom, or a phosphorus atom.
  • substituents examples include alkyl, alkoxy, fluoroalkyl, fluoroalkoxy, oxo, aminocarbonyl, alkylsulfonyl, alkylsulfonylamino, cycloalkyl, aryl, heteroaryl, heterocyclyl, arylalkyl, heteroarylalkyl, halogen, nitro, amino, monoalkylamino, dialkylamino, cyano, carboxyl, and alkoxycarbonyl.
  • nitrile solvents examples include acetonitrile and propionitrile.
  • amide solvents examples include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, etc.
  • examples of alcohol-based solvents include methanol, ethanol, n-propanol, and 2-propanol.
  • examples of benzene-based solvents include benzene, toluene, xylene, fluorobenzene, chlorobenzene, 1,2-dichlorobenzene, bromobenzene, anisole, ethylbenzene, nitrobenzene, cumene, and benzotrifluoride.
  • ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, and isobutyl acetate.
  • one or more means one or more than one.
  • the term means a number from one to the maximum number of substituents permitted by that group. Specific examples of "one or more” include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and/or more.
  • A, B, and/or C includes the following seven variations: (i) A, (ii) B, (iii) C, (iv) A and B, (v) A and C, (vi) B and C, (vii) A, B, and C.
  • dibenzofulvene or a dibenzofulvene derivative can be removed by any one of the following steps (1), (1') or (1'').
  • "removing dibenzofulvene or a dibenzofulvene derivative” includes converting dibenzofulvene or a dibenzofulvene derivative to (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof, and then removing it.
  • the method for removing dibenzofulvene or a dibenzofulvene derivative of the present invention may be a method for removing dibenzofulvene or a dibenzofulvene derivative from a mixture containing dibenzofulvene or a dibenzofulvene derivative.
  • the term “remove” is not particularly limited, but means, for example, reducing the amount of a target to 1% or less, 0.5% or less, 0.1% or less, or an undetectable amount based on the total amount of the entire mixture containing the target.
  • the term “remove dibenzofulvene or a dibenzofulvene derivative” means, for example, reducing the value represented by the following formula A, calculated from the UVarea value at 210 nm by HPLC analysis, to 1% or less, 0.5% or less, 0.1% or less, or an undetectable amount.
  • Steps (1) and (1') Step (1) is a step of mixing (i) dibenzofulvene or a dibenzofulvene derivative, and (ii) sulfite ion or hydrogen sulfite ion, or a compound that generates sulfite ion or hydrogen sulfite ion, and step (1') is a step of mixing (i) dibenzofulvene or a dibenzofulvene derivative, and (ii) at least one selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • sulfite ions or hydrogen sulfite ions or compounds that generate them are used as a scavenger to convert dibenzofulvene or a dibenzofulvene derivative to (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof, thereby making it possible to remove dibenzofulvene or a dibenzofulvene derivative.
  • steps (1) and (1') may be mixed as they are, or solutions of (i) and/or (ii) dissolved in a solvent described below may be mixed.
  • mixing (i) and (ii) includes any of the following aspects: adding (i) to (ii), adding (ii) to (i), and adding (i) and (ii) simultaneously.
  • mixing does not require that a homogeneous mixture be obtained when mixing.
  • Steps (1) and (1') can be carried out in the presence or absence of a solvent, at a temperature of preferably -20°C to 80°C, more preferably 10°C to 80°C, for a period of preferably 0.1 hours to 48 hours, more preferably 1 hour to 24 hours.
  • dibenzofulvene is preferably used.
  • hydrogen sulfite, disulfite, sulfite, dithionite, and solvates thereof are preferably used.
  • salts of hydrogen sulfite, disulfite, sulfite, and dithionite and at least one selected from the group consisting of alkali metals, alkaline earth metals, and ammonium are preferably used, and salts of hydrogen sulfite, disulfite, sulfite, and dithionite and at least one selected from the group consisting of sodium, potassium, calcium, and ammonium are more preferably used, and sodium hydrogen sulfite, sodium metabisulfite, potassium hydrogen sulfite, sodium dithionite, ammonium sulfite monohydrate, calcium sulfite 0.5 hydrate, sodium sulfite, and potassium sulfite are further preferably used, and sodium hydrogen sulfite
  • the amount of (ii) used is not particularly limited, but is preferably 1 molar equivalent or more and 10 molar equivalents or less relative to (i), and more preferably 1 molar equivalent or more and 5 molar equivalents or less.
  • the solvent may be, for example, at least one selected from the group consisting of nitrile solvents, amide solvents, sulfoxide solvents, alcohol solvents, and ether solvents.
  • Steps (1) and (1') can be carried out in the presence of an additive.
  • a base can be used, and for example, a tertiary amine such as triethylamine, N,N-diisopropylethylamine, or 2,6-lutidine is preferably used, and triethylamine is more preferably used.
  • the amount of additive used is not particularly limited, but is preferably 1 molar equivalent or more and 20 molar equivalents or less relative to (i), and more preferably 1 molar equivalent or more and 10 molar equivalents or less.
  • Steps (1) and (1') can be carried out in the presence or absence of water, but are preferably carried out in the presence of water.
  • the amount of water used is not particularly limited, but is preferably 1 molar equivalent or more and 300 molar equivalents or less, and more preferably 1 molar equivalent or more and 100 molar equivalents or less, relative to (i).
  • the water used is different from the water contained in the organic solvent.
  • Step (1′′) is a step of forming (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • the method for forming (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof is not particularly limited, and can be formed, for example, by carrying out the above-mentioned step (1) or (1′).
  • Step (1''') is a step of reacting dibenzofulvene or a dibenzofulvene derivative with sulfite ion or hydrogen sulfite ion to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • Step (1"" is a step of mixing dibenzofulvene or a dibenzofulvene derivative with at least one member selected from the group consisting of hydrogensulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof, to form (9H-fluoren-9-yl)methanesulfonic acid or its salt, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or its salt.
  • step (2) may be included before any of steps (1), (1'), (1'', (1''') or (1'''').
  • Step (2) is a step, prior to the above step (1), (1'), (1'', (1''') or (1''''), of mixing a first amino-group-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton with a deprotecting agent.
  • the "protecting group having an Fmoc skeleton" in the first amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton is preferably a 9-fluorenylmethyloxycarbonyl (Fmoc) group.
  • the "first amino group-containing compound” in the first amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton is preferably a peptide, an amino acid, or an amino acid amide, and more preferably a peptide.
  • the peptide, amino acid, or amino acid amide includes a peptide, amino acid, or amino acid amide bound to a resin for solid-phase synthesis or a support for liquid-phase peptide synthesis (e.g., a hydrophobic tag).
  • carriers for liquid phase peptide synthesis include, for example, compounds described in Patent Document 4, Japanese Patent No. 5113118, Japanese Patent No. 5929756, Japanese Patent No. 6092513, Japanese Patent No. 5768712, Japanese Patent No. 5803674, Japanese Patent No. 6116782, Japanese Patent No. 6201076, Japanese Patent No. 6283774, Japanese Patent No. 6283775, Japanese Patent No. 6322350, Japanese Patent No. 6393857, Japanese Patent No. 6531235, International Publication No. 2020/175472, and International Publication No. 2020/175473.
  • Step (2) can be carried out in the presence or absence of a solvent, at a temperature of preferably -20°C to 80°C, more preferably 10°C to 80°C, for preferably 0.1 hours to 48 hours, more preferably 0.5 hours to 24 hours.
  • the solvent may be, for example, at least one selected from the group consisting of nitrile solvents, amide solvents, sulfoxide solvents, alcohol solvents, and ether solvents.
  • a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton is used.
  • a base can be used as the deprotecting agent, and examples of the base include organic bases having an amidine skeleton, primary amines, secondary amines, tertiary amines, and inorganic bases.
  • Examples of organic bases having an amidine skeleton include 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), and among these, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is preferably used.
  • Examples of primary amines include propane-1-amine.
  • Examples of secondary amines include morpholine, diethylamine, dicyclohexylamine, 1,1,1,3,3,3-hexamethyldisilazane, piperidine, pyrrolidine, and piperazine, among which morpholine, diethylamine, dicyclohexylamine, and 1,1,1,3,3,3-hexamethyldisilazane are preferably used.
  • Examples of tertiary amines include triethylamine.
  • Examples of inorganic bases include carbonates such as sodium carbonate and potassium carbonate; metal alkoxides such as sodium tert-butoxide and potassium tert-butoxide, among which sodium carbonate and potassium tert-butoxide are preferably used.
  • the amount of the deprotecting agent used is not particularly limited, but is preferably 0.5 to 10 molar equivalents, and more preferably 1 to 5 molar equivalents, relative to the first amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton.
  • dibenzofulvene or a dibenzofulvene derivative can be removed by any of the following steps (3) or (3').
  • dibenzofulvene or a dibenzofulvene derivative can be removed from the mixture produced by any of the following steps (3) or (3').
  • Steps (3) and (3') Step (3) is a step of mixing (i) a first amino-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton, (ii) a deprotecting agent, and (iii) a sulfite ion or a hydrogen sulfite ion, or a compound that generates a sulfite ion or a hydrogen sulfite ion.
  • Step (3') is a step of mixing (i) a first amino-containing compound in which an amino group is protected with a protecting group having an Fmoc skeleton, (ii) a deprotecting agent, and (iii) at least one selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof.
  • steps (3) and (3') (i), (ii) and (iii) may be mixed as they are, or solutions of (i), (ii) and/or (iii) dissolved in a solvent as described below may be mixed.
  • “mixing (i) to (iii)” includes both the act of sequentially adding one of the components (i) to (iii) to the other, and the act of simultaneously adding (i) to (iii).
  • mixing does not require that a homogeneous mixture be obtained when mixing.
  • a 9-fluorenylmethyloxycarbonyl (Fmoc) group is preferred.
  • a peptide, an amino acid, or an amino acid amide is preferred, and a peptide or an amino acid is more preferred.
  • the peptide, amino acid, or amino acid amide includes a peptide, amino acid, or amino acid amide bound to a resin for solid-phase synthesis or a support for liquid-phase peptide synthesis (e.g., a hydrophobic tag).
  • the liquid phase peptide synthesis carrier include compounds described in Patent Document 4, Japanese Patent No. 5113118, Japanese Patent No.
  • a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton is used.
  • a base can be used, and examples thereof include organic bases having an amidine skeleton, primary amines, secondary amines, tertiary amines, and inorganic bases.
  • Examples of organic bases having an amidine skeleton include 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), and among these, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is preferably used.
  • Examples of primary amines include propan-1-amine.
  • Examples of secondary amines include morpholine, diethylamine, dicyclohexylamine, 1,1,1,3,3,3-hexamethyldisilazane, piperidine, pyrrolidine, and piperazine, among which morpholine, diethylamine, dicyclohexylamine, and 1,1,1,3,3,3-hexamethyldisilazane are preferably used.
  • Examples of tertiary amines include triethylamine.
  • Examples of inorganic bases include carbonates such as sodium carbonate and potassium carbonate; metal alkoxides such as sodium tert-butoxide and potassium tert-butoxide, among which sodium carbonate and potassium tert-butoxide are preferably used.
  • the amount of (ii) used is not particularly limited, but is preferably 0.5 to 10 molar equivalents relative to (i), and more preferably 1 to 5 molar equivalents.
  • hydrogen sulfite, disulfite, sulfite, dithionite, and solvates thereof are preferably used.
  • salts of hydrogen sulfite, disulfite, sulfurous acid, and dithionous acid with at least one selected from the group consisting of alkali metals, alkaline earth metals, and ammonium are preferably used
  • salts of hydrogen sulfite, disulfite, sulfurous acid, and dithionous acid with at least one selected from the group consisting of sodium, potassium, calcium, and ammonium are more preferably used
  • sodium hydrogen sulfite, sodium metabisulfite, potassium hydrogen sulfite, sodium dithionite, ammonium sulfite monohydrate, calcium sulfite 0.5 hydrate, sodium sulfite, and potassium sulfite are further preferably used, and sodium hydrogen sulfite, potassium hydrogen sulfite, and sodium dithionite are particularly
  • the amount of (iii) used is not particularly limited, but is preferably 1 molar equivalent or more and 10 molar equivalents or less relative to (i), and more preferably 1 molar equivalent or more and 5 molar equivalents or less.
  • Steps (3) and (3') can be carried out in the presence or absence of a solvent, at a temperature of preferably -20°C to 80°C, more preferably 10°C to 80°C, for a period of preferably 1 hour to 48 hours, more preferably 1 hour to 24 hours.
  • the solvent may be, for example, at least one selected from the group consisting of nitrile solvents, amide solvents, sulfoxide solvents, alcohol solvents, and ether solvents.
  • Steps (3) and (3') can be carried out in the presence of an additive. In some embodiments, steps (3) and (3') are carried out without an additive.
  • a base can be used as the additive, and for example, a tertiary amine such as triethylamine, N,N-diisopropylethylamine, 2,6-lutidine, etc. is preferably used, and triethylamine is more preferably used.
  • the amount of additive used is not particularly limited, but is preferably 1 molar equivalent or more and 20 molar equivalents or less relative to (i), and more preferably 1 molar equivalent or more and 10 molar equivalents or less.
  • Steps (3) and (3') can be carried out in the presence or absence of water, but are preferably carried out in the presence of water.
  • the amount of water used is not particularly limited, but is preferably 1 molar equivalent or more and 300 molar equivalents or less, and more preferably 1 molar equivalent or more and 100 molar equivalents or less, relative to (i).
  • the water is not water contained in an organic solvent.
  • the method may include the following step (4) after one or more of steps (1), (1'), (1'', (1'''), (1'''), (3) or (3').
  • Step (4) is a step of washing the mixture after one or more steps among (1), (1'), (1'', (1''', (1''',), (3) or (3') with a washing solution.
  • This step makes it possible to efficiently remove dibenzofulvene or a dibenzofulvene derivative (preferably (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof) in the mixture from the organic solution that is the mixture after one or more steps among (1), (1'), (1'', (1'''', (1'''',), (3) or (3').
  • dibenzofulvene or a dibenzofulvene derivative preferably (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof
  • washing means removing substances other than the target substance that may be impurities from a solution containing the target substance by a liquid separation operation using a solution that does not contain the target substance.
  • the target substance is usually present in the organic layer, and in this case, the organic layer can be washed with an aqueous solution to extract and remove the substances that may be impurities in the aqueous layer.
  • the cleaning solution it is preferable to use a basic solution (pH 10-14), usually a basic aqueous solution with a pH of 10-14.
  • a basic solution pH 10-14
  • the cleaning solution it is preferable to use at least one selected from the group consisting of an aqueous ammonia solution, an aqueous carbonate solution, and an aqueous phosphate solution, and more preferably an aqueous ammonia solution.
  • the carbonate solution may be, for example, an aqueous sodium carbonate solution.
  • the phosphate solution may be, for example, an aqueous potassium phosphate solution.
  • step (4) it is preferable to use an extraction solvent in order to efficiently extract the amino group-containing compound from the mixture in which the protecting group having the Fmoc skeleton has been deprotected.
  • an extraction solvent for example, at least one solvent selected from the group consisting of benzene-based solvents, ester-based solvents, and ether-based solvents can be used as such an extraction solvent.
  • the present invention provides a method for producing a first compound, comprising the above-mentioned method for removing dibenzofulvene or a dibenzofulvene derivative.
  • the first compound produced by the method is not particularly limited, and examples thereof include amino acids and peptides.
  • the production method of the present invention can produce (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • the present invention provides a method for producing a peptide compound, comprising the steps of: 1) treating a peptide protected with a protecting group having an Fmoc skeleton with a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton in the presence of sulfite ions or hydrogen sulfite ions to obtain a deprotected peptide by removing the protecting group; 2) optionally extending the deprotected peptide with one or more amino acids to obtain an extended peptide.
  • the present invention provides a method for producing a peptide compound, comprising the steps of: 1) treating a protected peptide, in which an amino group is protected with a protecting group having an Fmoc skeleton, with a deprotecting agent capable of deprotecting the protecting group having an Fmoc skeleton to obtain (a) dibenzofulvene or a dibenzofulvene derivative, and (b) a first mixture of deprotected peptide from which the protecting group has been removed; 2) treating the first mixture with sulfite or bisulfite ions to remove the dibenzofulvene or dibenzofulvene derivative to obtain a second mixture comprising the deprotected peptide; 3) optionally extending the deprotected peptide with one or more amino acids to obtain an extended peptide.
  • the deprotected peptide or extended peptide may have an amino acid residue having one reactive site on the C-terminal side and may have an amino acid residue having another reactive site on the N-terminal side, and the production method of the present invention may further include a step of bonding the one reactive site and the other reactive site to form a cyclic peptide compound.
  • the manufacturing method of the present invention may be either liquid phase synthesis or solid phase synthesis, and is not limited to these, but liquid phase synthesis is preferred. Liquid phase synthesis and solid phase synthesis can be carried out by methods well known to those skilled in the art.
  • the solid phase synthesis method is a method in which a compound is bound to a solid phase (a resin for synthesis) and the compound is chemically reacted with a reagent on the solid phase to synthesize the target compound.
  • a desired amino acid or peptide is bound to a solid phase, and then further desired amino acids or peptides are successively linked to the amino acids or peptides bound to the solid phase to elongate the peptide chain, and the peptide is synthesized while still bound to the solid phase.
  • the peptide bound to the solid phase can be separated from the solid phase to obtain the desired peptide.
  • Liquid phase synthesis is a method of synthesizing the desired compound by chemically reacting compounds in the liquid phase (solution).
  • Liquid phase peptide synthesis includes homogeneous reactions in which all reagents, including amino acids and peptides, are dissolved in a solvent, as well as heterogeneous reactions in which all or part of the reagents are not dissolved in the solvent but are dispersed or suspended.
  • the manufacturing method of the present invention may further include, before one or more of steps (2), (3) and (3') in the above removal method, a step of condensing a second amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton with a third amino group-containing compound to obtain the first amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton.
  • the "protecting group having an Fmoc skeleton" in the second amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton is preferably a 9-fluorenylmethyloxycarbonyl (Fmoc) group.
  • One embodiment of the "second amino group-containing compound” in the second amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton is preferably an amino group-containing compound having a carboxyl group.
  • Another embodiment of the "second amino group-containing compound” in the second amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton is preferably a peptide or an amino acid, more preferably an amino acid.
  • an amino group-containing compound that is not bound to a support for liquid-phase peptide synthesis is preferred, and more preferably, the third amino group-containing compound is an amino group-containing compound that is not bound to a support for liquid-phase peptide synthesis, and the support for liquid-phase peptide synthesis is a compound that is bound to the third amino group-containing compound directly or via a linker to increase their solubility in organic solvents and increase their insolubility in water.
  • the support for liquid-phase peptide synthesis include the compounds described in Patent Document 4.
  • a peptide, an amino acid, or an amino acid amide is preferred.
  • the process for obtaining the first amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton can be carried out in the presence or absence of a solvent and in the presence or absence of a condensing agent, at a temperature preferably in the range of -50°C to near the boiling point of the solvent, more preferably in the range of -20°C to 80°C, for preferably 0.1 hours to 48 hours, more preferably 0.5 hours to 24 hours.
  • Solvents that can be used include, for example, acetonitrile, 2-MeTHF, THF, dichloromethane, toluene, ethyl acetate, isopropyl acetate, DMF, DMA, and NMP.
  • Condensing agents include, for example, HATU (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate, CAS RN: 148893-10-1), T3P (2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (50% solution in ethyl acetate, approximately 1.7 mol/L), CAS RN: 68957-94-8), HBTU (1-[bis(dimethylamino)methylene]-1H-benzotriazolium 3-oxide hexafluorophosphate , CAS RN: 94790-37-1), COMU ((1-cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylaminomorpholinocarbenium hexafluorophosphate, CAS RN: 1075
  • the process of obtaining the first amino group-containing compound by such a condensation reaction can be carried out with reference to methods described in the literature.
  • the manufacturing method of the present invention may include repeating the above-mentioned method for removing dibenzofulvene or a dibenzofulvene derivative two or more times, or three or more times.
  • One specific order of the method of the present invention is to carry out step (2), followed by steps (1), (1'), (1'', (1'") or (1''"), followed by (4).
  • a second amino-group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton and a third amino-group-containing compound are condensed in a reaction vessel to obtain the first amino-group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton.
  • the first amino-group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton in the reaction vessel is mixed with a deprotecting agent to deprotect the protecting group having an Fmoc skeleton.
  • dibenzofulvene or a dibenzofulvene derivative is produced.
  • Sulfite ions or hydrogen sulfite ions, or a compound that generates sulfite ions or hydrogen sulfite ions are then added to the reaction vessel and mixed with dibenzofulvene or a dibenzofulvene derivative to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • An organic solvent is then added to the reaction vessel, and the organic layer is washed with a washing solution.
  • step (3) is performed followed by step (4).
  • a second amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton is condensed with a third amino group-containing compound in a reaction vessel to obtain the first amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton.
  • the first amino group-containing compound in which the amino group is protected with a protecting group having an Fmoc skeleton is mixed with (ii) a deprotecting agent and (iii) sulfite ions or hydrogen sulfite ions or a compound that generates sulfite ions or hydrogen sulfite ions in the reaction vessel to form (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • an organic solvent is added to the reaction vessel, and the organic layer is washed with a washing solution.
  • the deprotection of the protecting group having the Fmoc skeleton and the formation of (9H-fluoren-9-yl)methanesulfonic acid or its salt, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or its salt are carried out in one step.
  • the present invention provides a method for deprotecting a protecting group having an Fmoc skeleton, comprising the step of treating a first amino group-containing compound protected by a protecting group having an Fmoc skeleton with a deprotecting agent capable of deprotecting the protecting group having an Fmoc skeleton in the presence of a sulfite ion or a bisulfite ion.
  • Another aspect of the present invention is the use of (a) and/or (b) below for removing dibenzofulvene or a dibenzofulvene derivative: (a) sulfite ion or bisulfite ion, or a compound that generates sulfite ion or bisulfite ion; (b) at least one compound selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof;
  • Another aspect of the present invention is the combined use of the following (a) and/or (b) for deprotecting a protecting group having an Fmoc skeleton and a deprotecting agent capable of deprotecting a protecting group having an Fmoc skeleton: (a) sulfite ion or bisulfite ion, or a compound that generates sulfite ion or bisulfite ion; (b) at least one compound selected from the group consisting of hydrogen sulfite, disulfite and its salts, sulfurous acid and its salts, dithionous acid and its salts, and solvates thereof;
  • composition comprising an amino group-containing compound, and (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof, wherein the value represented by the following formula A, calculated from the UVarea value at 210 nm by HPLC analysis, is 1% or less.
  • the value represented by Formula A is less than 1%, less than 0.5%, or undetectable.
  • the present invention provides a composition comprising an amino group-containing compound and (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof, wherein the content of (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof is 0.01 or less relative to the amino group-containing compound and (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or a (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof.
  • the content is calculated by measuring the UVarea value at 210 nm by HPLC analysis. In one embodiment, the content is 0.01 or less, 0.005 or less, or undetectable.
  • the amino group-containing compound contained in the composition of the present invention is a peptide, an amino acid, or an amino acid amide.
  • the (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof, or the (9H-fluoren-9-yl)methanesulfonic acid derivative or a salt thereof contained in the composition of the present invention is (9H-fluoren-9-yl)methanesulfonic acid or a salt thereof.
  • a Waters H-Class system was used for HPLC analysis, with measurements performed using a PDA detector and analysis at a wavelength of 210 nm.
  • the analytical conditions are shown below.
  • a Waters H-Class system was used for LCMS analysis, and a QDa detector or SQD2 detector was used for MS analysis.
  • the analytical conditions are shown below.
  • Sample preparation method 1 A mixture containing the target compound was diluted with MeCN.
  • Sample preparation method 2 A mixture containing the target compound was diluted with a mixture of MeCN and H 2 N n Pr in a 9:1 ratio.
  • Sample preparation method 3 The mixture containing the target substance was diluted with a mixture of MeOH and water in a ratio of 4:1.
  • reaction conversion rate was calculated by one of the following formulas using the area values of the raw materials and the target product calculated by HPLC analysis, or the area values of the raw materials, the area values of the propyl amide of the raw materials, and the area values of the target product.
  • Reaction conversion rate (%) area value of target substance / (area value of raw material + area value of propyl amide of raw material + area value of target substance) x 100
  • the deprotection reaction conversion rate of the Fmoc group was calculated according to the following formula using the area value of the Fmoc form and the area value of the de-Fmoc form calculated by HPLC analysis.
  • the capture reaction conversion rate of DBF was calculated according to the following formula using the area value of DBF calculated by HPLC analysis and the area value of FMSA or FMSA Salt, or the area value of compound 35, or the area value of compound 36, or the area value of compound 37.
  • Formula 2 for calculating the capture reaction conversion rate of DBF: Capture reaction conversion rate of DBF (%) area value of FMSA or FMSA Salt / (area value of DBF + area value of compound 35 + area value of FMSA or FMSA Salt) ⁇ 100
  • Formula 3 for calculating the capture reaction conversion rate of DBF: Capture reaction conversion rate of DBF (%) area value of compound 36/(area value of DBF + area value of compound 36) ⁇ 100
  • the residual rate of FMSA or FMSA Salt was calculated according to the following formula using the area value of the de-Fmoc form calculated by HPLC analysis and the area value of FMSA or FMSA Salt.
  • Residual rate of FMSA or FMSA Salt (%) Area value of FMSA or FMSA Salt / (Area value of de-Fmoc product + Area value of FMSA or FMSA Salt) ⁇ 100
  • reaction mixture was stirred while T3P (50 w/w% 2-MeTHF solution, 2.68 mL, 1.5 eq.) was added, and the mixture was stirred at room temperature for 1 hour. Then, DIPEA (1.70 mL, 3.4 eq.) and T3P (50 w/w% 2-MeTHF solution, 2.68 mL, 1.5 eq.) were added at room temperature while stirring, and the mixture was stirred for another 0.5 hours.
  • the reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the reaction conversion rate was confirmed to be 99.9% by HPLC analysis (calculation formula for reaction conversion rate 1).
  • a 5% aqueous sodium carbonate solution (15 mL) was added to the reaction vessel and stirred for 10 minutes. After the aqueous layer was discharged, the obtained organic layer was washed with a 5% aqueous sodium hydrogen sulfate monohydrate solution (15 mL x 2), a 5% aqueous sodium carbonate solution (15 mL), and a 5% aqueous sodium chloride solution (15 mL). The obtained organic layer was dehydrated with sodium sulfate and filtered to remove sodium sulfate. The mixture was concentrated under reduced pressure at an external temperature of 40°C to obtain a residue containing compound 3 (1.43 g).
  • sample preparation method 1 The reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, and it was confirmed that the reaction conversion rate had progressed to 99.9% or more (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • triethylamine 96.0 ⁇ L, 4.0 eq.
  • water 31.3 ⁇ L, 10 eq.
  • sodium hydrogen sulfite 45.6 mg, 2.5 eq.
  • Example preparation method 1 After stirring the reaction mixture for 1 hour, the reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the DBF capture reaction was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.9% or more (calculation formula 1 for DBF capture reaction conversion rate).
  • IPAc (0.50 mL), toluene (0.50 mL), and 20% aqueous ammonia solution (1.0 mL) were added to the reaction vessel and stirred for 5 minutes. After discharging the aqueous layer, the obtained organic layer was washed again with 20% aqueous ammonia solution (1.0 mL).
  • Example preparation method 1 The reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the residual rate of FMSA or FMSA Salt was confirmed to be 0.39% by HPLC analysis (calculation formula for residual rate of FMSA or FMSA Salt).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 40 ° C. MeCN (50 ⁇ L) was added to obtain a MeCN solution (124 mg) containing compound 4, which was subjected to the following analysis.
  • Example 2 Structural identification of (9H-fluoren-9-yl)methanesulfonic acid (FMSA or FMSA salt)
  • the aqueous layer obtained in the separation washing step with 20% aqueous ammonia solution in Example 1-(iii) was freeze-dried under reduced pressure to remove water and other volatile components, thereby obtaining FMSA as a 1:1 mixture with DBU.
  • Example 3 Compound 6: Synthesis of tert-butyl (2S)-2-[[(2S)-1-[(2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-(p-tolyl)propanoyl]pyrrolidine-2-carbonyl]amino]-3-phenyl-propanoate
  • Compound 4 (177 mg) and compound 5 (245 mg, 1.1 eq.) obtained in Example 1-(iii) were dissolved in MeCN (1.0 mL) in a flask, and the atmosphere of the reaction vessel was replaced with nitrogen.
  • NMM 183 ⁇ L, 3.0 eq.
  • HATU 317 mg, 1.5 eq.
  • reaction conversion rate calculation formula 1 Cyclopentyl methyl ether (2.0 mL), 5% aqueous sodium carbonate solution (1.0 mL), and N-methylimidazole (44.5 ⁇ L, 1.0 eq.) were added in sequence.
  • the reaction mixture was stirred for 1 hour, then allowed to stand, and the aqueous layer was removed. 20% aqueous ammonia solution (1.0 mL) was added to the reaction vessel, and the mixture was stirred for 5 minutes, then allowed to stand, and the aqueous layer was removed.
  • Example 4 (i) Synthesis of Compound 8: (tert-butyl (3S)-3-[benzyloxycarbonyl(methyl)amino]-4-(dimethylamino)-4-oxo-butanoate)
  • Compound 7 (62.8 kg) and 2-MeTHF (310 kg) were added in sequence at room temperature to a reaction vessel purged with nitrogen.
  • the external temperature of the reaction vessel was set to 10°C, and DIPEA (89.5 kg) and dimethylamine-THF solution (2 M, THF solution, 71.4 kg) were added in sequence while stirring the reaction mixture, and the mixture was stirred for 30 minutes.
  • reaction conversion rate 2 After adding T3P (50% w/w, 2-MeTHF solution, 151 kg), the external temperature of the reaction vessel was set to 25°C and the mixture was stirred for 2 hours. The reaction mixture was sampled and sample preparation (sample preparation method 2), and the reaction conversion rate was confirmed to be 90.2% by HPLC analysis (calculation formula for reaction conversion rate 2). The external temperature of the reaction vessel was set to 10°C, and dimethylamine-THF solution (2 M, THF solution, 9.80 kg) was added while stirring, and the external temperature of the reaction vessel was set to 25°C and the mixture was stirred for 20 minutes.
  • reaction conversion rate 2 was confirmed to be 99.4% by HPLC analysis (calculation formula for reaction conversion rate 2).
  • the external temperature of the reaction vessel was set to 10°C, and 10% aqueous citric acid monohydrate solution (380 kg) was added to the reaction mixture.
  • the external temperature of the reaction vessel was set to 25°C, and after stirring for 10 minutes, the stirring was stopped and the aqueous layer was discharged from the reaction vessel.
  • the obtained organic layer was washed with 10% aqueous citric acid monohydrate solution (380 kg x 2) and 5% aqueous sodium carbonate solution (380 kg x 2).
  • Example preparation method 1 the reaction conversion rate was confirmed to be 99.9% by HPLC analysis (reaction conversion rate calculation formula 1). After replacing the inside of the reaction vessel with nitrogen, the reaction mixture was pressure filtered.
  • HATU 67.7 kg
  • the reaction mixture was stirred at 25°C for 3 hours, and then sampled and sampled (sample preparation method 2).
  • the reaction conversion was confirmed to be 98.5% by HPLC analysis (calculation formula 2 for reaction conversion).
  • CPME 54 kg
  • 5% aqueous potassium carbonate solution 48 kg
  • N-methylimidazole 9.70 kg
  • the obtained organic layer was washed with 2.5% aqueous ammonia solution (240 kg), 10% aqueous sodium hydrogen sulfate monohydrate solution (240 kg x 2), and 5% aqueous potassium carbonate solution (240 kg x 2).
  • 2-MeTHF 86 kg was added to the obtained organic layer, and the mixture was concentrated under reduced pressure while stirring at an external temperature of 60°C until the liquid volume was about 100 L, and a solution containing compound 11 (98.1 kg) was obtained.
  • Example preparation method 1 The solution containing compound 11 obtained in Example 4-(iii) (97.1 kg) and 2-MeTHF (160 kg) were added in sequence at room temperature.
  • the external temperature of the reaction vessel was set to 25°C, and the internal pressure of the reaction vessel was pressurized with hydrogen until it reached 0.18 MPaG (2.8 atm). After stirring for 2 hours, it was confirmed that the internal pressure did not fluctuate, and then the reaction vessel was pressurized with hydrogen to 0.18 MPaG (2.8 atm), and further stirred for 1 hour.
  • the reaction mixture was sampled and prepared (sample preparation method 1), and the reaction conversion rate was confirmed to be 99.9% by HPLC analysis (reaction conversion rate calculation formula 1).
  • the reaction vessel was pressurized to 0.18 MPaG (2.8 atm) with hydrogen and stirred for 1 hour.
  • the reaction mixture was sampled and prepared (sample preparation method 1), and the reaction conversion rate was confirmed to be 99.9% or more by HPLC analysis (reaction conversion rate calculation formula 1).
  • the reaction mixture was pressure filtered.
  • the inside of the reaction vessel and the filter were washed with 2-MeTHF (85 kg x 2), and the obtained filtrate and washing liquid were combined and concentrated under reduced pressure while stirring at an external temperature of 60 ° C until the liquid volume was about 100 L. This concentrated liquid and the washing liquid obtained by washing the reaction vessel with 2-MeTHF (43 kg) were combined to obtain a solution containing compound 12 (133 kg).
  • the external temperature of the reaction vessel was cooled to 10°C, and DIPEA (77.1 kg), a solution containing compound 12 obtained in Example 4-(iv) (133 kg), T3P (50% w/w, 2-MeTHF solution, 194 kg), and DMAP (28.1 kg) were added in sequence.
  • the external temperature of the reaction vessel was set to 50°C, and stirring was continued for 5 hours.
  • the reaction mixture was sampled to prepare a sample (sample preparation method 2), and the reaction conversion rate was confirmed to be 99.3% by HPLC analysis (calculation formula 2 for reaction conversion rate).
  • the external temperature of the reaction vessel was set to 10°C, and a 5% aqueous sodium carbonate solution (350 kg) was added.
  • the external temperature of the reaction vessel was set to 25°C, and stirring was continued for 30 minutes, after which the stirring was stopped and the aqueous layer was discharged from the reaction vessel.
  • 5% sodium hydrogen sulfate monohydrate aqueous solution (350 L) was added, and after stirring for 10 minutes, the stirring was stopped and the aqueous layer was discharged from the reaction vessel.
  • the obtained organic layer was washed with 5% sodium hydrogen sulfate monohydrate aqueous solution (350 kg) and 5% sodium carbonate aqueous solution (350 kg).
  • LiBH4 (4 M, THF solution, 0.6 kg) was added while stirring, and the reaction mixture was sampled for sample preparation (sample preparation method 3), and the reaction conversion rate was confirmed to be 99.5% by HPLC analysis (calculation formula 1 for reaction conversion rate).
  • TFE 228 kg
  • the external temperature of the reaction vessel was raised to 0°C over 1 hour, and the mixture was stirred at 0°C for 1 hour.
  • 20% aqueous ammonium chloride solution 200 kg was added dropwise over 2 hours, and the mixture was stirred for 30 minutes at an external temperature of 25°C, after which the stirring was stopped and the aqueous layer was discharged from the reaction vessel.
  • the external temperature of the reaction vessel was set to 10°C, and trifluoroacetic acid (26.0 kg) was added.
  • the external temperature of the reaction vessel was set to 25°C, and the mixture was stirred for 1 hour.
  • the obtained reaction mixture and the washing liquid obtained by washing the reaction vessel with 2-MeTHF (84.7 kg x 2) were mixed to obtain a mixture.
  • 2 M aqueous sodium hydroxide solution (630 kg) was added to another reaction vessel purged with nitrogen at room temperature, and the external temperature of the reaction vessel was set to 10°C.
  • the above mixture was added dropwise over 1.5 hours, and the external temperature of the reaction vessel was set to 25°C. After stirring for 10 minutes, the stirring was stopped, and the aqueous layer was discharged from the reaction vessel.
  • the obtained organic layer was washed with 2 M aqueous sodium hydroxide solution (630 kg x 3) and 10% aqueous dipotassium hydrogen phosphate solution (330 kg).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 40°C until the liquid volume was about 220 L.
  • 2-MeTHF (85 kg) was added again, and the mixture was concentrated under reduced pressure at an external temperature of 40°C until the liquid volume was about 100 L. This concentration procedure was repeated 10 times, and the concentrated solution and the washings obtained by washing the reaction vessel with acetonitrile (56.2 kg) were combined to obtain a solution containing compound 15 (151 kg).
  • the external temperature of the reaction vessel was set to 25°C, and the mixture was stirred for 40 minutes, and the aqueous layer was discharged from the reaction vessel.
  • the obtained organic layer was washed with 5% aqueous sodium hydrogen sulfate monohydrate solution (320 kg ⁇ 2) and 5% aqueous sodium carbonate solution (320 kg ⁇ 2).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 60° C. until the liquid volume was about 500 L.
  • 2-MeTHF (86 kg) the mixture was concentrated under reduced pressure at an external temperature of 40° C. until the liquid volume was about 200 L, and a solution containing compound 17 (176 kg) was obtained.
  • the mixture was stirred for 2 hours while maintaining the internal pressure pressurized to 0.40 MPaG (5.0 atm).
  • the solution containing compound 17 obtained in Example 4-(vii) (176 kg) and THF (230 kg) were added in sequence at room temperature.
  • the external temperature of the reaction vessel was set to 25°C, and the reaction vessel was pressurized with hydrogen until the internal pressure reached 0.18 MPaG (2.8 atm). After 4 hours, it was confirmed that the internal pressure did not change, and then the reaction vessel was pressurized with hydrogen to 0.18 MPaG (2.8 atm) after nitrogen replacement, and further stirred for 1 hour.
  • the reaction mixture was sampled and prepared (sample preparation method 1), and the reaction conversion rate was confirmed to be 99.6% by HPLC analysis (calculation formula for reaction conversion rate 1).
  • the reaction mixture was pressure filtered.
  • the reaction vessel and the filter were washed with 2-MeTHF (85 kg x 2).
  • the obtained filtrate and washing liquid were concentrated under reduced pressure at an external temperature of 50 ° C until the liquid volume was about 600 L.
  • 2-MeTHF 160 kg
  • the mixture was concentrated under reduced pressure at an external temperature of 50 ° C until the liquid volume was about 230 L. This concentration operation was repeated three times.
  • the external temperature of the reaction vessel was set to 50 ° C, heptane (100 kg) was added, and then seed crystals of compound 18 (116 g) and heptane (5.3 kg) were added in sequence.
  • 2-MeTHF (12 mL, 12 v/w) and DIPEA (1.70 mL, 3.4 eq.) were added in sequence at room temperature.
  • T3P 50 w/w% 2-MeTHF solution, 2.68 mL, 1.5 eq.
  • the reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the reaction conversion rate was confirmed to be 99.9% or more by HPLC analysis (calculation formula for reaction conversion rate 1).
  • 5% aqueous sodium carbonate solution (15 mL) was added to the reaction vessel and stirred for 5 minutes.
  • the obtained organic layer was washed with 5% aqueous sodium hydrogen sulfate monohydrate solution (15 mL x 4), 5% aqueous sodium carbonate solution (15 mL), and 5% aqueous sodium chloride solution (15 mL).
  • the obtained organic layer was dehydrated with sodium sulfate, filtered to remove sodium sulfate, and concentrated under reduced pressure at an external temperature of 40° C. to obtain a residue containing compound 20 (2.42 g).
  • Example preparation method 1 DBU (25.9 ⁇ L, 1.0 eq.) was added to the reaction mixture while stirring at room temperature, and the mixture was stirred at room temperature for 30 minutes.
  • the reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, and it was confirmed that the reaction conversion rate had progressed to 99.9% or more (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • triethylamine 96.0 ⁇ L, 4.0 eq.
  • water 31.3 ⁇ L, 10 eq.
  • sodium hydrogen sulfite 44.5 mg, 2.5 eq.
  • Example preparation method 1 After stirring for 1 hour, the reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the DBF capture reaction was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.9% or more (calculation formula 1 for DBF capture reaction conversion rate).
  • IPAc (0.75 mL), toluene (0.75 mL), and 20% aqueous ammonia solution (1.5 mL) were added to the reaction vessel and stirred for 5 minutes. After discharging the aqueous layer, the obtained organic layer was washed again with 20% aqueous ammonia solution (1.5 mL).
  • Example preparation method 1 Samples were sampled and prepared as a sample (sample preparation method 1), and HPLC analysis confirmed that the residual rate of FMSA or FMSA Salt was 0.33% (calculation formula for the residual rate of FMSA or FMSA Salt).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 40 ° C. MeCN (100 ⁇ L) was added to obtain a MeCN solution (211 mg) containing compound 21, which was subjected to the following analysis.
  • reaction vessel After the reaction vessel was substituted with nitrogen, it was pressurized with hydrogen to 0.40 MPaG (5.0 atm), and the internal temperature of the reaction vessel was set to 25 ° C. The mixture was stirred for 30 minutes while maintaining the internal pressure pressurized to 0.40 MPaG (5.0 atm).
  • a solution containing compound 22 synthesized according to the method described in Example 21 of International Publication WO2022/234864 (7.22 g, content 42.4 wt%, actual mass 3.06 g) and 2-MeTHF (6.0 mL) were added in sequence at room temperature. The external temperature of the reaction vessel was set to 25 ° C., and the internal pressure of the reaction vessel was pressurized with hydrogen until it reached 0.20 MPaG (3.0 atm).
  • reaction mixture was sampled and prepared (sample preparation method 1), and the reaction conversion rate was confirmed to be 97.3% by HPLC analysis (calculation formula for reaction conversion rate 1). After replacing the inside of the reaction vessel with nitrogen, the reaction mixture was pressure filtered. The reaction vessel and the filter were washed with 2-MeTHF (12 mL x 3).
  • reaction vessel was replaced with nitrogen, and HATU (378 mg) was added.
  • the external temperature was set to 25°C, and after stirring for 3 hours, the reaction mixture was sampled and sample preparation (sample preparation method 1) was performed, and it was confirmed that the reaction conversion rate was 96.1% by HPLC analysis (calculation formula 1 for reaction conversion rate).
  • 2-MeTHF (3.0 mL), 5% potassium carbonate aqueous solution (6.0 mL), and N-methylimidazole (52.9 ⁇ L) were added in sequence, and after stirring for 30 minutes, the aqueous layer was discharged.
  • the obtained organic layer was washed with 10% ammonia aqueous solution (6.0 mL ⁇ 2), 5% sulfuric acid aqueous solution (6.0 mL), and 5% potassium carbonate aqueous solution (6.0 mL).
  • the organic layer was concentrated under reduced pressure at an external temperature of 40° C., and the residue was purified by silica gel chromatography (eluent: MeOH/ethyl acetate 0:100 to 8:92).
  • the eluate containing compound 25 was concentrated under reduced pressure at 30° C. to give compound 25 (1.04 g).
  • Example preparation method 1 DBU (22.8 ⁇ L, 1.0 eq.) was added to the reaction mixture while stirring at room temperature, and the mixture was stirred at room temperature for 30 minutes.
  • the reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (meaning that the peak of the deprotected Fmoc body was confirmed and that the peak of the Fmoc body was not confirmed. The same applies below.) (Calculation formula for the conversion rate of the deprotection reaction of the Fmoc group).
  • the obtained organic layer was washed again with 20% aqueous ammonia solution (3.0 mL).
  • the reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the residual rate of FMSA or FMSA Salt was confirmed to be 0.11% by HPLC analysis (calculation formula for residual rate of FMSA or FMSA Salt).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 40 ° C. to obtain a residue containing compound 26 (261 mg), which was subjected to the following analysis.
  • reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the reaction conversion rate was confirmed to be 81.7% by HPLC analysis (calculation formula for reaction conversion rate 1).
  • Triethylamine (0.217 mL) was added, and the resulting slurry was filtered, and the solid residue was washed with cyclohexane (20 mL ⁇ 3).
  • reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • sample preparation method 1 The reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • triethylamine (279 ⁇ L, 4.0 eq.
  • water 90.1 ⁇ L, 10 eq.
  • sodium hydrogen sulfite 130 mg, 2.5 eq.
  • Example preparation method 1 After stirring for 1 hour, the reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the DBF capture reaction was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.9% (calculation formula 1 for DBF capture reaction conversion rate).
  • IPAc 1.5 mL
  • toluene 1.5 mL
  • 20% aqueous ammonia 3.0 mL
  • Example preparation method 1 Samples were sampled and prepared as a sample (sample preparation method 1), and HPLC analysis confirmed that the residual rate of FMSA or FMSA Salt was 1.09% (calculation formula for the residual rate of FMSA or FMSA Salt).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 40 ° C. to obtain a residue (175 mg) containing compound 29, which was subjected to the following analysis.
  • LC purity of compound 29 93.3% (HPLC analysis conditions: method 1) Content: 93.7 wt% (The obtained residue and 3,5-bis(trifluoromethyl)benzoic acid were dissolved in DMSO-d 6 and subjected to qNMR analysis.) Yield: 92.7%
  • Example 7 Synthesis of Compound 31: 5-methyl-4-phenylthiazol-2-amine
  • Compound 30 300 mg
  • MeCN 0.60 mL, 2 v/w
  • DBU 109 ⁇ L, 1.0 eq.
  • the reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • sample preparation method 1 After the aqueous layer was discharged, the obtained organic layer was washed again with 20% aqueous ammonia (1.0 mL). Sampling was performed to prepare a sample (sample preparation method 1), and it was confirmed by HPLC analysis that the residual rate of FMSA or FMSA Salt was 0.65% (calculation formula for the residual rate of FMSA or FMSA Salt).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 40°C to obtain a residue (130 mg) containing compound 31, which was subjected to the following analysis.
  • Example 8 (i) Synthesis of Compound 33: tert-Butyl (2S)-2-[[(2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)pent-4-enoyl]amino]-3-phenyl-propanoate
  • Compound 32 (0.964 g) and compound 2 (0.809 g, 1.1 eq.) were added to the reaction vessel, and the atmosphere in the reaction vessel was replaced with nitrogen.
  • 2-MeTHF (12 mL, 12 v/w) and DIPEA (1.70 mL, 3.4 eq.) were added to the reaction mixture at room temperature in that order.
  • T3P 50 w/w% 2-MeTHF solution, 2.68 mL, 1.5 eq.
  • the reaction mixture was sampled to prepare a sample (sample preparation method 1), and the reaction conversion rate was confirmed to be 99.9% by HPLC analysis (calculation formula for reaction conversion rate 1).
  • 5% aqueous sodium carbonate solution (15 mL) was added to the reaction vessel and stirred for 5 minutes.
  • the obtained organic layer was washed with 5% aqueous sodium hydrogen sulfate monohydrate solution (15 mL x 2), 5% aqueous sodium carbonate solution (15 mL), and 5% aqueous sodium chloride solution (15 mL).
  • the obtained organic layer was dehydrated with sodium sulfate, filtered to remove sodium sulfate, and concentrated under reduced pressure at an external temperature of 40° C. to obtain a residue containing compound 33 (0.794 g).
  • the reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, and it was confirmed that the reaction conversion rate had progressed to 99.9% or more (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • sample preparation method 1 The reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, and it was confirmed that the reaction conversion rate had progressed to 99.9% or more (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • triethylamine (96.0 ⁇ L, 4.0 eq.
  • water 31.3 ⁇ L, 10 eq.
  • sodium hydrogen sulfite 45.4 mg, 2.5 eq.
  • Example preparation method 1 After stirring for 1 hour, the reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the DBF capture reaction was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.9% or more (calculation formula 1 for DBF capture reaction conversion rate).
  • IPAc (0.50 mL), toluene (0.50 mL), and 20% aqueous ammonia solution (1.0 mL) were added to the reaction vessel and stirred for 5 minutes. After discharging the aqueous layer, the obtained organic layer was washed again with 20% aqueous ammonia solution (1.0 mL).
  • Example preparation method 1 Samples were sampled and prepared as a sample (sample preparation method 1), and HPLC analysis confirmed that the residual rate of FMSA or FMSA Salt was 0.30% (calculation formula for the residual rate of FMSA or FMSA Salt).
  • the obtained organic layer was concentrated under reduced pressure at an external temperature of 40 ° C. MeCN (50 ⁇ L) was added to obtain a MeCN solution (121 mg) containing compound 34, which was subjected to the following analysis.
  • LC purity of compound 34 99.1% (HPLC analysis conditions: method 1) Content: 44.9 wt% (The obtained residue and 3,5-bis(trifluoromethyl)benzoic acid were dissolved in DMSO-d 6 and subjected to qNMR analysis.) Yield: 98.6%
  • Example 9 Using compound 33 for which reaction conditions were examined , deprotection of the Fmoc group and subsequent capture reaction of DBF were carried out under the reaction conditions shown in the table below in the same manner as in Example 8-(ii), and the deprotection rate of the Fmoc group and the capture rate of DBF were measured (calculation formula for the deprotection reaction conversion rate of the Fmoc group, and calculation formula 1 for the capture reaction conversion rate of DBF).
  • Example 9-1 the molar equivalents of each reagent were increased, and it was confirmed that the reaction conversion rate of the DBF capture reaction was 99.9% or more.
  • Example 9-2 when the reaction was carried out without adding triethylamine, the reaction conversion rate of the DBF capture reaction decreased to 15.9%.
  • Example 9-3 in which the reaction temperature was heated to 50°C, the conversion rate increased to 88.9% 6 hours after the start of the reaction
  • Example 9-4 in which the reaction temperature was heated to 80°C, the conversion rate reached 100% 6 hours after the start of the reaction.
  • Examples 9-5, 9-6, 9-7, 9-8, 9-9, and 9-10 potassium sulfite, potassium hydrogen sulfite, ammonium sulfite monohydrate, calcium sulfite 0.5 hydrate, and sodium dithionite were used as scavengers, respectively, and it was confirmed that DBF capture proceeded as FMSA or FMSA Salt under all conditions.
  • Examples 9-11 and 9-12 the amide solvent DMA and the alcohol solvent MeOH were used as the solvent, and it was confirmed that the conversion rates of the DBF capture reaction were 99.1% and 99.9%, respectively.
  • Examples 9-13 and 9-14 DIPEA and 2,6-lutidine were used as the bases added under DBF capture conditions, and the conversion rates of the DBF capture reaction were confirmed to be 99.8% and 67.4%, respectively.
  • Example 10 Considering cleaning conditions Compound 33 (32.0 mg, content 79.4%, actual mass 25.4 mg) and MeCN (540 ⁇ L, 21 v/w) were added to the reaction vessel, and the atmosphere in the reaction vessel was replaced with nitrogen. Next, DBU (7.0 ⁇ L, 1.0 eq.) was added to the reaction mixture while stirring at room temperature, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.3% (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • reaction solution was divided into three, and 2-MeTHF (300 ⁇ L) was added to each, followed by washing under the conditions shown in the table below, and the residual rate of FMSA or FMSA Salt was confirmed by HPLC analysis (calculation formula for FMSA or FMSA Salt residual rate).
  • Example 11 Example using morpholine as a deprotecting agent Compound 33 (32.5 mg, content 79.4%, actual mass 25.8 mg) and MeCN (0.127 mL, 5 v/w) were added to the reaction vessel, and the atmosphere in the reaction vessel was replaced with nitrogen. Then, morpholine (20.2 ⁇ L, 5.0 eq.) was added at room temperature while stirring the reaction mixture, and the mixture was stirred at room temperature for 30 minutes. Then, morpholine (20.2 ⁇ L, 5.0 eq.) was added at room temperature while stirring the reaction mixture, and the reaction mixture was stirred for another 1 hour.
  • morpholine 20.2 ⁇ L, 5.0 eq.
  • reaction mixture was sampled and prepared as a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, and the reaction conversion rate was confirmed to be 91.8% (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • DBF and compound 35 which is a morpholine adduct of DBF, were observed, and the ratio of DBF to compound 35 was 6.5:93.5.
  • the deprotection reaction of the Fmoc group and the capture reaction of DBF were evaluated by HPLC analysis, and it was confirmed that the reaction conversion rate of the deprotection reaction of the Fmoc group was 100% and the reaction conversion rate of the capture reaction of DBF was 15.6% (calculation formula for the deprotection reaction conversion rate of the Fmoc group, calculation formula for the capture reaction conversion rate of DBF 2).
  • the external temperature of the reaction vessel was heated to 50 ° C., and after stirring for 2 hours, the reaction mixture was sampled and prepared as a sample (sample preparation method 1).
  • the capture reaction of DBF was evaluated by HPLC analysis, and it was confirmed that the reaction conversion rate was 44.3% (calculation formula for the capture reaction conversion rate of DBF 2).
  • reaction vessel was raised to 78°C, and the reaction mixture was stirred for 2 hours.
  • the reaction mixture was then sampled and prepared as a sample (sample preparation method 1).
  • the DBF capture reaction was evaluated by HPLC analysis, and the reaction conversion rate was confirmed to be 95.7% (Equation 2 for calculating the DBF capture reaction conversion rate).
  • Example 12 Example compound 33 using a primary amine or a secondary amine as a deprotecting agent was used to carry out the deprotection reaction of the Fmoc group and the subsequent capture reaction of DBF using the amines shown in the table below in the same manner as in Example 11, and the deprotection rate of the Fmoc group and the capture rate of DBF were measured (calculation formula for the deprotection reaction conversion rate of the Fmoc group, calculation formula 1 for the capture reaction conversion rate of DBF).
  • Examples 12-1, 12-2, 12-3, and 12-4 unlike the investigation of the addition of morpholine in Example 11, no compounds in which the corresponding amine was added to DBF were observed, but it was confirmed that DBF was captured as FMSA or FMSA Salt. In addition, it was confirmed that the deprotection reaction of the Fmoc group proceeded even after the DBF capture conditions were applied, and that the deprotection reaction and the DBF capture reaction proceeded simultaneously.
  • Example 13 Example of simultaneous deprotection and DBF capture Compound 33 (32.0 mg, content 79.4%, actual mass 25.4 mg), MeCN (110 ⁇ L, 4.3 v/w), and 2-MeTHF (110 ⁇ L, 4.3 v/w) were added to a reaction vessel, and the atmosphere in the reaction vessel was replaced with nitrogen. Next, triethylamine (65.2 ⁇ L, 10 eq.), water (8.4 ⁇ L, 10 eq.), sodium hydrogen sulfite (16.5 mg, 3.4 eq.), and DBU (20.9 ⁇ L, 3.0 eq.) were added successively at room temperature while stirring the reaction mixture, and the mixture was stirred for 1 hour.
  • reaction mixture was sampled to prepare a sample (sample preparation method 1).
  • HPLC analysis confirmed that the reaction conversion rate of the Fmoc group deprotection reaction was 100% (calculation formula for the Fmoc group deprotection conversion rate), and the reaction conversion rate of the dibenzofulvene capture reaction was 99.9% or more (calculation formula 1 for the DBF capture reaction conversion rate).
  • Example 14 Using compound 33 for reaction condition investigation , deprotection of the Fmoc group and capture of DBF were simultaneously carried out under the reaction conditions shown in the table below in the same manner as in Example 13, and the deprotection rate of the Fmoc group and the capture rate of DBF were measured (calculation formula for the deprotection reaction conversion rate of the Fmoc group, calculation formula 1 for the capture reaction conversion rate of DBF).
  • Examples 14-1, 14-2, 14-3, and 14-4 MeOH solvent was used, and it was confirmed that the deprotection reaction and the DBF capture reaction proceeded at 25°C regardless of the presence or absence of water, and that the deprotection reaction and the DBF capture reaction were completed in 1 hour when heated to 50°C.
  • Example 14-8 When the DMI solvent of Example 14-5 was used, the deprotection reaction and the DBF capture reaction were completed in 1 hour even at a reaction temperature of 25° C. In Example 14-6, the reaction was carried out in the presence of DMI solvent without adding water, and a delay in the DBF capture reaction was confirmed. On the other hand, under conditions without adding triethylamine as in Example 14-17, the deprotection reaction and the DBF capture reaction were confirmed to be completed in 1 hour at 50° C. In Examples 14-8 and 14-9, DMSO solvent was used, and both were carried out under conditions without the addition of triethylamine. In Example 14-8, under conditions with the addition of water, the deprotection reaction and the DBF capture reaction were completed in 1 hour, and it was confirmed that even under conditions without the addition of water in Example 14-9, both reactions were completed by extending the reaction time to 4 hours.
  • Example 15 Confirmation of DBF regeneration during base washing removal when sodium bisulfite is used as a scavenger Compound 33 (32.0 mg, content 79.4%, actual mass 25.4 mg) and MeCN (540 ⁇ L, 21 v/w) were added to the reaction vessel, and the atmosphere in the reaction vessel was replaced with nitrogen. Next, DBU (7.0 ⁇ L, 1.0 eq.) was added to the reaction mixture while stirring at room temperature, and the mixture was stirred at room temperature for 1 hour.
  • DBU 7.0 ⁇ L, 1.0 eq.
  • reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.4% (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • sample preparation method 1 The reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.4% (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • triethylamine (65.5 ⁇ L, 10 eq.)
  • water 85 ⁇ L, 100 eq.
  • sodium hydrogen sulfite 27.6 mg, 5.6 eq.
  • Example preparation method 1 After stirring for 4 hours, the reaction mixture was sampled to prepare a sample (sample preparation method 1), and the DBF capture reaction was evaluated by HPLC analysis, confirming that the reaction conversion rate was 99.9% or more (calculation formula 1 for DBF capture reaction conversion rate).
  • ethyl acetate 0.5 mL was added to the reaction mixture, and the mixture was washed four times with 2.5% aqueous ammonia solution (0.5 mL). It was confirmed that almost no compound 34 was present in each aqueous layer after washing, and the area ratio of FMSA or FMSA Salt to compound 34 and the area ratio of DBF to compound 34 were measured by HPLC analysis using compound 34 as an internal standard.
  • Table 7 As the number of washes increased, the area ratio of FMSA or FMSA Salt gradually decreased, while there was no change in DBF, that is, it was confirmed that DBF was not regenerated from FMSA or FMSA salt.
  • reaction mixture was sampled and prepared as a sample (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate of the Fmoc group deprotection reaction was 100% (calculation formula for the Fmoc group deprotection reaction conversion rate) and the reaction conversion rate of the DBF capture reaction was 84.8% (calculation formula for the DBF capture reaction conversion rate 3).
  • the reaction mixture was washed four times with 5% tripotassium phosphate aqueous solution (1 mL). It was confirmed that almost no compound 34 was present in each aqueous layer after washing, and the area ratios of compound 36 to compound 34 and the area ratios of DBF to compound 34 were measured by HPLC analysis using compound 34 as an internal standard. The results are shown in Table 8. It was confirmed that the area ratio of compound 36 gradually decreased while the area ratio of DBF gradually increased with increasing number of washings, that is, DBF was regenerated from compound 36.
  • reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • sample preparation method 1 The reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • triethylamine 240 ⁇ L, 10 eq.
  • water 310 ⁇ L, 100 eq.
  • sodium 2-mercaptoethanesulfonate 160 mg, 5.6 eq.
  • Example preparation method 1 After stirring for 1 hour, the reaction mixture was sampled to prepare a sample (sample preparation method 1), and the capture reaction of DBF was evaluated by HPLC analysis, and it was confirmed that the reaction conversion rate was 100% (calculation formula 3 for the capture reaction conversion rate of DBF).
  • ethyl acetate 2.0 mL was added to the reaction mixture, and the mixture was washed four times with 2.5% aqueous ammonia solution (2.0 mL). It was confirmed that almost no compound 34 was present in each aqueous layer after washing, and the area ratio of FMSA or FMSA Salt to compound 34 and the area ratio of DBF to compound 34 were measured by HPLC analysis using compound 34 as an internal standard.
  • Table 9 It was confirmed that the area ratio of compound 36 gradually decreased with increasing number of washings, while DBF gradually increased, that is, DBF was regenerated from compound 36.
  • reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • sample preparation method 1 The reaction mixture was sampled to prepare a sample (sample preparation method 1), and the deprotection reaction of the Fmoc group was evaluated by HPLC analysis to confirm that the reaction was complete (calculation formula for the deprotection reaction conversion rate of the Fmoc group).
  • triethylamine 69.7 ⁇ L, 10 eq.
  • water 90 ⁇ L, 100 eq.
  • (3-mercaptopropyl)phosphonic acid 43.7 mg, 5.6 eq.
  • the present invention provides a new method for removing dibenzofulvene that can capture dibenzofulvene produced during the deprotection process of a protecting group having an Fmoc skeleton and remove the dibenzofulvene without regenerating it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

亜硫酸イオンもしくは亜硫酸水素イオンまたはこれらイオンを生じさせる化合物を捕捉剤として用いることで、ジベンゾフルベンまたはジベンゾフルベン誘導体を捕捉できるとともに、ジベンゾフルベンまたはジベンゾフルベン誘導体が再生することなく除去できることを見出した。また、Fmoc骨格を有する保護基を脱保護する新たな方法、及び、ペプチドのようなアミノ基含有化合物を製造する新たな方法を見出した。

Description

ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法
 本発明は、ジベンゾフルベン(DBF)またはジベンゾフルベン誘導体を除去する方法に関する。
 Fmoc(9-フルオレニルメトキシカルボニル)基は、ペプチド合成において、アミノ酸およびペプチドのアミノ基の保護基として広く用いられている。ペプチド合成には固相合成法と液相合成法があり、医薬品等の大量生産には液相合成法が用いられることが多い。Fmoc基は、塩基性条件下で容易に脱保護できるため、液相合成法においても、アミノ基の保護基として用いられている。
 しかしながら、Fmoc基の脱保護工程においてはジベンゾフルベンまたは脱保護に用いたアミンがジベンゾフルベンに付加した化合物(以下「アミン付加体」ともいう)が副生成物として生じる。当該副生成物を残留させたままペプチド合成を続けると、9-フルオレニルメチル化などの副反応を引き起こしうるため、この脱保護工程でジベンゾフルベンまたはアミン付加体を除去しなければならない。
 このジベンゾフルベンの除去手段は、捕捉剤としてアミンまたはチオールを用いてジベンゾフルベンをアミン付加体またはジベンゾフルベンにチオールが付加した化合物(以下「チオール付加体」ともいう)に変換し、トリチュレーションによって除去する手段(非特許文献1)、または炭化水素溶媒と極性有機溶媒を使用する分液によって除去する手段(特許文献1)が報告されている。また、特許文献2では、アミン付加体を含む反応混合物に二酸化炭素を接触さることでアミン付加体を炭酸塩として除去する手段が記載されている。さらに、捕捉剤としてチオカルボン酸、チオスルホン酸またはチオホスホン酸を用いてジベンゾフルベンをチオール付加体に変換し、続く塩基性水溶液による洗浄によって除去する手段(特許文献3-4)が報告されている。
国際公開第2009/014177号 国際公開第2010/016551号 国際公開第2013/089241号 特許第7063409号公報
J. E. Sheppeck II, et al. Tetrahedron Lett. 2000, No.41, vol.28, 5329-5333
 しかしながら、前記各文献に記載された方法では、ジベンゾフルベンまたはジベンゾフルベン誘導体を十分に除去できない、あるいは捕捉したジベンゾフルベンまたはジベンゾフルベン誘導体が除去中に再生してしまいジベンゾフルベンまたはジベンゾフルベン誘導体を除去しきれない可能性があった。したがって、本発明の課題は、ジベンゾフルベンまたはジベンゾフルベン誘導体を捕捉するとともに、ジベンゾフルベンまたはジベンゾフルベン誘導体が再生することなく除去することが可能な、ジベンゾフルベンまたはジベンゾフルベン誘導体の新たな除去方法を提供することにある。
 本発明者らは、ジベンゾフルベンまたはジベンゾフルベン誘導体の新たな除去方法について検討したところ、亜硫酸イオンもしくは亜硫酸水素イオンまたはこれらのイオンを生じさせる化合物を捕捉剤として用いることで、ジベンゾフルベンまたはジベンゾフルベン誘導体を捕捉できるとともに、ジベンゾフルベンまたはジベンゾフルベン誘導体が再生することなく除去できることを見出し、本発明を完成するに至った。本発明者は、多種多様な合成過程、特に、アミノ基含有化合物の合成、例えば、ペプチドの合成に適用することができる。例えば、いくつかの実施例において、本発明は、Fmoc骨格を有する保護基を脱保護する新たな方法も提供する。いくつかの具体例において、本発明はペプチドのようなアミノ基含有化合物を製造する新たな方法を提供する。
 すなわち、本発明は以下を含む。
〔1〕(1)以下の(i)と(ii)とを混合する工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(i)ジベンゾフルベンまたはジベンゾフルベン誘導体、
(ii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物。
〔1-1〕以下の(1)、(1’)、または(1’’)の工程を含むジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(1)以下の(i)と(ii)とを混合する工程:
(i)ジベンゾフルベンまたはジベンゾフルベン誘導体、
(ii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物
(1’)以下の(i)と(ii)とを混合する工程:
(i)ジベンゾフルベンまたはジベンゾフルベン誘導体、
(ii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
(1’’)(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程。
〔2〕(1’)以下の(i)と(ii)とを混合する工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(i)ジベンゾフルベンまたはジベンゾフルベン誘導体、
(ii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔3〕(1’’)(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法。
〔4〕前記(1)または(1’)の工程において、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる、〔1〕または〔2〕に記載の方法。
〔4-1〕(1’’’)(i)ジベンゾフルベンまたはジベンゾフルベン誘導体と、(ii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物とを混合して、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する方法。
〔4-2〕(1’’’’)(i)ジベンゾフルベンまたはジベンゾフルベン誘導体と、(ii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種とを混合して、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する方法。
〔5〕ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する、〔1〕~〔4〕のいずれかに記載の方法。
〔6〕(2)前記(1)、(1’)、(1’’)、(1’’’)または(1’’’’)の工程前に、Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物と脱保護剤を混合する工程を含む、〔1〕~〔5〕のいずれかに記載の方法。
〔6-1〕(2)前記(1)、(1’)、(1’’)、(1’’’)または(1’’’’)の工程前に、Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物と、Fmoc骨格を有する保護基を脱保護できる脱保護剤を混合する工程を含む、〔1〕~〔5〕のいずれかに記載の方法。
〔7〕前記(2)の工程により生じたジベンゾフルベンまたはジベンゾフルベン誘導体を前記(2)の混合物から除去する、〔6〕に記載の方法。
〔8〕(3)以下の(i)~(iii)を混合する工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物。
〔8-1〕(3)以下の(i)~(iii)を混合する工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物。
〔B1〕(3)以下の(i)~(iii)を混合する工程を含む、Fmoc骨格を有する保護基を脱保護する方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物。
〔9〕(3’)以下の(i)~(iii)を混合する工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔9-1〕(3’)以下の(i)~(iii)を混合する工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔B1-1〕(3’)以下の(i)~(iii)を混合する工程を含む、Fmoc骨格を有する保護基を脱保護する方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔9-2〕以下の(3)または(3’)の工程を含むジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
(3)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物
(3’)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔B1-2〕以下の(3)または(3’)の工程を含む、Fmoc骨格を有する保護基を脱保護する方法:
(3)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物
(3’)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔10〕前記(3)または(3’)の工程において、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる、〔8〕、〔9〕または〔B1〕に記載の方法。
〔10-1〕(3)以下の(i)~(iii)を混合し、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物。
〔10-2〕(3’)以下の(i)~(iii)を混合し、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する方法
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔10-3〕以下の(3)または(3’)の工程を含む、ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する方法:
(3)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物
(3’)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔B1-3〕(3)以下の(i)~(iii)を混合し、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程を含む、Fmoc骨格を有する保護基を脱保護する方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物。
〔B1-4〕(3’)以下の(i)~(iii)を混合し、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程を含む、Fmoc骨格を有する保護基を脱保護する方法:
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii) 亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔B1-5〕以下の(3)または(3’)の工程を含む、Fmoc骨格を有する保護基を脱保護する方法:
(3)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物、
(3’)以下の(i)~(iii)を混合する工程
(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
(ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
〔11〕ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する、〔8〕~〔10〕または〔B1〕のいずれかに記載の方法。
〔12〕Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物と脱保護剤を混合する工程により生じたジベンゾフルベンまたはジベンゾフルベン誘導体を前記(3)または(3’)の混合物から除去する、〔8〕~〔11〕または〔B1〕のいずれかに記載の方法。
〔12-1〕Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物と、Fmoc骨格を有する保護基を脱保護できる脱保護剤を混合する工程により生じたジベンゾフルベンまたはジベンゾフルベン誘導体を前記(3)または(3’)の混合物から除去する、〔8〕~〔11〕または〔B1〕のいずれかに記載の方法。
〔13〕(4)前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(3)または(3’)のうち、1つ以上の工程後の混合物を、洗浄用溶液で洗浄する工程を更に含む、〔1〕~〔12〕または〔B1〕のいずれかに記載の方法。
〔14〕前記(4)の工程において、前記混合物から、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を除去する、〔13〕に記載の方法。
〔15〕前記ジベンゾフルベンまたはジベンゾフルベン誘導体が、下記式(1)で表される化合物である、〔1〕~〔14〕または〔B1〕のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000001
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルである)。
〔15-1〕前記ジベンゾフルベン誘導体が、下記式(1)で表される化合物である、〔1〕~〔14〕または〔B1〕のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000002
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルであり、R~Rのうちいずれか2つのみが水素ではない)。
〔16〕前記ジベンゾフルベンまたはジベンゾフルベン誘導体が、ジベンゾフルベンである、〔1〕~〔15〕または〔B1〕のいずれかに記載の方法。
〔17〕前記(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩が、下記式(2)で表される化合物もしくはその塩、または下記式(3)で表される化合物である、〔1-1〕、〔3〕~〔16〕または〔B1〕のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000003
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルである)。
Figure JPOXMLDOC01-appb-C000004
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルである)。
〔17-1〕前記(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩が、下記式(2)で表される化合物もしくはその塩、または下記式(3)で表される化合物である、〔1-1〕、〔3〕~〔16〕または〔B1〕のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000005
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルであり、R~Rのうちいずれか2つのみが水素ではない)。
Figure JPOXMLDOC01-appb-C000006
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルであり、R~Rのうちいずれか2つのみが水素ではない)。
〔18〕前記Fmoc骨格を有する保護基が、下記式(4)で表される化合物である、〔6〕~〔17〕または〔B1〕のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000007
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルである。波線は、アミノ基との結合点を表す)。
〔18-1〕前記Fmoc骨格を有する保護基が、下記式(4)で表される化合物である、〔6〕~〔17〕または〔B1〕のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000008
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルであり、R~Rのうちいずれか2つのみが水素ではない。波線は、アミノ基との結合点を表す)。
〔19〕前記Fmoc骨格を有する保護基が、9-フルオレニルメチルオキシカルボニル(Fmoc)基、2,7-ジ-tert-ブチル-Fmoc(Fmoc(2,7tb))基、1-メチル-Fmoc(Fmoc(1Me))基、2-フルオロ-Fmoc(Fmoc(2F))基、2,7-ジブロモ-Fmoc(Fmoc(2,7Br))基、2-モノイソオクチル-Fmoc(mio-Fmoc)基、2,7-ジイソオクチル-Fmoc(dio-Fmoc)基、2,7-(3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチル)-Fmoc(tdf-Fmoc)基、2,7-ビス(トリメチルシリル)-Fmoc(Fmoc(2TMS))基、(2-スルホ-9H-フルオレン-9-イル)メチルオキシカルボニル基(Fmoc(2so3h))、[(1S)-1-(9H-フルオレン-9-イル)エトキシ]カルボニル基(sm-Fmoc)、または[(1R)-1-(9H-フルオレン-9-イル)エトキシ]カルボニル基(rm-Fmoc)である、〔6〕~〔17〕または〔B1〕のいずれかに記載の方法。
〔20〕前記Fmoc骨格を有する保護基が、9-フルオレニルメチルオキシカルボニル基である、〔6〕~〔19〕または〔B1〕のいずれかに記載の方法。
〔21〕前記第一のアミノ基含有化合物が、ペプチド、アミノ酸、またはアミノ酸アミドである、〔6〕~〔20〕または〔B1〕のいずれかに記載の方法。
〔21-1〕前記第一のアミノ基含有化合物が、ペプチドまたはアミノ酸である、〔21〕に記載の方法。
〔22〕前記第一のアミノ基含有化合物が、ペプチドである、〔21〕に記載の方法。
〔22-1〕前記第一のアミノ基含有化合物が、アミノ酸である、〔21〕に記載の方法。
〔23〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、ジベンゾフルベンまたはジベンゾフルベン誘導体を捕捉する、〔1〕および〔4〕~〔22〕または〔B1〕のいずれかに記載の方法。
〔24〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸イオンもしくは亜硫酸水素イオンである、〔1〕および〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔25〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物である、〔1〕および〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔26〕前記亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸及びその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種である、〔25〕に記載の方法。
〔26-1〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸及びその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種である、〔1〕、〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔27〕前記亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種である、〔25〕に記載の方法。
〔27-1〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種である、〔1〕、〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔28〕前記亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも1種であり、前記亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩が、アルカリ金属、アルカリ土類金属、及びアンモニウムからなる群より選ばれる少なくとも一種との塩である、〔25〕に記載の方法。
〔28-1〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも1種であり、前記亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩が、アルカリ金属、アルカリ土類金属、及びアンモニウムからなる群より選ばれる少なくとも一種との塩である、〔1〕、〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔29〕前記亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種であり、前記亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩が、ナトリウム、カリウム、カルシウム、およびアンモニウムからなる群より選ばれる少なくとも一種との塩である、〔25〕に記載の方法。
〔29-1〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種であり、前記亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩が、ナトリウム、カリウム、カルシウム、およびアンモニウムからなる群より選ばれる少なくとも一種との塩である、〔1〕、〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔30-1〕前記亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸水素カリウム、亜ジチオン酸ナトリウム、亜硫酸アンモニウム1水和物、亜硫酸カルシウム0.5水和物、亜硫酸ナトリウム、および亜硫酸カリウムからなる群より選択される少なくとも一種である、〔25〕に記載の方法。
〔30-2〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸水素カリウム、亜ジチオン酸ナトリウム、亜硫酸アンモニウム1水和物、亜硫酸カルシウム0.5水和物、亜硫酸ナトリウム、および亜硫酸カリウムからなる群より選択される少なくとも一種である、〔1〕、〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔31〕前記亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素ナトリウム、亜硫酸水素カリウム、および亜ジチオン酸ナトリウムからなる群より選択される少なくとも一種である、〔25〕に記載の方法。
〔31-1〕前記亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物が、亜硫酸水素ナトリウム、亜硫酸水素カリウム、および亜ジチオン酸ナトリウムからなる群より選択される少なくとも一種である、〔1〕、〔4〕~〔23〕または〔B1〕のいずれかに記載の方法。
〔32〕前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(3)もしくは(3’)の工程において、添加剤を更に混合することを含む、〔1〕~〔31〕または〔B1〕のいずれかに記載の方法。
〔33〕前記添加剤が、第一の塩基である、〔32〕に記載の方法。
〔34〕前記第一の塩基が、第三級アミンである、〔33〕に記載の方法。
〔35〕前記第三級アミンが、トリエチルアミン、N,N-ジイソプロピルエチルアミン、および2,6-ルチジンからなる群より選択される少なくとも一種である、〔34〕に記載の方法。
〔36〕前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(3)または(3’)の工程において、水を更に混合することを含む、〔1〕~〔35〕のいずれかに記載の方法。
〔36-1〕前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(3)または(3’)の工程において、水を更に混合することを含まない、〔1〕~〔35〕のいずれかに記載の方法。
〔36-2〕前記水が、有機溶媒に含まれた状態の水ではない、〔36〕に記載の方法。
〔37〕前記脱保護剤が、第二の塩基である、〔6〕~〔36〕または〔B1〕のいずれかに記載の方法。
〔38〕前記第二の塩基が、アミジン骨格を有する有機塩基、第一級アミン、第二級アミン、第三級アミン、および無機塩基からなる群より選択される少なくとも一種である、〔37〕に記載の方法(ただし、第一級アミン、第二級アミン、および第三級アミンはいずれも分子内にアミジン骨格を有しない)。
〔39〕前記第二の塩基が、アミジン骨格を有する有機塩基である、〔38〕に記載の方法。
〔40〕前記アミジン骨格を有する有機塩基が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、および7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)からなる群より選択される少なくとも一種である、〔39〕に記載の方法。
〔41〕前記アミジン骨格を有する有機塩基が、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)である、〔39〕に記載の方法。
〔42〕前記第二の塩基が、第一級アミンである、〔37〕に記載の方法。
〔43〕前記第一級アミンが、プロパン-1-アミンである、〔42〕に記載の方法。
〔44〕前記第二の塩基が、第二級アミンである、〔37〕に記載の方法。
〔45〕前記第二級アミンが、モルホリン、ジエチルアミン、ジシクロヘキシルアミン、1,1,1,3,3,3-ヘキサメチルジシラザン、ピペリジン、ピロリジン、およびピペラジンからなる群より選択される少なくとも一種である、〔44〕に記載の方法。
〔46〕前記第二級アミンが、モルホリン、ジエチルアミン、ジシクロヘキシルアミン、および1,1,1,3,3,3-ヘキサメチルジシラザンからなる群より選択される少なくとも一種である、〔44〕に記載の方法。
〔47〕前記第二の塩基が、第三級アミンである、〔37〕に記載の方法。
〔48〕前記第三級アミンが、トリエチルアミンである、〔47〕に記載の方法。
〔49〕前記第二の塩基が、無機塩基である、〔37〕に記載の方法。
〔50〕前記無機塩基が、炭酸塩、および金属アルコキシドからなる群より選択される少なくとも一種である、〔49〕に記載の方法。
〔51〕前記無機塩基が、炭酸ナトリウム、およびカリウム tert-ブトキシドからなる群より選択される少なくとも一種である、〔49〕に記載の方法。
〔52〕前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(2)、(3)または(3’)のうち、1つ以上の工程が、ニトリル系溶媒、アミド系溶媒、スルホキシド系溶媒、アルコール系溶媒およびエーテル系溶媒からなる群より選択される少なくとも一種を含む溶媒の存在下でおこなわれる、〔6〕~〔51〕または〔B1〕のいずれかに記載の方法。
〔53〕前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(2)、(3)または(3’)のうち、1つ以上の工程が、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、メタノール、エタノール、n-プロパノール、2-プロパノール、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテルおよびt-ブチルメチルエーテルからなる群より選択される少なくとも一種を含む溶媒の存在下でおこなわれる、〔6〕~〔51〕または〔B1〕のいずれかに記載の方法。
〔54〕前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、および(2)のうち、1つ以上の工程が、アセトニトリル、ジメチルアセトアミド、2-メチルテトラヒドロフランおよびメタノールからなる群より選択される少なくとも一種を含む溶媒の存在下でおこなわれる、〔6〕~〔51〕または〔B1〕のいずれかに記載の方法。
〔54-1〕前記(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、および(2)のうち、1つ以上の工程が、アセトニトリルを含む溶媒の存在下でおこなわれる、〔6〕~〔51〕または〔B1〕のいずれかに記載の方法。
〔54-2〕(3)または(3’)のうち1つ以上の工程が、アセトニトリル、メタノール、1,3-ジメチル-2-イミダゾリジノン、およびジメチルスルホキシドからなる群より選択される少なくとも一種を含む溶媒の存在下でおこなわれる、〔6〕~〔51〕または〔B1〕のいずれかに記載の方法。
〔54-1〕(3)または(3’)のうち1つ以上の工程が、1,3-ジメチル-2-イミダゾリジノンを含む溶媒の存在下でおこなわれる、〔6〕~〔51〕または〔B1〕のいずれかに記載の方法。
〔55〕前記洗浄用溶液が、10~14のpHを有する、〔13〕~〔54〕のいずれかに記載の方法。
〔56〕前記洗浄用溶液が、アンモニア水溶液、炭酸塩水溶液、およびリン酸塩水溶液からなる群より選択される少なくとも一種を含む、〔13〕~〔54〕のいずれかに記載の方法。
〔57〕前記洗浄用溶液が、アンモニア水溶液である、〔13〕~〔54〕のいずれかに記載の方法。
〔58〕〔1〕~〔57〕のいずれかに記載の方法を含む、第一の化合物の製造方法。
〔A1〕以下の工程を含むペプチド化合物の製造方法:
1)亜硫酸イオンまたは亜硫酸水素イオンの存在下で、Fmoc骨格を有する保護基を脱保護できる脱保護剤によりFmoc骨格を有する保護基で保護された保護基ペプチドを処理し、保護基を除去した脱保護ペプチドを得る工程、
2)必要に応じて1種以上のアミノ酸で、脱保護されたペプチドを伸長させ、伸長させたペプチドを得る工程。
〔A2〕以下の工程を含むペプチド化合物の製造方法:
1)アミノ基がFmoc骨格を有する保護基により保護された保護ペプチドを、Fmoc骨格を有する保護基を脱保護できる脱保護剤で処理し、(a)ジベンゾフルベンまたはジベンゾフルベン誘導体、及び(b)保護基を除去した脱保護ペプチドの第一の混合物を得る工程;
2)第一の混合物を亜硫酸イオンまたは亜硫酸水素イオンで処理してジベンゾフルベンまたはジベンゾフルベン誘導体を除去し、脱保護されたペプチドを含む第二の混合物を得る工程、
3)必要に応じて1種以上のアミノ酸で、脱保護されたペプチドを伸長させ、伸長させたペプチドを得る工程。
〔A3〕脱保護されたペプチドまたは伸長させたペプチドが、C末端側に1つの反応部位を有するアミノ酸残基を有し、N末端側に他の反応部位を有するアミノ酸残基を有し、更に、当該1つの反応部位と他の反応部位とが結合して環状ペプチド化合物を形成する工程を含む、〔A1〕または〔A2〕の方法。
〔59〕前記第一の化合物がアミノ酸またはペプチドである、〔58〕に記載の製造方法。
〔60〕前記第一の化合物が(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩である、〔58〕に記載の製造方法。
〔61〕液相合成法による、〔58〕~〔60〕のいずれかに記載の製造方法。
〔62〕固相合成法による、〔58〕~〔60〕のいずれかに記載の製造方法。
〔63〕前記(2)、(3)または(3’)の工程の前に、Fmoc骨格を有する保護基でアミノ基が保護された第二のアミノ基含有化合物と、第三のアミノ基含有化合物とを縮合させて、Fmoc骨格を有する保護基でアミノ基が保護された前記第一のアミノ基含有化合物を得る工程を更に含む、〔58〕~〔62〕のいずれかに記載の製造方法。
〔64〕前記第二のアミノ基含有化合物が、カルボキシル基を有するアミノ基含有化合物である、〔63〕に記載の製造方法。
〔65〕前記第二のアミノ基含有化合物が、アミノ酸またはペプチドである、〔63〕に記載の製造方法。
〔66〕前記第二のアミノ基含有化合物が、アミノ酸である、〔63〕に記載の製造方法。
〔67〕前記第三のアミノ基含有化合物が、液相ペプチド合成用担体と結合していないアミノ基含有化合物である、〔63〕~〔66〕のいずれかに記載の製造方法。
〔68〕前記液相ペプチド合成用担体が、前記第三のアミノ基含有化合物に直接またはリンカーを介して結合して、それらを有機溶媒に溶解性で水に不溶性にする化合物である、〔67〕に記載の製造方法。
〔68-1〕前記第三のアミノ基含有化合物が、液相ペプチド合成用担体と結合していないアミノ基含有化合物であり、前記液相ペプチド合成用担体が、前記第三のアミノ基含有化合物に直接またはリンカーを介して結合して、それらを有機溶媒に対する溶解性を高め、水に対する不溶性を高める化合物である、〔63〕~〔66〕のいずれかに記載の製造方法。
〔69〕前記第三のアミノ基含有化合物が、ペプチド、アミノ酸、またはアミノ酸アミドである、〔67〕に記載の製造方法。
〔70〕Fmoc骨格を有する保護基が、9-フルオレニルメチルオキシカルボニル基である、〔63〕~〔69〕のいずれかに記載の方法。
〔71〕〔1〕~〔57〕のいずれかに記載の方法を2回以上繰り返すことを含む、〔58〕~〔70〕のいずれかに記載の製造方法。
〔71-1〕ジベンゾフルベンまたはジベンゾフルベン誘導体を除去するための以下の(a)および/または(b)の使用:
(a)亜硫酸イオンもしくは亜硫酸水素イオン、または亜硫酸イオンもしくは亜硫酸水素イオンを生成する化合物、
(b)亜硫酸水素塩、二亜硫酸及びその塩、亜硫酸及びその塩、亜ジチオン酸及びその塩、並びにこれらの溶媒和物からなる群から選択される少なくとも一つの化合物。
〔71-2〕Fmoc骨格を有する保護基を脱保護するための以下の(a)および/または(b)とFmoc骨格を有する保護基を脱保護できる脱保護剤との併用:
(a)亜硫酸イオンもしくは亜硫酸水素イオン、または亜硫酸イオンもしくは亜硫酸水素イオンを生成する化合物、
(b)亜硫酸水素塩、二亜硫酸及びその塩、亜硫酸及びその塩、亜ジチオン酸及びその塩、並びにこれらの溶媒和物からなる群から選択される少なくとも一つの化合物。
〔72〕アミノ基含有化合物、および(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を含む組成物であって、HPLC分析による210nmでのUVarea値により算出される、下記式Aで表される値が1%以下である組成物。
(式A):(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の面積値/(アミノ基含有化合物の面積値+(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の面積値)×100 (%)
〔72-1〕アミノ基含有化合物、および(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を含む組成物であって、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の含有割合が、アミノ基含有化合物及び(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩に対して、0.01以下である組成物。
〔73〕前記(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩が、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩である、〔72〕に記載の組成物。
〔74〕前記アミノ基含有化合物が、ペプチド、アミノ酸、またはアミノ酸アミドである、〔72〕または〔73〕に記載の組成物。
 上記番号付けにおいて、従属項が引用する番号は、特に言及がない限りその番号の枝番号が異なる番号をも含む。例えば、従属項において引用する〔72〕は、〔72〕とともに、〔72-1〕を含むことを示す。他の番号付けにおいても同様である。
 本発明によれば、Fmoc骨格を有する保護基の脱保護工程で生じるジベンゾフルベンを捕捉するとともに、ジベンゾフルベンが再生することなく除去することが可能な、ジベンゾフルベンの新たな除去方法を提供することができる。
(用語の定義)
 本明細書において「ジベンゾフルベン誘導体」とは、ジベンゾフルベンにおけるフルオレン環上の任意の位置に任意の置換基が導入された化合物を意味する。ジベンゾフルベン誘導体として、例えば下記式で表される化合物が挙げられる
Figure JPOXMLDOC01-appb-C000009
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~Rの少なくとも一つは水素以外であり、R~R10は、独立して、水素またはメチルである)。
 ジベンゾフルベン誘導体は、R~Rのうち1つ、2つ、3つ、または4つのみが水素ではないものが好ましく、R~Rのうち1つ、または2つのみが水素ではないものがより好ましく、R~Rのうち2つのみが水素ではないものが最も好ましい。
 本明細書において「(9H-フルオレン-9-イル)メタンスルホン酸」および「(9H-フルオレン-9-イル)メタンスルホン酸誘導体」とは、ジベンゾフルベンおよびジベンゾフルベン誘導体におけるエキソオレフィン上の末端に「-SOH」で表される基が導入された化合物を意味する。(9H-フルオレン-9-イル)メタンスルホン酸および(9H-フルオレン-9-イル)メタンスルホン酸誘導体として、例えば下記式で表される化合物が挙げられる
Figure JPOXMLDOC01-appb-C000010
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルである)。
 (9H-フルオレン-9-イル)メタンスルホン酸誘導体は、R~Rのうち1つ、2つ、3つ、または4つのみが水素ではないものが好ましく、R~Rのうち1つ、または2つのみが水素ではないものがより好ましく、R~Rのうち2つのみが水素ではないものが最も好ましい。
 本明細書において「(9H-フルオレン-9-イル)メタンスルホン酸の塩」および「(9H-フルオレン-9-イル)メタンスルホン酸誘導体の塩」とは、ジベンゾフルベンおよびジベンゾフルベン誘導体におけるエキソオレフィン上に「-SO 」で表される基が導入された化合物、またはジベンゾフルベンおよびジベンゾフルベン誘導体におけるエキソオレフィン上の末端に「-SOH」で表される基が導入された化合物の塩を意味する。本明細書に記載の化合物の塩は、例えば、アルカリ金属、アルカリ土類金属、及びアンモニウム(NH )からなる群より選ばれる少なくとも一種との塩であることができる。(9H-フルオレン-9-イル)メタンスルホン酸の塩および(9H-フルオレン-9-イル)メタンスルホン酸誘導体の塩として、例えば下記式で表される化合物が挙げられる
Figure JPOXMLDOC01-appb-C000011
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、R~R10は、独立して、水素またはメチルである)。
 (9H-フルオレン-9-イル)メタンスルホン酸誘導体の塩は、R~Rのうち1つ、2つ、3つ、または4つのみが水素ではないものが好ましく、R~Rのうち1つ、または2つのみが水素ではないものがより好ましく、R~Rのうち2つのみが水素ではないものが最も好ましい。
 本明細書において「Fmoc骨格を有する保護基」とは、Fmoc基またはFmoc基の構成骨格の任意の位置に任意の置換基が導入された基を意味する。このようなFmoc骨格を含む保護基として、具体的には例えば下記式で表される保護基が挙げられる
Figure JPOXMLDOC01-appb-C000012
(式中、
 R~Rは、独立して、水素、C-Cアルキル、C-Cフルオロアルキル、ハロゲン、スルホ、およびトリメチルシリルからなる群より選択され、
 R~R10は、独立して、水素またはメチルである。波線は、アミノ基との結合点を表す)。
 Fmoc骨格を有する保護基は、R~Rのうち1つ、2つ、3つ、または4つのみが水素ではないものが好ましく、R~Rのうち1つ、または2つのみが水素ではないものがより好ましく、R~Rのうち2つのみが水素ではないものが最も好ましい。
 Fmoc骨格を有する保護基としてより具体的には、例えば、9-フルオレニルメチルオキシカルボニル(Fmoc)基、2,7-ジ-tert-ブチル-Fmoc(Fmoc(2,7tb))基、1-メチル-Fmoc(Fmoc(1Me))基、2-フルオロ-Fmoc(Fmoc(2F))基、2,7-ジブロモ-Fmoc(Fmoc(2,7Br))基、2-モノイソオクチル-Fmoc(mio-Fmoc)基、2,7-ジイソオクチル-Fmoc(dio-Fmoc)基、2,7-(3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチル)-Fmoc(tdf-Fmoc)基、2,7-ビス(トリメチルシリル)-Fmoc(Fmoc(2TMS))基、(2-スルホ-9H-フルオレン-9-イル)メチルオキシカルボニル基(Fmoc(2so3h))、[(1S)-1-(9H-フルオレン-9-イル)エトキシ]カルボニル基(sm-Fmoc)、[(1R)-1-(9H-フルオレン-9-イル)エトキシ]カルボニル基(rm-Fmoc)などが挙げられる。これらFmoc骨格を有する保護基として好ましくはFmoc基である。これらFmoc骨格を有する保護基は、市販の試薬などを用い既知の方法により導入することができる。
 本明細書において、「保護基を除去する」は、「保護基を脱保護する」とも言う。
 本明細書において、「ジベンゾフルベンまたはジベンゾフルベン誘導体を捕捉する」とは、ジベンゾフルベンまたはジベンゾフルベン誘導体、および亜硫酸イオンまたは亜硫酸水素イオンの共存状態を経て、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成することを意味する。
 本明細書において「亜硫酸イオン」とは、「SO 2-」で表されるイオンを、「亜硫酸水素イオン」とは「HSO 」で表されるイオンをそれぞれ意味する。また、本明細書において「亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物」は、溶液中(好ましくは水溶液中)で電離することで亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物であれば特に限定されず、例えば、亜硫酸水素塩、二亜硫酸(H)およびその塩、亜硫酸(HSO)およびその塩、亜ジチオン酸(H)及びその塩、ならびにそれらの溶媒和物などが挙げられる。亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩としては、ナトリウム、カリウム等のアルカリ金属;カルシウム等のアルカリ土類金属、及びアンモニウムからなる群より選ばれる少なくとも一種との塩が挙げられる。亜硫酸水素塩の具体例としては、亜硫酸水素ナトリウム、亜硫酸水素カリウムなどが挙げられる。二亜硫酸塩の具体例としては、二亜硫酸ナトリウム(メタ重亜硫酸ナトリウム)、二亜硫酸カリウム(メタ重亜硫酸カリウム)などが挙げられる。亜硫酸塩の具体例としては、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸アンモニウム、亜硫酸カルシウムなどが挙げられる。亜ジチオン酸塩の具体例としては、亜ジチオン酸ナトリウム、亜ジチオン酸カリウムなどが挙げられる。
 本明細書における「ハロゲン」としては、F、Cl、BrまたはIが例示される。
 本明細書において「アルキル」とは、脂肪族炭化水素から任意の水素原子を1個除いて誘導される1価の基であり、骨格中にヘテロ原子(炭素及び水素原子以外の原子をいう。)または不飽和の炭素-炭素結合を含有せず、水素及び炭素原子を含有するヒドロカルビルまたは炭化水素基構造の部分集合を有する基である。アルキルは直鎖状のものだけでなく、分枝鎖状のものも含む。アルキルとして具体的には、炭素原子数1~20(C-C20、以下「C-C」とは炭素原子数がp~q個であることを意味する)のアルキルであり、好ましくはC-C10アルキル、より好ましくはC-Cアルキル、更に好ましくはC-Cアルキルが挙げられる。アルキルとして、具体的には、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、イソブチル(2-メチルプロピル)、n-ペンチル、s-ペンチル(1-メチルブチル)、t-ペンチル(1,1-ジメチルプロピル)、ネオペンチル(2,2-ジメチルプロピル)、イソペンチル(3-メチルブチル)、3-ペンチル(1-エチルプロピル)、1,2-ジメチルプロピル、2-メチルブチル、n-ヘキシル、1,1,2-トリメチルプロピル、1,2,2-トリメチルプロピル、1,1,2,2-テトラメチルプロピル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,2-ジメチルブチル、2,3-ジメチルブチル、3,3-ジメチルブチル、1-エチルブチル、2-エチルブチル等が挙げられる。
 本明細書において「フルオロアルキル」とは、前記定義の「アルキル」の1つまたは複数の水素原子がフッ素原子で置換された基を意味し、C-Cフルオロアルキルが好ましい。フルオロアルキルとして具体的には、たとえば、モノフルオロメチル、ジフルオロメチル、トリフルオロメチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、3,3-ジフルオロプロピル、4,4-ジフルオロブチル、5,5-ジフルオロペンチル、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルなどが挙げられる。
 本明細書において「スルホ」とは、-SOHで表される1価の基である。
 本明細書において「アルケニル」とは、少なくとも1個の二重結合(2個の隣接SP炭素原子)を有する1価の基である。二重結合および置換分(存在する場合)の配置によって、二重結合の幾何学的形態は、エントゲーゲン(E)またはツザンメン(Z)、シスまたはトランス配置をとることができる。アルケニルは、直鎖状のものだけでなく、分枝鎖状ものも含む。アルケニルとして好ましくはC-C10アルケニル、より好ましくはC-Cアルケニルが挙げられ、具体的には、たとえば、ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル(シス、トランスを含む)、3-ブテニル、ペンテニル、3-メチル-2-ブテニル、ヘキセニルなどが挙げられる。
 本明細書において「アルキニル」とは、少なくとも1個の三重結合(2個の隣接SP炭素原子)を有する、1価の基である。アルキニルは、直鎖状のものだけでなく、分枝鎖状のものも含む。アルキニルとして好ましくはC-C10アルキニル、より好ましくはC-Cアルキニルが挙げられ、具体的には、たとえば、エチニル、1-プロピニル、プロパルギル、3-ブチニル、ペンチニル、ヘキシニル、3-フェニル-2-プロピニル、3-(2'-フルオロフェニル)-2-プロピニル、2-ヒドロキシ-2-プロピニル、3-(3-フルオロフェニル)-2-プロピニル、3-メチル-(5-フェニル)-4-ペンチニルなどが挙げられる。
 本明細書において「アリール」とは1価の芳香族炭化水素環を意味し、好ましくはC-C10アリールが挙げられる。アリールとして具体的には、たとえば、フェニル、ナフチル(たとえば、1-ナフチル、2-ナフチル)などが挙げられる。
 本明細書において「ヘテロアリール」とは、炭素原子に加えて1~5個のヘテロ原子を含有する、芳香族性の環状の1価の基を意味する。環は単環でも、他の環との縮合環でもよく、部分的に飽和されていてもよい。環を構成する原子の数は好ましくは5~10(5~10員ヘテロアリール)であり、より好ましくは5~7(5~7員ヘテロアリール)である。ヘテロアリールとして具体的には、たとえば、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、ベンゾチエニル、ベンゾチアジアゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、ベンゾオキサジアゾリル、ベンゾイミダゾリル、インドリル、イソインドリル、インダゾリル、キノリル、イソキノリル、シンノリニル、キナゾリニル、キノキサリニル、インドリジニル、イミダゾピリジルなどが挙げられる。
 本明細書において「アラルキル(アリールアルキル)」とは、前記定義の「アルキル」の少なくとも一つの水素原子が前記定義の「アリール」で置換された基を意味し、C-C14アラルキルが好ましく、C-C10アラルキルがより好ましい。アラルキルとして具体的には、たとえば、ベンジル、フェネチル、3-フェニルプロピルなどが挙げられる。
 本明細書において「ヘテロアリールアルキル(ヘテロアラルキル)」とは、前記定義の「アルキル」の少なくとも一つの水素原子が前記定義の「ヘテロアリール」で置換された基を意味し、5~10員ヘテロアリールC-Cアルキルが好ましく、5~10員ヘテロアリールC-Cアルキルがより好ましい。ヘテロアリールアルキルとして具体的には、たとえば、3-チエニルメチル、4-チアゾリルメチル、2-ピリジルメチル、3-ピリジルメチル、4-ピリジルメチル、2-(2-ピリジル)エチル、2-(3-ピリジル)エチル、2-(4-ピリジル)エチル、2-(6-キノリル)エチル、2-(7-キノリル)エチル、2-(6-インドリル)エチル、2-(5-インドリル)エチル、2-(5-ベンゾフラニル)エチルなどが挙げられる
 本明細書において「シクロアルキル」とは、飽和または部分的に飽和した環状の1価の脂肪族炭化水素基を意味し、単環、ビシクロ環(縮合環、架橋環、二環式スピロ環など)、および他の多環式環を含む。シクロアルキルとして好ましくはC-Cシクロアルキルが挙げられ、具体的には、たとえば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ビシクロ[2.2.1]ヘプチル、スピロ[3.3]ヘプチルなどが挙げられる。
 本明細書において「アルコキシ」とは、前記定義の「アルキル」が結合したオキシ基を意味し、好ましくはC-Cアルコキシが挙げられる。アルコキシとして具体的には、たとえば、メトキシ、エトキシ、1-プロポキシ、2-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、3-メチルブトキシなどが挙げられる。
 本明細書において「フルオロアルコキシ」とは、前記定義の「アルコキシ」の1つまたは複数の水素原子がフッ素原子で置換された基を意味し、C-Cフルオロアルコキシが好ましい。フルオロアルコキシとして具体的には、たとえば、モノフルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシなどが挙げられる。
 本明細書において「アミノ」とは、-NRR’を意味し、ここで、RおよびR’はそれぞれ独立して、水素、アルキル、アルケニル、アルキニル、シクロアルキル、ヘテロシクリル、アリール、およびヘテロアリールからなる群から選択される、または、RおよびR’はそれらが結合している窒素原子と一緒になって環を形成した基を意味する。アミノとして、好ましくは-NH、モノC-Cアルキルアミノ、ジC-Cアルキルアミノ、4~8員環状アミノが挙げられる。
 本明細書において「アミノカルボニル」とは、前記定義の「アミノ」が結合したカルボニル基を意味し、好ましくは、-CONH、モノC-Cアルキルアミノカルボニル、ジC-Cアルキルアミノカルボニル、4~8員環状アミノカルボニルが挙げられる。アミノカルボニルとして具体的には、例えば、-CONH、ジメチルアミノカルボニル、1-アゼチジニルカルボニル、1-ピロリジニルカルボニル、1-ピペリジニルカルボニル、1-ピペラジニルカルボニル、4-モルホリニルカルボニル、3-オキサゾリジニルカルボニル、1,1-ジオキシドチオモルホリニル-4-イルカルボニル、3-オキサ-8-アザビシクロ[3.2.1]オクタン-8-イルカルボニルなどが挙げられる。
 本明細書において「アルキルスルホニル」とは、前記定義の「アルキル」が結合したスルホニル基を意味し、好ましくはC-Cアルキルスルホニルが挙げられる。アルキルスルホニルとして具体的には、たとえば、メチルスルホニルなどが挙げられる。
 本明細書において「アルキルスルホニルアミノ」とは、前記定義の「アルキルスルホニル」が結合したアミノ基を意味し、好ましくはC-Cアルキルスルホニルアミノが挙げられる。アルキルスルホニルアミノとして具体的には、たとえば、メチルスルホニルアミノなどが挙げられる。
 本明細書において「ヘテロシクリル」とは、炭素原子に加えて1~5個のヘテロ原子を含有する、非芳香族の環状の1価の基を意味する。ヘテロシクリルは、環中に二重およびまたは三重結合を有していてもよく、環中の炭素原子は酸化されてカルボニルを形成してもよく、単環でも縮合環でもよい。環を構成する原子の数は好ましくは4~10であり(4~10員ヘテロシクリル)、より好ましくは4~7である(4~7員ヘテロシクリル)。ヘテロシクリルとしては具体的には、たとえば、アゼチジニル、オキシラニル、オキセタニル、アゼチジニル、ジヒドロフリル、テトラヒドロフリル、ジヒドロピラニル、テトラヒドロピラニル、テトラヒドロピリジル、テトラヒドロピリミジル、モルホリニル、チオモルホリニル、ピロリジニル、ピペリジニル、ピペラジニル、ピラゾリジニル、イミダゾリニル、イミダゾリジニル、オキサゾリジニル、イソオキサゾリジニル、チアゾリジニル、イソチアゾリジニル、1,2-チアジナン、チアジアゾリジニル、アゼチジニル、オキサゾリドン、ベンゾジオキサニル、ベンゾオキサゾリル、ジオキソラニル、ジオキサニル、テトラヒドロピロロ[1,2-c]イミダゾール、チエタニル、3,6-ジアザビシクロ[3.1.1]ヘプタニル、2,5-ジアザビシクロ[2.2.1]ヘプタニル、3-オキサ-8-アザビシクロ[3.2.1]オクタニル、スルタム、2-オキサスピロ[3.3]ヘプチルなどが挙げられる。
 本明細書において「溶媒和物」とは、化合物が溶媒とともに、一つの分子集団を形成したものをさす。その例としては、水和物、アルコール和物(エタノール和物、メタノール和物、1-プロパノール和物、2-プロパノール和物など)、ジメチルスルホキシドなどの単独の溶媒との溶媒和物だけでなく、化合物1分子に対して複数個の溶媒と溶媒和物を形成したもの、または化合物1分子に対して複数種類の溶媒と溶媒和物を形成したものなどが挙げられる。溶媒が水であれば水和物と言う。本発明の化合物の溶媒和物としては、水和物が好ましく、そのような水和物として具体的には0.5~10水和物、好ましくは0.5~5水和物、さらに好ましくは0.5~3水和物が挙げられる。
 本明細書における「アミノ酸」には、天然アミノ酸、及び非天然アミノ酸が含まれる。また本明細書において「アミノ酸」はアミノ酸残基を意味することがある。本明細書における「天然アミノ酸」とは、Gly、L-Ala、L-Ser、L-Thr、L-Val、L-Leu、L-Ile、L-Phe、L-Tyr、L-Trp、L-His、L-Glu、L-Asp、L-Gln、L-Asn、L-Cys、L-Met、L-Lys、L-Arg、L-Proを指す。非天然アミノ酸は特に限定されないが、β-アミノ酸、D型アミノ酸、N置換アミノ酸、α,α-ジ置換アミノ酸、側鎖が天然アミノ酸と異なるアミノ酸、ヒドロキシカルボン酸などが例示される。本明細書におけるアミノ酸としては、任意の立体配置が許容される。アミノ酸の側鎖の選択は特に制限を設けないが、水素原子の他にも例えばアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアラルキル基、シクロアルキル基、スピロ結合したシクロアルキル基から自由に選択される。それぞれには置換基が付与されていてもよく、それら置換基も制限されず、例えば、ハロゲン原子、O原子、S原子、N原子、B原子、Si原子、またはP原子を含む任意の置換基の中から独立して1つまたは2つ以上自由に選択されてよい。すなわち、置換されていてもよいアルキル基、アルコキシ基、アルコキシアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、シクロアルキル基など、または、オキソ、アミノカルボニル、ハロゲン原子などが例示される。非限定の一態様において、本明細書におけるアミノ酸は、同一分子内にカルボキシル基とアミノ基を有する化合物であってよい(この場合であっても、アミノ基の窒素原子と側鎖の任意の原子がと一緒になって環を形成したプロリン、ヒドロキシプロリン、アゼチジン-2-カルボン酸などもアミノ酸に含まれる。)
 本明細書において「アミノ酸アミド」とは、天然アミノ酸または非天然アミノ酸の少なくとも一つのカルボキシル基がアミド基に変換された化合物を意味する。
 本明細書における「ペプチド」は、2以上のアミノ酸がアミド結合によって連結した化合物を意味する。デプシペプチドのように主鎖の一部にエステル結合を有するペプチドも本明細書におけるペプチドに含まれる。ペプチドとして好ましくは2~29残基、より好ましくは3~20残基、さらに好ましくは4~14残基のペプチドである。ペプチドおよびペプチド化合物は、直鎖ペプチドでも環状ペプチドでもよい。
 本明細書において「アミノ基含有化合物」とは、第一級アミノ基および/または第二級アミノ基を少なくとも一つ有する化合物を意味する。本明細書において「保護基でアミノ基が保護されたアミノ基含有化合物」とは、アミノ基含有化合物に含まれる第一級アミノ基および/または第二級アミノ基の少なくとも一つが、保護基により保護された化合物を意味する。
 本明細書において「置換されていてもよい」とは、ある基が任意の置換基によって置換されていてもよいことを意味する。さらにこれらそれぞれに置換基が付与されていてもよく、それら置換基も制限されず、例えば、ハロゲン原子、酸素原子、硫黄原子、窒素原子、ホウ素原子、ケイ素原子、またはリン原子を含む任意の置換基の中から独立して1つまたは2つ以上自由に選択されてよい。その置換基としては、例えば、アルキル、アルコキシ、フルオロアルキル、フルオロアルコキシ、オキソ、アミノカルボニル、アルキルスルホニル、アルキルスルホニルアミノ、シクロアルキル、アリール、ヘテロアリール、ヘテロシクリル、アリールアルキル、ヘテロアリールアルキル、ハロゲン、ニトロ、アミノ、モノアルキルアミノ、ジアルキルアミノ、シアノ、カルボキシル、アルコキシカルボニルなどが例示される。
 本明細書において、ニトリル系溶媒としては、例えば、アセトニトリル、プロピオニトリルなどが挙げられる。
 本明細書において、アミド系溶媒としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンなどが挙げられる。
 本明細書において、スルホキシド系溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、メチルエチルスルホキシド、メチルフェニルスルホキシドなどが挙げられる。
 本明細書において、アルコール系溶媒としては、例えば、メタノール、エタノール、n-プロパノール、2-プロパノールなどが挙げられる。
 本明細書において、エーテル系溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、1,2-ジメトキシエタン、ジイソプロピルエーテル、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、4-メチルテトラヒドロピラン、ジグリム、トリグリム、テトラグリムなどが挙げられる。
 本明細書において、ベンゼン系溶媒としては、例えば、ベンゼン、トルエン、キシレン、フルオロベンゼン、クロロベンゼン、1,2-ジクロロベンゼン、ブロモベンゼン、アニソール、エチルベンゼン、ニトロベンゼン、クメン、ベンゾトリフルオリドなどが挙げられる。
 本明細書において、エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチルなどが挙げられる。
 本明細書において「1つまたは複数の」とは、1つまたは2つ以上の数を意味する。「1つまたは複数の」が、ある基の置換基に関連する文脈で用いられる場合、この用語は、1つからその基が許容する置換基の最大数までの数を意味する。「1つまたは複数の」として具体的には、たとえば、1、2、3、4、5、6、7、8、9、10、および/またはそれより大きい数が挙げられる。
 本明細書において、「および/または」との用語の意義は、「および」と「または」が適宜組み合わされたあらゆる組合せを含む。具体的には、例えば、「A、B、および/またはC」には、以下の7通りのバリエーションが含まれる;
(i) A、(ii) B、(iii) C、(iv) AおよびB、(v) AおよびC、(vi) BおよびC、(vii) A、B、およびC。
(除去方法)
 本発明のジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法について説明する。ある局面において、ジベンゾフルベンまたはジベンゾフルベン誘導体は、以下の(1)、(1’)または(1’’)のいずれかの工程によって除去することができる。本明細書において、「ジベンゾフルベンまたはジベンゾフルベン誘導体を除去する」とは、ジベンゾフルベンまたはジベンゾフルベン誘導体を、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩に変換して除去することを含む。本発明のジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法は、ジベンゾフルベンまたはジベンゾフルベン誘導体が含まれる混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去する方法であってよい。
 本明細書において、「除去する」とは、特に限定されないが、例えば、対象を含んだ混合物全体の総量を基準として、対象を1%以下、0.5%以下、0.1%以下、または検出不能な量まで低減させることを意味する。本明細書において、「ジベンゾフルベンまたはジベンゾフルベン誘導体を除去する」とは、例えば、HPLC分析による210nmでのUVarea値により算出される、下記式Aで表される値を1%以下、0.5%以下、0.1%以下、または検出不能な量まで低減させることを意味する。
(式A):(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の面積値/(アミノ基含有化合物の面積値+(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の面積値)×100 (%)
工程(1)および(1’)
 工程(1)は、(i)ジベンゾフルベンまたはジベンゾフルベン誘導体、および(ii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物を混合する工程である。また、工程(1’)は、(i)ジベンゾフルベンまたはジベンゾフルベン誘導体、および(ii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種を混合する工程である。
 本発明においては、亜硫酸イオンもしくは亜硫酸水素イオンまたはこれらを生じさせる化合物を捕捉剤として用い、ジベンゾフルベンまたはジベンゾフルベン誘導体を(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩に変換することで、ジベンゾフルベンまたはジベンゾフルベン誘導体を除去することができる。
 工程(1)および(1’)では、(i)および(ii)そのものを混合してもよく、(i)および/または(ii)が以下に記載する溶媒に溶解した溶液を混合してもよい。本明細書において、「(i)と(ii)とを混合する」とは、(i)を(ii)に添加する行為、(ii)を(i)に添加する行為、および(i)と(ii)とを同時に添加する行為のいずれの態様も含む。ここで、「混合する」とは、混合する際に均質な混合物が得られることを必要としない。
 工程(1)および(1’)は、溶媒の存在または非存在下、好ましくは-20℃~80℃の温度、より好ましくは10℃~80℃の温度で、好ましくは0.1時間~48時間、より好ましくは1時間~24時間で行うことができる。
 (i)としては、ジベンゾフルベンが好ましく用いられる。また、工程(1’)における(ii)としては、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物が好ましく用いられる。これらの中でも、亜硫酸水素、二亜硫酸、亜硫酸、および亜ジチオン酸と、アルカリ金属、アルカリ土類金属、およびアンモニウムからなる群より選ばれる少なくとも一種との塩が好ましく用いられ、亜硫酸水素、二亜硫酸、亜硫酸、および亜ジチオン酸と、ナトリウム、カリウム、カルシウム、およびアンモニウムからなる群より選ばれる少なくとも一種との塩がより好ましく用いられ、亜硫酸水素ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸水素カリウム、亜ジチオン酸ナトリウム、亜硫酸アンモニウム1水和物、亜硫酸カルシウム0.5水和物、亜硫酸ナトリウム、および亜硫酸カリウムが更に好ましく用いられ、亜硫酸水素ナトリウム、亜硫酸水素カリウム、および亜ジチオン酸ナトリウムが特に好ましく用いられる。
 (ii)の使用量は、特に限定するものではないが、例えば、(i)に対して、1モル当量以上10モル当量以下とすることが好ましく、1モル当量以上5モル当量以下とすることがより好ましい。
 溶媒としては、例えば、ニトリル系溶媒、アミド系溶媒、スルホキシド系溶媒、アルコール系溶媒およびエーテル系溶媒からなる群より選択される少なくとも一種を用いることができる。中でも、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、メタノール、エタノール、n-プロパノール、2-プロパノール、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテルおよびt-ブチルメチルエーテルからなる群より選択される少なくとも一種を含む溶媒が好ましく、アセトニトリル、ジメチルアセトアミド、メタノール、および2-メチルテトラヒドロフランからなる群より選択される少なくとも一種を含む溶媒がより好ましい。
 工程(1)および(1’)は、添加剤の存在下で行うことができる。添加剤としては、塩基を用いることができ、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン、2,6-ルチジン等の第三級アミンが好ましく用いられ、トリエチルアミンがより好ましく用いられる。
 添加剤の使用量は、特に限定するものではないが、例えば、(i)に対して、1モル当量以上20モル当量以下とすることが好ましく、1モル当量以上10モル当量以下とすることがより好ましい。
 工程(1)および(1’)は、水の存在下または非存在下で行うことができるが、水の存在下で行うことが好ましい。水の使用量は、特に限定するものではないが、例えば、(i)に対して、1モル当量以上300モル当量以下とすることが好ましく、1モル当量以上100モル当量以下とすることがより好ましい。好ましくは、水は、有機溶媒に含まれた状態の水とは異なるものである。
工程(1’’)、(1’’’)および(1’’’’)
 工程(1’’)は、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程である。(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる方法は特に限定されないが、例えば、上記した工程(1)または(1’)を行うことによって形成させることができる。
 工程(1’’’)は、ジベンゾフルベンまたはジベンゾフルベン誘導体を、亜硫酸イオンまたは亜硫酸水素イオンと反応させて(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程である。
 工程(1’’’’)は、ジベンゾフルベンまたはジベンゾフルベン誘導体と、亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種とを混合して、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程である。
 ある局面において、(1)、(1’)、(1’’)、(1’’’)または(1’’’’)のいずれかの工程前に、以下の(2)の工程を含んでもよい。
工程(2)
 工程(2)は、上記(1)、(1’)、(1’’)、(1’’’)または(1’’’’)の工程前に、Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物と脱保護剤を混合する工程である。
 Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物における「Fmoc骨格を有する保護基」としては、9-フルオレニルメチルオキシカルボニル(Fmoc)基が好ましい。Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物における「第一のアミノ基含有化合物」としては、ペプチド、アミノ酸、またはアミノ酸アミドが好ましく、ペプチドがより好ましい。ここで、ペプチド、アミノ酸、またはアミノ酸アミドは、固相合成用樹脂、または液相ペプチド合成用担体(例えば疎水性タグ)と結合したペプチド、アミノ酸、またはアミノ酸アミドを含む。液相ペプチド合成用担体の例は、例えば、特許文献4、特許第5113118号公報、特許第5929756号公報、特許第6092513号公報、特許第5768712号公報、特許第5803674号公報、特許第6116782号公報、特許第6201076号公報、特許第6283774号公報、特許第6283775号公報、特許第6322350号公報、特許第6393857号公報、特許第6531235号公報、国際公開第2020/175472号、国際公開第2020/175473号に記載の化合物が挙げられる。
 工程(2)は、溶媒の存在または非存在下、好ましくは-20℃~80℃の温度、より好ましくは10℃~80℃の温度で、好ましくは0.1時間~48時間、より好ましくは0.5時間~24時間で行うことができる。
 溶媒としては、例えば、ニトリル系溶媒、アミド系溶媒、スルホキシド系溶媒、アルコール系溶媒およびエーテル系溶媒からなる群より選択される少なくとも一種を用いることができる。中でも、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、メタノール、エタノール、n-プロパノール、2-プロパノール、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテルおよびt-ブチルメチルエーテルからなる群より選択される少なくとも一種を含む溶媒が好ましく、アセトニトリル、ジメチルアセトアミド、メタノール、および2-メチルテトラヒドロフランからなる群より選択される少なくとも一種を含む溶媒がより好ましい。
 脱保護剤としては、Fmoc骨格を有する保護基を脱保護できる脱保護剤が用いられる。脱保護剤としては、塩基を用いることができ、アミジン骨格を有する有機塩基、第一級アミン、第二級アミン、第三級アミン、無機塩基が挙げられる。アミジン骨格を有する有機塩基としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)などが挙げられ、これらの中でも、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)が好ましく用いられる。第一級アミンとしては、例えば、プロパン-1-アミンなどが挙げられる。第二級アミンとしては、例えば、モルホリン、ジエチルアミン、ジシクロヘキシルアミン、1,1,1,3,3,3-ヘキサメチルジシラザン、ピペリジン、ピロリジン、ピペラジンなどが挙げられ、これらの中でも、モルホリン、ジエチルアミン、ジシクロヘキシルアミン、および1,1,1,3,3,3-ヘキサメチルジシラザンが好ましく用いられる。第三級アミンとしては、例えば、トリエチルアミンなどが挙げられる。無機塩基としては、例えば、炭酸ナトリウム、炭酸カリウム等の炭酸塩;ナトリウムtert-ブトキシド、カリウムtert-ブトキシド等の金属アルコキシドなどが挙げられ、これらの中でも、炭酸ナトリウム、カリウムtert-ブトキシドが好ましく用いられる。
 脱保護剤の使用量は、特に限定するものではないが、例えば、Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物に対して、0.5モル当量以上10モル当量以下とすることが好ましく、1モル当量以上5モル当量以下とすることがより好ましい。
 ある局面において、ジベンゾフルベンまたはジベンゾフルベン誘導体は、以下の(3)または(3’)のいずれかの工程によって除去することができる。好ましくは、以下の(3)または(3’)のいずれかの工程によって生じた混合物からジベンゾフルベンまたはジベンゾフルベン誘導体を除去することができる。
工程(3)および(3’)
 工程(3)は、(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、(ii)脱保護剤、および(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物を混合する工程である。また、工程(3’)は、(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、(ii)脱保護剤、および(iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種を混合する工程である。
 工程(3)および(3’)では、(i)、(ii)および(iii)そのものを混合してもよく、(i)、(ii)および/または(iii)が以下に記載する溶媒に溶解した溶液を混合してもよい。ここで、「(i)~(iii)を混合する」とは、(i)~(iii)のいずれかの成分に他の成分を順次添加する行為、および(i)~(iii)を同時に添加する行為のいずれの態様も含む。ここで、「混合する」とは、混合する際に均質な混合物が得られることを必要としない。
 (i)における「Fmoc骨格を有する保護基」としては、9-フルオレニルメチルオキシカルボニル(Fmoc)基が好ましい。(i)における「第一のアミノ基含有化合物」としては、ペプチド、アミノ酸、またはアミノ酸アミドが好ましく、ペプチドまたはアミノ酸がより好ましい。ここで、ペプチド、アミノ酸、またはアミノ酸アミドは、固相合成用樹脂、または液相ペプチド合成用担体(例えば疎水性タグ)と結合したペプチド、アミノ酸、またはアミノ酸アミドを含む。上記液相ペプチド合成用担体としては、例えば、特許文献4、特許第5113118号公報、特許第5929756号公報、特許第6092513号公報、特許第5768712号公報、特許第5803674号公報、特許第6116782号公報、特許第6201076号公報、特許第6283774号公報、特許第6283775号公報、特許第6322350号公報、特許第6393857号公報、特許第6531235号公報、国際公開第2020/175472号、国際公開第2020/175473号に記載の化合物が挙げられる。
 (ii)脱保護剤としては、Fmoc骨格を有する保護基を脱保護できる脱保護剤が用いられる。(ii)としては、塩基を用いることができ、アミジン骨格を有する有機塩基、第一級アミン、第二級アミン、第三級アミン、無機塩基が挙げられる。アミジン骨格を有する有機塩基としては、例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)などが挙げられ、これらの中でも、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)が好ましく用いられる。第一級アミンとしては、例えば、プロパン-1-アミンなどが挙げられる。第二級アミンとしては、例えば、モルホリン、ジエチルアミン、ジシクロヘキシルアミン、1,1,1,3,3,3-ヘキサメチルジシラザン、ピペリジン、ピロリジン、ピペラジンなどが挙げられ、これらの中でも、モルホリン、ジエチルアミン、ジシクロヘキシルアミン、および1,1,1,3,3,3-ヘキサメチルジシラザンが好ましく用いられる。第三級アミンとしては、例えば、トリエチルアミンなどが挙げられる。無機塩基としては、例えば、炭酸ナトリウム、炭酸カリウム等の炭酸塩;ナトリウムtert-ブトキシド、カリウムtert-ブトキシド等の金属アルコキシドなどが挙げられ、これらの中でも、炭酸ナトリウム、カリウムtert-ブトキシドが好ましく用いられる。
 (ii)の使用量は、特に限定するものではないが、例えば、(i)に対して、0.5モル当量以上10モル当量以下とすることが好ましく、1モル当量以上5モル当量以下とすることがより好ましい。
 工程(3’)における(iii)としては、亜硫酸水素塩、二亜硫酸塩、亜硫酸塩、および亜ジチオン酸塩、ならびにそれらの溶媒和物が好ましく用いられる。これらの中でも、亜硫酸水素、二亜硫酸、亜硫酸、および亜ジチオン酸と、アルカリ金属、アルカリ土類金属、およびアンモニウムからなる群より選ばれる少なくとも一種との塩が好ましく用いられ、亜硫酸水素、二亜硫酸、亜硫酸、および亜ジチオン酸と、ナトリウム、カリウム、カルシウム、およびアンモニウムからなる群より選ばれる少なくとも一種との塩がより好ましく用いられ、亜硫酸水素ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸水素カリウム、亜ジチオン酸ナトリウム、亜硫酸アンモニウム1水和物、亜硫酸カルシウム0.5水和物、亜硫酸ナトリウム、および亜硫酸カリウムが更に好ましく用いられ、亜硫酸水素ナトリウム、亜硫酸水素カリウム、および亜ジチオン酸ナトリウムが特に好ましく用いられる。
 (iii)の使用量は、特に限定するものではないが、例えば、(i)に対して、1モル当量以上10モル当量以下とすることが好ましく、1モルモル当量以上5モルモル当量以下とすることがより好ましい。
 工程(3)および(3’)は、溶媒の存在または非存在下、好ましくは-20℃~80℃の温度、より好ましくは10℃~80℃の温度で、好ましくは1時間~48時間、より好ましくは1時間~24時間で行うことができる。
 溶媒としては、例えば、ニトリル系溶媒、アミド系溶媒、スルホキシド系溶媒、アルコール系溶媒およびエーテル系溶媒からなる群より選択される少なくとも一種を用いることができる。中でも、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、メタノール、エタノール、n-プロパノール、2-プロパノール、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテルおよびt-ブチルメチルエーテルからなる群より選択される少なくとも一種を含む溶媒が好ましく、アセトニトリル、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、メタノール、および2-メチルテトラヒドロフランからなる群より選択される少なくとも一種を含む溶媒がより好ましい。
 工程(3)および(3’)は、添加剤の存在下で行うことができる。一部の実施形態では、工程(3)および(3’)は、添加剤なしで実施される。添加剤としては、塩基を用いることができ、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン、2,6-ルチジン等の第三級アミンが好ましく用いられ、トリエチルアミンがより好ましく用いられる。
 添加剤の使用量は、特に限定するものではないが、例えば、(i)に対して、1モル当量以上20モル当量以下とすることが好ましく、1モル当量以上10モル当量以下とすることがより好ましい。
 工程(3)および(3’)は、水の存在下または非存在下で行うことができるが、水の存在下で行うことが好ましい。水の使用量は、特に限定するものではないが、例えば、(i)に対して、1モル当量以上300モル当量以下とすることが好ましく、1モル当量以上100モル当量以下とすることがより好ましい。好ましくは、水は、有機溶媒に含まれた状態の水ではないものである。
 ある局面において、(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(3)または(3’)のうち、1つ以上の工程後に、以下の(4)の工程を含んでもよい。
工程(4)
 工程(4)は、(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(3)または(3’)のうち、1つ以上の工程後の混合物を、洗浄用溶液で洗浄する工程である。本工程により、混合物中のジベンゾフルベンまたはジベンゾフルベン誘導体(好ましくは(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩)を(1)、(1’)、(1’’)、(1’’’)、(1’’’’)、(3)または(3’)のうち、1つ以上の工程後の混合物である有機溶液から効率的に除去することができる。本明細書において、「洗浄」とは、分液操作によって、目的物を含む溶液から、目的物を含まない溶液を用いて、目的物以外の不純物となりうる物質を取り除くことを意味する。目的物は、通常、有機層に存在しており、この場合には有機層を水溶液で洗浄することにより、水層に不純物となりうる物質を抽出して取り除くことができる。
 洗浄用溶液としては、塩基性溶液(pH10~14)、通常、pH10~14の塩基性水溶液を用いることが好ましい。洗浄用溶液として、好ましくはアンモニア水溶液、炭酸塩水溶液、およびリン酸塩水溶液からなる群より選択される少なくとも一種であり、より好ましくはアンモニア水溶液である。炭酸塩溶液は、例えば、炭酸ナトリウム水溶液であってよい。リン酸塩水溶液は、例えば、リン酸カリウム水溶液であってよい。
 工程(4)においては、混合物中からFmoc骨格を有する保護基が脱保護されたアミノ基含有化合物を効率よく抽出するために抽出溶媒を用いることが好ましい。このような抽出溶媒としては、例えば、ベンゼン系溶媒、エステル系溶媒およびエーテル系溶媒およからなる群より選択される少なくとも一種を用いることができる。中でも、ベンゼン、トルエン、キシレン、フルオロベンゼン、クロロベンゼン、1,2-ジクロロベンゼン、ブロモベンゼン、アニソール、エチルベンゼン、ニトロベンゼン、クメン、ベンゾトリフルオリド、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテルおよびt-ブチルメチルエーテルからなる群より選択される少なくとも一種を含む溶媒が好ましく、トルエン、酢酸イソプロピルおよび2-メチルテトラヒドロフランからなる群より選択される少なくとも一種を含む溶媒がより好ましい。
(化合物の製造方法)
 一局面において本発明は、上記したジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法を含む、第一の化合物の製造方法を提供する。当該方法によって製造される第一の化合物は特に限定されないが、例えば、アミノ酸、ペプチドなどが挙げられる。また、ある局面において、本発明の製造方法により、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を製造することができる。
 一局面において本発明は、以下の工程を含むペプチド化合物の製造方法を提供する。
1)亜硫酸イオンまたは亜硫酸水素イオンの存在下で、Fmoc骨格を有する保護基を脱保護できる脱保護剤によりFmoc骨格を有する保護基で保護された保護基ペプチドを処理し、保護基を除去した脱保護ペプチドを得る工程、
2)必要に応じて1種以上のアミノ酸で脱保護されたペプチドを伸長させ、伸長させたペプチドを得る工程。
 一局面において本発明は、以下の工程を含むペプチド化合物の製造方法を提出する。
1)アミノ基がFmoc骨格を有する保護基により保護された保護ペプチドを、Fmoc骨格を有する保護基を脱保護できる脱保護剤で処理し、(a)ジベンゾフルベンまたはジベンゾフルベン誘導体、及び(b)保護基を除去した脱保護ペプチドの第一の混合物を得る工程;
2)第一の混合物を亜硫酸イオンまたは亜硫酸水素イオンで処理してジベンゾフルベンまたはジベンゾフルベン誘導体を除去し、脱保護されたペプチドを含む第二の混合物を得る工程、
3)必要に応じて1種以上のアミノ酸で脱保護されたペプチドを伸長させ、伸長させたペプチドを得る工程。
 本発明の製造方法において、脱保護されたペプチドまたは伸長させたペプチドが、C末端側に1つの反応部位を有するアミノ酸残基を有していてよく、N末端側に他の反応部位を有するアミノ酸残基を有していてよく、本発明の製造方法は、更に、当該1つの反応部位と他の反応部位とが結合して環状ペプチド化合物を形成する工程を含んでもよい。
 本発明の製造方法は、液相合成法、固相合成法の何れであってもよく、これらに限定されるものでもないが、液相合成法が好ましい。液相合成法および固相合成法は当業者に周知の方法で実施することができる。
 固相合成法とは、化合物を固相(合成用樹脂)に結合させ、その固相上で前記化合物と試薬を化学反応させ目的の化合物を合成する方法である。
 ペプチドの固相合成法は、固相に所望のアミノ酸またはペプチドを結合させ、固相に結合したアミノ酸またはペプチドに対して更に所望のアミノ酸またはペプチドを順次連結することでペプチド鎖を伸長し、固相に結合したままペプチドを合成する方法である。この固相に結合されたペプチドを固相から切り離すことで、目的のペプチドを得ることができる。 
 液相合成法とは、化合物を液相中(溶液中)で化学反応をさせ目的の化合物を合成する方法である。ペプチドの液相合成法は、アミノ酸並びにペプチドを含む全ての試薬が溶媒に溶解している均一反応に加えて、試薬の全部または一部が溶媒に溶解せず、分散または懸濁している不均一反応も包含する。
 本発明の製造方法は、上記除去方法における(2)、(3)または(3’)のうち1つ以上の工程の前に、Fmoc骨格を有する保護基でアミノ基が保護された第二のアミノ基含有化合物と、第三のアミノ基含有化合物とを縮合させて、Fmoc骨格を有する保護基でアミノ基が保護された前記第一のアミノ基含有化合物を得る工程を更に含むものであってもよい。
 Fmoc骨格を有する保護基でアミノ基が保護された第二のアミノ基含有化合物における「Fmoc骨格を有する保護基」としては、9-フルオレニルメチルオキシカルボニル(Fmoc)基が好ましい。Fmoc骨格を有する保護基でアミノ基が保護された第二のアミノ基含有化合物における「第二のアミノ基含有化合物」の一態様としては、カルボキシル基を有するアミノ基含有化合物が好ましい。Fmoc骨格を有する保護基でアミノ基が保護された第二のアミノ基含有化合物における「第二のアミノ基含有化合物」の別の態様としては、ペプチド、またはアミノ酸が好ましく、アミノ酸がより好ましい。
 第三のアミノ基含有化合物の一態様としては、液相ペプチド合成用担体と結合していないアミノ基含有化合物が好ましく、上記第三のアミノ基含有化合物が、液相ペプチド合成用担体と結合していないアミノ基含有化合物であり、上記液相ペプチド合成用担体は、第三のアミノ基含有化合物に直接またはリンカーを介して結合して、それらを有機溶媒に対する溶解性を高め、水に不溶性を高める化合物であることがより好ましい。上記液相ペプチド合成用担体としては、例えば特許文献4に記載の化合物が挙げられる。第三のアミノ基含有化合物の別の態様としては、ペプチド、アミノ酸、またはアミノ酸アミドが好ましい。
 Fmoc骨格を有する保護基でアミノ基が保護された前記第一のアミノ基含有化合物を得る工程は、溶媒の存在または非存在下、縮合剤の存在または非存在下、好ましくは-50℃~溶媒の沸点付近の範囲の温度、より好ましくは-20℃~80℃の範囲の温度で、好ましくは0.1時間~48時間、より好ましくは0.5時間~24時間で行うことができる。
 溶媒としては、例えば、アセトニトリル、2-MeTHF、THF、ジクロロメタン、トルエン、酢酸エチル、酢酸イソプロピル、DMF、DMA、NMPなどを用いることができる。
 縮合剤としては、例えば、HATU(1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスファート、CAS RN: 148893-10-1)、T3P(2,4,6-トリプロピル-1,3,5,2,4,6-トリオキサトリホスホリナン-2,4,6-トリオキシド (50%酢酸エチル溶液, 約1.7mol/L)、CAS RN: 68957-94-8)、HBTU(1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドヘキサフルオロホスファート、CAS RN: 94790-37-1)、COMU((1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロホスファート、CAS RN: 1075198-30-9)、BEP(テトラフルオロほう酸2-ブロモ-1-エチルピリジニウム、CAS RN: 878-23-9)、PyBOP(1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロホスファート、CAS RN: 128625-52-5)、DMT-MM(4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド、CAS RN: 3945-69-5)、PyOxim([エチルシアノ(ヒドロキシイミノ)アセタト-O2]トリ-1-ピロリジニルホスホニウムヘキサフルオロリン酸、CAS RN: 153433-21-7)、TATU(1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドテトラフルオロボラート、CAS RN: 873798-09-5)、TBTU(1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドテトラフルオロボラート、CAS RN: 125700-67-6)、TOTU(O-[(エトキシカルボニル)シアノメチレンアミノ]-N,N,N',N'-テトラメチルウロニウムテトラフルオロボラート、CAS RN: 136849-72-4)、EDCI(1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド、CAS RN: 1892-57-5)、DIC(N,N'-ジイソプロピルカルボジイミド、CAS RN: 693-13-0)、DCC(N,N'-ジシクロヘキシルカルボジイミド、CAS RN: 538-75-0)などを用いることができる。このような縮合反応による第一のアミノ基含有化合物を得る工程は、文献記載の方法を参照して行うことができる。例えば、Amino Acids, 2018, 50, 39-68、Solid phase peptide synthesis (Bachem社発行) [2022年9月18日検索]、インターネット<URL: https://www.bachem.com/wpfd_file/solid-phase-peptide-synthesis/>、Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3, 2011、J. Peptide Res., 2005, 65, 153-166、Org. Process Res. Dev., 2018, 22, 760-772、ペプチド合成の基礎と実験:泉屋信夫(著)丸善(1985)などを参照することができる。
 本発明の製造方法は、上記したジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法を2回以上、または3回以上繰り返すことを含むものであってもよい。
 本発明の方法の具体的な順序の一つとして、工程(2)を行い、続いて工程(1)、(1’)、(1’’)、(1’’’)または(1’’’’)を行い、続いて(4)を行うことが挙げられる。例えば、反応容器中でFmoc骨格を有する保護基でアミノ基が保護された第二のアミノ基含有化合物と、第三のアミノ基含有化合物とを縮合させて、Fmoc骨格を有する保護基でアミノ基が保護された前記第一のアミノ基含有化合物を得る。続いて、反応容器中のFmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物と脱保護剤を混合し、Fmoc骨格を有する保護基の脱保護を行う。この際、ジベンゾフルベンまたはジベンゾフルベン誘導体が生じる。続いて、反応容器に亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物を加え、ジベンゾフルベンまたはジベンゾフルベン誘導体と混合し、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる。続いて、反応容器に有機溶媒を加え、有機層を洗浄用溶液で洗浄する。
 本発明の方法の具体的な順序の一つとして、工程(3)を行い、続いて(4)を行うことが挙げられる。例えば、反応容器中でFmoc骨格を有する保護基でアミノ基が保護された第二のアミノ基含有化合物と、第三のアミノ基含有化合物とを縮合させて、Fmoc骨格を有する保護基でアミノ基が保護された前記第一のアミノ基含有化合物を得る。続いて、反応容器中の(i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物に(ii)脱保護剤、及び(iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物を混合し、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる。続いて、反応容器に有機溶媒を加え、有機層を洗浄用溶液で洗浄する。本方法では、Fmoc骨格を有する保護基の脱保護と、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の形成が1工程で行われている。
(脱保護方法)
 一局面において本発明は、亜硫酸イオンまたは亜硫酸水素イオンの存在下で、Fmoc骨格を有する保護基を脱保護できる脱保護剤によりFmoc骨格を有する保護基により保護されている第一のアミノ基含有化合物を処理する工程を含む、Fmoc骨格を有する保護基を脱保護する方法を提供する。
(使用)
 本発明の他の側面は、ジベンゾフルベンまたはジベンゾフルベン誘導体を除去するための以下の(a)及び/または(b)の使用である。
(a)亜硫酸イオンもしくは亜硫酸水素イオン、または亜硫酸イオンもしくは亜硫酸水素イオンを生成する化合物、
(b)亜硫酸水素塩、二亜硫酸及びその塩、亜硫酸及びその塩、亜ジチオン酸及びその塩、並びにこれらの溶媒和物からなる群から選択される少なくとも一つの化合物。
(併用)
 本発明の他の側面は、Fmoc骨格を有する保護基を脱保護するための以下の(a)及び/または(b)とFmoc骨格を有する保護基を脱保護できる脱保護剤との併用である。
(a)亜硫酸イオンもしくは亜硫酸水素イオン、または亜硫酸イオンもしくは亜硫酸水素イオンを生成する化合物、
(b)亜硫酸水素塩、二亜硫酸及びその塩、亜硫酸及びその塩、亜ジチオン酸及びその塩、並びにこれらの溶媒和物からなる群から選択される少なくとも一つの化合物。
(組成物)
 本発明は、アミノ基含有化合物、および(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を含む組成物であって、HPLC分析による210nmでのUVarea値により算出される、下記式Aで表される値が1%以下である組成物を提供する。
(式A):(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の面積値/(アミノ基含有化合物の面積値+(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の面積値)×100 (%)
 ある態様において、式Aで表される値は、1%以下、0.5%以下、または検出不能である。
 本発明は、アミノ基含有化合物、および(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を含む組成物であって、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の含有割合が、アミノ基含有化合物及び(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩に対して、0.01以下である組成物を提供する。ある態様において、前記含有割合は、HPLC分析による210 nmでのUVarea値を測定することにより算出される。ある態様において、前記含有割合は、0.01以下、0.005以下、または検出不能である。
 ある局面において、本発明の組成物に含まれるアミノ基含有化合物は、ペプチド、アミノ酸、またはアミノ酸アミドである。また、ある局面において、本発明の組成物に含まれる(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩は、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩である。
 なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。本出願は、2022年11月1日出願の日本特許出願である特願2022-175592の優先権を主張し、この内容はその全体が参照として本明細書中に援用される。また、以下の文献を含む、本明細書中で引用される参照文献は、特許出願及び公報も含めて、全て、それらの全体が参照として本明細書中に援用される:WO2013100132、WO2018225851、WO2018225864、WO2019117274、WO2020111238、WO2020122182、WO2021075478、WO2021090856、WO2021132545、WO2021246471、WO2022097540、WO2022138891、WO2022145444、WO2022234864、WO2023127869。
 以下、本開示を実施例に基づいてさらに詳しく説明するが、本開示は以下の実施例に限定されるものではない。
 本明細書において使用される略語を以下に記す。
2-MeTHF:2-メチルテトラヒドロフラン
CPME:シクロペンチルメチルエーテル
Cy:シクロヘキシル
DIPEA:N,N-ジイソプロピルエチルアミン
DMA:ジメチルアセトアミド
DMF:N,N-ジメチルホルムアミド
DMI:1,3-ジメチル-2-イミダゾリジノン
DMSO:ジメチルスルホキシド
DBF:ジベンゾフルベン
DBU:ジアザビシクロウンデセン
Et:エチル
EtOAc:酢酸エチル
Fmoc:9-フルオレニルメトキシカルボニル
FMSA:9H-フルオレン-9-イルメタンスルホン酸
FMSA Salt:9H-フルオレン-9-イルメタンスルホン酸塩
HATU:O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロリン酸塩
HMDS:1,1,1,3,3,3-ヘキサメチルジシラザン
IPAc:酢酸イソプロピル
Me:メチル
MeCN:アセトニトリル
MeOH:メタノール
NMM:N-メチルモルホリン
NMP:N-メチル-2-ピロリドン
nPr:ノルマルプロピル
T3P:プロピルホスホン酸無水物
TFA:トリフルオロ酢酸
 本発明の内容を以下の実施例でさらに説明するが、本発明はその内容に限定されるものではない。特に記載したものを除き、出発物質、出発原料、溶媒、および試薬は商業的供給業者から入手、もしくは公知の方法を用いて合成した。
 HPLCによる分析にはWaters製H-Classシステムを使用し、PDA検出器を用いて測定し、210nmの波長で解析した。分析条件を以下に示した。
HPLC分析条件 method 1
装置:WatersTM ACQUITY UPLC H-Class
カラム:CAPCELL CORE ADME (OSAKA SODA), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B):5%(0 min)→100%(5 min)→5%(5.1 min)→5%(7 min)
流速:0.5 mL/min
カラム温度:35℃
検出波長:210nm(PDA)
HPLC分析条件 method 2
装置:WatersTM ACQUITY UPLC H-Class
カラム:Ascentis Express C18 (Sigma AldrichTM), 4.6 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B):5%(0 min)→100%(6 min)→100%(7 min)→5%(7.1 min)→5%(9 min)
流速:0.8 mL/min
カラム温度:35℃
検出波長:210nm(PDA)
Figure JPOXMLDOC01-appb-T000013
 LCMS分析では、Waters製H-Classシステムを使用し、MS分析にはQDa検出器またはSQD2検出器を用いた。分析条件を以下に示した。
LCMS分析条件 method 1
装置:WatersTM ACQUITY UPLC H-Class + ACQUITY QDA
カラム:CAPCELL CORE ADME (OSAKA SODA), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B):5%(0 min)→100%(5 min)→5%(5.1 min)→5%(7 min)
流速:0.5 mL/min
カラム温度:35℃
検出波長:210nm(PDA)
LCMS分析条件 method 2
装置:WatersTM ACQUITY UPLC H-Class + SQD2
カラム:Ascentis Express C18 (Sigma Aldrich), 4.6 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B):5%(0 min)→100%(6 min)→100%(7 min)→5%(7.1 min)→5%(9 min)
流速:0.8 mL/min
カラム温度:35℃
検出波長:210nm(PDA)
LCMS分析条件 method 3
装置:WatersTM ACQUITY UPLC H-Class + SQD2
カラム:ACQUITY UPLC CSH C18 (Waters), 2.1 mm ID×150 mm, 1.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 20%(0 min)→100%(24 min)→100%(29 min)→20%(29.1 min)→20%(34 min)
流速:0.3 mL/min
カラム温度:50 ℃
検出波長:220 nm(PDA)
Figure JPOXMLDOC01-appb-T000014
 1H-NMRスペクトルと19F-NMRスペクトルは、核磁気共鳴装置JNM-ECZ500R(日本電子社製)を用いて測定した。サンプル溶媒からの重水素ロック信号を参照した。サンプル溶媒は測定の目的に応じ、市販の重水素化溶媒を用いた。内部標準物質として用いたテトラメチルシランのケミカルシフトを0 ppmとし、分析対象化合物のシグナルのケミカルシフトはppmで表記した。シグナルの***の略語は、s:シングレット、brs:ブロードシングレット、d:ダブレット、t:トリプレット、q:カルテット、dd:ダブルダブレット、m:マルチプレットで表記し、シグナルの分列幅はJ値(Hz)で表記した。シグナルの積分値は各シグナルのシグナル面積強度の比をもとに算出した。
 qNMRによる測定法は、目的化合物を含む残渣と内部標準物質をDMSO‐d6に溶解させ、以下の分析条件により行った。収率の算出は、qNMRにより算出された残渣中の目的物の含量の値を用いて、以下の式により行った。
収率(%)=[残渣の重量(mg)×含量(%)]/理論収量(mg)×100
測定装置:JNM-ECZ500R
内部標準物質:3,5-ビス(トリフルオロメチル)安息香酸
測定条件(1H-NMR):DMSO-d6、24.3℃、パルス角度 90°、デジタル分解能 0.25Hz、緩和時間 60秒、スピン無し、積算回数8回
測定条件(19F-NMR):DMSO-d6, 24.3℃, パルス角度 90°, デジタル分解能 0.22Hz, 緩和時間 60秒、スピン無し、積算回数8回
 HPLCとLCMSによる測定法は、目的化合物を含む混合液を以下のいずれかの方法にてサンプル調製し、上述の分析条件により行った。
サンプル調製法1:目的化合物を含む混合液をMeCNで希釈した。
サンプル調製法2:目的化合物を含む混合液を、MeCNとH2NnPrを9対1の比率で混ぜた混合液で希釈した。
サンプル調製法3:目的物を含む混合液を、MeOHと水を4対1の比率で混ぜた混合液で希釈した。
 反応転換率の算出は、HPLC分析により算出された原料の面積値と目的物の面積値、または原料の面積値と原料のプロピルアミド体の面積値と目的物の面積値を用いて、以下のいずれかの式により行った。
反応転換率の算出式1:反応転換率(%)=目的物の面積値/(原料の面積値+目的物の面積値)×100
反応転換率の算出式2:反応転換率(%)=目的物の面積値/(原料の面積値+原料のプロピルアミド体の面積値+目的物の面積値)×100
 Fmoc基の脱保護反応転換率の算出は、HPLC分析により算出されたFmoc体の面積値と脱Fmoc体の面積値を用いて、以下の式により行った。
Fmoc基の脱保護反応転換率の算出式:Fmoc基の脱保護反応転換率(%)=脱Fmoc体の面積値/(Fmoc体の面積値+脱Fmoc体の面積値)×100
 DBFの捕捉反応転換率の算出は、HPLC分析により算出されたDBFの面積値とFMSAまたはFMSA Saltの面積値、または化合物35の面積値、または化合物36の面積値、または化合物37の面積値を用いて、以下の式により行った。
DBFの捕捉反応転換率の算出式1:DBFの捕捉反応転換率(%)=FMSAまたはFMSA Saltの面積値/(DBFの面積値+FMSAまたはFMSA Saltの面積値)×100
DBFの捕捉反応転換率の算出式2:DBFの捕捉反応転換率(%)=FMSAまたはFMSA Saltの面積値/(DBFの面積値+化合物35の面積+FMSAまたはFMSA Saltの面積値)×100
DBFの捕捉反応転換率の算出式3:DBFの捕捉反応転換率(%)=化合物36の面積値/(DBFの面積値+化合物36の面積値)×100
DBFの捕捉反応転換率の算出式4:DBFの捕捉反応転換率(%)=化合物37の面積値/(DBFの面積値+化合物37の面積値)×100
 FMSAまたはFMSA Saltの残留率は、HPLC分析により算出された脱Fmoc体の面積値とFMSAまたはFMSA Saltの面積値を用いて、以下の式により行った。
FMSAまたはFMSA Saltの残留率の算出式:FMSAまたはFMSA Saltの残留率(%)=FMSAまたはFMSA Saltの面積値/(脱Fmoc体の面積値+FMSAまたはFMSA Saltの面積値)×100
実施例1
(i)化合物3:(2S)-2-[[(1S)-1-ベンジル-2-tert-ブトキシ-2-オキソ-エチル]カルバモイル]ピロリジン-1-カルボン酸 9H-フルオレン-9-イルメチルの合成
Figure JPOXMLDOC01-appb-C000015
 化合物1(0.964 g)、および化合物2(0.813 g, 1.1 eq.)を反応容器へ加え、反応容器の窒素置換を行った。次いで、2-MeTHF(12 mL, 12 v/w)、DIPEA(1.70 mL, 3.4 eq.)を室温にて順次加えた。反応混合物を攪拌しながらT3P(50 w/w% 2-MeTHF溶液、2.68 mL, 1.5 eq.)を加えた後、室温にて1時間撹拌した。ついで、攪拌しながらDIPEA(1.70 mL, 3.4 eq.)とT3P(50 w/w% 2-MeTHF溶液、2.68 mL, 1.5 eq.)を室温にて追加し、さらに0.5時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析により反応転換率が99.9%であることを確認した(反応転換率の算出式1)。反応容器に5%炭酸ナトリウム水溶液(15 mL)を加えて10分攪拌した。水層を排出した後、得られた有機層を5%硫酸水素ナトリウム一水和物水溶液(15 mL×2)、5%炭酸ナトリウム水溶液(15 mL)、5%塩化ナトリウム水溶液(15 mL)で洗浄した。得られた有機層に対し硫酸ナトリウムによる脱水、ろ過による硫酸ナトリウムの除去を行った。外温40℃にて減圧濃縮し、化合物3を含む残渣(1.43 g)を得た。
化合物3のLC純度: 99.0% (HPLC分析条件: method 1)
含量: 98.8 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
亜硫酸水素ナトリウムをDBF捕捉剤として用いた実施例
(ii)化合物4:(2S)-3-フェニル-2-[[(2S)-ピロリジン-2-カルボニル]アミノ]プロパン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000016
 化合物3(95.0 mg, 含量 98.8 wt%, 実質量 94 mg)、およびMeCN(0.27 mL, 3.0 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(25.9 μL, 1.0 eq.)を室温にて加えた後、室温にて30分撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応転換率が99.9%以上進行していることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(96.0 μL, 4.0 eq.)、水(31.3 μL, 10 eq.)、亜硫酸水素ナトリウム(45.6 mg, 2.5 eq.)を室温にて順次加えた。反応混合物を1時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.9%以上であることを確認した(DBFの捕捉反応転換率の算出式1)。反応容器にIPAc(0.50 mL)、トルエン(0.50 mL)、20%アンモニア水溶液(1.0 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を再度20%アンモニア水溶液(1.0 mL)で洗浄した。サンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFMSAまたはFMSA Saltの残留率が0.39%であることを確認した(FMSAまたはFMSA Saltの残留率の算出式)。得られた有機層を外温40℃にて減圧濃縮した。MeCN(50 μL)を加えて、化合物4を含むMeCN溶液(124 mg)として以下に示す分析に付した。
化合物4のLC純度: 96.2% (HPLC分析条件: method 1)
含量: 43.2 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
収率: 96.7%
メタ亜硫酸水素ナトリウム(Na2S2O5)をDBF捕捉剤として用いた実施例
(iii)化合物4:(2S)-3-フェニル-2-[[(2S)-ピロリジン-2-カルボニル]アミノ]プロパン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000017
 化合物3(200 mg, 含量 98.8 wt%, 実質量 198 mg)を0.94 mLのアセトニトリル中に懸濁させ、DBU(55 μL, 1.0 eq.)を加えた。反応混合物を室温で30分撹拌した後にFmoc脱保護反応の完了をHPLCで確認した(Fmoc基の脱保護反応転換率の算出式)。ついで、Na2S2O5(88 mg, 1.25 eq.)、トリエチルアミン(206 μL, 4.0 eq.)、水(67 μL, 10.0 eq.)を加え、1時間撹拌後にジベンゾフルベン捕捉反応の完了をHPLCで確認した(DBFの捕捉反応転換率の算出式1)。反応混合物にIPAc(0.94 mL)とトルエン(0.94 mL)を加えた。20%アンモニア水溶液(2.0 mL)を加え、10分撹拌後に静置し、水層を除去した。得られた有機層を再度20%アンモニア水溶液で洗浄した。5%炭酸ナトリウム水溶液(2.0 mL)を加え、10分撹拌した後に静置し、水層を除去した。得られた有機層を減圧下で濃縮し、化合物4を得た。
化合物4のLC純度: 89.5% (HPLC分析条件: method 2)
実施例2
(9H-fluoren-9-yl)methanesulfonic acid (FMSAまたはFMSA salt)の構造同定
Figure JPOXMLDOC01-appb-C000018
 実施例1-(iii)において20%アンモニア水溶液による分液洗浄工程で得られた水層を減圧条件下での凍結乾燥によって水とその他揮発性成分を除去し、FMSAをDBUとの1:1混合物として得た。
LC純度(DBUピークを除く):98.3%(HPLC分析条件: method 2)
1H-NMR (500MHz, D2O, DBUシグナルを除く) δ: 3.04 (2H, d, J=5.7 Hz), 4.03 (1H, t, J=5.7 Hz), 7.01-7.08 (4H, m), 7.24-7.26 (2H, d, J=7.4 Hz), 7.52-7.54 (2H, d, J=7.4 Hz)
実施例3
化合物6:(2S)-2-[[(2S)-1-[(2S)-2-(9H-フルオレン-9-イルメトキシカルボニルアミノ)-3-(p-トリル)プロパノイル]ピロリジン-2-カルボニル]アミノ]-3-フェニル-プロパン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000019
 実施例1-(iii)で得られた化合物4(177 mg)と化合物5(245 mg, 1.1 eq.)をフラスコ中でMeCN(1.0 mL)に溶解し、反応容器を窒素置換した。NMM(183 μL, 3.0 eq.)とHATU(317 mg, 1.5 eq.)を順次加えた。反応混合物を室温で1時間撹拌した後にHPLC分析で反応完結を確認した(反応転換率の算出式1)。シクロペンチルメチルエーテル(2.0 mL)、5%炭酸ナトリウム水溶液(1.0 mL)、N-メチルイミダゾール(44.5μL, 1.0 eq.)を順次加えた。反応混合物を1時間撹拌した後に静置し、水層を除去した。反応容器に20%アンモニア水溶液(1.0 mL)を加え、5分撹拌後に静置し、水層を除去した。10%硫酸水素ナトリウム水溶液(1.0 mL)を加え、5分撹拌後に静置し、水層を除去した。5%炭酸ナトリウム水溶液(1.0 mL)を加え、5分撹拌した後に静置し、水層を除去した。得られた有機層を減圧下で濃縮し、化合物6を得た。
化合物6のLC純度: 92.0% (HPLC分析条件: method 2)
実施例4
(i)化合物8:(tert-ブチル (3S)-3-[ベンジルオキシカルボニル(メチル)アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
Figure JPOXMLDOC01-appb-C000020
 窒素で置換した反応釜に、化合物7(62.8 kg)、2-MeTHF(310 kg)を室温にて順次加えた。反応釜の外温を10℃に設定し、反応混合物を撹拌しながらDIPEA(89.5 kg)、ジメチルアミン-THF溶液(2 M、THF溶液、71.4 kg)を順次加えて30分間撹拌した。T3P(50 %w/w、2-MeTHF溶液、151 kg)を加えた後、反応釜の外温を25℃に設定し、2時間撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法2)し、HPLC分析により反応転換率が90.2%であることを確認した(反応転換率の算出式2)。反応釜の外温を10℃に設定し、攪拌しながらジメチルアミン-THF溶液(2 M、THF溶液、9.80 kg)を追加した後、反応釜の外温を25℃に設定し、20分間攪拌した。攪拌を止めて10時間静置させた後、反応混合物をサンプリングしてサンプル調製(サンプル調製法2)し、HPLC分析により反応転換率が99.4%であることを確認した(反応転換率の算出式2)。反応釜の外温を10℃に設定し、反応混合物に10%クエン酸一水和物水溶液(380 kg)を加えた。反応釜の外温を25℃に設定し、10分間撹拌後、撹拌を停止し、反応釜から水層を排出した。得られた有機層を10%クエン酸一水和物水溶液(380 kg×2)および5%炭酸ナトリウム水溶液(380 kg×2)で洗浄した。得られた有機層の液量が220L程度なるまで外温55℃にて減圧濃縮した。2-MeTHF(85 kg)を加え、再度液量が100L程度になるまで外温55℃にて減圧濃縮し、化合物8を含む溶液(95.6 kg)を得た。
(ii)化合物9:(tert-ブチル (3S)-4-(ジメチルアミノ)-3-(メチルアミノ)-4-オキソ-ブタノアート)の合成
Figure JPOXMLDOC01-appb-C000021
 窒素で置換した反応釜に、5% Pd/C(17.9 kg, 50%含水品)、2-MeTHF(85 kg)を室温にて順次加えた。反応釜を窒素置換した後、水素で0.45 MPaG(5.5 atm)まで加圧し、反応釜の内温を25℃に設定した。内圧が0.40 MPaG(5.0 atm)まで加圧された状態を保ちながら2時間攪拌した。ついで、実施例4-(i)で得られた化合物8を含む溶液(94.6 kg)、2-MeTHF(174 kg)を室温にて順次加えた。反応釜の内圧が0.18 MPaG(2.8 atm)になるまで水素で加圧した。1.5時間撹拌後、内圧の変動がないことを確認した後、反応釜を水素で0.18 MPaG(2.8 atm)まで加圧し、さらに0.5時間撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.9%であることを確認した(反応転換率の算出式1)。反応釜内を窒素で置換後、反応混合物を加圧濾過した。反応釜内と濾過機を2-MeTHF(85 kg×2)で洗浄後、窒素置換した反応釜に濾液と洗浄液を加え、液量が100 L程度になるまで外温40℃にて攪拌しながら減圧濃縮した。この濃縮液と反応釜を2-MeTHF(43 kg)で洗浄した洗浄液を合わせて化合物9を含む溶液(132 kg)を得た。
(iii)化合物11:(tert-ブチル (3S)-3-[[(2S)-2-[ベンジルオキシカルボニル(メチル)アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
Figure JPOXMLDOC01-appb-C000022
 窒素で置換した反応釜に、実施例4-(ii)で得られた化合物9を含む溶液(132 kg)、を室温にて加えた。反応釜の外温を10℃に冷却し、アセトニトリル(38 kg)、化合物10 (41.5 kg)、2-MeTHF(16 kg)、DIPEA(67.7 kg)を順次加えた。次いで、HATU(67.7 kg)を加えた後、外温を25℃に昇温した。反応混合物を25℃にて3時間撹拌した後、反応混合物をサンプリングしてサンプル調製(サンプル調製法2)し、HPLC分析により反応転換率が98.5%であることを確認した(反応転換率の算出式2)。反応釜にCPME(54 kg)、5%炭酸カリウム水溶液(48 kg)、N-メチルイミダゾール(9.70 kg)を順次加え、30分間撹拌した。ついで、2.5%アンモニア水溶液(190 kg)と2-MeTHF(55 kg)を加え、10分撹拌後、水層を排出した。得られた有機層を2.5%アンモニア水溶液(240 kg)、10%硫酸水素ナトリウム一水和物水溶液(240 kg×2)、5%炭酸カリウム水溶液(240 kg×2)で洗浄した。得られた有機層に2-MeTHF(86 kg)を加え、液量が100 L程度になるまで外温60℃にて攪拌しながら減圧濃縮し、化合物11を含む溶液(98.1 kg)を得た。
(iv)化合物12:(tert-ブチル (3S)-3-[[(2S)-2-シクロペンチル-2-(メチルアミノ)アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
Figure JPOXMLDOC01-appb-C000023
 窒素で置換した反応釜に、5% Pd/C(17.5 kg、50%含水品)、2-MeTHF(85 kg)を室温にて順次加えた。反応釜を窒素置換した後、水素で0.45 MPaG(5.5 atm)まで加圧し、反応釜の内温を25℃に設定した。内圧が0.40 MPaG(5.0 atm)まで加圧された状態を保ちながら2時間攪拌した。実施例4-(iii)で得られた化合物11を含む溶液(97.1 kg)、2-MeTHF(160 kg)を室温にて順次加えた。反応釜の外温を25℃に設定し、反応容器の内圧が0.18 MPaG(2.8 atm)になるまで水素で加圧した。2時間撹拌後、内圧の変動がないことを確認した後、反応釜を水素で0.18 MPaG(2.8 atm)まで加圧し、さらに1時間撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.9%であることを確認した(反応転換率の算出式1)。反応釜を水素で0.18 MPaG(2.8 atm)まで加圧し、1時間撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.9%以上であることを確認した(反応転換率の算出式1)。反応釜内を窒素で置換後、反応混合物を加圧濾過した。反応釜内と濾過機を2-MeTHF(85 kg×2)で洗浄し、得られた濾液および洗浄液を合わせて、液量が100 L程度になるまで外温60℃にて攪拌しながら減圧濃縮した。この濃縮液と反応釜を2-MeTHF(43 kg)を用いて洗浄した洗浄液を合わせて化合物12を含む溶液(133 kg)を得た。
(v)化合物14:(tert-ブチル (3S)-3-[[(2S)-2-シクロペンチル-2-[メチル-[1-[(2,2,2-トリフルオロアセチル)アミノ]シクロペンタンカルボニル]アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
Figure JPOXMLDOC01-appb-C000024
 窒素で置換した反応釜に、化合物13 (51.8 kg)、2-MeTHF(210 kg)を順次、室温にて加えた。反応釜の外温を10℃に冷却し、DIPEA(77.1 kg)、実施例4-(iv)で得た化合物12を含む溶液(133 kg)、T3P(50 %w/w、2-MeTHF溶液、194 kg)、およびDMAP(28.1 kg)を順次加えた。反応容器の外温を50℃に設定し、5時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法2)、HPLC分析により反応転換率が99.3%であることを確認した(反応転換率の算出式2)。反応容器の外温を10℃に設定し、5%炭酸ナトリウム水溶液(350 kg)を加えた。反応容器の外温を25℃に設定し、30分間撹拌後、撹拌を停止し、反応容器から水層を排出した。ついで、5%硫酸水素ナトリウム一水和物水溶液(350 L)を加え、10分間撹拌後、撹拌を停止して反応容器から水層を排出した。得られた有機層を、5%硫酸水素ナトリウム一水和物水溶液(350 kg)、5%炭酸ナトリウム水溶液(350 kg)で洗浄した。反応混合液を濃縮釜に移送した後、反応釜内を2-MeTHF(86 kg)で洗浄し、反応混合物と洗浄液を合わせて、液量が200 L程度になるまで外温60℃にて攪拌しながら減圧濃縮した。ついで、2-MeTHF(63 kg)を加えて、液量が200 L程度になるまで外温60℃にて攪拌しながら減圧濃縮した。メタノール(29 kg)を加えて、化合物14を含む溶液(223 kg)を得た。
(vi)化合物15:(tert-ブチル (3S)-3-[[(2S)-2-[(1-アミノシクロペンタンカルボニル)-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
Figure JPOXMLDOC01-appb-C000025
 窒素で置換した反応容器に、化合物14を含む溶液(223 kg)、2-MeTHF(110 kg)を室温にて順次加えた。反応容器の外温を-20℃に設定し、撹拌しながらLiBH4(4 M、THF溶液、51.5 kg)を加えた後、3時間撹拌した。撹拌しながらLiBH4(4 M、THF溶液、0.6 kg)を追加して、さらに反応混合物をサンプリングしてサンプル調製(サンプル調製法3)し、HPLC分析により反応転換率が99.5%であることを確認した(反応転換率の算出式1)。TFE(228 kg)を加えた後、反応釜の外温を1時間かけて0℃に昇温し、0℃にて1時間攪拌した。ついで、20%塩化アンモニウム水溶液(200 kg)を2時間かけて滴下し、外温25℃にて30分間攪拌後、攪拌を停止し、反応容器から水層を排出した。反応容器の外温を10℃に設定し、トリフルオロ酢酸(26.0 kg)を加えた。反応容器の外温を25℃に設定し、1時間撹拌した。得られた反応混合物、および反応釜を2-MeTHF(84.7 kg×2)で洗浄した洗浄液を混ぜ合わせて混合物とした。窒素で置換した別の反応釜に2 M水酸化ナトリウム水溶液(630 kg)を室温にて加え、反応容器の外温を10℃に設定した。これに対し、上記の混合物を1.5時間かけて滴下した後、反応容器の外温を25℃に設定した。10分間攪拌後、撹拌を停止し、反応容器から水層を排出した。得られた有機層を2 M水酸化ナトリウム水溶液(630 kg×3)、10%リン酸水素二カリウム水溶液(330 kg)で洗浄した。得られた有機層を、液量が220 L程度になるまで外温40℃にて減圧濃縮した。再度、2-MeTHF(85 kg)加えた後、液量が100 L程度になるまで外温40℃にて減圧濃縮した。この濃縮操作を10回繰り返し、濃縮液および反応釜をアセトニトリル(56.2 kg)を用いて洗浄した洗浄液を合わせて化合物15を含む溶液(151 kg)を得た。
(vii)化合物17:(ベンジル (2S)-2-[[1-[[(1S)-2-[[(1S)-3-tert-ブトキシ-1-(ジメチルカルバモイル)-3-オキソ-プロピル]-メチル-アミノ]-1-シクロペンチル-2-オキソ-エチル]-メチル-カルバモイル]シクロペンチル]カルバモイル]ピロリジン-1-カルボキシラート)の合成
Figure JPOXMLDOC01-appb-C000026
 窒素で置換した反応容器の外温を10℃に設定した後、実施例4-(vi)で得られた化合物15を含む溶液(94.8 kg)、化合物16 (36.6 kg)、アセトニトリル(157 kg)を順次加えた。ついで、DIPEA(43.8 kg)および2-ブロモ-1-エチルピリジニウム テトラフルオロホウ酸塩(47.1 kg)を順次加えた。反応容器の外温を25℃に設定し、1時間撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.6%であることを確認した(反応転換率の算出式2)。反応容器の外温を10℃に設定し、CPME(470 kg)、5%炭酸ナトリウム水溶液(320 kg)、N-メチルイミダゾール(9.40 kg)を順次加えた。反応容器の外温を25℃に設定し、40分間撹拌した後、反応容器から水層を排出した。得られた有機層を5%硫酸水素ナトリウム一水和物水溶液(320 kg×2)、5%炭酸ナトリウム水溶液(320 kg×2)で洗浄した。得られた有機層を、液量が500 L程度になるまで外温60℃にて減圧濃縮した。再度、2-MeTHF(86 kg)加えた後、液量が200 L程度になるまで外温40℃にて減圧濃縮し、化合物17を含む溶液 (176 kg)を得た。
(viii)化合物18:(tert-ブチル (3S)-3-[[(2S)-2-シクロペンチル-2-[メチル-[1-[[(2S)-ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
Figure JPOXMLDOC01-appb-C000027
 窒素で置換した反応釜に、5% Pd/C(16.7 kg、50%含水品)、THF(90 kg)を室温にて順次加えた。反応釜を窒素置換した後、水素で0.45 MPaG(5.5 atm)まで加圧し、反応釜の内温を25℃に設定した。内圧が0.40 MPaG(5.0 atm)まで加圧された状態を保ちながら2時間攪拌した。実施例4-(vii)で得られた化合物17を含む溶液(176 kg)、THF(230 kg)を室温にて順次加えた。反応容器の外温を25℃に設定し、反応容器の内圧が0.18 MPaG(2.8 atm)になるまで水素で加圧した。4時間後、内圧の変動がないことを確認した後、窒素置換後に水素で0.18 MPaG(2.8 atm)まで加圧し、さらに1時間撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.6%であることを確認した(反応転換率の算出式1)。反応容器内を窒素で置換後、反応混合物を加圧濾過した。反応容器と濾過機を2-MeTHF(85 kg×2)で洗浄した。得られた濾液および洗浄液を、液量が600 L程度になるまで外温50℃にて減圧濃縮した。再度、2-MeTHF(160 kg)加えた後、液量が230 L程度になるまで外温50℃にて減圧濃縮した。この濃縮操作を3回繰り返した。ついで、反応釜の外温を50℃に設定し、ヘプタン(100 kg)を加えた後、化合物18の種晶(116 g)とヘプタン(5.3 kg)を順次加えた。2時間攪拌した後、ヘプタン(85 L)を15分かけて滴下し、再度、2時間攪拌した。さらに、ヘプタン(470 L)を75分かけて滴下し、17時間攪拌した。反応釜の外温を2時間かけて22 ℃に冷却し、20時間攪拌した。反応釜の内温を1時間かけて10℃に冷却し、1時間攪拌した。得られたスラリーを濾過し、得られた結晶をヘプタン(170 kg)と2-MeTHF(17 kg)の混合液で洗浄した。さらに、ヘプタン(180 kg)で洗浄し、得られた結晶を3時間40℃にて減圧乾燥して、化合物18 (34.5 kg)を得た。化合物18の種晶は、国際公開第2023/127869号の実施例70に記載の方法に準じて得た。
(ix)化合物20:(3S)-3-[[(2S)-2-シクロペンチル-2-[[1-[[(2S)-1-[(2S)-2-[9H-フルオレン-9-イルメトキシカルボニル(メチル)アミノ]プロパノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000028
 化合物19(0.931 g)、および化合物18(1.82 g, 1.1 eq.)を反応容器へ加え、反応容器の窒素置換を行った。次いで、2-MeTHF(12 mL, 12 v/w)、DIPEA(1.70 mL, 3.4 eq.)を室温にて順次加えた。反応混合物を攪拌しながらT3P(50 w/w% 2-MeTHF溶液、2.68 mL, 1.5 eq.)を加えた後、室温にて1時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析により反応転換率が99.9%以上であることを確認した(反応転換率の算出式1)。反応容器に5%炭酸ナトリウム水溶液(15 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を5%硫酸水素ナトリウム一水和物水溶液(15 mL×4)、5%炭酸ナトリウム水溶液(15 mL)、5%塩化ナトリウム水溶液(15 mL)で洗浄した。得られた有機層に対し硫酸ナトリウムによる脱水、ろ過による硫酸ナトリウムの除去を行った。外温40℃にて減圧濃縮し、化合物20を含む残渣(2.42 g)を得た。
化合物20のLC純度: 99.2% (HPLC分析条件: method 1)
含量: 91.7 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
(x)化合物21:(3S)-3-[[(2S)-2-シクロペンチル-2-[メチル-[1-[[(2S)-1-[(2S)-2-(メチルアミノ)プロパノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000029
 化合物20(168 mg, 含量 91.7 wt%, 実質量 154 mg)、およびMeCN(0.31 mL, 2.0 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(25.9 μL, 1.0 eq.)を室温にて加えた後、室温にて30分撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応転換率が99.9%以上進行していることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(96.0 μL, 4.0 eq.)、水(31.3 μL, 10 eq.)、亜硫酸水素ナトリウム(44.5 mg, 2.5 eq.)を室温にて順次加えた。1時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.9%以上であることを確認した(DBFの捕捉反応転換率の算出式1)。反応容器にIPAc(0.75 mL)、トルエン(0.75 mL)、20%アンモニア水溶液(1.5 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を再度20%アンモニア水溶液(1.5 mL)で洗浄した。サンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFMSAまたはFMSA Saltの残留率が0.33%であることを確認した(FMSAまたはFMSA Saltの残留率の算出式)。得られた有機層を外温40℃にて減圧濃縮した。MeCN(100 μL)を加えて、化合物21を含むMeCN溶液(211 mg)として以下に示す分析に付した。
化合物21のLC純度: 97.9% (HPLC分析条件: method 1)
含量: 40.6 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
収率: 74.3%
実施例5
(i)化合物23:tert-ブチル N-((S)-2-((S)-1-(N-N-((S)-3-((S)-2-(1-((S)-1-((S)-2-アミノ-4-(3,5-ジフルオロ-4-(トリフルオロメチル)フェニル)ブタノイル)ピロリジン-2-カルボキサミド)-N-メチルシクロペンタン-1-カルボキサミド)-2-シクロペンチル-N-メチルアセトアミド)-4-(ジメチルアミノ)-4-オキソブタノイル)-N-メチル-L-ロイシル-L-イソロイシル-N-メチル-L-アラニル)-N-エチルアゼチジン-2-カルボキサミド)-3-(p-トリル)プロパノイル)-N-メチルグリシナートの合成
Figure JPOXMLDOC01-appb-C000030
 窒素で置換した反応容器に、10% Pd/C(425.1 mg、50%含水品)、2-MeTHF(6.0 mL)を室温にて順次加えた。反応容器を窒素置換した後、水素で0.40 MPaG (5.0 atm)まで加圧し、反応容器の内温を25℃に設定した。内圧が0.40 MPaG (5.0 atm)まで加圧された状態を保ちながら30分攪拌した。国際公開2022/234864の実施例21に記載の方法に準じて合成した化合物22を含む溶液(7.22 g, 含量 42.4 wt%, 実質量 3.06 g)、2-MeTHF(6.0 mL)を室温にて順次加えた。反応容器の外温を25℃に設定し、反応容器の内圧が0.20 MPaG (3.0 atm)になるまで水素で加圧した。1時間20分後、内圧の変動がないことを確認した後、窒素置換後に水素で0.20 MPaG (3.0 atm)まで加圧し、さらに2時間30分撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が97.3%であることを確認した(反応転換率の算出式1)。反応容器内を窒素で置換後、反応混合物を加圧濾過した。反応容器と濾過機を2-MeTHF(12mL×3)で洗浄した。得られた濾液および洗浄液を外温30℃にて減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(溶離液:MeOH/ジクロロメタン0:100から10:90)により精製した。化合物23を含む溶出液を30℃にて減圧濃縮し、化合物23(2.49 g)を得た。
化合物23のLC純度: 98.5% (HPLC分析条件: method 1)
(ii)化合物25:tert-ブチル N-((S)-2-((S)-1-(N-N-((S)-3-((S)-2-(1-((S)-1-((S)-2-((S)-2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)(メチル)アミノ)-3-メチルブタンアミド)-4-(3,5-ジフルオロ-4-(トリフルオロメチル)フェニル)ブタノイル)ピロリジン-2-カルボキサミド)-N-メチルシクロペンタン-1-カルボキサミド)-2-シクロペンチル-N-メチルアセトアミド)-4-(ジメチルアミノ)-4-オキソブタノイル)-N-メチル-L-ロイシル-L-イソロイシル-N-メチル-L-アラニル)-N-エチルアゼチジン-2-カルボキサミド)-3-(p-トリル)プロパノイル)-N-メチルグリシナートの合成
Figure JPOXMLDOC01-appb-C000031
 実施例5-(i)で得られた化合物23(1.00 g)、化合物24 (281 mg)、2-MeTHF(3.0 mL)、アセトニトリル(3.0 mL)、DIPEA(0.578 mL)を順次加えた。次いで、反応容器を窒素置換し、HATU(378 mg)を加えた。外温を25℃に設定し、3時間撹拌した後、反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が96.1%であることを確認した(反応転換率の算出式1)。2-MeTHF (3.0 mL)、5%炭酸カリウム水溶液(6.0 mL)、N-メチルイミダゾール(52.9 μL)を順次加え、30分間撹拌した後、水層を排出した。得られた有機層を10%アンモニア水溶液(6.0 mL×2)、5%硫酸水溶液(6.0 mL)、5%炭酸カリウム水溶液(6.0 mL)で洗浄した。得られた有機層を外温40℃にて減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(溶離液:MeOH/酢酸エチル0:100から8:92)により精製した。化合物25を含む溶出液を30℃にて減圧濃縮し、化合物25(1.04 g)を得た。
化合物25のLC純度: 95.6% (HPLC分析条件: method 1)
含量: 95.8 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
(iii)化合物26:tert-ブチル N-((S)-2-((S)-1-(N-N-((S)-3-((S)-2-シクロペンチル-2-(1-((S)-1-((S)-4-(3,5-ジフルオロ-4-(トリフルオロメチル)フェニル)-2-((S)-3-メチル-2-(メチルアミノ)ブタンアミド)ブタノイル)ピロリジン-2-カルボキサミド)-N-メチルシクロペンタン-1-カルボキサミド)-N-メチルアセトアミド)-4-(ジメチルアミノ)-4-オキソブタノイル)-N-メチル-L-ロイシル-L-イソロイシル-N-メチル-L-アラニル)-N-エチルアゼチジン-2-カルボキサミド)-3-(p-トリル)プロパノイル)-N-メチルグリシナートの合成
Figure JPOXMLDOC01-appb-C000032
 化合物25(300 mg, 含量 95.8 wt%, 実質量 287 mg)、およびMeCN(0.6 mL, 2.0 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(22.8 μL, 1.0 eq.)を室温にて加えた後、室温にて30分撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応が完結している(脱Fmoc体のピークが確認され、Fmoc体のピークが確認されないことを指す。以下同じ。)ことを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(106 μL, 5.0 eq.)、水(27.5 μL, 10 eq.)、亜硫酸水素ナトリウム(55.5 mg, 3.5 eq.)を室温にて順次加えた。1時間30分攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.9%以上であることを確認した(DBFの捕捉反応転換率の算出式1)。反応容器にIPAc(1.5 mL)、トルエン(1.5 mL)、20%アンモニア水溶液(3.0 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を再度20%アンモニア水溶液(3.0 mL)で洗浄した。サンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFMSAまたはFMSA Saltの残留率が0.11%であることを確認した(FMSAまたはFMSA Saltの残留率の算出式)。得られた有機層を外温40℃にて減圧濃縮し、化合物26を含む残渣(261 mg)を得て、以下に示す分析に付した。
化合物26のLC純度: 98.5% (HPLC分析条件: method 1)
含量: 95.7 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
収率: 98.9%
実施例6
(i)化合物28:(S)-2-((((9H-フルオレン-9-イル)メトキシ)カルボニル)アミノ)-3-(4-ヨードフェニル)プロパン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000033
 反応容器内を窒素で置換し、化合物27(2.00 g)を反応容器に加えた。次いで、反応容器にシクロヘキサン(10 mL)、ジクロロメタン(4 mL)、tert-ブチル2,2,2-トリクロロアセトイミダート(1.75 mL)を加えた。三フッ化ほう素 ジエチルエーテル錯体(98.8 μL)を加えた後、室温にて45分間撹拌した。次いで、三フッ化ほう素 ジエチルエーテル錯体(98.8 μL)を追加した後、室温にて1時間5分撹拌した。さらに、tert-ブチル2,2,2-トリクロロアセトイミダート(1.05 mL)を追加した後、室温にて1時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析により反応転換率が81.7%であることを確認した(反応転換率の算出式1)。トリエチルアミン(0.217 mL)を加えて、得られたスラリーをろ過し、固体残渣をシクロヘキサン(20 mL×3)にて洗浄した。得られた濾液を外温30℃にて減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(溶離液:酢酸エチル/ヘプタン 10:90から39:61)により精製した。化合物28を含む溶出液を30℃にて減圧濃縮し、化合物28(1.60 g)を得た。
化合物28のLC純度:99.6% (HPLC分析条件:method 1)
含量: 96.9 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
収率: 70.1%
(ii)化合物29:(S)-2-アミノ-3-(4-ヨードフェニル)プロパン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000034
 化合物28 (300 mg, 含量 96.9 wt%, 実質量 291 mg)、およびMeCN(0.57 mL, 2 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(74.8 μL, 1.0 eq.)を室温にて加えた後、室温にて30分撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応が完結していることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(279 μL, 4.0 eq.)、水(90.1 μL, 10 eq.)、亜硫酸水素ナトリウム(130 mg, 2.5 eq.)を室温にて順次加えた。1時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.9%であることを確認した(DBFの捕捉反応転換率の算出式1)。反応容器にIPAc(1.5 mL)、トルエン(1.5 mL)、20%アンモニア水溶液(3.0 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を再度20%アンモニア水溶液(3.0 mL)で洗浄した。サンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFMSAまたはFMSA Saltの残留率が1.09%であることを確認した(FMSAまたはFMSA Saltの残留率の算出式)。得られた有機層を外温40℃にて減圧濃縮し、化合物29を含む残渣(175 mg)を得て、以下に示す分析に付した。
化合物29のLC純度: 93.3% (HPLC分析条件: method 1)
含量: 93.7 wt% (得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
収率: 92.7%
実施例7
化合物31:5-メチル-4-フェニルチアゾール-2-アミンの合成
Figure JPOXMLDOC01-appb-C000035
 化合物30 (300 mg)、およびMeCN(0.60 mL, 2 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(109 μL, 1.0 eq.)を室温にて加えた後、室温にて30分撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応が完結していることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(406 μL, 4.0 eq.)、水(131 μL, 10 eq.)、亜硫酸水素ナトリウム(190 mg, 2.5 eq.)を室温にて順次加えた。1時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.8%であることを確認した(DBFの捕捉反応転換率の算出式1)。反応容器にIPAc(1.50 mL)、トルエン(1.50 mL)、20%アンモニア水溶液(3.0 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を再度20%アンモニア水溶液(1.0 mL)で洗浄した。サンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFMSAまたはFMSA Saltの残留率が0.65%であることを確認した(FMSAまたはFMSA Saltの残留率の算出式)。得られた有機層を外温40℃にて減圧濃縮し、化合物31を含む残渣(130 mg)を得て、以下に示す分析に付した。
化合物31のLC純度: 95.1% (HPLC分析条件: method 1)
含量: 80.4 wt% (得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
収率: 75.7%
実施例8
(i)化合物33:(2S)-2-[[(2S)-2-(9H-フルオレン-9-イルメトキシカルボニルアミノ)ペンタ-4-エノイル]アミノ]-3-フェニル-プロパン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000036
 化合物32(0.964 g)、および化合物2(0.809 g, 1.1 eq.)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物に2-MeTHF(12 mL, 12 v/w)、DIPEA(1.70 mL, 3.4 eq.)を室温にて順次加えた。攪拌しながらT3P(50 w/w% 2-MeTHF溶液、2.68 mL, 1.5 eq.)を加えた後、室温にて1時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析により反応転換率が99.9%であることを確認した(反応転換率の算出式1)。反応容器に5%炭酸ナトリウム水溶液(15 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を5%硫酸水素ナトリウム一水和物水溶液(15 mL×2)、5%炭酸ナトリウム水溶液(15 mL)、5%塩化ナトリウム水溶液(15 mL)で洗浄した。得られた有機層に対し硫酸ナトリウムによる脱水、ろ過による硫酸ナトリウムの除去を行った。外温40℃にて減圧濃縮し、化合物33を含む残渣(0.794 g)を得た。
化合物33のLC純度: 99.3% (HPLC分析条件: method 1)
含量: 93.8 wt%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
(ii)化合物34:(2S)-2-[[(2S)-2-アミノペンタ-4-エノイル]アミノ]-3-フェニル-プロパン酸 tert-ブチルの合成
Figure JPOXMLDOC01-appb-C000037
 化合物33 (100 mg, 含量 93.8%, 実質量 94 mg)、およびMeCN(0.18 mL, 2 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(25.9 μL, 1.0 eq.)を室温にて加えた後、室温にて30分撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応転換率が99.9%以上進行していることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(96.0 μL, 4.0 eq.)、水(31.3 μL, 10 eq.)、亜硫酸水素ナトリウム(45.4 mg, 2.5 eq.)を室温にて順次加えた。1時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.9%以上であることを確認した(DBFの捕捉反応転換率の算出式1)。反応容器にIPAc(0.50 mL)、トルエン(0.50 mL)、20%アンモニア水溶液(1.0 mL)を加えて5分攪拌した。水層を排出した後、得られた有機層を再度20%アンモニア水溶液(1.0 mL)で洗浄した。サンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFMSAまたはFMSA Saltの残留率が0.30%であることを確認した(FMSAまたはFMSA Saltの残留率の算出式)。得られた有機層を外温40℃にて減圧濃縮した。MeCN(50 μL)を加えて、化合物34を含むMeCN溶液(121 mg)として以下に示す分析に付した。
化合物34のLC純度: 99.1% (HPLC分析条件: method 1)
含量: 44.9 wt% (得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
収率: 98.6%
実施例9
反応条件検討
 化合物33を用いて、実施例8-(ii)と同様な操作において下表に示す反応条件にてFmoc基の脱保護、続くDBFの捕捉反応を実施し、Fmoc基の脱保護率およびDBFの捕捉率を測定した(Fmoc基の脱保護反応転換率の算出式、DBFの捕捉反応転換率の算出式1)。
 実施例9-1では、各試薬のモル当量を増やして実施し、DBFの捕捉反応の反応転換率が99.9%以上であることを確認した。
 実施例9-2では、トリエチルアミンを添加せずに実施したところDBFの捕捉反応の反応転換率が15.9%に低下したが、反応温度を50℃に加熱した実施例9-3では反応開始6時間後に転換率が88.9%に向上し、80℃に加熱した実施例9-4では反応開始6時間後に転換率が100%になることを確認した。
 実施例9-5、9-6、9-7、9-8、9-9、9-10では、それぞれ亜硫酸カリウム、亜硫酸水素カリウム、亜硫酸アンモニウム1水和物、亜硫酸カルシウム0.5水和物、亜ジチオン酸ナトリウムを捕捉剤として用いて検討し、どの条件もFMSAまたはFMSA SaltとしてDBFの捕捉が進行することを確認した。
 実施例9-11、9-12では、アミド系溶媒のDMAやアルコール系溶媒のMeOHを溶媒として用いて検討し、DBFの捕捉反応の転換率がそれぞれ99.1%、99.9%以上であることを確認した。
 実施例9-13、9-14では、DBFの捕捉条件時に添加する塩基としてDIPEA、2,6-lutidineを用いて検討し、DBFの捕捉反応の転換率がそれぞれ99.8%、67.4%であることを確認した。
Figure JPOXMLDOC01-appb-T000038
実施例10
洗浄条件検討
Figure JPOXMLDOC01-appb-C000039
 化合物33(32.0 mg, 含量 79.4%, 実質量 25.4 mg)、およびMeCN(540 μL, 21 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(7.0 μL, 1.0 eq.)を室温にて加えた後、室温にて1時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応転換率が99.3%であることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(65.5 μL, 10 eq.)、水(16.9 μL, 20 eq.)、亜硫酸水素ナトリウム(69.1 mg, 14 eq.)を室温にて順次加えた。3時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.8%であることを確認した(DBFの捕捉反応転換率の算出式1)。反応溶液を3つに分け、それぞれに2-MeTHF(300 μL)を加えて、下表に示す条件にて洗浄を行い、HPLC分析によりFMSAまたはFMSA Saltの残留率を確認した(FMSAまたはFMSA Saltの残留率の計算式)。
Figure JPOXMLDOC01-appb-T000040
実施例11
脱保護剤としてモルホリンを用いた実施例
Figure JPOXMLDOC01-appb-C000041
 化合物33(32.5 mg, 含量 79.4%, 実質量 25.8 mg)、およびMeCN (0.127 mL, 5 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらモルホリン(20.2 μL, 5.0 eq.)を室温にて加えた後、室温にて30分撹拌した。ついで、反応混合物を攪拌しながらモルホリン(20.2 μL, 5.0 eq.)を室温にて追加し、さらに1時間撹拌した反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応転換率が91.8%であることを確認した(Fmoc基の脱保護反応転換率の算出式)。この時、DBFとDBFのモルホリン付加体である化合物35が観測され、DBFと化合物35の比率は6.5:93.5であった。次いで、反応混合物にトリエチルアミン(26.1 μL, 4.0 eq.)、水(8.4 μL, 10 eq.)、亜硫酸水素ナトリウム(27.5 mg, 5.6 eq.)を室温にて順次加え、15時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応およびDBFの捕捉反応を評価し、Fmoc基の脱保護反応の反応転換率は100%、DBFの捕捉反応の反応転換率が15.6%であることを確認した(Fmoc基の脱保護反応転換率の算出式、DBFの捕捉反応転換率の算出式2)。反応容器の外温を50℃に加温し、2時間攪拌した後に反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が44.3%であることを確認した(DBFの捕捉反応転換率の算出式2)。さらに反応容器の外温を78℃に加温し、反応混合物を2時間攪拌した後に反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が95.7%であることを確認した(DBFの捕捉反応転換率の算出式2)。
実施例12
脱保護剤として1級アミンまたは2級アミンを用いた実施例
 化合物33を用いて、実施例11と同様にFmoc基の脱保護反応において下表に示すアミンを用いてFmoc基の脱保護反応と、続くDBFの捕捉反応を実施し、Fmoc基の脱保護率およびDBFの捕捉率を測定した(Fmoc基の脱保護反応転換率の算出式、DBFの捕捉反応転換率の算出式1)。
 実施例12-1、12-2、12-3、12-4では、実施例11のモルホリン添加時の検討と異なり対応するアミンがDBFに付加した化合物は観測されなかったが、FMSAまたはFMSA SaltとしてDBFが捕捉されることを確認した。また、DBFの捕捉条件に付した後もFmoc基の脱保護反応が進行し、脱保護反応とDBFの捕捉反応が同時に進行することを確認した。
Figure JPOXMLDOC01-appb-T000042
実施例13
脱保護とDBF捕捉を同時に行う実施例
Figure JPOXMLDOC01-appb-C000043
 化合物33(32.0 mg, 含量79.4%, 実質量 25.4 mg)、MeCN(110 μL, 4.3 v/w)、2-MeTHF(110 μL, 4.3 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらトリエチルアミン(65.2 μL, 10 eq.)、水(8.4 μL, 10 eq.)、亜硫酸水素ナトリウム(16.5 mg, 3.4 eq.)、DBU(20.9 μL, 3.0 eq.)を順次、室温にて加え1時間攪拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応の反応転換率が100%(Fmoc基の脱保護反応転換率の算出式)、ジベンゾフルベンの捕捉反応の反応転換率が99.9%以上(DBFの捕捉反応転換率の算出式1)であることを確認した。
実施例14
反応条件検討
 化合物33を用いて、実施例13と同様な操作において下表に示す反応条件にてFmoc基の脱保護とDBFの捕捉を同時に実施し、Fmoc基の脱保護率およびDBFの捕捉率を測定した(Fmoc基の脱保護反応転換率の算出式、DBFの捕捉反応転換率の算出式1)。
 実施例14-1、14-2、14-3、14-4では、MeOH溶媒を用いて実施し、水の有無に限らず25℃でも脱保護反応とDBFの捕捉反応は進行し、50℃に加熱すると1時間で脱保護反応とDBFの捕捉反応が完結することを確認した。
 実施例14-5のDMI溶媒を用いた場合は、反応温度が25℃でも1時間で脱保護反応とDBFの捕捉反応が完結した。実施例14-6では、DMI溶媒下、水を添加しない条件で実施したところ、DBFの捕捉反応の遅延が確認された。一方で、実施例14-17のようにトリエチルアミンを添加しない条件では、50℃にて1時間で脱保護反応とDBFの捕捉反応が完結することを確認した。
 実施例14-8、14-9では、DMSO溶媒を用い、どちらもトリエチルアミンを添加しない条件で実施した。実施例14-8の水を添加する条件では1時間で脱保護反応とDBFの捕捉反応は完結し、実施例14-9の水を添加しない条件でも反応時間を4時間に延長することでどちらの反応も完結することを確認した。
Figure JPOXMLDOC01-appb-T000044
実施例15
亜硫酸水素ナトリウムを捕捉剤として用いた場合の塩基洗浄除去時のDBF再生の有無確認
Figure JPOXMLDOC01-appb-C000045
 化合物33(32.0 mg, 含量 79.4%, 実質量 25.4 mg)、およびMeCN(540 μL, 21 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(7.0 μL, 1.0 eq.)を室温にて加えた後、室温にて1時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応転換率が99.4%であることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(65.5 μL, 10 eq.)、水(85 μL, 100 eq.)、亜硫酸水素ナトリウム(27.6 mg, 5.6 eq.)を室温にて順次加えた。4時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が99.9%以上であることを確認した(DBFの捕捉反応転換率の算出式1)。次いで、反応混合物に酢酸エチル(0.5 mL)加えて、2.5%アンモニア水溶液(0.5 mL)で4回洗浄を行った。洗浄後の各水層に化合物34がほとんど存在していないことを確認し、化合物34を内部標準としてHPLC分析によりFMSAまたはFMSA Saltと化合物34との面積比およびDBFと化合物34との面積比を測定した。結果を表7に示す。洗浄回数を増やすとFMSAまたはFMSA Saltの面積比は徐々に減少し、一方でDBFには変化がないこと、つまりFMSAまたはFMSA saltからDBFが再生していないことを確認した。
Figure JPOXMLDOC01-appb-T000046
比較例1
2-メルカプトエタンスルホン酸ナトリウムを捕捉剤として用いた場合の塩基洗浄除去時のDBF再生の有無確認
Figure JPOXMLDOC01-appb-C000047
 化合物33(60.0 mg, 含量 79.4%, 実質量 47.6 mg)、2-メルカプトエタンスルホン酸ナトリウム(21.6 mg, 1.5 eq.)および2-MeTHF(1.1 mL, 23 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(13.1 μL, 1.0 eq.),を室温にて加えた後、外温を50℃に設定して3時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応の反応転換率が100%(Fmoc基の脱保護反応転換率の算出式)、DBFの捕捉反応の反応転換率は84.8%(DBFの捕捉反応転換率の算出式3)であることを確認した。次いで、反応混合物を5%リン酸三カリウム水溶液(1 mL)で4回洗浄を行った。洗浄後の各水層に化合物34がほとんど存在していないことを確認し、化合物34を内部標準としてHPLC分析により化合物36と化合物34との面積比およびDBFと化合物34との面積比を測定した。結果を表8に示す。洗浄回数を増やすと化合物36の面積比は徐々に減少し、一方でDBFは徐々に増加していること、つまり化合物36からDBFが再生していることを確認した。
Figure JPOXMLDOC01-appb-T000048
比較例2
2-メルカプトエタンスルホン酸ナトリウムを捕捉剤として用いた場合の塩基洗浄除去時のDBF再生の有無確認
Figure JPOXMLDOC01-appb-C000049
 化合物33 (94.0 mg, 含量 92.9%, 実質量 87.3 mg)、およびMeCN(2.0 mL, 21 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(25.9 μL, 1.0 eq.)を室温にて加えた後、室温にて1時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応が完結していることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(240 μL, 10 eq.)、水(310 μL, 100 eq.)、2-メルカプトエタンスルホン酸ナトリウム(160 mg, 5.6 eq.)を室温にて順次加えた。1時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が100%であることを確認した(DBFの捕捉反応転換率の算出式3)。次いで、反応混合物に酢酸エチル(2.0 mL)加えて、2.5%アンモニア水溶液(2.0 mL)で4回洗浄を行った。洗浄後の各水層に化合物34がほとんど存在していないことを確認し、化合物34を内部標準としてHPLC分析によりFMSAまたはFMSA Saltと化合物34との面積比およびDBFと化合物34との面積比を測定した。結果を表9に示す。洗浄回数を増やすと化合物36の面積比は徐々に減少し、一方でDBFは徐々に増加していること、つまり化合物36からDBFが再生していることを確認した。
Figure JPOXMLDOC01-appb-T000050
比較例3
(3-メルカプトプロピル)ホスホン酸を捕捉剤として用いた場合の塩基洗浄除去時のDBF再生の有無確認
Figure JPOXMLDOC01-appb-C000051
 化合物33(29.1 mg, 含量 92.9%, 実質量 27.0 mg)、およびMeCN(611 μL, 21 v/w)を反応容器へ加え、反応容器の窒素置換を行った。次いで、反応混合物を攪拌しながらDBU(7.48 μL, 1.0 eq.)を室温にて加えた後、室温にて30分間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりFmoc基の脱保護反応を評価し、反応が完結していることを確認した(Fmoc基の脱保護反応転換率の算出式)。次いで、反応混合物にトリエチルアミン(69.7 μL, 10 eq.)、水(90 μL, 100 eq.)、特許文献4に記載の合成例1の方法に準じて合成した(3-メルカプトプロピル)ホスホン酸(43.7 mg, 5.6 eq.)とを室温にて順次加えた。2時間攪拌後、(3-メルカプトプロピル)ホスホン酸(43.7 mg, 5.6 eq.)とトリエチルアミン(69.7 μL, 10 eq.)を追加した。1時間30分間攪拌後、トリエチルアミン(69.7 μL, 10 eq.)をさらに追加した。さらに1時間攪拌後、反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析によりDBFの捕捉反応を評価し、反応転換率が97.6%であることを確認した(DBFの捕捉反応転換率の算出式4)。次いで、反応混合物に酢酸エチル(0.6 mL)加えて、2.5%アンモニア水溶液(0.6 mL)で4回洗浄を行った。洗浄後の各水層に化合物34がほとんど存在していないことを確認し、化合物34を内部標準としてHPLC分析により化合物37と化合物34との面積比およびDBFと化合物34との面積比を測定した。結果を表10に示す。洗浄回数を増やすと化合物37の面積比は徐々に減少し、一方でDBFは徐々に増加していること、つまり化合物37からDBFが再生していることを確認した。
Figure JPOXMLDOC01-appb-T000052
 本発明は、Fmoc骨格を有する保護基の脱保護工程で生じるジベンゾフルベンを捕捉するとともに、ジベンゾフルベンを再生することなく除去することが可能な、ジベンゾフルベンの新たな除去方法を提供するものである。

Claims (16)

  1.  以下の(1)、(1’)、または(1’’)の工程を含むジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
    (1)以下の(i)と(ii)とを混合する工程:
    (i)ジベンゾフルベンまたはジベンゾフルベン誘導体、
    (ii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物
    (1’)以下の(i)と(ii)とを混合する工程:
    (i)ジベンゾフルベンまたはジベンゾフルベン誘導体、
    (ii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種
    (1’’)(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる工程。
  2.  前記(1)または(1’)の工程において、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる、請求項1に記載の方法。
  3.  (2)前記(1)、(1’)または(1’’)の工程前に、Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物とFmoc骨格を有する保護基を脱保護できる脱保護剤を混合する工程を含む、請求項1または2に記載の方法。
  4.  以下の(3)または(3’)の工程を含むジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法:
    (3)以下の(i)~(iii)を混合する工程
    (i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
    (ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
    (iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物
    (3’)以下の(i)~(iii)を混合する工程
    (i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
    (ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
    (iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
  5.  以下の(3)または(3’)の工程を含む、Fmoc骨格を有する保護基を脱保護する方法:
    (3)以下の(i)~(iii)を混合する工程
    (i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
    (ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
    (iii)亜硫酸イオンもしくは亜硫酸水素イオンまたは亜硫酸イオンもしくは亜硫酸水素イオンを生じさせる化合物
    (3’)以下の(i)~(iii)を混合する工程
    (i)Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物、
    (ii)Fmoc骨格を有する保護基を脱保護できる脱保護剤、
    (iii)亜硫酸水素塩、二亜硫酸およびその塩、亜硫酸およびその塩、亜ジチオン酸およびその塩、ならびにそれらの溶媒和物からなる群より選択される少なくとも一種。
  6.  前記(3)または(3’)の工程において、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を形成させる、請求項4または5に記載の方法。
  7.  Fmoc骨格を有する保護基でアミノ基が保護された第一のアミノ基含有化合物とFmoc骨格を有する保護基を脱保護できる脱保護剤を混合する工程により生じたジベンゾフルベンまたはジベンゾフルベン誘導体を前記(3)または(3’)の工程により生じた混合物から除去する、請求項4~6のいずれか一項に記載の方法。
  8.  (4)前記(1)、(1’)、(1’’)、(3)または(3’)のうち、1つ以上の工程後の混合物を、洗浄用溶液で洗浄する工程を更に含む、請求項1~7のいずれか一項に記載の方法。
  9.  前記(1)、(1’)、(1’’)、(3)もしくは(3’)のうち、1つ以上の工程において、添加剤を更に混合することを含む、請求項1~8のいずれか一項に記載の方法。
  10.  前記Fmoc骨格を有する保護基を脱保護できる脱保護剤が、第二の塩基である、請求項3~9のいずれか一項に記載の方法。
  11.  請求項1~10のいずれか一項に記載の方法を含む、第一の化合物の製造方法。
  12.  前記第一の化合物がアミノ酸またはペプチドである、請求項11に記載の製造方法。
  13.  以下の工程を含むペプチド化合物の製造方法:
    1)亜硫酸イオンまたは亜硫酸水素イオンの存在下で、Fmoc骨格を有する保護基を脱保護できる脱保護剤によりFmoc骨格を有する保護基で保護された保護基ペプチドを処理し、保護基を除去した脱保護ペプチドを得る工程、
    2)必要に応じて1種以上のアミノ酸で、脱保護されたペプチドを伸長させ、伸長させたペプチドを得る工程。
  14.  ジベンゾフルベンまたはジベンゾフルベン誘導体を除去するための以下の(a)または(b)の使用:
    (a)亜硫酸イオンもしくは亜硫酸水素イオン、または亜硫酸イオンもしくは亜硫酸水素イオンを生成する化合物、及び/または
    (b)亜硫酸水素塩、二亜硫酸及びその塩、亜硫酸及びその塩、亜ジチオン酸及びその塩、並びにこれらの溶媒和物からなる群から選択される少なくとも一つの化合物。
  15.  Fmoc骨格を有する保護基を脱保護するための以下の(a)および/または(b)とFmoc骨格を有する保護基を脱保護できる脱保護剤との併用:
    (a)亜硫酸イオンもしくは亜硫酸水素イオン、または亜硫酸イオンもしくは亜硫酸水素イオンを生成する化合物、
    (b)亜硫酸水素塩、二亜硫酸及びその塩、亜硫酸及びその塩、亜ジチオン酸及びその塩、並びにこれらの溶媒和物からなる群から選択される少なくとも一つの化合物。
  16.  アミノ基含有化合物、および(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩を含む組成物であって、(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩の含有割合が、アミノ基含有化合物及び(9H-フルオレン-9-イル)メタンスルホン酸もしくはその塩、または(9H-フルオレン-9-イル)メタンスルホン酸誘導体もしくはその塩に対して、0.01以下である組成物。
PCT/JP2023/039324 2022-11-01 2023-10-31 ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法 WO2024096023A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-175592 2022-11-01
JP2022175592 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024096023A1 true WO2024096023A1 (ja) 2024-05-10

Family

ID=90930541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039324 WO2024096023A1 (ja) 2022-11-01 2023-10-31 ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法

Country Status (1)

Country Link
WO (1) WO2024096023A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014177A1 (ja) * 2007-07-25 2009-01-29 Ajinomoto Co., Inc. ジベンゾフルベン誘導体の淘汰方法
WO2010016551A1 (ja) * 2008-08-06 2010-02-11 味の素株式会社 ジベンゾフルベンの除去方法
JP7063409B1 (ja) * 2021-07-02 2022-05-09 ペプチスター株式会社 Fmоc基を除去する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014177A1 (ja) * 2007-07-25 2009-01-29 Ajinomoto Co., Inc. ジベンゾフルベン誘導体の淘汰方法
WO2010016551A1 (ja) * 2008-08-06 2010-02-11 味の素株式会社 ジベンゾフルベンの除去方法
JP7063409B1 (ja) * 2021-07-02 2022-05-09 ペプチスター株式会社 Fmоc基を除去する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANTONELLA LEGGIO: "Lewis acid catalysed methylation of N ‐(9H‐fluoren‐9‐yl)methanesulfonyl (Fms) protected lipophilic α ‐amino acid methyl esters", JOURNAL OF PEPTIDE SIENCE, JOHN WILEY & SONS, INC., HOBOKEN, USA, vol. 21, no. 8, 1 August 2015 (2015-08-01), Hoboken, USA, pages 644 - 650, XP093169132, ISSN: 1075-2617, DOI: 10.1002/psc.2777 *
YOSHITAKA ISHIBASHI; KENGO MIYATA; MASATO KITAMURA: "(9H‐Fluoren‐9‐yl)methanesulfonyl (Fms): An Amino Protecting Group Complementary to Fmoc", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, WILEY-VCH, DE, vol. 2010, no. 22, 23 June 2010 (2010-06-23), DE , pages 4201 - 4204, XP072108192, ISSN: 1434-193X, DOI: 10.1002/ejoc.201000682 *

Similar Documents

Publication Publication Date Title
EP4056580A1 (en) Method for producing peptide compound comprising highly sterically hindered amino acid
EP4086272A1 (en) Methods for producing cyclic compounds comprising n-substituted amino acid residues
US20070060773A1 (en) Amide forming chemical ligation
CN111770930A (zh) 制备肽的方法
WO2021177336A1 (ja) ペプチド及び細胞膜透過剤
JP2003073396A (ja) ペプチドの製造方法
TW202200602A (zh) 經由共同中間物有效率地製備尾海兔素及奧瑞他汀類似物
WO2024096023A1 (ja) ジベンゾフルベンまたはジベンゾフルベン誘導体の除去方法
KR20010012732A (ko) 구아니딘화 시약
TW202138382A (zh) 胜肽化合物的合成法
YOSHIDA et al. PROBESTIN, A NEW INHIBITOR OF AMINOPEPTIDASE M, PRODUCED BY STREPTOMYCES AZUREUS MH663-2F6 II. STRUCTURE DETERMINATION OF PROBESTIN
CN114667136A (zh) Trofinetide的组合物
HU208838B (en) Method for producing peptones containing aza aminoacides by means of solid-phase synthesis
Stamm et al. Introduction of the Aib-Pro unit into peptides by means of the ‘azirine/oxazolone method’on solid phase
Breitenmoser et al. A Novel 2H‐Azirin‐3‐amine as a Dipeptide (Aib‐Hyp) Synthon
AU1947100A (en) Process for preparing growth hormone secretagogues
KR100336139B1 (ko) 신규의펩티드활성물질및그의제조방법
EP3478669B1 (en) Process of preparing a peptide epoxyketone immunoproteasome inhibitor
JP7430297B2 (ja) N-アルキルアミノ酸、およびn-アルキルアミノ酸を含むペプチドの製造方法
Vallette et al. Room temperature ionic liquids (RTIL’s) are convenient solvents for peptide synthesis!
CN104557793A (zh) 一种卡非佐米中间体的合成方法及其中间体
Baburaj et al. N-amination of amino acids and its derivatives using N-Boc-O-tosyl hydroxylamine as an efficient NH-Boc transfer reagent: electrophilic amination
JPH1129544A (ja) N−アルコキシカルボニル化、n−アルケニルオキシカルボニル化またはn−アリールアルコキシカルボニル化されたアミノ酸類の製造方法
WO2023171671A1 (ja) 環状アミドの製造方法
CN117279928A (zh) 包含n-取代氨基酸残基的环状化合物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885777

Country of ref document: EP

Kind code of ref document: A1