WO2024087443A1 - 一种开放式耳机 - Google Patents

一种开放式耳机 Download PDF

Info

Publication number
WO2024087443A1
WO2024087443A1 PCT/CN2023/079410 CN2023079410W WO2024087443A1 WO 2024087443 A1 WO2024087443 A1 WO 2024087443A1 CN 2023079410 W CN2023079410 W CN 2023079410W WO 2024087443 A1 WO2024087443 A1 WO 2024087443A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
sound outlet
distance
center
ear
Prior art date
Application number
PCT/CN2023/079410
Other languages
English (en)
French (fr)
Inventor
张磊
童珮耕
解国林
李永坚
徐江
招涛
武多多
戢澳
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202322249714.3U priority Critical patent/CN220711632U/zh
Priority to CN202310328947.4A priority patent/CN117956355A/zh
Priority to PCT/CN2023/083545 priority patent/WO2024087490A1/zh
Priority to CN202310339595.2A priority patent/CN117956379A/zh
Priority to PCT/CN2023/083546 priority patent/WO2024087491A1/zh
Priority to CN202320619488.0U priority patent/CN220325780U/zh
Priority to CN202322166740.XU priority patent/CN220693334U/zh
Priority to CN202322160783.7U priority patent/CN220693317U/zh
Priority to CN202310327044.4A priority patent/CN117956351A/zh
Priority to CN202322226229.4U priority patent/CN220711647U/zh
Priority to CN202322511885.9U priority patent/CN220511247U/zh
Priority to CN202320619439.7U priority patent/CN220210579U/zh
Priority to PCT/CN2023/083543 priority patent/WO2024087488A1/zh
Priority to CN202320731109.7U priority patent/CN220273826U/zh
Priority to CN202322303205.4U priority patent/CN220457584U/zh
Priority to US18/332,747 priority patent/US20240147144A1/en
Priority to US18/334,401 priority patent/US20240147108A1/en
Priority to CN202311159929.4A priority patent/CN117956363A/zh
Priority to PCT/CN2023/117783 priority patent/WO2024087908A1/zh
Priority to CN202311169733.3A priority patent/CN117956364A/zh
Priority to PCT/CN2023/117777 priority patent/WO2024087907A1/zh
Priority to US18/468,676 priority patent/US20240007804A1/en
Priority to US18/472,180 priority patent/US20240015452A1/en
Priority to US18/473,206 priority patent/US20240015455A1/en
Priority to US18/472,580 priority patent/US20240015454A1/en
Priority to US18/472,442 priority patent/US20240015453A1/en
Priority to US18/476,276 priority patent/US20240040301A1/en
Priority to US18/476,212 priority patent/US20240031724A1/en
Priority to US18/475,376 priority patent/US20240031723A1/en
Priority to US18/476,225 priority patent/US20240031725A1/en
Priority to US18/476,438 priority patent/US20240031726A1/en
Priority to CN202311386846.9A priority patent/CN117956366A/zh
Priority to PCT/CN2023/126052 priority patent/WO2024088223A1/zh
Priority to US18/492,820 priority patent/US20240147162A1/en
Priority to US18/499,199 priority patent/US20240147113A1/en
Publication of WO2024087443A1 publication Critical patent/WO2024087443A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2823Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2826Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1066Constructional aspects of the interconnection between earpiece and earpiece support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/127Non-planar diaphragms or cones dome-shaped
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials

Definitions

  • the present application relates to the field of acoustic technology, and in particular to an open-type earphone.
  • acoustic devices e.g., headphones
  • Open-ear headphones are a portable audio output device that achieves sound conduction within a specific range.
  • open-ear headphones have the characteristics of not blocking or covering the ear canal, allowing users to obtain sound information from the external environment while listening to music, improving safety and comfort.
  • the output performance of open-ear headphones has a great impact on the user's comfort.
  • An embodiment of the present application provides an open earphone, which includes: a sound-emitting part, including a transducer and a shell for accommodating the transducer; an ear hook, wherein in a worn state, a first part of the ear hook is hung between the auricle and the head of the user, and a second part of the ear hook extends to the side of the auricle away from the head and is connected to the sound-emitting part to fix the sound-emitting part at a position near the ear canal but not blocking the ear canal, wherein a sound outlet hole is opened on the inner side surface of the shell facing the auricle, which is used to guide the sound generated by the transducer out of the shell and then transmit it to the ear canal, and the ratio of the area of the sound outlet hole to the area of the inner side surface supporting the sound outlet hole is between 0.015 and 0.25.
  • the shell in the worn state, is at least partially inserted into the concha cavity, the cross-sectional area of the sound outlet is 2.87 mm 2 -46.10 mm 2 , and the area of the inner side surface is 160 mm 2 -240 mm 2 .
  • the ratio of the cross-sectional area of the sound outlet hole to the square of the depth of the sound outlet hole is 0.31-512.2.
  • the depth of the sound outlet hole ranges from 0.3 mm to 3 mm.
  • the distance between the center of the sound outlet hole and the lower side surface of the sound emitting portion ranges from 4.05 mm to 6.05 mm.
  • the distance between the center of the sound outlet hole and the rear side of the sound emitting portion ranges from 8.15 mm to 12.25 mm.
  • the transducer includes a magnetic circuit component, which is used to provide a magnetic field, and the distance between the center of the sound outlet hole and the bottom surface of the magnetic circuit component ranges from 5.65 mm to 8.35 mm.
  • the distance between the center of the sound outlet hole and the center plane of the long axis of the magnetic circuit component ranges from 1.45 mm to 2.15 mm.
  • the distance between the center of the sound outlet and the upper apex of the ear hook ranges from 22.5 mm to 34.5 mm.
  • the distance between the projection of the center of the sound outlet in the sagittal plane and the projection of the upper vertex of the ear hook in the sagittal plane ranges from 18 mm to 30 mm.
  • the ratio of the distance from the center of the sound outlet to the upper vertex of the ear hook to the distance between the upper and lower boundaries of the inner side surface is between 1.2 and 2.2.
  • the ratio of the distance from the center of the sound hole to the upper vertex of the ear hook to the distance from the center of the sound hole to the upper side surface of the sound emitting part is between 1.94 and 2.93.
  • the distance between the projection point of the center of the sound outlet hole on the sagittal plane and the projection point of the center of the ear canal opening of the ear canal on the sagittal plane ranges from 2.2 mm to 3.8 mm.
  • the distance between the projection point of the center of the sound outlet hole on the sagittal plane and the projection point of the midpoint of the upper boundary of the inner side surface on the sagittal plane ranges from 10.0 mm to 15.2 mm.
  • the distance between the projection point of the midpoint of the upper border of the inner side surface on the sagittal plane and the projection point of the center of the ear canal opening on the sagittal plane ranges from 12 mm to 18 mm.
  • the distance between the projection point of the center of the sound outlet hole on the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side surface on the sagittal plane ranges from 3.5 mm to 5.6 mm.
  • the distance between the projection point of the 1/3 point of the lower border of the medial surface on the sagittal plane and the projection point of the center of the ear canal opening on the sagittal plane ranges from 1.7 mm to 2.7 mm.
  • the shell in the worn state, is at least partially located at the antihelix, and the distance between the center of the sound outlet and the lower side of the sound-emitting part ranges from 2.3 mm to 3.6 mm.
  • the distance between the center of the sound outlet hole and the rear side of the sound emitting portion ranges from 9.5 mm to 15.0 mm.
  • the distance between the center of the sound outlet and the upper apex of the ear hook ranges from 17.5 mm to 27.0 mm.
  • the ratio of the distance from the center of the sound outlet to the upper vertex of the ear hook to the distance between the upper and lower boundaries of the inner side surface is between 0.95 and 1.55.
  • the ratio of the distance from the center of the sound hole to the upper vertex of the ear hook to the distance from the center of the sound hole to the upper side surface of the sound emitting part is between 1.19 and 2.50.
  • the distance between the center of the sound outlet and the plane where the ear hook is located is between 3 mm and 6 mm.
  • the ratio of the major axis dimension of the sound outlet hole to the minor axis dimension of the sound outlet hole ranges from 1 to 10.
  • the ratio of the major axis dimension of the sound outlet hole to the minor axis dimension of the sound outlet hole ranges from 2 to 4.
  • the embodiments of the present specification also provide an open-type earphone, comprising a sound-emitting part, a transducer and a shell for accommodating the transducer; an ear hook, wherein in a worn state, the first part of the ear hook is hung between the auricle and the head of the user, the second part of the ear hook extends to the side of the auricle away from the head and is connected to the sound-emitting part to fix the sound-emitting part in a position near the ear canal but not blocking the ear canal, wherein the transducer comprises a diaphragm, and a sound outlet hole is provided on the inner side surface of the shell facing the auricle, for guiding the sound generated by the vibration of the diaphragm out of the shell and then transmitting it to the ear canal, wherein the ratio of the area of the sound outlet hole to the projection area of the diaphragm in its vibration direction is between 0.016 and 0.261.
  • the shell in the worn state, is at least partially inserted into the concha cavity, the cross-sectional area of the sound outlet is 2.87 mm 2 -46.10 mm 2 , and the projection area of the diaphragm in its vibration direction is 150 mm 2 -230 mm 2 .
  • the embodiments of the present specification also provide an open-type earphone, comprising a sound-emitting part, a transducer and a shell for accommodating the transducer; an ear hook, wherein in a worn state, the first part of the ear hook is hung between the auricle and the head of the user, the second part of the ear hook extends to the side of the auricle away from the head and is connected to the sound-emitting part to fix the sound-emitting part in a position near the ear canal but not blocking the ear canal, wherein the transducer comprises a diaphragm, and a sound outlet hole is provided on the inner side surface of the shell facing the auricle, for conducting the sound generated by the vibration of the diaphragm out of the shell and then transmitting it to the ear canal, wherein the distance between the center of the sound outlet hole and the upper apex of the ear hook ranges from 22.5 mm to 34.5 mm.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • FIG2 is an exemplary structural diagram of an open-type earphone according to some embodiments of this specification.
  • FIG3 is a schematic diagram of two point sound sources and a listening position according to some embodiments of the present application.
  • FIG4 is a comparison diagram of sound leakage index of a single-point sound source and a double-point sound source at different frequencies according to some embodiments of the present application;
  • FIG5 is a schematic diagram of an exemplary distribution of a baffle disposed between two sound sources of a dipole sound source according to some embodiments of the present application;
  • FIG6 is a diagram of sound leakage index with and without a baffle between two sound sources of a dipole sound source according to some embodiments of the present application.
  • FIG7 is an exemplary wearing diagram of an open-type headset according to some embodiments of the present application.
  • FIG8 is a schematic diagram of the structure of the open-type earphone shown in FIG7 facing the ear;
  • FIG9 is a schematic diagram of an exemplary distribution of a cavity structure arranged around one of the dipole sound sources according to some embodiments of the present application.
  • FIG10A is a schematic diagram of a listening principle of a dipole sound source structure and a cavity structure constructed around one of the dipole sound sources according to some embodiments of the present application;
  • FIG10B is a schematic diagram of the principle of sound leakage of a dipole sound source structure and a cavity structure constructed around one of the dipole sound sources according to some embodiments of the present application;
  • FIG. 11A is a schematic diagram of a cavity structure with two horizontal openings according to some embodiments of the present application.
  • FIG. 11B is a schematic diagram of a cavity structure with two vertical openings according to some embodiments of the present application.
  • FIG12 is a comparison diagram of listening index curves of a cavity structure with two openings and one opening according to some embodiments of the present application.
  • FIG13 is an exemplary wearing diagram of an open-type headset according to other embodiments of the present application.
  • FIG14 is a schematic diagram of the structure of the open-type earphone shown in FIG13 facing the ear;
  • FIG15 is a schematic diagram of a projection of an open-type earphone in a wearing state on a sagittal plane according to some embodiments of the present specification
  • FIG16A is a diagram showing an exemplary internal structure of a sound-producing part according to some embodiments of the present specification.
  • FIG16B is an exemplary internal structure diagram of a transducer according to some embodiments of the present specification.
  • FIG17A is a frequency response curve diagram of an open-type earphone corresponding to sound outlet holes of different cross-sectional areas when the length-to-width ratio is constant according to some embodiments of this specification;
  • FIG. 17B is a frequency response curve diagram of the front cavity corresponding to the sound outlet holes of different cross-sectional areas according to some embodiments of the present specification.
  • FIG18A is a frequency response curve diagram of an open-type earphone corresponding to sound outlet holes with different length-to-width ratios according to some embodiments of this specification;
  • FIG. 18B is a frequency response curve diagram of the front cavity corresponding to sound outlet holes of different depths according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • device means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • unit means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • the words can be replaced by other expressions.
  • connection can refer to a fixed connection, a detachable connection, or an integral connection; it can refer to a mechanical connection or an electrical connection; it can refer to a direct connection or an indirect connection through an intermediate medium, it can refer to the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can refer to a fixed connection, a detachable connection, or an integral connection; it can refer to a mechanical connection or an electrical connection; it can refer to a direct connection or an indirect connection through an intermediate medium, it can refer to the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • the ear 100 (also referred to as the auricle) may include an external auditory canal 101, a concha cavity 102, a cymba concha 103, a triangular fossa 104, an antihelix 105, a scaphoid 106, an auricle 107, an earlobe 108, a tragus 109, and an auricle crus 1071.
  • the acoustic device may be supported by one or more parts of the ear 100 to achieve stability in wearing the acoustic device.
  • the external auditory canal 101, the concha cavity 102, the cymba concha 103, the triangular fossa 104, and other parts have a certain depth and volume in three-dimensional space, which can be used to achieve the wearing requirements of the acoustic device.
  • an acoustic device e.g., an in-ear headset
  • the wearing of an acoustic device may be achieved by means of other parts of the ear 100 other than the external auditory canal 101.
  • the acoustic device can be worn by means of the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107 and other parts or their combination.
  • it in order to improve the comfort and reliability of the acoustic device in wearing, it can also be further used by means of the user's earlobe 108 and other parts.
  • the user's external auditory canal 101 can be "liberated".
  • the acoustic device When the user wears the acoustic device (for example, an open earphone), the acoustic device will not block the user's external auditory canal 101 (or ear canal or ear canal opening), and the user can receive both the sound from the acoustic device and the sound from the environment (for example, horn sounds, car bells, surrounding human voices, traffic control sounds, etc.), thereby reducing the probability of traffic accidents.
  • the acoustic device can be designed into a structure adapted to the ear 100 according to the structure of the ear 100, so as to realize the wearing of the sound-generating part of the acoustic device at various different positions of the ear.
  • the open-type earphone may include a suspension structure (e.g., an ear hook) and a sound-emitting part, the sound-emitting part is physically connected to the suspension structure, and the suspension structure may be adapted to the shape of the auricle, so as to place the entirety or a portion of the structure of the sound-emitting part in front of the tragus 109 (e.g., the area J surrounded by the dotted line in FIG. 1 ).
  • a suspension structure e.g., an ear hook
  • the sound-emitting part is physically connected to the suspension structure
  • the suspension structure may be adapted to the shape of the auricle, so as to place the entirety or a portion of the structure of the sound-emitting part in front of the tragus 109 (e.g., the area J surrounded by the dotted line in FIG. 1 ).
  • the entirety or a portion of the structure of the sound-emitting part may contact the upper part of the external auditory canal 101 (e.g., the location of one or more parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, and the crus helix 1071).
  • the entire or partial structure of the sound-producing part may be located in a cavity formed by one or more parts of the ear 100 (for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (for example, the area M1 surrounded by the dotted line in FIG. 1 which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 which includes at least the cavum concha 102).
  • the cavum concha 102 for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.
  • a simulator containing a head and its (left and right) ears can be made based on ANSI: S3.36, S3.25 and IEC: 60318-7 standards as a reference for wearing an acoustic device, thereby presenting the scene of most users wearing the acoustic device normally.
  • the ear used as a reference may have the following relevant characteristics: the size of the projection of the auricle on the sagittal plane in the vertical axis direction may be in the range of 49.5mm-74.3mm, and the size of the projection of the auricle on the sagittal plane in the sagittal axis direction may be in the range of 36.6mm-55mm. Therefore, in this application, descriptions such as “user wears”, “in a wearing state” and “in a wearing state” may refer to the acoustic device described in this application being worn on the ear of the aforementioned simulator. Of course, taking into account the individual differences among different users, the structure, shape, size, thickness, etc.
  • the acoustic device may be designed differently. These differentiated designs may be manifested in that the characteristic parameters of one or more parts of the acoustic device (for example, the sound-emitting part, ear hook, etc. mentioned below) may have different ranges of values to adapt to different ears.
  • the sagittal plane refers to a plane perpendicular to the ground along the front-to-back direction of the body, which divides the human body into left and right parts
  • the coronal plane refers to a plane perpendicular to the ground along the left-to-right direction of the body, which divides the human body into front and back parts
  • the horizontal plane refers to a plane parallel to the ground along the vertical direction perpendicular to the body, which divides the human body into upper and lower parts.
  • the sagittal axis refers to an axis along the front-to-back direction of the body and perpendicular to the coronal plane
  • the coronal axis refers to an axis along the left-to-right direction of the body and perpendicular to the sagittal plane
  • the vertical axis refers to an axis along the up-down direction of the body and perpendicular to the horizontal plane.
  • the "front side of the ear" described in this application is a concept relative to the "back side of the ear", the former refers to the side of the ear away from the head, and the latter refers to the side of the ear facing the head.
  • FIG. 2 is an exemplary structural diagram of an open-ear headphone according to some embodiments of the present specification.
  • the open earphone 10 may include but is not limited to air conduction earphones and bone air conduction earphones, etc. In some embodiments, the open earphone 10 may be combined with products such as glasses, headphones, head-mounted display devices, AR/VR helmets, etc.
  • the open earphone 10 may include a sound-emitting portion 11 and an ear hook 12 .
  • the sound-generating part 11 can be worn on the user's body, and the sound-generating part 11 can generate sound to input the user's ear canal.
  • the sound-generating part 11 may include a transducer (e.g., the transducer 116 shown in FIG. 16A ) and a housing 111 for accommodating the transducer.
  • the housing 111 may be connected to the ear hook 12.
  • the transducer is used to convert an electrical signal into a corresponding mechanical vibration to generate sound.
  • a sound outlet 112 is provided on the side of the housing facing the auricle, and the sound outlet 112 is used to guide the sound generated by the transducer out of the housing 111 and then transmit it to the ear canal, so that the user can hear the sound.
  • the transducer e.g., a diaphragm
  • the transducer can separate the housing 111 into a front cavity (e.g., the front cavity 114 shown in FIG. 16A ) and a rear cavity of the earphone, and the sound outlet 112 can communicate with the front cavity, and guide the sound generated by the front cavity out of the housing 111 and then transmit it to the ear canal.
  • a front cavity e.g., the front cavity 114 shown in FIG. 16A
  • the sound outlet 112 can communicate with the front cavity, and guide the sound generated by the front cavity out of the housing 111 and then transmit it to the ear canal.
  • part of the sound derived through the sound outlet 112 can be propagated to the ear canal so that the user can hear the sound, and the other part can be propagated to the outside of the open earphone 10 and the ear together with the sound reflected by the ear canal through the gap between the sound-emitting part 11 and the ear (for example, the part of the concha cavity not covered by the sound-emitting part 11), thereby forming a first sound leakage in the far field; at the same time, one or more pressure relief holes 113 are generally provided on other sides of the housing 111 (for example, the side away from or away from the user's ear canal).
  • the pressure relief hole 113 is farther away from the ear canal than the sound outlet 112, and the sound propagated from the pressure relief hole 113 generally forms a second sound leakage in the far field, and the intensity of the first sound leakage is equivalent to the intensity of the second sound leakage, and the phase of the first sound leakage and the phase of the second sound leakage are (close to) opposite to each other, so that the two can cancel each other out in the far field, which is conducive to reducing the sound leakage of the open earphone 10 in the far field.
  • the sound-emitting part 11 please refer to other places in this specification, such as Figure 7, Figure 13, Figure 16A, etc. and their descriptions.
  • the ear hook 12 can be connected to the sound-emitting part 11, and the other end thereof extends along the junction of the user's ear and head.
  • the ear hook 12 can be an arc-shaped structure adapted to the user's auricle, so that the ear hook 12 can be hung on the user's auricle.
  • the ear hook 12 can have an arc-shaped structure adapted to the junction of the user's head and ear, so that the ear hook 12 can be hung between the user's auricle and the head.
  • the ear hook 12 can also be a clamping structure adapted to the user's auricle, so that the ear hook 12 can be clamped at the user's auricle.
  • the ear hook 12 may include a hook-shaped portion (the first portion 121 shown in FIG. 7) and a connecting portion (the second portion 122 shown in FIG. 7) connected in sequence.
  • the connecting portion connects the hook-shaped portion and the sound-emitting portion 11, so that the open earphone 10 is curved in three-dimensional space when it is in a non-wearing state (that is, a natural state).
  • the hook-shaped portion, the connecting portion, and the sound-emitting portion 11 are not coplanar.
  • the hook-shaped portion can be mainly used to hang between the back side of the user's ear and the head, and the sound-emitting portion 11 can be mainly used to contact the front side of the user's ear, thereby allowing the sound-emitting portion 11 and the hook-shaped portion to cooperate to clamp the ear.
  • the connecting portion can extend from the head to the outside of the head, and then cooperate with the hook-shaped portion to provide the sound-emitting portion 11 with a pressing force on the front side of the ear.
  • the sound-emitting portion 11 can specifically press against the areas where the concha cavity 102, the concha hymen 103, the triangular fossa 104, the antihelix 105 and other parts are located, so that the open earphone 10 does not block the external auditory canal 101 of the ear when it is in the wearing state.
  • the open earphone 10 in order to improve the stability of the open earphone 10 in the wearing state, can adopt any one of the following methods or a combination thereof.
  • the ear hook 12 is configured as a contoured structure that fits at least one of the back side of the ear 100 and the head, so as to increase the contact area between the ear hook 12 and the ear 100 and/or the head, thereby increasing the resistance of the open earphone 10 to fall off from the ear 100.
  • At least a portion of the ear hook 12 is configured as an elastic structure so that it has a certain amount of deformation in the wearing state, so as to increase the positive pressure of the ear hook 12 on the ear and/or the head, thereby increasing the resistance of the open earphone 10 to fall off from the ear.
  • at least a portion of the ear hook 12 is configured to abut against the head in the wearing state, so as to form a reaction force that presses the ear, so that the sound-emitting portion 11 is pressed against the front side of the ear, thereby increasing the resistance of the open earphone 10 to fall off from the ear.
  • the sound-emitting part 11 and the ear hook 12 are configured to clamp the area where the antihelix is located and the area where the cavum concha is located from the front and back sides of the ear when worn, thereby increasing the resistance of the open earphone 10 to fall off the ear.
  • the sound-emitting part 11 or the auxiliary structure connected thereto is configured to at least partially extend into the cavities such as the cavum concha, the cymba concha, the triangular fossa and the scaphoid, thereby increasing the resistance of the open earphone 10 to fall off the ear.
  • the ear hook 12 may include but is not limited to an ear hook, an elastic band, etc., so that the open-type earphone 10 can be better fixed on the user to prevent the user from falling off during use.
  • the open-type earphone 10 may not include the ear hook 12, and the sound-emitting part 11 may be fixed near the user's ear 100 by hanging or clamping.
  • the sound-emitting portion 11 may be, for example, a regular or irregular shape such as a ring, an ellipse, a runway, a polygon, a U-shape, a V-shape, a semicircle, etc., so that the sound-emitting portion 11 can be directly mounted on the ear 100 of the user.
  • the sound-emitting portion 11 may have a long axis direction X and a short axis direction Y that are perpendicular to the thickness direction Z and orthogonal to each other.
  • the long axis direction X can be defined as the direction with the largest extension dimension in the shape of the two-dimensional projection surface of the sound-emitting portion 11 (for example, the projection of the sound-emitting portion 11 on the plane where its outer side surface is located, or the projection on the sagittal plane) (for example, when the projection shape is a rectangle or an approximate rectangle, the long axis direction is the length direction of the rectangle or the approximate rectangle).
  • the short axis direction Y can be defined as the direction perpendicular to the long axis direction X in the shape of the projection of the sound-emitting portion 11 on the sagittal plane (for example, when the projection shape is a rectangle or an approximate rectangle, the short axis direction is the width direction of the rectangle or the approximate rectangle).
  • the thickness direction Z can be defined as a direction perpendicular to the two-dimensional projection surface, for example, consistent with the direction of the coronal axis, both pointing to the left and right directions of the body.
  • the sound-emitting part 11 when the user wears the open earphone 10, the sound-emitting part 11 can be fixed near the user's external auditory canal 101 but not blocking the auditory canal.
  • the projection of the open earphone 10 on the sagittal plane may not cover the user's auditory canal.
  • the projection of the sound-emitting part 11 on the sagittal plane may fall on the left and right sides of the head and on the sagittal axis of the human body at a position in front of the tragus (such as the position shown in the solid line frame A in FIG2 ).
  • the sound-emitting part 11 is located in front of the user's tragus, the long axis of the sound-emitting part 11 can be in a vertical or approximately vertical state, the projection of the short axis direction Y on the sagittal plane is consistent with the direction of the sagittal axis, the projection of the long axis direction X on the sagittal plane is consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the projection of the sound-emitting part 11 on the sagittal plane may fall on the antihelix 105 (such as the position shown in the dotted line frame C in FIG2 ).
  • the sound-emitting part 11 is at least partially located at the antihelix 105, the long axis of the sound-emitting part 11 is in a horizontal or approximately horizontal state, the projection of the long axis direction X of the sound-emitting part 11 on the sagittal plane is consistent with the direction of the sagittal axis, the projection of the short axis direction Y on the sagittal plane is consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the sound-emitting part 11 can be prevented from blocking the ear canal, thereby freeing the user's ears; the contact area between the sound-emitting part 11 and the ear 100 can also be increased, thereby improving the wearing comfort of the open earphone 10.
  • the projection of the open earphone 10 on the sagittal plane may also cover or at least partially cover the ear canal of the user.
  • the projection of the sound-emitting part 11 on the sagittal plane may fall within the concha cavity 102 (e.g., the position shown in the dotted box B in FIG. 2 ), and contact the helix crus 1071 and/or the helix 107.
  • the sound-emitting part 11 is at least partially located within the concha cavity 102, and the sound-emitting part 11 is in an inclined state.
  • the projection of the short axis direction Y of the sound-emitting part 11 on the sagittal plane may have a certain angle with the direction of the sagittal axis, that is, the short axis direction Y is also inclined accordingly, and the projection of the long axis direction X on the sagittal plane may have a certain angle with the direction of the sagittal axis, that is, the long axis direction X is also inclined, and the thickness direction Z is perpendicular to the sagittal plane.
  • the concha cavity 102 has a certain volume and depth, there is a certain distance between the inner side IS of the open earphone 10 and the concha cavity, and the ear canal can be connected to the outside world through the gap between the inner side IS and the concha cavity, thereby freeing the user's ears.
  • the sound-emitting portion 11 and the concha cavity can cooperate to form an auxiliary cavity (for example, the cavity structure mentioned below) that is connected to the ear canal.
  • the sound outlet hole 112 can be at least partially located in the auxiliary cavity, and the sound output from the sound outlet hole 112 will be restricted by the auxiliary cavity, that is, the auxiliary cavity can gather the sound so that the sound can be more transmitted into the ear canal, thereby increasing the volume and quality of the sound heard by the user in the near field, thereby improving the acoustic effect of the open earphone 10.
  • the open-type earphones 10 may also include a battery assembly, a Bluetooth assembly, etc. or a combination thereof.
  • the battery assembly can be used to power the open-type earphones 10.
  • the Bluetooth assembly can be used to wirelessly connect the open-type earphones 10 to other devices (e.g., mobile phones, computers, etc.).
  • sound can be transmitted to the outside of the open earphone 10 through the sound outlet 112, which can be regarded as a monopole sound source (or point sound source) A1, to produce a first sound; sound can be transmitted to the outside of the open earphone 10 through the pressure relief hole 113, which can be regarded as a monopole sound source (or point sound source) A2, to produce a second sound.
  • the second sound can be opposite or approximately opposite to the first sound in phase, so that they can cancel each other out in the far field, that is, to form an "acoustic dipole" to reduce sound leakage.
  • the line connecting the two monopole sound sources can point to the ear canal (recorded as the "listening position") so that the user can hear a loud enough sound.
  • the sound pressure at the listening position (recorded as Pear) can be used to characterize the strength of the sound heard by the user (that is, the near-field listening sound pressure).
  • the sound pressure on the sphere centered on the user's listening position or on the sphere centered on the center of the dipole sound source (A1 and A2 as shown in FIG.
  • Pfar can be counted, which can be used to characterize the strength of the sound leakage radiated to the far field by the open earphone 10 (i.e., the far-field sound leakage sound pressure).
  • Pfar can be obtained by a variety of statistical methods, such as taking the average value of the sound pressure at each point on the sphere, and for another example, taking the sound pressure distribution at each point on the sphere for area integration.
  • the method for measuring sound leakage in this specification is only an exemplary description of the principle and effect, and is not limited.
  • the measurement and calculation method of sound leakage can also be reasonably adjusted according to the actual situation. For example, with the center of the dipole sound source as the center of the circle, the sound pressure amplitude of two or more points in the far field is evenly averaged according to a certain spatial angle.
  • the listening measurement method can be to select a position point near the point sound source as the listening position, and use the sound pressure amplitude measured at the listening position as the listening value.
  • the listening position may be on the line connecting the two point sound sources, or may not be on the line connecting the two point sound sources.
  • the measurement and calculation method of listening can also be reasonably adjusted according to the actual situation, for example, the sound pressure amplitude of other points or more than one point in the near field position is averaged. For another example, with a certain point sound source as the center of the circle, the sound pressure amplitude of two or more points in the near field is evenly averaged according to a certain spatial angle. In some embodiments, the distance between the near-field listening position and the point sound source is much smaller than the distance between the point sound source and the far-field sound leakage measurement sphere.
  • the sound pressure Pear transmitted to the user's ear by the open-type earphone 10 should be large enough to improve the listening effect; the sound pressure Pfar in the far field should be small enough to increase the sound leakage reduction effect. Therefore, the sound leakage index ⁇ can be used as an indicator to evaluate the sound leakage reduction ability of the open-type earphone 10:
  • FIG4 is a comparison chart of the sound leakage index of a single-point sound source and a double-point sound source at different frequencies according to some embodiments of this specification.
  • the double-point sound source (also referred to as a dipole sound source) in FIG4 can be a typical double-point sound source, that is, the spacing is fixed, the two-point sound source amplitudes are the same, and the two-point sound sources are opposite in phase.
  • the typical double-point sound source is selected only for the principle and effect description, and the parameters of each point sound source can be adjusted according to actual needs to make it have certain differences from the typical double-point sound source.
  • the sound leakage generated by the double-point sound source increases with the increase of frequency, and the ability to reduce sound leakage weakens with the increase of frequency.
  • the frequency is greater than a certain frequency value (for example, about 8000Hz as shown in FIG4), the sound leakage generated will be greater than that of the single-point sound source, and this frequency (for example, 8000Hz) is the upper limit frequency at which the double-point sound source can reduce sound leakage.
  • a baffle may be provided between the sound outlet 112 and the pressure relief hole 113 .
  • FIG5 is an exemplary distribution diagram of a baffle plate between two sound sources of a dipole sound source according to some embodiments of the present specification.
  • a baffle plate when a baffle plate is provided between a point sound source A1 and a point sound source A2, in the near field, the sound wave of the point sound source A2 needs to bypass the baffle plate to interfere with the sound wave of the point sound source A1 at the listening position, which is equivalent to increasing the sound path from the point sound source A2 to the listening position.
  • the amplitude difference between the sound waves of the point sound source A1 and the point sound source A2 at the listening position increases compared to the case where no baffle plate is provided, thereby reducing the degree of cancellation of the two-way sound at the listening position, thereby increasing the volume at the listening position.
  • the sound waves generated by the point sound source A1 and the point sound source A2 do not need to bypass the baffle plate to interfere in a larger spatial range (similar to the case without a baffle plate), the sound leakage in the far field will not increase significantly compared to the case where there is no baffle plate. Therefore, by providing a baffle structure around one of the point sound sources A1 and A2, the volume at the near-field listening position can be significantly increased without significantly increasing the volume of far-field sound leakage.
  • FIG6 is a diagram of the sound leakage index when a baffle is set and when no baffle is set between the two sound sources of the dipole sound source shown in some embodiments of the present specification.
  • the sound leakage index is much smaller than when no baffle is added, that is, at the same listening volume, the sound leakage in the far field is smaller than when there is no baffle, and the sound leakage reduction capability is significantly enhanced.
  • Fig. 7 is an exemplary wearing diagram of an open-type earphone according to some embodiments of the present specification.
  • Fig. 8 is a structural diagram of the open-type earphone shown in Fig. 7 facing the ear.
  • the ear hook 12 is an arc-shaped structure that fits the junction of the user's head and the ear 100.
  • the sound-emitting part 11 (or the shell 111 of the sound-emitting part 11) may have a connection end CE connected to the ear hook 12 and a free end FE not connected to the ear hook 12.
  • the first part 121 of the ear hook 12 (for example, the hook-shaped part of the ear hook 12) is hung between the user's auricle (for example, the helix 107) and the head, and the second part 122 of the ear hook 12 (for example, the connection part of the ear hook) extends to the side of the auricle away from the head and is connected to the connection end CE of the sound-emitting part 11, so as to fix the sound-emitting part 11 in a position near the ear canal but not blocking the ear canal.
  • the first part 121 of the ear hook 12 for example, the hook-shaped part of the ear hook 12
  • the second part 122 of the ear hook 12 extends to the side of the auricle away from the head and is connected to the connection end CE of the sound-emitting part 11, so as to fix the sound-emitting part 11 in a position near the ear canal but not blocking the ear canal.
  • the sound-emitting portion 11 may have an inner side surface IS (also referred to as the inner side surface of the shell 111) facing the ear along the thickness direction Z and an outer side surface OS (also referred to as the outer side surface of the shell 111) facing away from the ear in the wearing state, as well as a connecting surface connecting the inner side surface IS and the outer side surface OS.
  • the sound-emitting portion 11 in the wearing state, may be arranged in a circular, elliptical, rounded square, rounded rectangle, etc. shape when observed along the direction of the coronal axis (i.e., the thickness direction Z).
  • the above-mentioned connecting surface may refer to the arc-shaped side surface of the sound-emitting portion 11; and when the sound-emitting portion 11 is arranged in a rounded square, rounded rectangle, etc. shape, the above-mentioned connecting surface may include the lower side surface LS (also referred to as the lower side surface of the shell 111), the upper side surface US (also referred to as the upper side surface of the shell 111), and the rear side surface RS (also referred to as the rear side surface of the shell 111) mentioned later.
  • the upper side surface US and the lower side surface LS may respectively refer to the side of the sound-emitting part 11 away from the external auditory canal 101 and the side close to the external auditory canal 101 along the short axis direction Y in the wearing state; the rear side surface RS may refer to the side of the sound-emitting part 11 facing the back of the brain along the length direction Y in the wearing state.
  • this embodiment takes the sound-emitting part 11 as a rounded rectangle as an example for exemplary explanation.
  • the length of the sound-emitting part 11 in the long axis direction X may be greater than the width of the sound-emitting part 11 in the short axis direction Y.
  • the rear side surface RS of the earphone may be a curved surface.
  • a transducer may be provided in the sound-generating part 11, which can convert an electrical signal into a corresponding mechanical vibration to generate sound.
  • the transducer e.g., a diaphragm
  • the sounds generated in the front cavity and the rear cavity are in opposite phases.
  • a sound outlet hole 112 connected to the front cavity is provided on the inner side IS to guide the sound generated in the front cavity out of the housing 111 and then transmit it to the ear canal so that the user can hear the sound.
  • One or more pressure relief holes 113 connected to the rear cavity may be provided on other sides of the housing 111 (e.g., the outer side OS, the upper side US, or the lower side LS, etc.) to guide the sound generated in the rear cavity out of the housing 111 and then interfere with the sound derived from the sound outlet hole 112 in the far field.
  • the pressure relief hole 113 is farther away from the ear canal than the sound outlet hole 112 to reduce the anti-phase cancellation between the sound output through the pressure relief hole 113 and the sound output through the sound outlet hole 112 at the listening position.
  • the long axis direction X of the sound-emitting portion 11 can be set horizontally or approximately horizontally (similar to the position C shown in FIG2 ), at which time the sound-emitting portion 11 is at least partially located at the antihelix 105, and the free end FE of the sound-emitting portion 11 can face the back of the brain.
  • the sound-emitting portion 11 is in a horizontal or approximately horizontal state, the projection of the long axis direction X of the sound-emitting portion 11 on the sagittal plane can be consistent with the direction of the sagittal axis, the projection of the short axis direction Y on the sagittal plane can be consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the inner side IS of the shell 111 can be crimped against the surface of the ear 100 (for example, the antihelix 105) to increase the resistance of the open earphone 10 to fall off the ear 100.
  • the projection of the sound outlet 112 on the sagittal plane may partially or completely overlap with the projection of the concave structure of the ear (e.g., the hymena concha 103) on the sagittal plane.
  • the hymena concha 103 is connected to the cavum concha 102, the ear canal is located in the cavum concha 102.
  • the sound output by the sound outlet 112 can reach the ear canal without hindrance, so that the volume received by the ear canal is higher.
  • the long axis dimension of the sound-emitting part 11 cannot be too long. If it is too long, the projection of the free end FE on the sagittal plane will exceed the projection of the ear on the sagittal plane, affecting the fit between the sound-emitting part 11 and the ear.
  • the long axis dimension of the sound-emitting part 11 can be designed so that the projection of the free end FE on the sagittal plane does not exceed the projection of the helix 107 on the sagittal plane.
  • the projection of the free end FE in the sagittal plane does not exceed the projection of the helix 107 in the sagittal plane
  • the distance d1 from the center O of the sound outlet 112 on the rear side surface RS to the rear side surface RS of the sound-emitting portion 11 along the X direction is in the range of 9.5 mm to 15.0 mm.
  • the distance d1 from the center O of the sound outlet 112 to the rear side surface RS of the sound-emitting portion 11 along the X direction is in the range of 10.5 mm to 14.0 mm. In some embodiments, the distance d1 from the center O of the sound outlet 112 to the rear side surface RS of the sound-emitting portion 11 along the X direction is in the range of 11.0 mm to 13.5 mm. In some embodiments, the distance d1 from the center O of the sound outlet 112 to the rear side surface RS of the sound-emitting portion 11 along the X direction is in the range of 11.5 mm to 13.0 mm. In some embodiments, a distance d1 from a center O of the sound outlet hole 112 to a rear side surface RS of the sound emitting portion 11 along the X direction ranges from 12.0 mm to 12.5 mm.
  • the sound outlet hole 112 and the pressure relief hole 113 are arranged on the shell 111, each side wall of the shell 111 has a certain thickness, therefore, the sound outlet hole 112 and the pressure relief hole 113 are holes with a certain depth. At this time, the sound outlet hole 112 and the pressure relief hole 113 may both have an inner opening and an outer opening.
  • the center O of the sound outlet hole 112 mentioned above and below may indicate the centroid of the outer opening of the sound hole 112.
  • the rear side surface RS of the earphone may be a curved surface.
  • the distance from a certain position (for example, the center O of the sound outlet hole 112) to the rear side surface RS may refer to the distance from the position to the section of the rear side surface RS that is farthest from the center of the sound-emitting part and parallel to the short axis of the sound-emitting part.
  • the sound outlet 112 and the pressure relief hole 113 connecting the front cavity and the rear cavity respectively can be regarded as the point sound source A1 and the point sound source A2 shown in Figure 5, respectively, and the ear canal can be regarded as the listening position shown in Figure 5.
  • At least part of the shell and/or at least part of the auricle of the sound-emitting part 11 can be regarded as the baffle shown in Figure 5 to increase the sound path difference between the sound outlet 112 and the pressure relief hole 113 to the ear canal, so as to increase the sound intensity at the ear canal while maintaining the effect of reducing leakage sound in the far field.
  • the open earphone 10 adopts the structure shown in Figure 7, that is, at least part of the shell 111 is located at the antihelix 105, in terms of the listening effect, the sound waves of the sound outlet 112 can directly reach the ear canal.
  • the sound outlet 112 can be set at a position close to the lower side LS on the inner side IS, and the pressure relief hole 113 can be set at a position away from the sound outlet 112.
  • the pressure relief hole 113 can be set at a position away from the sound outlet 112 on the outer side OS or the upper side US.
  • the sound waves of the pressure relief hole 113 need to bypass the outside of the sound-generating part 11 in order to interfere with the sound waves of the sound outlet hole 112 in the ear canal.
  • the convex and concave structure of the auricle (for example, the antihelix on its propagation path) will also increase the sound path of the sound of the pressure relief hole 113 to the ear canal. Therefore, the sound-generating part 11 itself and/or the auricle is equivalent to a baffle between the sound outlet hole 112 and the pressure relief hole 113.
  • the baffle increases the sound path from the pressure relief hole 113 to the ear canal and reduces the intensity of the sound waves of the pressure relief hole 113 in the ear canal, thereby reducing the degree of cancellation of the two-way sound emitted by the sound outlet hole 112 and the pressure relief hole 113 in the ear canal, thereby increasing the volume of the ear canal.
  • the sound leakage effect since the sound waves generated by the sound outlet hole 112 and the pressure relief hole 113 can interfere with each other in a larger spatial range without bypassing the sound-generating part 11 itself (similar to the case without a baffle), the sound leakage will not increase significantly. Therefore, by setting the sound outlet hole 112 and the pressure relief hole 113 at appropriate positions, the volume of the ear canal can be significantly increased without significantly increasing the sound leakage volume.
  • the sound outlet 112 in order to improve the sound intensity of the sound outlet 112 in the ear canal (i.e., the listening position), the sound outlet 112 can be set at a position closer to the ear canal, that is, the sound outlet 112 can be closer to the lower side surface LS of the sound-emitting portion 11 in the Y direction.
  • the distance h1 from the center O of the sound outlet 112 to the lower side surface LS of the sound-emitting portion 11 along the Y direction is in the range of 2.3 mm to 3.6 mm.
  • the distance h1 from the center O of the sound outlet 112 to the lower side surface LS of the sound-emitting portion 11 along the Y direction is in the range of 2.5 mm to 3.4 mm. In some embodiments, the distance h1 from the center O of the sound outlet 112 to the lower side surface LS of the sound-emitting portion 11 along the Y direction is in the range of 2.7 mm to 3.2 mm. In some embodiments, the distance h1 from the center O of the sound outlet 112 to the lower side surface LS of the sound-emitting portion 11 along the Y direction is in the range of 2.8 mm to 3.1 mm. In some embodiments, a distance h1 from the center O of the sound outlet hole 112 to the lower side surface LS of the sound emitting portion 11 along the Y direction ranges from 2.9 mm to 3.0 mm.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 17.5 mm to 27.0 mm, where the upper vertex of the ear hook 12 refers to the point on the ear hook 12 closest to the head along the vertical axis.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 20.0 mm to 25.5 mm.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 21.0 mm to 24.5 mm. In some embodiments, when the user wears the open earphone 10, the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 22.0 mm to 23.5 mm. In some embodiments, when a user wears the open earphone 10 , the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 22.5 mm to 23.0 mm.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the upper and lower boundaries of the inner side IS i.e., the distance between the upper side US and the lower side LS of the sound-emitting part 11 or the shell 111) cannot be too large or too small.
  • the distance between the upper side US and the lower side LS may refer to the distance between the section of the upper side US that is farthest from the center of the sound-emitting part and parallel to the long axis of the sound-emitting part and the section of the lower side LS that is farthest from the center of the sound-emitting part and parallel to the long axis of the sound-emitting part.
  • the width of the inner side IS may be too large, which may cause the overall weight of the sound-emitting part to increase, the distance between the shell and the ear hook to be too small, and the user may feel uncomfortable wearing it.
  • the width of the inner side IS may be too small, resulting in the area of the transducer of the sound-emitting part 11 that can push the air is too small, resulting in the sound-emitting efficiency of the sound-emitting part being too low.
  • the ratio of the distance from the center O of the sound outlet 112 to the upper vertex M of the ear hook 12 to the distance between the upper and lower boundaries of the inner side IS is between 0.95 and 1.55. In some embodiments, the ratio of the distance from the center O of the sound outlet 112 to the upper vertex M of the ear hook 12 to the width dimension of the shell 111 is between 1.05 and 1.45.
  • the ratio of the distance from the center O of the sound outlet 112 to the upper vertex M of the ear hook 12 to the width dimension of the shell 111 is between 1.15 and 1.35. In some embodiments, the ratio of the distance from the center O of the sound outlet 112 to the upper vertex M of the ear hook 12 to the width dimension of the shell 111 is between 1.20 and 1.30.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound outlet 112 and the upper side US of the sound-emitting part 11 cannot be too large.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound outlet 112 and the upper side US of the sound-emitting part 11 cannot be too small.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound outlet 112 and the upper side US of the sound-emitting part 11 is between 1.19 and 2.5.
  • the ratio of the distance from the center O of the sound hole 112 to the upper vertex M of the ear hook 12 to the distance from the center O of the sound hole 112 to the upper side surface US of the sound emitting part 11 is between 1.5 and 1.8.
  • the ratio of the distance from the center O of the sound hole 112 to the upper vertex M of the ear hook 12 to the distance from the center O of the sound hole 112 to the lower side IS of the sound-emitting part 11 cannot be too small.
  • the width of the sound hole 112 cannot be too small, and the ratio of the distance from the center O of the sound hole 112 to the upper vertex M of the ear hook 12 to the distance from the center O of the sound hole 112 to the lower side IS of the sound-emitting part 11 cannot be too large.
  • the ratio of the distance from the center O of the sound hole 112 to the upper vertex M of the ear hook 12 to the distance h3 from the center O of the sound hole 112 to the lower side IS of the sound-emitting part 11 is between 6.03 and 9.05.
  • the ratio of the distance from the center O of the sound hole 112 to the upper vertex M of the ear hook 12 to the distance from the center O of the sound hole 112 to the lower side surface IS of the sound emitting part 11 is between 7 and 8.
  • a cavity structure in order to increase the listening volume, especially the listening volume of mid- and low-frequency sounds, while still retaining the effect of far-field leakage cancellation, can be constructed around one of the double-point sound sources.
  • FIG9 is a schematic diagram of an exemplary distribution of a cavity structure arranged around one of the dipole sound sources shown in some embodiments of this specification.
  • the cavity structure 41 when a cavity structure 41 is provided between the dipole sound sources, one of the dipole sound sources and the listening position is inside the cavity structure 41, and the other dipole sound source is outside the cavity structure 41.
  • the sound derived from the dipole sound source inside the cavity structure 41 will be restricted by the cavity structure 41, that is, the cavity structure 41 can gather the sound so that the sound can be more transmitted to the listening position, thereby improving the volume and quality of the sound at the listening position.
  • the "cavity structure” can be understood as a semi-enclosed structure surrounded by the side wall of the sound-emitting part 11 and the concha cavity structure, and the semi-enclosed structure makes the interior not completely sealed and isolated from the external environment, but has a leakage structure 42 (for example, an opening, a gap, a pipe, etc.) that is acoustically connected to the external environment.
  • a leakage structure 42 for example, an opening, a gap, a pipe, etc.
  • Exemplary leakage structures may include but are not limited to openings, gaps, pipes, etc., or any combination thereof.
  • the cavity structure 41 may include a listening position and at least one sound source.
  • “include” may mean that at least one of the listening position and the sound source is inside the cavity, or at least one of the listening position and the sound source is at the edge of the cavity.
  • the listening position may be the entrance of the ear canal, or may be the acoustic reference point of the ear.
  • Fig. 10A is a schematic diagram of the listening principle of a dipole sound source structure and a cavity structure built around one of the dipole sound sources according to some embodiments of this specification.
  • Fig. 10B is a schematic diagram of the sound leakage principle of a dipole sound source structure and a cavity structure built around one of the dipole sound sources according to some embodiments of this specification.
  • a dipole with a cavity structure is constructed around one of the sound sources. Since one of the sound sources A is wrapped by the cavity structure, most of the sound radiated by it will reach the listening position by direct radiation or reflection. In contrast, in the absence of a cavity structure, most of the sound radiated by the sound source will not reach the listening position. Therefore, the setting of the cavity structure significantly increases the volume of the sound reaching the listening position. At the same time, only a small part of the anti-phase sound radiated by the anti-phase sound source B outside the cavity structure will enter the cavity structure through the leakage structure of the cavity structure.
  • the sound generated by the secondary sound source B' has a weak anti-phase cancellation effect on the sound source A in the cavity, which significantly increases the listening volume at the listening position.
  • the sound source A radiates sound to the outside through the leakage structure of the cavity, which is equivalent to generating a secondary sound source A’ at the leakage structure. Since almost all the sound radiated by the sound source A is output from the leakage structure, and the structural scale of the cavity is much smaller than the spatial scale of the sound leakage evaluation (at least one order of magnitude difference), it can be considered that the intensity of the secondary sound source A’ is equivalent to that of the sound source A.
  • the sound cancellation effect generated by the secondary sound source A’ and the sound source B is equivalent to the sound cancellation effect generated by the sound source A and the sound source B. That is, under this cavity structure, a considerable sound leakage reduction effect is still maintained.
  • the leakage structure of the above-mentioned one opening is only an example, and the leakage structure of the cavity structure may include one or more openings, which can also achieve a better listening index, wherein the listening index may refer to the inverse of the leakage index ⁇ , 1/ ⁇ .
  • the listening index may refer to the inverse of the leakage index ⁇ , 1/ ⁇ .
  • Equal openings are equivalent to doubling the relative opening size of only one hole (i.e., the ratio of the opening area S of the leakage structure on the cavity structure to the area S0 directly affected by the contained sound source in the cavity structure). As mentioned above, its overall listening index will decrease. In the case of equal opening ratio, even if S/S0 is the same as the structure with only one hole, the distances from the two openings to the external sound source are different, which will also result in different listening indexes.
  • FIG. 11A is a schematic diagram of a cavity structure with two horizontal openings according to some embodiments of the present specification.
  • FIG. 11B is a schematic diagram of a cavity structure with two vertical openings according to some embodiments of the present specification.
  • the line connecting the two openings and the line connecting the two sound sources are parallel (i.e., two horizontal openings)
  • the distances from the two openings to the external sound source are respectively maximum and minimum
  • the two lines are perpendicular (i.e., two vertical openings)
  • the distances from the two openings to the external sound source are equal and take an intermediate value.
  • FIG12 is a comparison diagram of the listening index curves of the cavity structure with two openings and one opening according to some embodiments of the present specification. As shown in FIG12, the overall listening index of the cavity structure with equal openings is lower than that of the cavity structure with one opening. For the cavity structure with equal opening ratio, different listening indexes will be caused due to the different distances between the two openings and the external sound source. It can be seen from FIG11A, FIG11B and FIG12 that the listening index of the leakage structure with equal opening ratio is higher than that of the leakage structure with equal opening ratio, regardless of the horizontal opening or the vertical opening.
  • the relative opening size S/S0 of the leakage structure with equal opening ratio is halved compared to the leakage structure with equal opening ratio, so the listening index is larger.
  • the listening index of the horizontal opening is larger for both the leakage structure with equal opening ratio and the leakage structure with equal opening ratio. This is because the distance from one of the openings in the horizontally opened leakage structure to the external sound source is smaller than the distance between the two sound sources. The secondary sound source thus formed is closer to the external sound source than the original two sound sources, so the listening index is higher, thereby improving the effect of reducing leakage sound. Therefore, in order to improve the effect of reducing leakage sound, the distance from at least one opening to the external sound source can be made smaller than the distance between the two sound sources.
  • a cavity structure with two openings can better improve the resonant frequency of the air sound in the cavity structure than a cavity structure with one opening, so that the entire device has a better listening index in the high frequency band (for example, the sound with a frequency close to 10,000 Hz) than a cavity structure with only one opening.
  • the high frequency band is the frequency band that the human ear is more sensitive to, so there is a greater demand for reduced leakage sound. Therefore, in order to improve the effect of reducing leakage sound in the high frequency band, a cavity structure with more than 1 opening can be selected.
  • Fig. 13 is an exemplary wearing diagram of an open-type earphone according to some other embodiments of the present specification.
  • Fig. 14 is a structural diagram of the open-type earphone shown in Fig. 13 facing the ear.
  • the open-type earphone 10 shown in FIG13 is similar in structure to the open-type earphone 10 shown in FIG7 , and the main difference is that the sound-emitting portion 11 is tilted, and the housing 111 of the sound-emitting portion 11 is at least partially inserted into the concha cavity 102, for example, the free end FE of the sound-emitting portion 11 can extend into the concha cavity 102.
  • the ear hook 12 and the sound-emitting portion 11 of such a structure have a better fit with the user's ear 100, and can increase the resistance of the open-type earphone 10 to fall off the ear 100, thereby increasing the wearing stability of the open-type earphone 10.
  • the front end CE of the sound-emitting part 11 in the wearing state, when observed along the thickness direction Z, the front end CE of the sound-emitting part 11 is closer to the top of the head than the free end FE, so that the free end FE can extend into the concha cavity. Based on this, the angle between the long axis direction X and the direction of the sagittal axis of the human body can be between 15° and 60°.
  • the aforementioned angle is too small, it is easy to cause the free end FE to be unable to extend into the concha cavity, and the sound outlet hole 112 on the sound-emitting part 11 is too far away from the ear canal; if the aforementioned angle is too large, it is also easy to cause the sound-emitting part 11 to be unable to extend into the concha cavity, and the ear canal is blocked by the sound-emitting part 11.
  • such a setting allows the sound-emitting part 11 to extend into the concha cavity, and the sound outlet hole 112 on the sound-emitting part 11 has a suitable distance from the ear canal, so that the user can hear more of the sound produced by the sound-emitting part 11 when the ear canal is not blocked.
  • the sound-emitting portion 11 and the ear hook 12 can clamp the ear region corresponding to the concha cavity from both the front and rear sides of the ear region, thereby increasing the resistance of the open-type earphone 10 to fall off the ear, thereby improving the stability of the open-type earphone 10 in the wearing state.
  • the free end FE of the sound-emitting portion 11 is pressed in the concha cavity in the thickness direction Z.
  • the free end FE abuts against the concha cavity in the major axis direction X and the minor axis direction Y.
  • the distance between the sound-emitting part and the ear hook can change to a certain extent in the wearing state and the non-wearing state (the distance in the non-wearing state is smaller than the distance in the wearing state).
  • the plane where the sound-emitting part 11 is located should have a certain distance from the plane where the ear hook 12 is located in the coronal axis direction, so that the sound-emitting part 11 can exert appropriate pressure on the ear 100.
  • the distance between the center O of the sound outlet 112 and the plane where the ear hook 12 is located is between 3mm and 6mm.
  • the ear hook 12 is an irregular shape, for example, the ear hook 12 can be an arc-shaped structure
  • the plane where the ear hook 12 is located (also called the ear hook plane) can be regarded as: when the ear hook is placed flat on a plane in the non-wearing state, the plane is tangent to at least three points on the ear hook to form the ear hook plane.
  • the ear hook when in the worn state, can be approximately regarded as fitting against the head, and the deflection of the ear hook plane relative to the sagittal plane can be ignored.
  • the distance between the center O of the sound hole 112 and the plane where the ear hook 12 is located when not being worn, is between 3.5 mm and 5.5 mm. In some embodiments, when not being worn, the distance between the center O of the sound hole 112 and the plane where the ear hook 12 is located is between 4.0 mm and 5.0 mm. In some embodiments, when not being worn, the distance between the center O of the sound hole 112 and the plane where the ear hook 12 is located is between 4.3 mm and 4.7 mm.
  • the cavity enclosed by the inner side surface IS of the sound-emitting part 11 and the concha cavity 103 can be regarded as the cavity structure 41 shown in FIG9
  • the gap formed between the inner side surface IS and the concha cavity (for example, the first leakage structure UC formed between the inner side surface IS and the concha cavity near the top of the head, and the second leakage structure LC formed between the inner side surface IS and the ear near the ear canal) can be regarded as the leakage structure 42 shown in FIG9 .
  • the sound outlet hole 112 arranged on the inner side surface IS can be regarded as a point sound source inside the cavity structure 41 shown in FIG9
  • the pressure relief hole 113 arranged on other sides of the sound-emitting part 11 can be regarded as a point sound source outside the cavity structure 41 shown in FIG9 .
  • the sound hole 112 in combination with FIG. 13 and FIG. 14, in order to make the projection of the sound hole 112 in the sagittal plane partially or completely located in the concha cavity area when the open earphone 10 is worn, and at the same time improve the sound intensity of the sound hole 112 in the ear canal (i.e., the listening position), the sound hole 112 can be set as close to the ear canal as possible.
  • the distance h2 from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 4.05 mm to 6.05 mm.
  • the distance h2 from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 4.50 mm to 5.85 mm. In some embodiments, the distance h2 from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 4.80 mm to 5.50 mm. In some embodiments, the distance h2 from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 5.20 mm to 5.55 mm .
  • the long axis dimension of the sound-emitting portion 11 cannot be too long.
  • the distance between the center O of the sound-emitting hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction cannot be too close, otherwise the entire or partial area of the sound-emitting hole may be blocked due to the contact between the free end FE and the wall surface of the concha cavity, so that the effective area of the sound-emitting hole is reduced.
  • the distance d2 between the center O of the sound-emitting hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction ranges from 8.15 mm to 12.25 mm. In some embodiments, the distance d2 between the center O of the sound-emitting hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction ranges from 8.50 mm to 12.00 mm. In some embodiments, the distance d2 between the center O of the sound-emitting hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction ranges from 8.85 mm to 11.65 mm.
  • the distance d2 from the center O of the sound hole 112 to the rear side RS of the sound emitting portion 11 along the X direction ranges from 9.25 mm to 11.15 mm. In some embodiments, the distance d2 from the center O of the sound hole 112 to the rear side RS of the sound emitting portion 11 along the X direction ranges from 9.60 mm to 10.80 mm.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 22.5 mm to 34.5 mm. In some embodiments, when the user wears the open-type earphone 10, the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 25 mm to 32 mm.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 27.5 mm to 29.5 mm. In some embodiments, when the user wears the open-type earphone 10, the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 28 mm to 29 mm. In some embodiments, when the user wears the open earphone 10, the distance between the projection of the center of the sound outlet 112 on the sagittal plane and the projection of the upper vertex of the ear hook 12 on the sagittal plane ranges from 18 mm to 30 mm.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the upper and lower boundaries of the inner side surface IS (i.e., the distance between the upper side surface US and the lower side surface LS of the sound-emitting part 11 or the shell 111) cannot be too large or too small.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 is constant, if the above ratio is too small, the width of the inner side surface IS may be too large, which may cause the overall weight of the sound-emitting part to increase, the distance between the shell and the ear hook to be too small, and the user may feel uncomfortable wearing it.
  • the width of the inner side surface IS may be too small, resulting in the area of the transducer of the sound-emitting part 11 that can push the air is too small, resulting in the sound efficiency of the sound-emitting part being too low.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the width dimension of the shell 111 along the Y direction is between 1.2 and 2.2.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the width dimension of the shell 111 is between 1.4 and 2.0.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the width dimension of the shell 111 is between 1.5 and 1.8. In some embodiments, when the user wears the open earphone 10 , the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the width of the shell 111 is between 1.6 and 1.7.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound outlet 112 and the upper side US of the sound-emitting part 11 cannot be too large.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound outlet 112 and the upper side US of the sound-emitting part 11 cannot be too small.
  • the ratio of the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound outlet 112 and the upper side US of the sound-emitting part 11 is between 1.94 and 2.93.
  • the ratio of the distance from the center O of the sound hole 112 to the upper vertex M of the ear hook 12 to the distance from the center O of the sound hole 112 to the upper side surface US of the sound emitting part 11 is between 2.2 and 2.6.
  • the ratio of the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound hole 112 and the lower side IS of the sound-emitting part 11 cannot be too small.
  • the width of the sound hole 112 cannot be too small, and the ratio of the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound hole 112 and the lower side IS of the sound-emitting part 11 cannot be too large.
  • the ratio of the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 to the distance between the center O of the sound hole 112 and the lower side IS of the sound-emitting part 11 is between 4.50 and 6.76.
  • FIG. 15 is a schematic diagram of a projection on the sagittal plane of an open-type earphone in a worn state according to some embodiments of the present specification.
  • the free end FE in combination with FIG. 13 and FIG. 15 , in order to stably wear the sound-emitting part 11 on the user's ear and to facilitate the construction of the cavity structure shown in FIG. 9 , and to make the cavity structure have at least two leakage structures, the free end FE can abut against the concha cavity in the long axis direction X and the short axis direction Y.
  • the medial side IS of the sound-emitting part 11 is inclined relative to the sagittal plane, and at this time, there is at least a first leakage structure UC close to the top of the head (i.e., the gap between the concha cavity and the upper boundary of the medial side IS) and a second leakage structure LC close to the ear canal (i.e., the gap between the concha cavity and the lower boundary of the medial side IS) between the medial side IS of the sound-emitting part and the concha cavity.
  • the listening volume especially the listening volume of the mid-low frequency, can be increased, while still retaining the effect of far-field leakage cancellation, thereby improving the acoustic output performance of the open earphone 10.
  • the first leakage structure UC and the second leakage structure LC formed between the inner side surface IS of the sound-emitting part and the cavum concha have certain dimensions in the long axis direction X and the thickness direction Z.
  • the midpoint of the two points formed by the intersection of the upper/lower boundaries of the inner side surface IS and the ear e.g., the side wall of the cavum concha, the crus of the helix
  • the center of the ear canal opening of the ear canal can be used as the position reference point of the ear canal.
  • the midpoint of the upper boundary of the inner side surface IS can be used as the position reference point of the first leakage structure UC, and the point where the lower boundary of the inner side surface IS is divided into three equal parts near the free end FE (hereinafter referred to as the 1/3 point of the lower boundary of the inner side surface IS) can be used as the position reference point of the second leakage structure LC.
  • the boundary between the medial surface IS and the upper surface US and/or the lower surface LS is an arc
  • the upper boundary of the medial surface IS may refer to the intersection line between the medial surface IS and the upper surface US
  • the lower boundary of the medial surface IS may refer to the intersection line between the medial surface IS and the lower surface LS.
  • the intersection line of the two side surfaces may refer to the intersection line between the tangent planes of the two side surfaces that are farthest from the center of the sound-emitting portion and parallel to the long axis or short axis of the sound-emitting portion.
  • this specification will use the midpoint of the upper boundary of the inner side surface IS and the 1/3 point of the lower boundary as the position reference points of the first leakage structure UC and the second leakage structure LC, respectively. It should be noted that the midpoint of the upper boundary of the inner side surface IS and the 1/3 point of the lower boundary are selected only as exemplary reference points to describe the positions of the first leakage structure UC and the second leakage structure LC. In some embodiments, other reference points can also be selected to describe the positions of the first leakage structure UC and the second leakage structure LC.
  • the first leakage structure UC/second leakage structure LC formed when the open earphone 10 is in a wearing state is a gap with a gradually changing width.
  • the reference position of the first leakage structure UC/second leakage structure LC can be the position of the upper boundary/lower boundary of the inner side surface IS close to the area with the largest gap width.
  • the 1/3 point of the upper boundary of the inner side surface IS close to the free end FE can be used as the position of the first leakage structure UC
  • the midpoint of the lower boundary of the inner side surface IS can be used as the position of the second leakage structure LC.
  • the projection of the upper boundary of the medial surface IS in the sagittal plane may coincide with the projection of the upper surface US in the sagittal plane, and the projection of the lower boundary of the medial surface IS in the sagittal plane may coincide with the projection of the lower surface LS in the sagittal plane.
  • the projection of the position reference point of the first leakage structure UC (i.e., the midpoint of the upper boundary of the medial surface IS) in the sagittal plane is point A
  • the projection of the position reference point of the second leakage structure LC (i.e., the 1/3 point of the lower boundary of the medial surface IS) in the sagittal plane is point C
  • the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane may be the projection point of the intersection of the upper boundary of the medial surface IS and the short axis center plane of the magnetic circuit component of the transducer (e.g., the magnetic circuit component 1144 described below) projected on the sagittal plane.
  • the short axis center plane of the magnetic circuit component refers to a plane parallel to the short axis direction of the sound-emitting part 11 and passing through the geometric center of the magnetic circuit component.
  • the projection point C of the 1/3 point of the lower border of the medial surface IS on the sagittal plane may be the projection point of the trisection point of the lower border of the medial surface IS close to the free end FE on the sagittal plane.
  • the projection of the sound-emitting part 11 of the open earphone 10 on the sagittal plane can at least partially cover the ear canal of the user, but the ear canal can be connected to the outside world through the concha cavity to achieve the liberation of the user's ears.
  • the pressure relief hole 113 since the sound of the pressure relief hole 113 can be transmitted into the cavity structure through the leakage structure (for example, the first leakage structure UC or the second leakage structure LC) and the sound of the sound outlet hole 112 is canceled, the pressure relief hole 113 cannot be too close to the leakage structure.
  • the pressure relief hole 113 should be located as far away from the sound outlet hole 112 as possible, for example, the pressure relief hole 113 is set on the upper side US of the sound-emitting part 11.
  • the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the inner side surface IS in the sagittal plane to the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point of the center of the pressure relief hole 113 in the sagittal plane is between 0.7 and 1.3.
  • the larger the volume V of the cavity structure the smaller the overall (full frequency range) listening index of the open earphone 10. This is because, affected by the air-acoustic resonance in the cavity structure, at the resonant frequency of the cavity structure, air-acoustic resonance will be generated in the cavity structure and radiate outwardly a sound much greater than that of the pressure relief hole 113, resulting in a significant increase in sound leakage, which in turn significantly reduces the listening index near the resonant frequency.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane ranges from 10.0 mm to 15.2 mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane ranges from 11.0 mm to 14.2 mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane ranges from 12.0 mm to 14.7 mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane ranges from 12.5 mm to 14.2 mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane ranges from 13.0 mm to 13.7 mm.
  • the sound outlet 112 is easily blocked by the tragus.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 2.2mm to 3.8mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 2.4mm to 3.6mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 2.6mm to 3.4mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 2.8mm to 3.2mm.
  • the distance between the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane is in the range of 12mm to 18mm. In some embodiments, the distance between the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane is in the range of 13mm to 17mm.
  • the distance between the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane is in the range of 14mm to 16mm. In some embodiments, the distance between the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane is in the range of 14.5mm to 15.5mm.
  • the distance between the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 1.7mm to 2.7mm. In some embodiments, the distance between the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 1.8mm to 2.6mm.
  • the distance between the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 1.9mm to 2.5mm. In some embodiments, the distance between the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 2.0mm to 2.4mm.
  • the distance between the projection point C of the 1/3 point of the lower border of the medial surface IS in the sagittal plane and the projection point B of the center of the ear canal opening in the sagittal plane ranges from 2.1 mm to 2.3 mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane ranges from 3.5mm to 5.6mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane ranges from 3.9mm to 5.2mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane is 4.3 mm to 4.8 mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane is 4.5 mm to 4.6 mm.
  • FIG. 16A is a diagram showing an exemplary internal structure of a sound-producing part according to some embodiments of the present specification.
  • the sound-emitting part 11 may include a main control circuit board 13 disposed in the housing 111 and a battery (not shown) disposed at an end of the ear hook 12 away from the sound-emitting part 11, and the battery and the transducer 116 are electrically connected to the main control circuit board 13, respectively, so as to allow the battery to power the transducer 116 under the control of the main control circuit board 13.
  • the battery and the transducer 116 may also be disposed in the sound-emitting part 11, and the battery may be closer to the connection end CE and the transducer 116 may be closer to the free end FE.
  • the open earphone 10 may include an adjustment mechanism connecting the sound-emitting portion 11 and the ear hook 12.
  • Different users can adjust the relative position of the sound-emitting portion 11 on the ear through the adjustment mechanism when wearing the earphone, so that the sound-emitting portion 11 is located at a suitable position, so that the sound-emitting portion 11 and the concha cavity form a cavity structure.
  • the adjustment mechanism due to the existence of the adjustment mechanism, the user can also adjust the earphone 10 to a more stable and comfortable position.
  • the concha cavity has a certain volume and depth, after the free end FE extends into the concha cavity, there can be a certain distance between the inner side IS of the sound-emitting part 11 and the concha cavity.
  • the sound-emitting part 11 can cooperate with the concha cavity to form a cavity structure connected to the external auditory canal when worn, and the sound outlet hole 112 can be at least partially located in the aforementioned cavity structure.
  • the sound waves propagated from the sound outlet hole 112 will be restricted by the aforementioned cavity structure, that is, the aforementioned cavity structure can gather the sound waves so that the sound waves can be better propagated into the external auditory canal, thereby increasing the volume and sound quality of the sound heard by the user in the near field, which is conducive to improving the acoustic effect of the earphone 10. Furthermore, since the sound-emitting part 11 can be arranged not to block the external auditory canal when worn, the aforementioned cavity structure can be arranged in a semi-open state.
  • a part of the sound waves propagated from the sound outlet 112 can be propagated to the ear canal so that the user can hear the sound, and the other part can be propagated together with the sound reflected from the ear canal through the gap between the sound-emitting part 11 and the ear (for example, the part of the concha cavity not covered by the sound-emitting part 11) to the outside of the earphone 10 and the ear, thereby forming a first sound leakage in the far field;
  • the sound waves propagated through the pressure relief hole 113 opened on the sound-emitting part 11 generally form a second sound leakage in the far field, and the intensity of the first sound leakage is equivalent to the intensity of the second sound leakage, and the phase of the first sound leakage and the phase of the second sound leakage are (close to) opposite to each other, so that the two can cancel each other in the far field, which is beneficial to reduce the sound leakage of the open earphone 10 in the far field.
  • the sound-emitting part 11 mainly includes a shell 111 connected to the ear hook 12 and a transducer 116 disposed in the shell 111.
  • the shell 111 is provided with a sound outlet 112 on the inner side IS facing the ear in the wearing state, and the sound waves generated by the transducer 116 are propagated through the sound outlet 112 so as to be transmitted to the external auditory canal 101.
  • the sound outlet 112 can also be provided on the lower side LS of the shell 111, and can also be provided at the corner between the inner side IS and the lower side LS.
  • a front cavity 114 may be formed between the transducer 116 and the housing 111 , and a sound outlet hole 112 is disposed on the housing 111 to surround an area forming the front cavity 114 .
  • the front cavity 114 is connected to the outside through the sound outlet hole 112 .
  • the front cavity 114 is disposed between the diaphragm of the transducer 116 and the housing 111. In order to ensure that the diaphragm has sufficient vibration space, the front cavity 114 may have a larger depth dimension (i.e., the distance dimension between the diaphragm of the transducer 116 and the housing 111 facing it). In some embodiments, as shown in FIG. 16A , the sound outlet 112 is disposed on the inner side surface IS in the thickness direction Z. At this time, the depth of the front cavity 114 may refer to the dimension of the front cavity 114 in the Z direction.
  • the depth of the front cavity 114 may be 0.55 mm-1.00 mm. In some embodiments, the depth of the front cavity 114 may be 0.66 mm-0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.76 mm-0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.96 mm-0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.97 mm.
  • the resonant frequency of the Helmholtz resonance cavity structure formed by the front cavity 114 and the sound outlet 112 should be as high as possible, so that the overall frequency response curve of the sound-emitting part has a wider flat area.
  • the resonant frequency f1 of the front cavity 114 may be no less than 3kHz. In some embodiments, the resonant frequency f1 of the front cavity 114 may be no less than 4kHz. In some embodiments, the resonant frequency f1 of the front cavity 114 may be no less than 6kHz. In some embodiments, the resonant frequency f1 of the front cavity 114 may be no less than 7kHz. In some embodiments, the resonant frequency f1 of the front cavity 114 may be no less than 8kHz.
  • the front cavity 114 and the sound outlet 112 can be approximately regarded as a Helmholtz resonant cavity model
  • the front cavity 114 is the cavity of the Helmholtz resonant cavity model
  • the sound outlet 112 is the neck of the Helmholtz resonant cavity model.
  • the resonant frequency of the Helmholtz resonant cavity model is the resonant frequency f 1 of the front cavity 114.
  • the size of the neck (such as the sound outlet 112) can affect the resonant frequency f of the cavity, and the specific relationship is shown in formula (2):
  • c represents the speed of sound
  • S represents the cross-sectional area of the neck (eg, the sound outlet hole 112 )
  • V represents the volume of the cavity (eg, the front cavity 114 )
  • L represents the depth of the neck (eg, the sound outlet hole 112 ).
  • the total air volume at the sound outlet 112 forms an acoustic mass, which can resonate with the system (e.g., the Helmholtz resonator) to produce a low-frequency output. Therefore, a small acoustic mass may affect the low-frequency output of the Helmholtz resonator model.
  • the size of the sound outlet 112 will also affect the acoustic mass Ma of the sound outlet 112. The specific relationship is shown in formula (3):
  • represents the air density
  • S represents the cross-sectional area of the sound outlet hole 112
  • L represents the depth of the sound outlet hole 112 .
  • FIG. 16B is a diagram showing an exemplary internal structure of a transducer according to some embodiments of the present specification.
  • the housing 111 contains a transducer 116, which includes a diaphragm 1141, a voice coil 1142, a basin 1143, and a magnetic circuit assembly 1144.
  • the basin 1143 surrounds the diaphragm 1141, the voice coil 1142, and the magnetic circuit assembly 1144 to provide a mounting and fixing platform.
  • the transducer 116 can be connected to the housing 111 through the basin 1143.
  • the diaphragm 1141 covers the voice coil 1142 and the magnetic circuit assembly 1144 in the Z direction.
  • the voice coil 1142 extends into the magnetic circuit assembly 1144 and is connected to the diaphragm 1141.
  • the magnetic field generated by the voice coil 1142 after being energized interacts with the magnetic field formed by the magnetic circuit assembly 1144, thereby driving the diaphragm 1141 to generate mechanical vibration, and then generates sound through the propagation of a medium such as air, and the sound is output through the sound outlet 112.
  • the magnetic circuit assembly 1144 includes a magnetic conductive plate 11441, a magnet 11442, and a container 11443.
  • the magnetic conductive plate 11441 and the magnet 11442 are connected to each other.
  • the side of the magnet 11442 away from the magnetic conductive plate 11441 is installed on the bottom wall of the container 11443, and there is a gap between the peripheral side of the magnet 11442 and the peripheral inner side wall of the container 11443.
  • the peripheral outer side wall of the container 11443 is connected and fixed to the basin frame 1143.
  • the container 11443 and the magnetic conductive plate 11441 can both be made of magnetic conductive materials (such as iron, etc.).
  • the circumference of the diaphragm 1141 may be connected to the basin frame 1143 via a fixing ring 1145.
  • the fixing ring 1145 may be made of stainless steel or other metal materials to adapt to the processing and manufacturing process of the diaphragm 1141.
  • the size of the transducer 116 will be too large, which will cause the housing 111 to be too large, which will easily cause the housing 111 to collide and rub with the auricle, affecting the wearing comfort of the sound-emitting part 11. Therefore, it is necessary to design the size of the housing 111.
  • the size of the concha cavity along the Y direction can determine the width of the housing 111 in the Y direction, and then select a suitable length ratio (that is, the ratio of the size of the housing 111 in the Y direction to the size in the X direction) according to the wearing comfort, so as to determine the length of the housing 111 in the X direction (for example, 21.49 mm) to match the size of the concha cavity along the Y direction.
  • a suitable length ratio that is, the ratio of the size of the housing 111 in the Y direction to the size in the X direction
  • the size of the housing 111 can be a value within a preset range. In some embodiments, according to the width size range of the concha cavity along the Y direction, the width size of the housing 111 along the Y direction can be in the range of 11mm-16mm.
  • the width size of the housing 111 along the Y direction can be 11mm-15mm. In some embodiments, the width size of the housing 111 along the Y direction can be 13mm-14mm. In some embodiments, the ratio of the size of the housing 111 in the X direction to the size in the Y direction can be 1.2-5. In some embodiments, the ratio of the size of the housing 111 in the X direction to the size in the Y direction can be 1.4-4. In some embodiments, the ratio of the size of the housing 111 in the X direction to the size in the Y direction can be 1.5-2. In some embodiments, the length dimension of the housing 111 along the X direction may be in the range of 15mm-30mm.
  • the length dimension of the housing 111 along the X direction may be 16mm-28mm. In some embodiments, the length dimension of the housing 111 along the X direction may be 19mm-24mm. In some embodiments, in order to avoid the excessive volume of the housing 111 affecting the wearing comfort of the open earphone 10, the thickness dimension of the housing 111 along the Z direction may be in the range of 5mm-20mm. In some embodiments, the thickness dimension of the housing 111 along the Z direction may be 5.1mm-18mm. In some embodiments, the thickness dimension of the housing 111 along the Z direction may be 6mm-15mm. In some embodiments, the thickness dimension of the housing 111 along the Z direction may be 7mm-10mm.
  • the area of the inner side surface IS of the housing 111 (which is equal to the product of the length dimension and the width dimension of the housing 111 when the inner side surface IS is rectangular) may be 90mm 2 -560mm 2 .
  • the area of the inner side surface IS may be considered to be approximately the projection area of the diaphragm 1141 along the Z direction.
  • the area of the inner side surface IS differs from the projection area of the diaphragm 1141 along the Z direction by 10%.
  • the area of the inner side surface IS may be 150 mm 2 -360 mm 2 .
  • the area of the inner side surface IS may be 160 mm 2 -240 mm 2 .
  • the area of the inner side surface IS may be 180 mm 2 -200 mm 2 .
  • the size design of the open-type earphone 10 is superior to the acoustic performance of the existing open-type earphone on the basis of meeting the wearing comfort, that is, on the premise of achieving the same excellent acoustic performance, the size of the open-type earphone 10 may be smaller than the existing open-type earphone.
  • the distance of the center O of the sound outlet 112 from the bottom surface of the magnetic circuit assembly 1144 along the Z direction may be related to the vibration range of the diaphragm 1141 and the thickness of the magnetic circuit assembly 1144.
  • the vibration range of the diaphragm 1141 may affect the amount of air pushed by the transducer of the sound-emitting part 11. The larger the vibration range of the diaphragm 1141, the more air is pushed by the transducer of the sound-emitting part 11, and the higher the sound-emitting efficiency of the sound-emitting part.
  • the greater the thickness of the magnetic circuit assembly 1144 the greater the total weight of the sound-emitting part 11, thereby affecting the comfort of the user wearing.
  • the thinner the distance of the center O of the sound outlet 112 from the bottom surface of the magnetic circuit assembly 1144 along the Z direction the larger the volume of the back cavity may be.
  • the smaller the resonant frequency of the back cavity the resonance peak of the back cavity moves toward the low frequency, and the range of the flat area of the frequency response curve becomes smaller.
  • the resonance frequency of the rear cavity is within a suitable frequency range (for example, 1000Hz-5000Hz), and the user is comfortable enough to wear, taking into account the structural strength, the difficulty of process realization, and the overall thickness of the shell 111, the distance l 1 from the center O of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1144 along the Z direction (that is, the side of the accommodating member 11443 away from the sound outlet hole 112 along the Z direction) is in the range of 5.65mm to 8.35mm.
  • the distance l 1 from the center of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1144 along the Z direction is in the range of 6.00mm to 8.00mm. In some embodiments, the distance l 1 from the center of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1144 along the Z direction is in the range of 6.35mm to 7.65mm. In some embodiments, the distance l 1 from the center of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1144 along the Z direction is in the range of 6.70mm to 7.30mm. In some embodiments, the distance l1 between the center of the sound outlet hole 112 and the bottom surface of the magnetic circuit assembly 1144 along the Z direction ranges from 6.95 mm to 7.05 mm.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis of the magnetic circuit component 1144 ranges from 1.45 mm to 2.15 mm.
  • the center plane of the long axis of the magnetic circuit component 1144 refers to a plane parallel to the lower side surface LS of the sound-emitting portion 11 and passing through the geometric center of the magnetic circuit component 1144.
  • the center plane of the long axis of the magnetic circuit component 1144 can divide the magnetic circuit component 1144 into two identical parts along the direction X.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis of the magnetic circuit component 1144 is also the distance from the center O of the sound outlet hole 112 to the center plane of the long axis along the short axis direction Y.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis ranges from 1.55 mm to 2.05 mm.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis ranges from 1.65 mm to 1.95 mm.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis ranges from 1.75 mm to 1.85 mm.
  • FIG17A is a frequency response curve diagram of an open-type earphone corresponding to sound outlet holes of different cross-sectional areas when the aspect ratio is constant according to some embodiments of the present specification.
  • FIG17A shows the frequency response curve corresponding to the open-type earphone 10 with a cross-sectional area of the sound outlet hole ranging from 0.44 mm2 to 100.43 mm2 when other structures (e.g., the pressure relief hole 113, the volume of the rear cavity, etc.) are fixed and when the aspect ratio of the sound outlet hole is constant.
  • other structures e.g., the pressure relief hole 113, the volume of the rear cavity, etc.
  • the resonant frequency f1 corresponding to the front cavity in the frequency response curve of the open-type earphone 10 i.e., the frequency corresponding to the resonant peak in the dotted circle G
  • the resonant frequency corresponding to the rear cavity remains at about 4.5 kHz.
  • the resonant peak of the front cavity gradually moves to a high frequency.
  • the resonant frequencies of the front cavity and the rear cavity can be substantially equal.
  • the peak value of the resonance peak remains basically unchanged.
  • the cross-sectional area S of the sound outlet hole 112 can be made greater than 2.87mm 2.
  • the cross-sectional area S of the sound outlet hole 112 can be made greater than 4.0mm 2.
  • the cross-sectional area S of the sound outlet hole 112 can be made greater than 7.0mm 2 .
  • the frequency response of the open-type earphone 10 needs to be sufficient in the high frequency range (for example, 4.5kHz to 9kHz), and the cross-sectional area S of the sound outlet hole 112 can be made less than 54mm2 .
  • the cross-sectional area S of the sound outlet hole 112 can be made less than 36.15mm2 . More preferably, in order to make the frequency response curve of the open-type earphone 10 sufficient in the range of 4.5kHz to 6.5kHz, the cross-sectional area S of the sound outlet hole 112 can be made less than 21.87mm2 .
  • the cross-sectional area S of the sound outlet hole 112 may indicate the area of the outer opening of the sound outlet hole 112 (i.e., the opening area of the sound outlet hole 112 on the inner side). It should be noted that, in some other embodiments, the cross-sectional area S of the sound outlet hole 112 may also indicate the area of the inner opening of the sound outlet hole 112, or the average of the inner opening area and the outer opening area of the sound outlet hole 113.
  • FIG17B is a frequency response curve of the front cavity corresponding to the sound outlet holes of different cross-sectional areas shown in some embodiments of this specification.
  • the cross-sectional area S of the sound outlet hole 112 increases from 2.875 mm 2 to 46.10 mm 2
  • the sound mass Ma of the sound outlet hole 112 decreases from 800 kg/m 4 to 50 kg/m 4
  • the resonant frequency f 1 of the front cavity gradually increases from about 4 kHz to about 8 kHz.
  • the parameters such as 200 kg/m 4 and 800 kg/m 4 shown in FIG17B only represent the theoretical sound mass of the sound outlet hole 112, and there may be errors with the actual sound mass of the sound outlet hole 112.
  • the sound quality Ma of the sound outlet hole 112 is ensured to be large enough, and the cross-sectional area S of the sound outlet hole 112 needs to be within a suitable value range.
  • the cross-sectional area S of the sound outlet hole 112 can be in the range of 2.87mm2-46.10mm2 .
  • the cross-sectional area S of the sound outlet hole 112 can be in the range of 2.875mm2-46mm2 . In some embodiments, the cross-sectional area S of the sound outlet hole 112 can be in the range of 10mm2-30mm2 . In some embodiments, the cross-sectional area S of the sound outlet hole 112 can be in the range of 25.29mm2 . In some embodiments, the cross-sectional area S of the sound outlet hole 112 can be in the range of 25mm2-26mm2 .
  • the sound-emitting part 11 in order to increase the wearing stability of the open earphone 10, it is necessary to meet the area of the inner side IS of the sound-emitting part 11 and the size of the human concha cavity.
  • the sound-emitting part 11 when the sound-emitting part 11 is worn in a manner of inserting into the concha cavity, since the inner side IS and the side wall of the concha cavity constitute a cavity structure, compared with the conventional wearing method (for example, placing the sound-emitting part 11 in front of the tragus), the sound-emitting efficiency of the sound-emitting part 11 is high, and the overall size of the sound-emitting part can be designed to be smaller. Therefore, the area ratio of the sound-emitting hole 112 to the inner side IS can be designed to be larger.
  • the area of the sound-emitting hole should not be too large, otherwise it will affect the stability of the waterproof and dustproof structure and the supporting structure at the sound-emitting hole, and the area of the inner side IS should not be too small, otherwise it will affect the area of the transducer pushing the air.
  • the ratio of the cross-sectional area S of the sound-emitting hole 112 to the area of the inner side IS can be between 0.015 and 0.25. In some embodiments, the ratio of the cross-sectional area S of the sound-emitting hole 112 to the area of the inner side IS can be between 0.02 and 0.2.
  • the ratio of the cross-sectional area S of the sound outlet hole 112 to the area of the inner side surface IS may be between 0.06 and 0.16. In some embodiments, the ratio of the cross-sectional area S of the sound outlet hole 112 to the area of the inner side surface IS may be between 0.1 and 0.12.
  • the medial surface IS may need to contact the ear (e.g., the concha cavity), in order to improve the wearing comfort, the medial surface IS may be designed as a non-planar structure, for example, the edge area of the medial surface IS has a certain curvature relative to the central area, or the area near the free end FE on the medial surface IS is provided with a convex structure to better abut the ear area, etc.
  • the ratio of the cross-sectional area S of the sound hole 112 to the area of the medial surface IS can be replaced by the ratio of the cross-sectional area S of the sound hole 112 to the projected area of the medial surface IS in the vibration direction of the diaphragm (i.e., the Z direction in FIG. 16A).
  • the ratio of the cross-sectional area S of the sound hole 112 to the projected area of the medial surface IS in the vibration direction of the diaphragm can be between 0.016 and 0.255.
  • the ratio of the cross-sectional area S of the sound hole 112 to the projected area of the medial surface IS in the vibration direction of the diaphragm can be between 0.022 and 0.21.
  • the projection area of the diaphragm of the transducer in the vibration direction thereof may be equal to or slightly smaller than the projection area of the inner side surface IS in the vibration direction of the diaphragm.
  • the ratio of the cross-sectional area S of the sound outlet hole 112 to the projection area of the diaphragm in the vibration direction thereof may be between 0.016 and 0.261.
  • the ratio of the cross-sectional area S of the sound outlet hole 112 to the projection area of the inner side surface IS in the vibration direction of the diaphragm may be between 0.023 and 0.23.
  • the shape of the sound outlet hole 112 may also affect the acoustic resistance of the sound outlet hole 112.
  • the shape of the sound outlet hole 112 may include, but is not limited to, a circle, an ellipse, a runway shape, and the like. For ease of description, the following will be exemplified by taking the sound outlet hole 112 being set in a runway shape as an example. In some embodiments, as shown in FIG14 , the sound outlet hole 112 may be in a runway shape, wherein the two ends of the runway shape may be inferior arcs or semicircles.
  • the major axis dimension of the sound outlet hole 112 may be the maximum dimension of the sound outlet hole 112 in the X direction (the major axis dimension d shown in FIG14 ), and the minor axis dimension of the sound outlet hole 112 may be the maximum dimension of the sound outlet hole 112 in the Y direction (the minor axis dimension h shown in FIG14 ).
  • FIG18A is a frequency response curve diagram of an open-type earphone corresponding to sound outlet holes with different aspect ratios according to some embodiments of this specification.
  • FIG18A shows the frequency response curves of an open-type earphone corresponding to sound outlet holes with aspect ratios of 1, 3, 5, 8, and 10 when other structures (e.g., pressure relief hole 113, back cavity volume, etc.) are fixed and the area of the sound outlet hole is constant.
  • other structures e.g., pressure relief hole 113, back cavity volume, etc.
  • the ratio of the major axis dimension of the sound outlet hole 112 to the minor axis dimension of the sound outlet hole 112 can be in the range of 1 to 10.
  • the ratio of the major axis dimension of the sound outlet hole 112 to the minor axis dimension of the sound outlet hole 112 can be in the range of 2 to 8.
  • the ratio of the major axis dimension of the sound outlet hole 112 to the minor axis dimension of the sound outlet hole 112 can be in the range of 2 to 4.
  • the major axis dimension of the sound outlet hole 112 can be 7.67 mm
  • the minor axis dimension of the sound outlet hole 112 can be 3.62 mm.
  • Fig. 18B is a frequency response curve of the front cavity corresponding to the sound holes of different depths according to some embodiments of the present specification. As shown in Fig. 18B, when the depth L of the sound hole 112 increases from 0.3 mm to 3 mm, the acoustic mass Ma of the sound hole 112 increases from 100 kg/m4 to 1000 kg/ m4 , and the resonance frequency f1 of the front cavity decreases from about 7 kHz to about 3.7 kHz.
  • the depth of the sound hole 112 is the thickness of the side wall of the shell 111. If the thickness of the shell 111 is too small, it may affect the structural strength of the open earphone 10, and the corresponding processing technology is more difficult.
  • the depth L of the sound hole 112 can range from 0.3mm to 3mm. In some embodiments, the depth L of the sound hole 112 can range from 0.3mm to 2mm. In some embodiments, the depth L of the sound hole 112 can be 0.3mm. In some embodiments, the depth L of the sound hole 112 can also be 0.6mm.
  • the value range of the ratio S/ L2 of the cross-sectional area S of the sound outlet hole 112 to the square of the depth L can be 0.31-512.2.
  • the value range of the ratio S/ L2 of the cross-sectional area S of the sound outlet hole 112 to the square of the depth L can be 1-400. In some embodiments, the value range of the ratio S/ L2 of the cross-sectional area S of the sound outlet hole 112 to the square of the depth L can be 3-300. In some embodiments, the value range of the ratio S/ L2 of the cross-sectional area S of the sound outlet hole 112 to the square of the depth L can be 5-200. In some embodiments, the ratio S/ L2 of the cross-sectional area S of the sound outlet hole 112 to the square of the depth L may range from 10 to 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Manufacturing & Machinery (AREA)
  • Headphones And Earphones (AREA)

Abstract

本说明书实施例提供一种开放式耳机,包括发声部和耳挂。发声部包括换能器和容纳所述换能器的壳体。在佩戴状态下,所述耳挂的一部分挂设在用户耳廓和头部之间,所述耳挂的另一部分向所述耳廓背离所述头部的一侧延伸并连接所述发声部以将所述发声部固定于耳道附近但不堵塞耳道的位置,其中,所述壳体朝向所述耳廓的侧面上开设出声孔,用于将所述换能器产生的声音导出所述壳体后传向所述耳道,所述出声孔的面积与承载所述出声孔的内侧面的面积之比在0.015~0.25之间。

Description

一种开放式耳机
交叉引用
本申请要求2022年10月28日提交的申请号为202211336918.4的中国申请的优先权,2022年12月01日提交的申请号为202223239628.6的中国申请的优先权,2022年12月30日提交的申请号为PCT/CN2022/144339的国际申请的优先权,全部内容通过引用并入本文。
技术领域
本申请涉及声学技术领域,具体涉及一种开放式耳机。
背景技术
随着声学输出技术的发展,声学装置(例如,耳机)已广泛地应用于人们的日常生活,其可以与手机、电脑等电子设备配合使用,以便于为用户提供听觉盛宴。开放式耳机是一种在特定范围内实现声传导的便携式音频输出设备。与传统的入耳式、耳罩式耳机相比,开放式耳机具有不堵塞、不覆盖耳道的特点,可以让用户在聆听音乐的同时,获取外界环境中的声音信息,提高安全性与舒适感。开放式耳机的输出性能对于用户的使用舒适度具有很大的影响。
因此,有必要提出一种开放式耳机,以提高开放式耳机的输出性能。
发明内容
本申请实施例提供了一种开放式耳机,其包括:发声部,包括换能器和容纳换能器的壳体;耳挂,在佩戴状态下,耳挂的第一部分挂设在用户耳廓和头部之间,耳挂的第二部分向耳廓背离头部的一侧延伸并连接发声部以将发声部固定于耳道附近但不堵塞耳道的位置,其中,壳体朝向耳廓的内侧面上开设有出声孔,用于将换能器产生的声音导出壳体后传向耳道,出声孔的面积与承载出声孔的内侧面的面积之比在0.015~0.25之间。
在一些实施例中,在佩戴状态下,壳体至少部分***耳甲腔,出声孔的截面积为2.87mm2~46.10mm2,内侧面的面积为160mm2~240mm2
在一些实施例中,出声孔的截面积与出声孔的深度的平方之比为0.31-512.2。
在一些实施例中,出声孔的深度的取值范围为0.3mm-3mm。
在一些实施例中,出声孔的中心距发声部的下侧面的距离范围为4.05mm~6.05mm。
在一些实施例中,出声孔的中心距发声部的后侧面的距离范围为8.15mm~12.25mm。
在一些实施例中,换能器包括磁路组件,磁路组件用于提供磁场,出声孔的中心距磁路组件的底面的距离范围为5.65mm~8.35mm。
在一些实施例中,出声孔的中心距离磁路组件的长轴中心面的距离范围为1.45mm~2.15mm。
在一些实施例中,在佩戴状态下,出声孔的中心与耳挂的上顶点之间的距离的范围为22.5mm~34.5mm。
在一些实施例中,在佩戴状态下,出声孔的中心在矢状面的投影距耳挂的上顶点在矢状面的投影的距离范围为18mm~30mm。
在一些实施例中,在佩戴状态下,出声孔的中心距耳挂的上顶点的距离与内侧面的上下边界之间距离的比值在1.2~2.2之间。
在一些实施例中,在佩戴状态下,出声孔的中心距耳挂的上顶点的距离与出声孔的中心距发声部的上侧面的距离的比值在1.94~2.93之间。
在一些实施例中,出声孔的中心在矢状面的投影点距耳道的耳道口的中心在矢状面的投影点的距离范围为2.2mm~3.8mm。
在一些实施例中,出声孔的中心在矢状面的投影点距内侧面的上边界的中点在矢状面的投影点的距离范围为10.0mm~15.2mm。
在一些实施例中,内侧面的上边界的中点在矢状面的投影点距耳道口的中心在矢状面的投影点的距离范围为12mm~18mm。
在一些实施例中,出声孔的中心在矢状面的投影点距内侧面的下边界的1/3点在矢状面的投影点的距离范围为3.5mm~5.6mm。
在一些实施例中,内侧面的下边界的1/3点在矢状面的投影点距耳道口的中心在矢状面的投影点的距离范围为1.7mm~2.7mm。
在一些实施例中,在佩戴状态下,壳体至少部分位于对耳轮处,出声孔的中心距发声部的下侧面的距离范围为2.3mm~3.6mm。
在一些实施例中,出声孔的中心距发声部的后侧面的距离范围为9.5mm~15.0mm。
在一些实施例中,在佩戴状态下,出声孔的中心与耳挂的上顶点之间的距离的范围为17.5mm~27.0mm。
在一些实施例中,在佩戴状态下,出声孔的中心距耳挂的上顶点的距离与内侧面的上下边界之间距离的比值在0.95~1.55之间。
在一些实施例中,在佩戴状态下,出声孔的中心距耳挂的上顶点的距离与出声孔的中心距发声部的上侧面的距离的比值在1.19~2.50之间。
在一些实施例中,出声孔的中心与耳挂所在的平面之间的距离在3mm~6mm之间。
在一些实施例中,出声孔的长轴尺寸与出声孔的短轴尺寸的比值范围在1~10之间。
在一些实施例中,出声孔的长轴尺寸与出声孔的短轴尺寸的比值范围在2~4之间。
本说明书实施例还提供一种开放式耳机,包括发声部,包括换能器和容纳换能器的壳体;耳挂,在佩戴状态下,耳挂的第一部分挂设在用户耳廓和头部之间,耳挂的第二部分向耳廓背离头部的一侧延伸并连接发声部以将发声部固定于耳道附近但不堵塞耳道的位置,其中,换能器包括振膜,壳体朝向耳廓的内侧面上开设有出声孔,用于将振膜振动产生的声音导出壳体后传向耳道,其中,出声孔的面积与振膜在其振动方向的投影面积之比在0.016~0.261之间。
在一些实施例中,在佩戴状态下,壳体至少部分***耳甲腔,出声孔的截面积为2.87mm2~46.10mm2,振膜在其振动方向的投影面积为150mm2~230mm2
本说明书实施例还提供一种开放式耳机,包括发声部,包括换能器和容纳换能器的壳体;耳挂,在佩戴状态下,耳挂的第一部分挂设在用户耳廓和头部之间,耳挂的第二部分向耳廓背离头部的一侧延伸并连接发声部以将发声部固定于耳道附近但不堵塞耳道的位置,其中,换能器包括振膜,壳体朝向耳廓的内侧面上开设有出声孔,用于将振膜振动产生的声音导出壳体后传向耳道,其中,出声孔的中心与耳挂的上顶点之间的距离的范围为22.5mm~34.5mm。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请的一些实施例所示的示例性耳部的示意图;
图2是根据本说明书一些实施例所示的开放式耳机的示例性结构图;
图3是根据本申请一些实施例所示的两个点声源与听音位置的示意图;
图4是根据本申请一些实施例所示的单点声源和双点声源在不同频率下的漏音指数对比图;
图5是根据本申请一些实施例所示的偶极子声源的两个声源之间设置挡板的示例性分布示意图;
图6是根据本申请一些实施例所示的偶极子声源的两个声源之间设置挡板和不设置挡板的漏音指数图;
图7是根据本申请一些实施例所示的开放式耳机的示例性佩戴示意图;
图8是图7所示的开放式耳机朝向耳部一侧的结构示意图;
图9是根据本申请一些实施例所示的偶极子声源的其中一个声源周围设置腔体结构的示例性分布示意图;
图10A是根据本申请一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的听音原理示意图;
图10B是根据本申请一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的漏音原理示意图;
图11A是根据本申请一些实施例所示的具有两个水平开口的腔体结构的示意图;
图11B是根据本申请一些实施例所示的具有两个垂直开口的腔体结构的示意图;
图12是根据本申请一些实施例所示的具有两个开口和一个开口的腔体结构的听音指数曲线对比图;
图13是根据本申请另一些实施例所示的开放式耳机的示例性佩戴示意图;
图14是图13所示的开放式耳机朝向耳部一侧的结构示意图;
图15是根据本说明书一些实施例所示的开放式耳机处于佩戴状态时在矢状面的投影示意图;
图16A是根据本说明书一些实施例所示的发声部的示例性内部结构图;
图16B是根据本说明书一些实施例所示的换能器的示例性内部结构图;
图17A是根据本说明书一些实施例所示的长宽比一定时不同截面积的出声孔对应的开放式耳机的频响曲线图;
图17B是根据本说明书一些实施例所示的不同截面积的出声孔对应的前腔的频率响应曲线图;
图18A是根据本说明书一些实施例所示的不同长宽比的出声孔对应的开放式耳机的频响曲线图;
图18B是根据本说明书一些实施例所示的不同深度的出声孔对应的前腔的频率响应曲线图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“***”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
在本说明书的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本说明书中,除非另有明确的规定和限定,术语“连接”、“固定”等术语应做广义理解。例如,术语“连接”可以指固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本说明书中的具体含义。
图1是根据本申请的一些实施例所示的示例性耳部的示意图。参见图1,耳部100(也可以称为耳廓)可以包括外耳道101、耳甲腔102、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳垂108、耳屏109以及耳轮脚1071。在一些实施例中,可以借助耳部100的一个或多个部位对声学装置的支撑,实现声学装置佩戴的稳定。在一些实施例中,外耳道101、耳甲腔102、耳甲艇103、三角窝104等部位在三维空间中具有一定的深度及容积,可以用于实现声学装置的佩戴需求。例如,声学装置(例如,入耳式耳机)可以佩戴于外耳道101中。在一些实施例中,可以借助耳部100中除外耳道101外的其他部位,实现声学装置(例如,开放式耳机)的佩戴。例如,可以借助耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等部位或其组合实现声学装置的佩戴。在一些实施例中,为了改善声学装置在佩戴方面的舒适度及可靠性,也可以进一步借助用户的耳垂108等部位。通过借助耳部100中除外耳道101之外的其他部位,实现声学装置的佩戴和声音的传播,可以“解放”用户的外耳道101。当用户佩戴声学装置(例如,开放式耳机)时,声学装置不会堵塞用户外耳道101(或耳道或耳道口),用户既可以接收来自声学装置的声音又可以接收来自环境中的声音(例如,鸣笛声、车铃声、周围人声、交通指挥声等),从而能够降低交通意外的发生概率。在一些实施例中,可以根据耳部100的构造,将声学装置设计成与耳部100适配的结构,以实现声学装置的发声部在耳部各个不同位置的佩戴。例如,声学装置为开放式耳机时,开放式耳机可以包括悬挂结构(例如,耳挂)和发声部,发声部与悬挂结构通过物理方式进行连接,悬挂结构可以与耳廓的形状相适配,以将发声部的整体或者部分结构置于耳屏109的前侧(例如,图1中虚线围成的区域J)。又例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以与外耳道101的上部(例如,耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳轮脚1071等一个或多个部位所在的位置)接触。再例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以位于耳部100的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
不同的用户可能存在个体差异,导致耳部存在不同的形状、大小等尺寸差异。为了便于描述和理解,如果没有特别说明,本说明书将主要以具有“标准”形状和尺寸的耳部模型作为参考,进一步描述不同实施例中的声学装置在该耳部模型上的佩戴方式。例如,可以以基于ANSI:S3.36,S3.25和IEC:60318-7标准制得一含头部及其(左、右)耳部的模拟器,例如GRAS 45BC KEMAR,作为佩戴声学装置的参照物,以此呈现出大多数用户正常佩戴声学装置的情景。仅仅作为示例,作为参考的耳部可以具有如下相关特征:耳廓在矢状面上的投影在垂直轴方向的尺寸可以在49.5mm-74.3mm的范围内,耳廓在矢状面上的投影在矢状轴方向的尺寸可以在36.6mm-55mm的范围内。因此,本申请中,诸如“用户佩戴”、“处于佩戴状态”及“在佩戴状态下”等描述可以指本申请所述的声学装置佩戴于前述模拟器的耳部。当然,考虑到不同的用户存在个体差异,耳部100中一个或多个部位的结构、形状、大小、厚度等可以具有一定区别,为了满足不同用户的需求,可以对声学装置进行差异化设计,这些差异化设计可以表现为声学装置中一个或多个部位(例如,下文中的发声部、耳挂等)的特征参数可以具有不同范围的数值,以此适应不同的耳部。
需要说明的是:在医学、解剖学等领域中,可以定义人体的矢状面(Sagittal Plane)、冠状面(Coronal Plane)和水平面(Horizontal Plane)三个基本切面以及矢状轴(Sagittal Axis)、冠状轴(Coronal Axis)和垂直轴(Vertical Axis)三个基本轴。其中,矢状面是指沿身体前后方向所作的与地面垂直的切面,它将人体分为左右两部分;冠状面是指沿身体左右方向所作的与地面垂直的切面,它将人体分为前后两部分;水平面是指沿垂直于身体的上下方向所作的与地面平行的切面,它将人体分为上下两部分。相应地,矢状轴是指沿身体前后方向且垂直于冠状面的轴,冠状轴是指沿身体左右方向且垂直于矢状面的轴,垂直轴是指沿身体上下方向且垂直于水平面的轴。进一步地,本申请所述的“耳部的前侧”是一个相对于“耳部的后侧”的概念,前者指耳部背离头部的一侧,后者指耳部朝向头部的一侧。其中,沿人体冠状轴所在方向观察上述模拟器的耳部,可以得到图1所示的耳部的前侧轮廓示意图。
图2是根据本说明书一些实施例所示的开放式耳机的示例性结构图。
在一些实施例中,开放式耳机10可以包括但不限于气传导耳机及骨气导耳机等。在一些实施例中,开放式耳机10可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合。
如图2所示,开放式耳机10可以包括发声部11和耳挂12。
发声部11可以用于佩戴在用户的身体上,发声部11可以产生声音输入用户耳道。在一些实施例中,发声部11可以包括换能器(例如图16A所示的换能器116)和用于容纳换能器的壳体111。壳体111可以与耳挂12连接。换能器用于将电信号转换为相应的机械振动从而产生声音。在一些实施例中,壳体朝向耳廓的侧面上开设有出声孔112,出声孔112用于将换能器产生的声音导出壳体111后传向耳道,以便于用户能够听到声音。在一些实施例中,换能器(例如,振膜)可以将壳体111分隔形成耳机的前腔(例如图16A所示的前腔114)和后腔,出声孔112可以连通前腔,并将前腔产生的声音导出壳体111后传向耳道。在一些实施例中,经由出声孔112导出的声音,其一部分可以传播至耳道从而使用户听到声音,其另一部分可以与经耳道反射的声音一起经由发声部11与耳部之间的缝隙(例如耳甲腔未被发声部11覆盖的一部分)传播至开放式耳机10及耳部的外部,从而在远场形成第一漏音;与此同时,壳体111的其他侧面(例如,远离或背离用户耳道的侧面)上一般会开设有一个或多个泄压孔113。泄压孔113相较于出声孔112更远离耳道,泄压孔113传播出去的声音一般会在远场形成第二漏音,前述第一漏音的强度和前述第二漏音的强度相当,且前述第一漏音的相位和前述第二漏音的相位(接近)互为反相,使得两者能够在远场反相相消,有利于降低开放式耳机10在远场的漏音。更多关于发声部11的描述参见本说明书其他地方,例如图7、图13、图16A等及其描述。
耳挂12的一端可以与发声部11连接,其另一端沿用户耳部与头部的交界处延伸。在一些实施例中,耳挂12可以为与用户耳廓相适配的弧状结构,以使耳挂12可以悬挂于用户耳廓上。例如,耳挂12可以具有与用户头部与耳部交界处相适配的弧状结构,以使耳挂12可以挂设在用户耳廓和头部之间。在一些实施例中,耳挂12也可以为与用户耳廓相适配的夹持结构,以使耳挂12可以夹持于用户耳廓处。示例性地,耳挂12可以包括依次连接的钩状部(如图7所示的第一部分121)和连接部(如图7所示的第二部分122)。其中,连接部连接钩状部与发声部11,以使得开放式耳机10处于非佩戴状态(也即是自然状态)时在三维空间中呈弯曲状。换言之,在三维空间中,钩状部、连接部、发声部11不共面。如此设置,以在开放式耳机10处于佩戴状态时,钩状部可以主要是用于挂设在用户的耳部的后侧与头部之间,发声部11可以主要是用于接触用户的耳部的前侧,进而允许发声部11和钩状部配合以夹持耳部。作为示例性地,连接部可以从头部向头部的外侧延伸,进而与钩状部配合为发声部11提供对耳部的前侧的压紧力。其中,发声部11在压紧力的作用下具体可以抵压于耳甲腔102、耳甲艇103、三角窝104、对耳轮105等部位所在的区域,以使得开放式耳机10处于佩戴状态时不遮挡耳部的外耳道101。
在一些实施例中,为了改善开放式耳机10在佩戴状态下的稳定性,开放式耳机10可以采用以下几种方式中的任何一种或其组合。其一,耳挂12的至少部分设置成与耳部100的后侧和头部中的至少一者贴合的仿形结构,以增加耳挂12与耳部100和/或头部的接触面积,从而增加开放式耳机10从耳部100上脱落的阻力。其二,耳挂12的至少部分设置成弹性结构,使之在佩戴状态下具有一定的形变量,以增加耳挂12对耳部和/或头部的正压力,从而增加开放式耳机10从耳部上脱落的阻力。其三,耳挂12至少部分设置成在佩戴状态下抵靠在头部上,使之形成压持耳部的反作用力,以使得发声部11压持在耳部的前侧,从而增加开放式耳机10从耳部上脱落的阻力。其四,发声部11和耳挂12设置成在佩戴状态下从耳部的前后两侧夹持对耳轮所在区域、耳甲腔所在区域等,从而增加开放式耳机10从耳部上脱落的阻力。其五,发声部11或者与之连接的辅助结构设置成至少部分伸入耳甲腔、耳甲艇、三角窝及耳舟等腔体内,从而增加开放式耳机10从耳部上脱落的阻力。
在一些实施例中,耳挂12可以包括但不限于耳挂、弹性带等,使得开放式耳机10可以更好地固定在用户身上,防止用户在使用时发生掉落。在一些实施例中,开放式耳机10可以不包括耳挂12,发声部11可以采用悬挂或夹持的方式固定在用户的耳部100的附近。
在一些实施例中,发声部11可以为例如,圆环形、椭圆形、跑道形、多边形、U型、V型、半圆形等规则或不规则形状,以便发声部11可以直接挂靠在用户的耳部100处。在一些实施例中,发声部11可以具有垂直于厚度方向Z且彼此正交的长轴方向X和短轴方向Y。其中,长轴方向X可以定义为发声部11的二维投影面(例如,发声部11在其外侧面所在平面上的投影,或在矢状面上的投影)的形状中具有最大延伸尺寸的方向(例如,当投影形状为长方形或近似长方形时,长轴方向即长方形或近似长方形的长度方向)。短轴方向Y可以定义为发声部11在矢状面上投影的形状中垂直于长轴方向X的方向(例如,当投影形状为长方形或近似长方形时,短轴方向即长方形或近似长方形的宽度方向)。厚度方向Z可以定义为垂直于二维投影面的方向,例如,与冠状轴的方向一致,均指向身体左右的方向。
在一些实施例中,当用户佩戴开放式耳机10时,发声部11可以固定于用户的外耳道101附近但不堵塞耳道的位置。在一些实施例中,在佩戴状态下,开放式耳机10在矢状面上的投影可以不覆盖用户的耳道。例如,发声部11在矢状面上的投影可以落在头部的左右两侧且在人体矢状轴上位于耳屏前侧的位置上(如,图2中实线框A所示的位置)。这时,发声部11位于用户的耳屏前侧,发声部11的长轴可以处于竖直或近似竖直状态,短轴方向Y在矢状面上的投影与矢状轴的方向一致,长轴方向X在矢状面上的投影与垂直轴方向一致,厚度方向Z垂直于矢状面。又例如,发声部11在矢状面上投影可以落在对耳轮105上(如,图2中的虚线框C所示的位置)。这时的发声部11至少部分位于对耳轮105处,发声部11的长轴处于水平或近似水平状态,发声部11的长轴方向X在矢状面上的投影与矢状轴的方向一致,短轴方向Y在矢状面上的投影与垂直轴方向一致,厚度方向Z垂直于矢状面。如此,既可以避免发声部11遮挡耳道,进而解放用户的双耳;还可以增加发声部11与耳部100之间的接触面积,进而改善开放式耳机10的佩戴舒适性。
在一些实施例中,在佩戴状态下,开放式耳机10在矢状面上的投影也可以覆盖或至少部分覆盖用户的耳道,例如,发声部11在矢状面上的投影可以落在耳甲腔102内(如,图2中虚线框B所示的位置),并与耳轮脚1071和/或耳轮107接触。这时,发声部11至少部分位于耳甲腔102内,发声部11处于倾斜状态,发声部11的短轴方向Y在矢状面上的投影可与矢状轴的方向具有一定夹角,即短轴方向Y也相应倾斜设置,长轴方向X在矢状面上的投影可以与矢状轴的方向具有一定夹角,即长轴方向X也倾斜设置,厚度方向Z垂直于矢状面。此时,由于耳甲腔102具有一定的容积及深度,使得开放式耳机10的内侧面IS与耳甲腔之间具有一定的间距,耳道可以通过内侧面IS与耳甲腔之间的缝隙与外界连通,进而解放用户的双耳。同时,发声部11与耳甲腔可以配合形成与耳道连通的辅助腔体(例如,后文提及的腔体结构)。在一些实施例中,出声孔112可以至少部分位于前述辅助腔体中,出声孔112导出的声音会受到前述辅助腔体的限制,即前述辅助腔体能够聚拢声音,使得声音能够更多地传播至耳道内,从而提高用户在近场听到的声音的音量和质量,从而改善开放式耳机10的声学效果。
关于上述开放式耳机10的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,开放式耳机10还可以包括电池组件、蓝牙组件等或其组合。电池组件可用于给开放式耳机10供电。蓝牙组件可以用于将开放式耳机10无线连接至其他设备(例如,手机、电脑等)。这些变化和修改仍处于本申请的保护范围之内。
在一些实施例中,结合图3,经出声孔112可以向开放式耳机10外部传输声音,其可以视作单极子声源(或点声源)A1,产生第一声音;经泄压孔113可以向开放式耳机10外部传输声音,其可以视作单极子声源(或点声源)A2,产生第二声音。第二声音与第一声音可以相位相反或近似相反,使之能够在远场反相相消,也即是形成“声偶极子”,以降漏音。在一些实施例中,在佩戴状态下,两个单极子声源的连线可以指向耳道(记作“听音位置”),以便于用户听到足够大的声音。其中,听音位置处的声压大小(记作Pear)可以用来表征用户听到的声音强弱(即,近场听音声压)。进一步地,可以统计以用户听音位置为中心的球面上(或者以偶极子声源(如图3所示的A1和A2)中心为圆心、半径为r的球面上)的声压大小(记作Pfar),可以用来表征开放式耳机10向远场辐射的漏音强弱(即,远场漏音声压)。其中,可以采用多种统计方式获得Pfar,例如取球面各点处声压的平均值,再例如,取球面各点声压分布进行面积分等。
需要知道的是,本说明书中测量漏音的方法仅作原理和效果的示例性说明,并不作限制,漏音的测量和计算方式也可以根据实际情况进行合理调整。例如,以偶极子声源中心为圆心,在远场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均。在一些实施例中,听音的测量方式可以为选取点声源附近的一个位置点作为听音位置,以该听音位置测量得到的声压幅值作为听音的值。在一些实施例中,听音位置可以在两个点声源的连线上,也可以不在两个点声源的连线上。听音的测量和计算方式也可以根据实际情况进行合理调整,例如,取近场位置的其他点或一个以上的点的声压幅值进行平均。又例如,以某个点声源为圆心,在近场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均。在一些实施例中,近场听音位置与点声源之间的距离远小于点声源与远场漏音测量球面的距离。
显然,开放式耳机10传递到用户耳部的声压Pear应该足够大,以增加听音效果;远场的声压Pfar应该足够小,以增加降漏音效果。因此,可以取漏音指数α作为评价开放式耳机10降漏音能力的指标:
通过公式(1)可知,漏音指数越小,开放式耳机的降漏音能力越强,在听音位置处近场听音音量相同的情况下,远场的漏音越小。
图4是根据本说明书一些实施例所示的单点声源和双点声源在不同频率下的漏音指数对比图。图4中的双点声源(也可称为偶极子声源)可以为典型双点声源,即间距固定,两点声源幅值相同,两点声源相位相反。应当理解的是,选用典型双点声源只作原理和效果说明,可以根据实际需要调整各点声源参数,使其与典型双点声源具有一定差异。如图4所示,在间距固定的情况下,双点声源产生的漏音随频率的增加而增加,降漏音能力随频率的增加而减弱。当频率大于某一频率值(例如,如图4所示8000Hz左右)时其产生的漏音会大于单点声源,此频率(例如,8000Hz)即为双点声源能够降漏音的上限频率。
在一些实施例中,为了提高开放式耳机的声学输出效果,即增大近场听音位置的声音强度,同时减小远场漏音的音量,可以在出声孔112和泄压孔113之间设置挡板。
图5是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板的示例性分布示意图。如图5所示,当点声源A1和点声源A2之间设有挡板时,在近场,点声源A2的声波需要绕过挡板才能与点声源A1的声波在听音位置处产生干涉,相当于增加了点声源A2到听音位置的声程。因此,假设点声源A1和点声源A2具有相同的幅值,则相比于没有设置挡板的情况,点声源A1和点声源A2在听音位置的声波的幅值差增大,从而两路声音在听音位置进行相消的程度减少,使得听音位置的音量增大。在远场,由于点声源A1和点声源A2产生的声波在较大的空间范围内都不需要绕过挡板就可以发生干涉(类似于无挡板情形),则相比于没有挡板的情况,远场的漏音不会明显增加。因此,在点声源A1和点声源A2的其中一个声源周围设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量。
图6是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板和不设置挡板的漏音指数图。双点声源之间增加挡板以后,在近场相当于增加了两个点声源之间的距离,在近场听音位置的音量相当于由一个距离较大的双点声源产生,近场的听音音量相对于无挡板的情况明显增加;在远场,两个点声源的声场受挡板的影响很小,产生的漏音相当于是一个距离较小的双点声源产生。因此,如图6所示,增加挡板以后,漏音指数相比于不加挡板时小很多,即在相同听音音量下,远场的漏音比在无挡板的情况下小,降漏音能力明显增强。
图7是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图。图8是图7所示的开放式耳机朝向耳部一侧的结构示意图。
如图7所示,耳挂12为与用户头部与耳部100的交界处相贴合的弧状结构。发声部11(或发声部11的壳体111)可以具有与耳挂12连接的连接端CE和不与耳挂12连接的自由端FE。开放式耳机10处于佩戴状态时,耳挂12的第一部分121(例如,耳挂12的钩状部)挂设在用户耳廓(例如,耳轮107)和头部之间,耳挂12的第二部分122(例如,耳挂的连接部)向耳廓背离头部的一侧延伸并与发声部11的连接端CE连接,以将发声部11固定于耳道附近但不堵塞耳道的位置。
结合图7和图8所示,发声部11可以具有在佩戴状态下沿厚度方向Z朝向耳部的内侧面IS(也称为壳体111的内侧面)和背离耳部的外侧面OS(也称为壳体111的外侧面),以及连接内侧面IS和外侧面OS的连接面。需要说明的是:在佩戴状态下,沿冠状轴所在方向(即厚度方向Z)观察,发声部11可以设置成圆形、椭圆形、圆角正方形、圆角矩形等形状。其中,当发声部11设置成圆形、椭圆形等形状时,上述连接面可以指发声部11的弧形侧面;而当发声部11设置成圆角正方形、圆角矩形等形状时,上述连接面可以包括后文中提及的下侧面LS(也称为壳体111的下侧面)、上侧面US(也称为壳体111的上侧面)和后侧面RS(也称为壳体111的后侧面)。其中,上侧面US和下侧面LS可以分别指在佩戴状态下发声部11沿短轴方向Y背离外耳道101的侧面和靠近外耳道101的侧面;后侧面RS可以指在佩戴状态下发声部11沿长度方向Y朝向脑后的侧面。为了便于描述,本实施例以发声部11设置成圆角矩形为例进行示例性的说明。其中,发声部11在长轴方向X上的长度可以大于发声部11在短轴方向Y上的宽度。在一些实施例中,为了提升耳机的美观度及佩戴舒适度,耳机的后侧面RS可以为弧面。
发声部11内可以设置有换能器,其可以将电信号转换为相应的机械振动从而产生声音。换能器(例如,振膜)可以将壳体111分隔形成耳机的前腔和后腔。前腔和后腔中产生的声音相位相反。内侧面IS上开设有与前腔连通的出声孔112,以将前腔产生的声音导出壳体111后传向耳道,以便于用户能够听到声音。壳体111的其他侧面上(例如,外侧面OS、上侧面US或下侧面LS等)可以开设有与后腔连通的一个或多个泄压孔113,以用于将后腔产生的声音导出壳体111后与出声孔112导出的声音在远场干涉相消。在一些实施例中,泄压孔113相较于出声孔112更远离耳道,以减弱经泄压孔113输出的声音与经出声孔112输出的声音之间在听音位置的反相相消。
在一些实施例中,如图7所示,当开放式耳机10处于佩戴状态时,发声部11的长轴方向X可以水平或近似水平设置(与图2所示的位置C类似),此时发声部11至少部分地位于对耳轮105处,发声部11的自由端FE可以朝向脑后。发声部11处于水平或近似水平状态,发声部11的长轴方向X在矢状面上的投影可以与矢状轴的方向一致,短轴方向Y在矢状面上的投影可以与垂直轴方向一致,厚度方向Z垂直于矢状面。
在一些实施例中,为提高开放式耳机10与耳部100的贴合度,提高开放式耳机10佩戴的稳定性,壳体111的内侧面IS可以压接于耳部100(例如,对耳轮105)表面,以增加开放式耳机10从耳部100上脱落的阻力。
在一些实施例中,结合图7和图8,当开放式耳机10压接于耳部100时,为了使内侧面IS上的出声孔112不被耳部组织阻挡,出声孔112在矢状面的投影可以部分或全部与耳部的内凹结构(例如,耳甲艇103)在矢状面的投影重合。在一些实施例中,由于耳甲艇103与耳甲腔102连通,耳道位于耳甲腔102内,当出声孔112在矢状面上的至少部分投影位于耳甲艇103内时,出声孔112输出的声音可以无阻碍地到达耳道,从而使耳道接收的音量较高。在一些实施例中,发声部11的长轴尺寸不能过长,过长会使自由端FE在矢状面的投影超出耳部在矢状面的投影,影响发声部11与耳部的贴合效果。因此,发声部11的长轴尺寸可以设计得使得自由端FE在矢状面的投影不越过耳轮107在矢状面的投影。在一些实施例中,当自由端FE在矢状面的投影不越过耳轮107在矢状面的投影时,为了使出声孔112在矢状面的至少部分投影位于耳甲艇103内,即实际佩戴时出声孔112至少部分正对耳甲艇103,后侧面RS出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d1的范围为9.5mm~15.0mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d1的范围为10.5mm~14.0mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d1的范围为11.0mm~13.5mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d1的范围为11.5mm~13.0mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d1的范围为12.0mm~12.5mm。
需要知道的是,由于出声孔112和泄压孔113设置在壳体111上,壳体111的各个侧壁均具有一定厚度,因此,出声孔112和泄压孔113均为具有一定深度的孔洞。此时,出声孔112和泄压孔113可以均具有内开口和外开口。为便于描述,在本说明书中,上述及下述出声孔112的中心O可以指出声孔112的外开口的形心。在一些实施例中,为了提升耳机的美观度及佩戴舒适度,耳机的后侧面RS可以为弧面。当后侧面RS为弧面时,某位置(例如,出声孔112的中心O)到后侧面RS的距离可以指该位置到后侧面RS的距发声部中心最远且平行于发声部短轴的切面的距离。
在本说明书中,分别连通前腔和后腔的出声孔112和泄压孔113可以分别视为图5所示的点声源A1和点声源A2,耳道可以视为图5所示的听音位置。发声部11的至少部分壳体和/或至少部分耳廓可以视为图5所示的挡板,以增大出声孔112和泄压孔113到耳道的声程差,以增大耳道处的声音强度,同时维持远场降漏音的效果。当开放式耳机10采用图7所示的结构时,即壳体111的至少部分位于对耳轮105处时,就听音效果而言,出声孔112的声波可以直接到达耳道,此时,出声孔112可以设置在内侧面IS上靠近下侧面LS的位置,泄压孔113可以设置在远离出声孔112的位置,例如,泄压孔113可以设置在外侧面OS或上侧面US上远离出声孔112的位置。泄压孔113的声波需要绕过发声部11外侧才能与出声孔112的声波在耳道处产生干涉,此外,耳廓上上凸下凹的结构(例如,在其传播路径上的对耳轮)也会增加泄压孔113的声音传导至耳道的声程。因此,发声部11本身和/或耳廓相当于出声孔112与泄压孔113之间的挡板,挡板增加了泄压孔113到耳道的声程且减小了泄压孔113声波在耳道的强度,从而使出声孔112和泄压孔113发出的两路声音在耳道进行相消的程度减少,使得耳道的音量增大。就漏音效果而言,由于出声孔112和泄压孔113产生的声波在较大的空间范围内都不需要绕过发声部11本身就可以发生干涉(类似于无挡板的情形),漏音不会明显增加。因此,通过设置出声孔112和泄压孔113合适的位置,可以在漏音音量不显著增加的情况下,显著提升耳道的音量。
在一些实施例中,结合图8,为了提升出声孔112在耳道(即,听音位置)的声音强度,可以将出声孔112设置在距离耳道较近的位置,即出声孔112可以在Y方向上更加靠近发声部11的下侧面LS。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.3mm~3.6mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.5mm~3.4mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.7mm~3.2mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.8mm~3.1mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.9mm~3.0mm。
在一些实施例中,参照图7,为了保证开放式耳机10佩戴时出声孔112在矢状面的投影能够部分或全部位于耳甲艇区域内,当用户佩戴所述开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M之间的距离的范围为17.5mm~27.0mm,这里耳挂12的上顶点是指沿垂直轴方向耳挂12上最靠近头部的点。在一些实施例中,当用户佩戴所述开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M之间的距离的范围为20.0mm~25.5mm。在一些实施例中,当用户佩戴所述开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M之间的距离的范围为21.0mm~24.5mm。在一些实施例中,当用户佩戴所述开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M之间的距离的范围为22.0mm~23.5mm。在一些实施例中,当用户佩戴所述开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M之间的距离的范围为22.5mm~23.0mm。
在一些实施例中,出声孔112的中心O距耳挂12的上顶点M的距离与内侧面IS的上下边界之间距离(即发声部11或壳体111上侧面US与下侧面LS之间的距离)的比值不能太大或太小。在一些实施例中,当上侧面US和/或下侧面LS为弧面时,上侧面US与下侧面LS之间的距离可以指上侧面US的距发声部中心最远且平行于发声部长轴的切面与下侧面LS的距发声部中心最远且平行于发声部长轴的切面之间的距离。在出声孔112的中心O距耳挂12的上顶点M之间的距离一定的情况下,上述比值太小,则内侧面IS的宽度尺寸可能过大,此时可能导致发声部整体重量变大、壳体和耳挂之间的距离太小,使用户佩戴不舒适。上述比值太大时,则内侧面IS的宽度尺寸可能过小,导致发声部11的换能器能推动空气的面积太小,致使发声部的发声效率太低。因此,为了保证发声部的发声效率足够高并提高用户佩戴的舒适性,且使出声孔112在矢状面的投影至少部分能够位于耳甲艇区域内,当用户佩戴开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M的距离与内侧面IS的上下边界之间距离的比值在0.95~1.55之间。在一些实施例中,出声孔112的中心O距耳挂12的上顶点M的距离与壳体111的宽度尺寸的比值在1.05~1.45之间。在一些实施例中,出声孔112的中心O距耳挂12的上顶点M的距离与壳体111的宽度尺寸的比值在1.15~1.35之间。在一些实施例中,出声孔112的中心O距耳挂12的上顶点M的距离与壳体111的宽度尺寸的比值在1.20~1.30之间。
在图7的佩戴方式下,由于出声孔112在内侧面IS上距离耳道较近的位置,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值不能太大。此外,为了保证发声部11与耳挂12的上顶点M间具有足够的间隔(防止发声部11和耳挂12给耳部造成太大的压力),出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值也不能太小。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值在1.19~2.5之间。优选地,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值在1.5~1.8之间。
在图7的佩戴方式下,由于出声孔112在内侧面IS上距离耳道较近的位置,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的下侧面IS的距离的比值不能太小。此外,为了保证出声孔具有足够的面积(防止出声孔面积太小而导致过大的声阻抗),出声孔112的宽度不能太小,则出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的下侧面IS的距离的比值也不能太大。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的下侧面IS的距离h3的比值在6.03~9.05之间。优选地,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的下侧面IS的距离的比值在7~8之间。
在一些实施例中,为了提高听音音量,特别是中低频的听音音量,同时仍然保留远场漏音相消的效果,可以在双点声源的其中一个声源周围构建一个腔体结构。图9是根据本说明书一些实施例所示的偶极子声源的其中一个声源周围设置腔体结构的示例性分布示意图。
如图9所示,偶极子声源之间设有腔体结构41时,使得其中一个偶极子声源和听音位置在腔体结构41的内部,另外一个偶极子声源在腔体结构41的外部。腔体结构41的内部的偶极子声源导出的声音会受到腔体结构41的限制,即腔体结构41能够聚拢声音,使得声音能够更多地传播至听音位置内,从而提高听音位置的声音的音量和质量。本说明书中,“腔体结构”可以理解为由发声部11的侧壁与耳甲腔结构共同围成的半封闭结构,该半封闭结构使得内部与外部环境并非完全密闭隔绝,而是具有与外部环境声学联通的泄漏结构42(例如,开口、缝隙、管道等)。示例性的泄漏结构可以包括但不限于开口、缝隙、管道等,或其任意组合。
在一些实施例中,腔体结构41中可以包含听音位置和至少一个声源。这里的“包含”可以表示听音位置和声源至少有一者在腔体内部,也可以表示听音位置和声源至少有一者在腔体内部边缘处。在一些实施例中,听音位置可以是耳道入口,也可以是耳朵声学参考点。
图10A是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的听音原理示意图。图10B是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的漏音原理示意图。
对于近场听音来说,如图10A所示的其中一个声源周围构建有腔体结构的偶极子,由于其中一个声源A被腔体结构包裹,其辐射出来的声音大部分会通过直射或反射的方式到达听音位置。相对地,在没有腔体结构的情况,声源辐射出的声音大部分不会到达听音位置。因此,腔体结构的设置使得到达听音位置的声音音量得到显著提高。同时,腔体结构外的反相声源B辐射出来的反相声音只有较少的一部分会通过腔体结构的泄漏结构进入腔体结构。这相当于在泄漏结构处生成了一个次级声源B’,其强度显著小于声源B,亦显著小于声源A。次级声源B’产生的声音在腔体内对声源A产生反相相消的效果微弱,使听音位置的听音音量显著提高。
对于漏音来说,如图10B所示,声源A通过腔体的泄漏结构向外界辐射声音相当于在泄漏结构处生成了一个次级声源A’,由于声源A辐射的几乎所有声音均从泄漏结构输出,且腔体的结构尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为次级声源A’的强度与声源A相当。对于外界空间来说,次级声源A’与声源B产生的声音相消效果与声源A与声源B产生的声音相消效果相当。即该腔体结构下,仍然保持了相当的降漏音效果。
应当理解的是,上述一个开口的泄漏结构仅为示例,腔体结构的泄漏结构可以包含一个或一个以上的开口,其也能实现较优的听音指数,其中,听音指数可以指漏音指数α的倒数1/α。以设置两个开口结构为例,下面分别分析等开孔和等开孔率的情况。以只开一个孔的结构作为对比,这里的“等开孔”指设置两个尺寸与只开一个孔的结构相同的开口,“等开孔率”指设置的两个孔开口面积之和与只开一个孔的结构相同。等开孔相当于将只开一个孔的相对开口大小(即腔体结构上泄漏结构的开口面积S与腔体结构中受被包含的声源直接作用的面积S0的比值)扩大了一倍,由之前所述,其整体的听音指数会下降。在等开孔率的情况,即使S/S0与只开一个孔的结构相同,但两个开口至外部声源的距离不同,因而也会造成不同的听音指数。
图11A是根据本说明书一些实施例所示的具有两个水平开口的腔体结构的示意图。图11B是根据本说明书一些实施例所示的具有两个垂直开口的腔体结构的示意图。如图11A所示,当两个开口连线和两个声源连线平行(即为两个水平开口)时,两个开口到外部声源的距离分别取得最大和最小;如图11B所示,当两连线垂直(即为两个垂直开口)时,两开口到外部声源的距离相等并取得中间值。
图12是根据本说明书一些实施例所示的具有两个开口和一个开口的腔体结构的听音指数曲线对比图。如图12所示,等开孔的腔体结构较一个开口的腔体结构的整体听音指数会下降。对于等开孔率的腔体结构,由于两个开口至外部声源的距离不同,因而也会造成不同的听音指数。结合图11A、图11B和图12可以看出,无论水平开口还是垂直开口,等开孔率的泄漏结构的听音指数都高于等开孔的泄漏结构。这是因为相对于等开孔的泄漏结构,等开孔率的泄漏结构的相对开口大小S/S0相比于等开孔的泄漏结构缩小了一倍,因此听音指数更大。结合图11A、图11B和图12还可以看出,无论是等开孔的泄漏结构还是等开孔率的泄漏结构,水平开口的听音指数都更大。这是因为水平开口的泄漏结构中其中一个开口到外部声源的距离小于两个声源的距离,这样形成的次级声源与外部声源由于距离相对原来两个声源更近,因此听音指数更高,进而提高了降漏音效果。因此,为了提高降漏音效果,可以使至少一个开口到外部声源的距离小于两个声源之间的距离。
此外,如图12所示,采用了两个开口的腔体结构相对于一个开口的腔体结构能更好地提高腔体结构内气声的谐振频率,使得整个装置相对于只有一个开口的腔体结构在高频段(例如,频率接近10000Hz的声音)有更好的听音指数。高频段是人耳更敏感的频段,因此对降漏音的需求更大。因此,为了提高高频段的降漏音效果,可以选择开口数量大于1的腔体结构。
图13是根据本说明书另一些实施例所示的开放式耳机的示例性佩戴示意图。图14是图13所示的开放式耳机朝向耳部一侧的结构示意图。
图13所示的开放式耳机10与图7所示的开放式耳机10的结构类似,其主要区别在于:发声部11倾斜设置,发声部11的壳体111至少部分***耳甲腔102,例如,发声部11的自由端FE可以伸入耳甲腔102内。如此结构的耳挂12和发声部11与用户耳部100适配度较好,能够增加开放式耳机10从耳部100上脱落的阻力,从而增加开放式耳机10的佩戴稳定性。
在一些实施例中,在佩戴状态下,沿厚度方向Z观察,发声部11的前端CE相较于自由端FE更靠近头顶,以便于自由端FE伸入耳甲腔内。基于此,长轴方向X与人体矢状轴所在方向之间的夹角可以介于15°~60°之间。其中,如果前述夹角太小,容易导致自由端FE无法伸入耳甲腔内,以及发声部11上的出声孔112与耳道相距太远;如果前述夹角太大,同样容易导致发声部11无法伸入耳甲腔内,以及耳道被发声部11堵住。换言之,如此设置,既允许发声部11伸入耳甲腔内,又使得发声部11上的出声孔112与耳道具有合适的距离,以在耳道不被堵住的情况下,用户能够更多地听到发声部11产生的声音。
在一些实施例中,发声部11和耳挂12可以从耳甲腔所对应的耳部区域的前后两侧共同夹持前述耳部区域,从而增加开放式耳机10从耳部上脱落的阻力,进而改善开放式耳机10在佩戴状态下的稳定性。例如,发声部11的自由端FE在厚度方向Z上压持在耳甲腔内。再例如,自由端FE在长轴方向X和短轴方向Y上抵接在耳甲腔内。
在一些实施例中,由于耳挂自身具有弹性,发声部与耳挂的距离在佩戴状态和未佩戴状态可以发生一定的变化(未佩戴状态下的距离小于佩戴状态下的距离)。此外,由于耳部100的生理结构,在佩戴状态下,发声部11所在的平面应当与耳挂12所在的平面在冠状轴方向上有一定的间距,才能使发声部11对耳部100造成适当的压力。在一些实施例中,为了提升开放式耳机10的佩戴舒适度,以及使发声部11与耳挂12配合将发声部11压持在耳部上,在未被佩戴状态下,出声孔112的中心O距耳挂12所在的平面之间的距离在3mm~6mm之间。由于耳挂12是一个非规则的形状,例如,耳挂12可为弧形结构,耳挂12所在的平面(也称耳挂平面)可以视为:在未被佩戴状态下,将耳挂平置在一个平面上时,该平面与耳挂上至少三个点相切,构成耳挂平面。在一些实施例中,在佩戴状态时,耳挂可以近似视为与头部进行贴合,此时耳挂平面相对于矢状面的偏转可以忽略不计。在一些实施例中,在未被佩戴状态下,出声孔112的中心O距耳挂12所在的平面之间的距离在3.5mm~5.5mm之间。在一些实施例中,在未被佩戴状态下,出声孔112的中心O距耳挂12所在的平面之间的距离在4.0mm~5.0mm之间。在一些实施例中,在未被佩戴状态下,出声孔112的中心O距耳挂12所在的平面之间的距离在4.3mm~4.7mm之间。
如图13所示,当用户佩戴开放式耳机10时,通过将发声部11的壳体111设置为至少部分***耳甲腔103,发声部11的内侧面IS与耳甲腔103共同围成的腔体可以视为如图9所示的腔体结构41,内侧面IS与耳甲腔之间形成的缝隙(例如,内侧面IS与耳甲腔之间形成的靠近头顶的第一泄露结构UC、内侧面IS与耳部之间形成的靠近耳道的第二泄露结构LC)可以视为如图9所示的泄漏结构42。设置在内侧面IS上的出声孔112可以视为如图9所示的腔体结构41内部的点声源,设置在发声部11其他侧面(例如,远离或背离用户耳道的侧面)的泄压孔113可以视为如图9所示的腔体结构41外部的点声源。由此根据图9-图12的相关描述,当开放式耳机10以至少部分***耳甲腔的佩戴方式佩戴时,即以如图13所示的佩戴方式佩戴,就听音效果而言,出声孔112辐射出来的声音大部分可以通过直射或反射的方式到达耳道,可以使得到达耳道的声音音量得到显著提高,特别是中低频的听音音量。同时,泄压孔113辐射出来的反相声音只有较少的一部分会通过缝隙(第一泄露结构UC和第二泄露结构LC)进入耳甲腔,与出声孔112产生相消的效果微弱,使耳道的听音音量显著提高。就漏音效果而言,出声孔112可以通过缝隙向外界输出声音并与泄压孔113产生的声音在远场反相相消,以此保证降漏音效果。
在一些实施例中,结合图13和图14,为了使开放式耳机10佩戴时出声孔112在矢状面的投影能够部分或全部位于耳甲腔区域内,同时提升出声孔112在耳道(即,听音位置)的声音强度,可以将出声孔112尽可能设置在距离耳道较近的位置。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h2的范围为4.05mm~6.05mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h2的范围为4.50mm~5.85mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h2的范围为4.80mm~5.50mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h2的范围为5.20mm~5.55mm。
在一些实施例中,为了使发声部11至少部分***耳甲腔,发声部11的长轴尺寸不能太长。在保证发声部11至少部分***耳甲腔的前提下,出声孔112中心O沿X方向距发声部11的后侧面RS的距离不能太近,否则可能导致出声孔的全部或部分面积由于自由端FE与耳甲腔壁面的抵接而被遮挡,使得出声孔的有效面积减小。因此,在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d2的范围为8.15mm~12.25mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d2的范围为8.50mm~12.00mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d2的范围为8.85mm~11.65mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d2的范围为9.25mm~11.15mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离d2的范围为9.60mm~10.80mm。
结合图13,在一些实施例中,在保证发声部11至少部分***耳甲腔的前提下,为了使出声孔112在矢状面的投影能够部分或全部位于耳甲腔区域内,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为22.5mm~34.5mm。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为25mm~32mm。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为27.5mm~29.5mm。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为28mm~29mm。在一些实施例中,当用户佩戴所述开放式耳机10时,出声孔112的中心在矢状面的投影与耳挂12的上顶点在矢状面的投影之间的距离的范围为18mm~30mm。
在一些实施例中,出声孔112的中心O距耳挂12的上顶点M的距离与内侧面IS的上下边界之间距离(即发声部11或壳体111的上侧面US与下侧面LS之间的距离)的比值不能太大或太小。在出声孔112的中心O距耳挂12的上顶点M之间的距离一定的情况下,上述比值太小,则内侧面IS的宽度尺寸可能过大,此时可能导致发声部整体重量变大、壳体和耳挂之间的距离太小,使用户佩戴不舒适。上述比值太大时,则内侧面IS的宽度尺寸可能过小,导致发声部11的换能器能推动空气的面积太小,致使发声部的发声效率太低。因此,为了保证发声部的发声效率足够高并提高用户佩戴的舒适性,且使出声孔112在矢状面的投影至少部分能够位于耳甲腔区域内,且尽可能距耳道较近,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M的距离与壳体111的沿Y方向的宽度尺寸之间距离的比值在1.2~2.2之间。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M的距离与壳体111的宽度尺寸的比值在1.4~2.0之间。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M的距离与壳体111的宽度尺寸的比值在1.5~1.8之间。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O与耳挂12的上顶点M的距离与壳体111的宽度尺寸的比值在1.6~1.7之间。
在图13的佩戴方式下,由于出声孔112在内侧面IS上距离耳道较近的位置,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值不能太大。此外,为了保证发声部11与耳挂12的上顶点M间具有足够的间隔以伸入耳甲腔,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值也不能太小。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值在1.94~2.93之间。优选地,当用户佩戴开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的上侧面US的距离的比值在2.2~2.6之间。
在图13的佩戴方式下,由于出声孔112在内侧面IS上距离耳道较近的位置,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的下侧面IS的距离的比值不能太小。此外,为了保证出声孔具有足够的面积(防止出声孔面积太小而导致过大的声阻抗),出声孔112的宽度不能太小,则出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的下侧面IS的距离的比值也不能太大。在一些实施例中,当用户佩戴开放式耳机10时,出声孔112的中心O距耳挂12的上顶点M的距离与出声孔112的中心O距发声部11的下侧面IS的距离的比值在4.50~6.76之间。
图15是根据本说明书一些实施例所示的开放式耳机处于佩戴状态时在矢状面的投影示意图。
在一些实施例中,结合图13和图15,为了使发声部11稳定地佩戴在用户耳部,且便于构造如图9所示的腔体结构,并使得腔体结构具有至少两个泄露结构,自由端FE可以在长轴方向X和短轴方向Y上抵接在耳甲腔内,此时,发声部11的内侧面IS相对于矢状面倾斜,并且此时发声部的内侧面IS与耳甲腔之间至少具有靠近头顶的第一泄露结构UC(即耳甲腔与内侧面IS上边界之间的缝隙)和靠近耳道的第二泄露结构LC(即耳甲腔与内侧面IS下边界之间的缝隙)。由此,可以提高听音音量,特别是中低频的听音音量,同时仍然保留远场漏音相消的效果,从而提升开放式耳机10的声学输出性能。
在一些实施例中,当开放式耳机10以图13所示的佩戴方式进行佩戴时,发声部的内侧面IS与耳甲腔之间形成的第一泄露结构UC和第二泄露结构LC在长轴方向X上和厚度方向Z上均具有一定的尺度。在一些实施例中,为了便于理解第一泄露结构UC和第二泄露结构LC的位置,可以将开放式耳机10处于佩戴状态时内侧面IS的上/下边界分别与耳部(例如,耳甲腔的侧壁、耳轮脚)相交而形成的两点的中点作为第一泄露结构UC和第二泄露结构LC的位置参考点,以耳道的耳道口中心作为耳道的位置参考点。在一些实施例中,为了便于理解第一泄露结构UC和第二泄露结构LC的位置,可以在开放式耳机10处于佩戴状态时,将内侧面IS的上边界的中点作为第一泄露结构UC的位置参考点,以内侧面IS的下边界靠近自由端FE的三等分点(以下简称内侧面IS的下边界的1/3点)作为第二泄露结构LC的位置参考点。在本说明书中,当内侧面IS与上侧面US和/或下侧面LS之间的交界处为弧形时,内侧面IS的上边界可以指内侧面IS与上侧面US之间的相交线,内侧面IS的下边界可以指内侧面IS与下侧面LS之间的相交线。在一些实施例中,当发声部11的一个或多个侧面(例如,内侧面IS、上侧面US和/或下侧面LS)为弧面时,两个侧面的相交线可以指所述两个侧面的距发声部中心最远且平行于发声部长轴或短轴的切面之间的相交线。
仅作为示例,本说明书将以内侧面IS的上边界的中点以及下边界的1/3点分别作为第一泄露结构UC和第二泄露结构LC的位置参考点。需要知道的是,选定的内侧面IS的上边界的中点以及下边界的1/3点,只是作为示例性的参考点来描述第一泄露结构UC和第二泄露结构LC的位置。在一些实施例中,还可以选定其他参考点用以描述第一泄露结构UC和第二泄露结构LC的位置。例如,由于不同用户耳部的差异性,导致当开放式耳机10处于佩戴状态时所形成的第一泄露结构UC/第二泄露结构LC为一宽度渐变的缝隙,此时,第一泄露结构UC/第二泄露结构LC的参考位置可以为内侧面IS的上边界/下边界上靠近缝隙宽度最大的区域的位置。例如,可以以内侧面IS的上边界靠近自由端FE的1/3点作为第一泄露结构UC的位置,以内侧面IS的下边界的中点作为第二泄露结构LC的位置。
在一些实施例中,如图15所示,内侧面IS的上边界在矢状面的投影可以与上侧面US在矢状面的投影重合,内侧面IS的下边界在矢状面的投影可以与下侧面LS在矢状面的投影重合。第一泄露结构UC的位置参考点(即内侧面IS的上边界的中点)在矢状面的投影为点A,第二泄露结构LC的位置参考点(即内侧面IS的下边界的1/3点)在矢状面的投影为点C其中,“内侧面IS的上边界的中点在矢状面的投影点A”可以是内侧面IS的上边界与换能器的磁路组件(例如,下文描述的磁路组件1144)的短轴中心面的相交点投影在矢状面上的投影点。磁路组件的短轴中心面是指平行于发声部11的短轴方向且通过磁路组件的几何中心的平面。“内侧面IS的下边界的1/3点在矢状面的投影点C”可以是内侧面IS的下边界靠近自由端FE的三等分点在矢状面上的投影点。
如图15所示,在一些实施例中,在佩戴状态下,开放式耳机10的发声部11在矢状面上的投影可以至少部分覆盖用户的耳道,但耳道可以通过耳甲腔与外界连通,以实现解放用户的双耳。在一些实施例中,由于泄压孔113的声音可以通过泄露结构(例如,第一泄露结构UC或第二泄露结构LC)传入腔体结构与出声孔112的声音发生相消,因此,泄压孔113不能离泄露结构太近,而在发声部11至少部分地***耳甲腔内的前提下,泄压孔113与出声孔112的距离受限于发声部11的尺寸,因此,为了使开放式耳机10在整个频段范围内都具有较高的听音指数,泄压孔113应尽可能位于距离出声孔112更远的位置,例如,泄压孔113设置于发声部11的上侧面US。此时,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离与出声孔112的中心O在矢状面的投影点O’与泄压孔113的中心在矢状面的投影点之间的距离的比值在0.7~1.3之间。
当出声孔112与泄压孔113的相对位置保持不变(即出声孔112与泄压孔113之间的距离保持不变)时,腔体结构的体积V越大,开放式耳机10整体(全频段范围内)的听音指数越小。这是因为受到腔体结构内气声谐振的影响,在腔体结构的谐振频率上,腔体结构内会产生气声谐振并向外辐射远大于泄压孔113的声音,造成了漏音的极大提高,进而使得听音指数在该谐振频率附近显著变小。
出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面投影点A的距离越大,腔体结构的体积V越大。因此,在一些实施例中,在发声部11至少部分地***耳甲腔内的前提下,为了使出声孔112能够靠近耳道设置,且使腔体结构具有合适体积V,以使耳道的收音效果较好,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为10.0mm~15.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为11.0mm~14.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为12.0mm~14.7mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为12.5mm~14.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为13.0mm~13.7mm。
在一些实施例中,由于耳道口附近存在耳屏,出声孔112很容易被耳屏遮挡,此时,为了尽可能使出声孔112在离耳道较近的位置且不被遮挡,出声孔112的中心O在矢状面的投影点O’距耳道口中心在矢状面的投影点B的距离范围为2.2mm~3.8mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口中心在矢状面的投影点B的距离范围为2.4mm~3.6mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口中心在矢状面的投影点B的距离范围为2.6mm~3.4mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口中心在矢状面的投影点B的距离范围为2.8mm~3.2mm。
在一些实施例中,为了保证发声部11伸入耳甲腔且内侧面IS的上边界与耳甲腔之间存在适当的缝隙(形成腔体结构的泄露结构),内侧面IS的上边界的中点在矢状面的投影点A距耳道口的中心在矢状面的投影点B的距离范围为12mm~18mm。在一些实施例中,内侧面IS的上边界的中点在矢状面的投影点A距耳道口的中心在矢状面的投影点B的距离范围为13mm~17mm。在一些实施例中,内侧面IS的上边界的中点在矢状面的投影点A距耳道口的中心在矢状面的投影点B的距离范围为14mm~16mm。在一些实施例中,内侧面IS的上边界的中点在矢状面的投影点A距耳道口的中心在矢状面的投影点B的距离范围为14.5mm~15.5mm。
在一些实施例中,为了保证发声部11伸入耳甲腔且内侧面IS的下边界与耳甲腔之间存在适当的缝隙(形成腔体结构的泄露结构),内侧面IS的下边界的1/3点在矢状面的投影点C距耳道口的中心在矢状面的投影点B的距离范围为1.7mm~2.7mm。在一些实施例中,内侧面IS的下边界的1/3点在矢状面的投影点C距耳道口的中心在矢状面的投影点B的距离范围为1.8mm~2.6mm。在一些实施例中,内侧面IS的下边界的1/3点在矢状面的投影点C距耳道口的中心在矢状面的投影点B的距离范围为1.9mm~2.5mm,在一些实施例中,内侧面IS的下边界的1/3点在矢状面的投影点C距耳道口的中心在矢状面的投影点B的距离范围为2.0mm~2.4mm。在一些实施例中,内侧面IS的下边界的1/3点在矢状面的投影点C距耳道口的中心在矢状面的投影点B的距离范围为2.1mm~2.3mm。
在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离越大,腔体结构的体积V越大。因此,在发声部11至少部分地***耳甲腔内的前提下,为了使出声孔112能够靠近耳道设置,且使腔体结构具有合适体积V,以使耳道的收音效果较好。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为3.5mm~5.6mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为3.9mm~5.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为4.3mm~4.8mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为4.5mm~4.6mm。
图16A是根据本说明书一些实施例所示的发声部的示例性内部结构图。
如图16A所示,发声部11可以包括设置在壳体111内的主控电路板13和设置在耳挂12远离发声部11一端的电池(未示出),电池和换能器116分别与主控电路板13电性连接,以允许电池在主控电路板13的控制下为换能器116供电。当然,电池和换能器116也可以均设置在发声部11内,且电池可以更靠近连接端CE而换能器116则可以更靠近自由端FE。
在一些实施例中,开放式耳机10可以包括连接发声部11和耳挂12的调节机构,不同的用户在佩戴状态下能够通过调节机构调节发声部11在耳部上的相对位置,以使得发声部11位于一个合适的位置,从而使得发声部11与耳甲腔形成腔体结构。除此之外,由于调节机构的存在,用户也能够调节耳机10佩戴至更加稳定、舒适的位置。
由于耳甲腔具有一定的容积及深度,使得自由端FE伸入耳甲腔内之后,发声部11的内侧面IS与耳甲腔之间能够具有一定的间距。换言之,发声部11在佩戴状态下与耳甲腔可以配合形成与外耳道连通的腔体结构,出声孔112可以至少部分位于前述腔体结构内。如此,在佩戴状态下,由出声孔112传播而出的声波会受到前述腔体结构的限制,也即前述腔体结构能够聚拢声波,使得声波能够更好地传播至外耳道内,从而提高用户在近场听到的声音的音量和音质,这样有利于改善耳机10的声学效果。进一步地,由于发声部11可以设置成在佩戴状态下不堵住外耳道,使得前述腔体结构可以呈半开放式设置。如此,由出声孔112传播而出的声波,其一部分可以传播至耳道从而使用户听到声音,其另一部分可以与经耳道反射的声音一起经由发声部11与耳部之间的缝隙(例如耳甲腔未被发声部11覆盖的一部分)传播至耳机10及耳部的外部,从而在远场形成第一漏音;与此同时,经由发声部11上开设的泄压孔113传播出去的声波一般会在远场形成第二漏音,前述第一漏音的强度与前述第二漏音的强度相当,且前述第一漏音的相位和前述第二漏音的相位(接近)互为反相,使得两者能够在远场相消,这样有利于降低开放式耳机10在远场的漏音。
在一些实施例中,发声部11主要包括与耳挂12连接的壳体111和设置在壳体111内的换能器116。其中,壳体111在佩戴状态下朝向耳部的内侧面IS设置有出声孔112,换能器116产生的声波经由出声孔112传播而出,以便于传入外耳道101。值得注意的是:出声孔112也可以设置在壳体111的下侧面LS,还可以设置在前述内侧面IS与下侧面LS之间的拐角处。
在一些实施例中,换能器116与壳体111之间可以形成前腔114,出声孔112设置于壳体111上包围形成前腔114的区域,前腔114通过出声孔112与外界连通。
在一些实施例中,前腔114设置于换能器116的振膜与壳体111之间,为了保证振膜具有充足的振动空间,前腔114可以具有较大的深度尺寸(即换能器116的振膜与其正对的壳体111之间的距离尺寸)。在一些实施例中,如图16A所示,出声孔112设置于厚度方向Z上的内侧面IS上,此时前腔114的深度可以是指前腔114在Z方向上的尺寸。但是,前腔114的深度过大,又会导致发声部11的尺寸增大,影响开放式耳机10的佩戴舒适性。在一些实施例中,前腔114的深度可以为0.55mm-1.00mm。在一些实施例中,前腔114的深度可以为0.66mm-0.99mm。在一些实施例中,前腔114的深度可以为0.76mm-0.99mm。在一些实施例中,前腔114的深度可以为0.96mm-0.99mm。在一些实施例中,前腔114的深度可以为0.97mm。
为了提升开放式耳机10的出声效果,前腔114和出声孔112构成的类似亥姆霍兹共振腔结构的谐振频率要尽可能的高,以此使得发声部的整体的频率响应曲线具有较宽的平坦区域。在一些实施例中,前腔114的谐振频率f1可以不低于3kHz。在一些实施例中,前腔114的谐振频率f1可以不低于4kHz。在一些实施例中,前腔114的谐振频率f1可以不低于6kHz。在一些实施例中,前腔114的谐振频率f1可以不低于7kHz。在一些实施例中,前腔114的谐振频率f1可以不低于8kHz。
在一些实施例中,前腔114与出声孔112可以近似看作一个亥姆霍兹共振腔模型,前腔114为亥姆霍兹共振腔模型的腔体,出声孔112为亥姆霍兹共振腔模型的颈部。此时亥姆霍兹共振腔模型的共振频率为前腔114的谐振频率f1。在亥姆霍兹共振腔模型中,颈部(例如出声孔112)的尺寸可以影响到腔体的谐振频率f,具体关系如公式(2)所示:
其中,c代表声速,S代表颈部(例如出声孔112)的截面积,V代表腔体(例如前腔114)的体积,L代表颈部(例如出声孔112)的深度。
由公式(2)可知,当增加出声孔112的截面积S、减小出声孔112的深度L时,前腔114的谐振频率f1增大向高频移动。
在一些实施例中,出声孔112处的总空气容积形成声质量,声质量可以与***(例如亥姆霍兹共振腔)谐振以产生低频输出。因此声质量较小可能影响亥姆霍兹共振腔模型的低频输出。而出声孔112的尺寸也会对出声孔112的声质量Ma造成影响,具体关系如公式(3)所示:
其中,ρ代表空气密度,S代表出声孔112的截面积,L代表出声孔112的深度。
由公式(3)可知,出声孔112的截面积S增加、深度L减小,出声孔112的声质量Ma减小。
结合公式(2)与公式(3)可知,出声孔112的截面积S与深度L之比S/L的取值越大,前腔114的谐振频率f1越大,出声孔112的声质量Ma越小。因此,出声孔112的截面积S与深度L之比S/L需要处于适当的取值范围内,具体可以参见例如,图17A、图17B及图18B。
图16B是根据本说明书一些实施例所示的换能器的示例性内部结构图。
如图16B所示,壳体111容纳有换能器116,换能器116包括振膜1141、音圈1142、盆架1143以及磁路组件1144。其中,盆架1143包围振膜1141、音圈1142及磁路组件1144设置,用于提供安装固定平台,换能器116可以通过盆架1143与壳体111相连,振膜1141在Z方向上覆盖音圈1142和磁路组件1144,音圈1142伸入磁路组件1144且与振膜1141相连,音圈1142通电之后产生的磁场与磁路组件1144所形成的磁场相互作用,从而驱动振膜1141产生机械振动,进而经由空气等媒介的传播产生声音,声音通过出声孔112输出。
在一些实施例中,磁路组件1144包括导磁板11441、磁体11442与容纳件11443,导磁板11441与磁体11442相互连接,磁体11442远离导磁板11441的一侧安装于容纳件11443的底壁,且磁体11442的周侧与容纳件11443的周侧内侧壁之间具有间隙。在一些实施例中,容纳件11443的周侧外侧壁与盆架1143连接固定。在一些实施例中,容纳件11443与导磁板11441均可以采用导磁材质(例如铁等)。
在一些实施例中,振膜1141的周侧可以通过固定环1145连接至盆架1143上。在一些实施例中,固定环1145的材质可以包括不锈钢材质或其他金属材质,以适应振膜1141的加工制造工艺。
参照图16A和图16B,在一些实施例中,为了提升发声部11的声学输出(尤其是低频输出)效果,提升振膜1141推动空气的能力,振膜1141沿Z方向的投影面积越大越好,但是振膜1141的面积过大会导致换能器116的尺寸过大,由此导致壳体111过大,从而容易导致壳体111与耳廓碰撞摩擦,影响发声部11的佩戴舒适度。因此需要对壳体111的尺寸进行设计。示例性地,耳甲腔沿Y方向的尺寸(例如17mm)可以确定壳体111在Y方向上的宽度尺寸,再根据佩戴舒适度选取适宜的长短比(即壳体111在Y方向尺寸与在X方向的尺寸之比),从而确定壳体111在X方向的长度尺寸(例如21.49mm),以与耳甲腔沿Y方向的尺寸相匹配。
在一些实施例中,为了使大多数用户在佩戴开放式耳机10时发声部11能够至少部分***到耳甲腔中,以形成较好的声学效果的腔体结构,例如,使得开放式耳机10在佩戴时与用户耳部之间形成第一泄露结构UC和第二泄露结构LC,以提高耳机的声学性能,壳体111的尺寸可以采用预设范围的取值。在一些实施例中,根据耳甲腔沿Y方向的宽度尺寸范围,壳体111沿Y方向上的宽度尺寸可以在11mm-16mm范围内。在一些实施例中,壳体111沿Y方向上的宽度尺寸可以为11mm-15mm。在一些实施例中,壳体111沿Y方向上的宽度尺寸可以为13mm-14mm。在一些实施例中,壳体111在X方向尺寸与在Y方向尺寸之比的取值可以为1.2-5。在一些实施例中,壳体111在X方向尺寸与在Y方向尺寸之比的取值可以为1.4-4。在一些实施例中,壳体111在X方向尺寸与在Y方向尺寸之比的取值可以为1.5-2。在一些实施例中,壳体111沿X方向的长度尺寸可以在15mm-30mm范围内。在一些实施例中,壳体111沿X方向的长度尺寸可以为16mm-28mm。在一些实施例中,壳体111沿X方向的长度尺寸可以为19mm-24mm。在一些实施例中,为了避免壳体111的体积过大影响开放式耳机10佩戴舒适度,壳体111沿Z方向的厚度尺寸可以在5mm-20mm范围内。在一些实施例中,壳体111沿Z方向的厚度尺寸可以为5.1mm-18mm。在一些实施例中,壳体111沿Z方向的厚度尺寸可以为6mm-15mm。在一些实施例中,壳体111沿Z方向的厚度尺寸可以为7mm-10mm。在一些实施例中,壳体111的内侧面IS面积(在内侧面IS为矩形的情况下等于壳体111的长度尺寸与宽度尺寸的乘积)可以为90mm2-560mm2。在一些实施例中,内侧面IS面积可以认为是近似于振膜1141沿Z方向的投影面积。例如,内侧面IS的面积与振膜1141沿Z方向的投影面积相差10%。在一些实施例中,内侧面IS的面积可以为150mm2-360mm2。在一些实施例中,内侧面IS的面积可以为160mm2-240mm2。在一些实施例中,内侧面IS的面积可以为180mm2-200mm2。基于图9-图12所述的原理,以如图13所示的方式进行佩戴,开放式耳机10的尺寸设计在满足佩戴舒适度的基础上,其声学性能是优于现有的开放式耳机,也就是说,在达到同等优良的声学性能的前提下,开放式耳机10的尺寸可以小于现有的开放式耳机。
参照图16A和16B,在一些实施例中,出声孔112的中心O沿Z方向距磁路组件1144的底面的距离可以与振膜1141的振动范围、磁路组件1144的厚度相关。振膜1141的振动范围可以影响发声部11的换能器推动空气的量。振膜1141的振动范围越大,发声部11的换能器推动空气的量越多,发声部的发声效率越高。磁路组件1144的厚度越大,发声部11的总重量越大,从而影响用户佩戴的舒适性。此外,当发声部在Z方向的厚度一定时,出声孔112的中心O沿Z方向距磁路组件1144的底面的距离越小,后腔的体积可能越大,此时,根据前述公式(2)可知,后腔的谐振频率越小,后腔的谐振峰向低频移动,频率响应曲线的平坦区域的范围变小。为了保证发声部的发声效率足够高、后腔谐振频率在合适频率范围内(例如,1000Hz-5000Hz)以及用户佩戴足够舒适,在综合考虑到结构强度、工艺实现难度以及壳体111的整体厚度的情况下,出声孔112的中心O沿Z方向距磁路组件1144的底面(即容纳件11443沿Z方向远离出声孔112的侧面)的距离l1的范围为5.65mm~8.35mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1144的底面的距离l1的范围为6.00mm~8.00mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1144的底面的距离l1的范围为6.35mm~7.65mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1144的底面的距离l1的范围为6.70mm~7.30mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1144的底面的距离l1的范围为6.95mm~7.05mm。
在一些实施例中,出声孔112的中心O距离磁路组件1144的长轴中心面(例如,如图13所示的垂直于纸面向里的面NN’)的距离的范围为1.45mm~2.15mm。在本说明书中,磁路组件1144的长轴中心面是指平行于发声部11的下侧面LS且通过磁路组件1144的几何中心的平面。也就是说,磁路组件1144的长轴中心面可以沿着方向X将磁路组件1144分为相同的两部分。出声孔112的中心O与磁路组件1144的长轴中心面的距离也即是出声孔112的中心O沿短轴方向Y到长轴中心面的距离。在一些实施例中,出声孔112的中心O距长轴中心面的距离的范围为1.55mm~2.05mm。在一些实施例中,出声孔112的中心O距长轴中心面的距离的范围为1.65mm~1.95mm。在一些实施例中,出声孔112的中心O距长轴中心面的距离的范围为1.75mm~1.85mm。
图17A是根据本说明书一些实施例所示的长宽比一定时不同截面积的出声孔对应的开放式耳机的频响曲线图。图17A示出了当其他结构(例如,泄压孔113、后腔体积等)固定且当出声孔长宽比一定时,出声孔截面积从0.44mm2至100.43mm2范围内的开放式耳机10对应的频响曲线。从图17A可以看出,在上述条件下,随着出声孔112的截面积S逐渐增大,开放式耳机10的频响曲线中前腔所对应的谐振频率f1(即虚线圈G中的谐振峰对应的频率)逐渐向高频移动,而后腔所对应的谐振频率一直保持在4.5kHz左右。具体地,随着出声孔112的截面积S的增大,前腔的谐振峰逐步向高频移动,当移动至4.5kHz左右时,前腔和后腔的谐振频率可以基本相等,在这过程中, 谐振峰的峰值基本保持不变。当前腔的谐振峰移动至4.5kHz后,若继续增大出声孔112的截面积S,则前腔的谐振峰的峰值呈现出明显的逐渐降低的趋势。因此,在一些实施例中,为了使开放式耳机10的频响曲线具有较宽的平坦区域,可以使出声孔112的截面积S大于2.87mm2。优选地,为了使开放式耳机10的频响曲线在100Hz~2.3kHz范围较为平坦,可以使出声孔112的截面积S大于4.0mm2。优选地,为了使开放式耳机10的频响曲线在100Hz~3.3kHz范围较为平坦,可以使出声孔112的截面积S大于7.0mm2
进一步地,在一定出声孔112的截面积S范围内,随着出声孔112的截面积S的增大,前腔的谐振峰在向高频移动的同时其峰值逐步降低。因此,在一些实施例中,为了提升开放式耳机10的音质,同时便于EQ的调整,开放式耳机10的频响在高频范围(例如,4.5kHz~9kHz)需要足够充足,可以使出声孔112的截面积S小于54mm2。优选地,为了使开放式耳机10的频响曲线在4.5kHz~8kHz范围内足够充足,可以使出声孔112的截面积S小于36.15mm2。更优选地,为了使开放式耳机10的频响曲线在4.5kHz~6.5kHz范围内足够充足,可以使出声孔112的截面积S小于21.87mm2。在本说明书中,为便于描述,出声孔112的截面积S可以指出声孔112的外开口的面积(即出声孔112在内侧面上的开口面积)。需要知道的是,在其他一些实施例中,出声孔112的截面积S也可以指出声孔112的内开口的面积,或者出声孔113的内开口面积和外开口面积的平均值。
图17B是根据本说明书一些实施例所示的不同截面积的出声孔对应的前腔的频率响应曲线图。如图17B所示,当出声孔112的截面积S从2.875mm2增大至46.10mm2时,出声孔112的声质量Ma从800kg/m4减小到50kg/m4,前腔的谐振频率f1从4kHz左右逐渐升高至8kHz左右。需要注意的是,图17B中所示的200kg/m4和800kg/m4等参数仅代表出声孔112的理论声质量,与出声孔112的实际声质量可能会存在误差。
为了提升开放式耳机10的声学输出效果,在提高前腔的谐振频率f1的同时,保证出声孔112的声质量Ma足够大,出声孔112的截面积S需要具有合适的取值范围内。此外,在实际的设计中,出声孔112的截面积过大,会对开放式耳机10的外观、结构强度、防水防尘等其他方面产生一定的影响。在一些实施例中,出声孔112的截面积S的取值范围可以为2.87mm2-46.10mm2。在一些实施例中,出声孔112的截面积S的取值范围可以为2.875mm2-46mm2。在一些实施例中,出声孔112的截面积S的取值范围可以为10mm2-30mm2。在一些实施例中,出声孔112的截面积S的取值可以为25.29mm2。在一些实施例中,出声孔112的截面积S的取值范围可以为25mm2-26mm2
在一些实施例中,为了增加开放式耳机10的佩戴稳定性,需要满足发声部11的内侧面IS的面积与人体耳甲腔尺寸适配,此外,当发声部11以***耳甲腔的方式进行佩戴时,由于内侧面IS与耳甲腔侧壁构成了腔体结构,相比于常规佩戴方式(例如,将发声部11置于耳屏前侧),发声部11的发声效率高,此时出声部整体的尺寸可以设计得较小,因此,出声孔112与内侧面IS的面积比可以设计得较大。同时,出声孔面积也不宜过大,否则会影响出声孔处防水防尘结构和支撑结构的稳定性,内侧面IS的面积也不宜过小,否则会影响换能器推动空气的面积。在一些实施例中,出声孔112的截面积S与内侧面IS的面积之比可以在0.015~0.25之间。在一些实施例中,出声孔112的截面积S与内侧面IS的面积之比可以在0.02~0.2之间。在一些实施例中,出声孔112的截面积S与内侧面IS的面积之比可以在0.06~0.16之间。在一些实施例中,出声孔112的截面积S与内侧面IS的面积之比可以在0.1~0.12之间。
在一些实施例中,考虑到内侧面IS可能需要与耳部(例如,耳甲腔)接触,为了提高佩戴的舒适度,内侧面IS可能被设计为非平面结构,例如,内侧面IS的边缘区域相对于中心区域具有一定弯曲的弧度,或者内侧面IS上靠近自由端FE的区域设置有凸起结构以更好抵接耳部区域等。在这种情况下,为了更好地反映出声孔112的截面积对开放式耳机10的佩戴稳定性和发声效率的影响,可以将出声孔112的截面积S与内侧面IS的面积之比替换为出声孔112的截面积S与内侧面IS在振膜振动方向(即,图16A中的Z方向)的投影面积之比。在一些实施例中,出声孔112的截面积S与内侧面IS在振膜振动方向的投影面积之比可以在0.016~0.255之间。优选地,出声孔112的截面积S与内侧面IS在振膜振动方向的投影面积之比可以在0.022~0.21之间。
在一些实施例中,换能器的振膜在其振动方向上的投影面积可以等于或略小于内侧面IS在振膜振动方向的投影面积。在这种情况下,出声孔112的截面积S与振膜在其振动方向的投影面积之比可以在0.016~0.261之间。优选地,出声孔112的截面积S与内侧面IS在振膜振动方向的投影面积之比可以在0.023~0.23之间。
在一些实施例中,出声孔112的形状也会对出声孔112的声阻造成影响。出声孔112越狭长,出声孔112的声阻也较大,不利于前腔114的声学输出。因此,为了保证出声孔112具有合适的声阻,出声孔112的长轴尺寸与短轴尺寸之比(也称为出声孔112的长宽比)需要在预设的适当取值范围内。
在一些实施例中,出声孔112的形状可以包括但不限于圆形、椭圆形、跑道形等。为便于描述,以下将以出声孔112设置成跑道形为例进行示例性的说明。在一些实施例中,如图14所示,出声孔112可以采用跑道形,其中,跑道形的两端可以为劣弧形或半圆形。此时出声孔112的长轴尺寸可以是指出声孔112在X方向上的最大尺寸(如图14所示的长轴尺寸d),出声孔112的短轴尺寸可以是指出声孔112在Y方向上的最大尺寸(如图14所示的短轴尺寸h)。
图18A是根据本说明书一些实施例所示的不同长宽比的出声孔对应的开放式耳机的频响曲线图。图18A示出当其他结构(例如,泄压孔113、后腔体积等)固定且出声孔面积一定时长宽比分别为1、3、5、8、10的出声孔所对应的开放式耳机的频响曲线。
从图18A可以看出,当出声孔112截面积一定时,随着出声孔112长宽比增大,前腔114的谐振峰的谐振频率f1逐渐向高频移动,谐振峰强度逐渐降低。因此,当出声孔112的截面积一定时,为了保证前腔的谐振峰的强度足够强,出声孔112的长轴尺寸与出声孔112的短轴尺寸的比值范围可以在1~10之间。在一些实施例中,出声孔112的长轴尺寸与出声孔112的短轴尺寸的比值范围可以在2~8之间。出声孔112的长轴尺寸与出声孔112的短轴尺寸的比值范围可以在2~4之间。在一些实施例中,出声孔112的长轴尺寸可以为7.67mm,出声孔112的短轴尺寸可以为3.62mm。
图18B是根据本说明书一些实施例所示的不同深度的出声孔对应的前腔的频率响应曲线图。如图18B所示,出声孔112的深度L从0.3mm增加至3mm时,出声孔112的声质量Ma从100kg/m4增加到1000kg/m4,前腔的谐振频率f1从7kHz左右降低至3.7kHz左右。
为了保证前腔具有足够大的谐振频率,根据公式(2),出声孔112的深度L的取值越小越好。但是由于出声孔112设置于壳体111上,因此出声孔112的深度即为壳体111侧壁的厚度。壳体111的厚度过小时,可能会对开放式耳机10的结构强度造成影响,且相应的加工工艺难度较高。在一些实施例中,出声孔112的深度L的取值范围可以为0.3mm-3mm。在一些实施例中,出声孔112的深度L的取值范围可以为0.3mm-2mm。在一些实施例中,出声孔112的深度L的取值可以为0.3mm。在一些实施例中,出声孔112的深度L的取值也可以为0.6mm。
在一些实施例中,根据公式(2),在前腔体积不容易改变的情况下,出声孔112的截面积S与深度L的平方之比S/L2越大,前腔的谐振频率越高,出声孔发出的声音在中低频范围内的效果越好。但由于出声孔112的截面积S不宜过大,深度L(壳体111的厚度)也不宜过小。因此,在一些实施例中,出声孔112的截面积S与深度L的平方之比S/L2的取值范围可以为0.31-512.2。在一些实施例中,出声孔112的截面积S与深度L的平方之比S/L2的取值范围可以为1-400。在一些实施例中,出声孔112的截面积S与深度L的平方之比S/L2的取值范围可以为3-300。在一些实施例中,出声孔112的截面积S与深度L的平方之比S/L2的取值范围可以为5-200。在一些实施例中,出声孔112的截面积S与深度L的平方之比S/L2的取值范围可以为10-50。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。

Claims (28)

  1. 一种开放式耳机,包括:
    发声部,包括换能器和容纳所述换能器的壳体;
    耳挂,在佩戴状态下,所述耳挂的第一部分挂设在用户耳廓和头部之间,所述耳挂的第二部分向所述耳廓背离所述头部的一侧延伸并连接所述发声部以将所述发声部固定于耳道附近但不堵塞耳道的位置,其中,所述壳体朝向所述耳廓的内侧面上开设有出声孔,用于将所述换能器产生的声音导出所述壳体后传向所述耳道,所述出声孔的面积与承载所述出声孔的内侧面的面积之比在0.015~0.25之间。
  2. 根据权利要求1所述的开放式耳机,其中,在佩戴状态下,所述壳体至少部分***耳甲腔,所述出声孔的截面积为2.87mm2~46.10mm2,所述内侧面的面积为160mm2~240mm2
  3. 根据权利要求2所述的开放式耳机,其中,所述出声孔的截面积与所述出声孔的深度之比为0.31-512.2。
  4. 根据权利要求3所述的开放式耳机,其中,所述出声孔的所述深度的取值范围为0.3mm-3mm。
  5. 根据权利要求2所述的开放式耳机,其中,所述出声孔的中心距所述发声部的下侧面的距离范围为4.05mm~6.05mm。
  6. 根据权利要求2所述的开放式耳机,其中,所述出声孔的中心距所述发声部的后侧面的距离范围为8.15mm~12.25mm。
  7. 根据权利要求2所述的开放式耳机,其中,所述换能器包括磁路组件,所述磁路组件用于提供磁场,所述出声孔的中心距所述磁路组件的底面的距离范围为5.65mm~8.35mm。
  8. 根据权利要求7所述的开放式耳机,其中,所述出声孔的所述中心距离所述磁路组件的长轴中心面的距离范围为1.45mm~2.15mm。
  9. 根据权利要求2所述的开放式耳机,其中,在佩戴状态下,所述出声孔的中心与所述耳挂的上顶点之间的距离的范围为22.5mm~34.5mm。
  10. 根据权利要求2所述的开放式耳机,其中,在佩戴状态下,所述出声孔的中心在矢状面的投影距所述耳挂的上顶点在所述矢状面的投影的距离范围为18mm~30mm。
  11. 根据权利要求9所述的开放式耳机,其中,在佩戴状态下,所述出声孔的所述中心距所述耳挂的所述上顶点的所述距离与所述内侧面的上下边界之间距离的比值在1.2~2.2之间。
  12. 根据权利要求9所述的开放式耳机,其中,在佩戴状态下,所述出声孔的所述中心距所述耳挂的所述上顶点的所述距离与所述出声孔的所述中心距所述发声部的上侧面的距离的比值在1.94~2.93之间。
  13. 根据权利要求2所述的开放式耳机,其中,所述出声孔的中心在所述矢状面的投影点距所述耳道的耳道口的中心在所述矢状面的投影点的距离范围为2.2mm~3.8mm。
  14. 根据权利要求13所述的开放式耳机,其中,所述出声孔的所述中心在矢状面的投影点距所述内侧面的上边界的中点在所述矢状面的投影点的距离范围为10.0mm~15.2mm。
  15. 根据权利要求14所述的开放式耳机,其中,所述内侧面的所述上边界的所述中点在所述矢状面的投影点距所述耳道口的所述中心在所述矢状面的投影点的距离范围为12mm~18mm。
  16. 根据权利要求13所述的开放式耳机,其中,所述出声孔的中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为3.5mm~5.6mm。
  17. 根据权利要求16所述的开放式耳机,其中,所述内侧面的所述下边界的所述1/3点在所述矢状面的投影点距所述耳道口的所述中心在所述矢状面的投影点的距离范围为1.7mm~2.7mm。
  18. 根据权利要求1所述的开放式耳机,其中,在佩戴状态下,所述壳体至少部分位于对耳轮处,所述出声孔的中心距所述发声部的下侧面的距离范围为2.3mm~3.6mm。
  19. 根据权利要求18所述的开放式耳机,其中,所述出声孔的所述中心距所述发声部的后侧面的距离范围为9.5mm~15.0mm。
  20. 根据权利要求18所述的开放式耳机,其中,在佩戴状态下,所述出声孔的所述中心与所述耳挂的上顶点之间的距离的范围为17.5mm~27.0mm。
  21. 根据权利要求20所述的开放式耳机,其中,在佩戴状态下,所述出声孔的所述中心距所述耳挂的所述上顶点的所述距离与所述内侧面的上下边界之间距离的比值在0.95~1.55之间。
  22. 根据权利要求20所述的开放式耳机,其中,在佩戴状态下,所述出声孔的所述中心距所述耳挂的所述上顶点的所述距离与所述出声孔的所述中心距所述发声部的上侧面的距离的比值在1.19~2.50之间。
  23. 根据权利要求1所述的开放式耳机,其中,所述出声孔的中心与所述耳挂所在的平面之间的距离在3mm~6mm之间。
  24. 根据权利要求1所述的开放式耳机,其中,所述出声孔的长轴尺寸与所述出声孔的短轴尺寸的比值范围在1~10之间。
  25. 根据权利要求24所述的开放式耳机,其中,所述出声孔的长轴尺寸与所述出声孔的短轴尺寸的比值范围在2~4之间。
  26. 一种开放式耳机,包括:
    发声部,包括换能器和容纳所述换能器的壳体;
    耳挂,在佩戴状态下,所述耳挂的第一部分挂设在用户耳廓和头部之间,所述耳挂的第二部分向所述耳廓背离所述头部的一侧延伸并连接所述发声部以将所述发声部固定于耳道附近但不堵塞耳道的位置,其中,所述换能器包括振膜,所述壳体朝向所述耳廓的内侧面上开设有出声孔,用于将所述振膜振动产生的声音导出所述壳体后传向所述耳道,其中,所述出声孔的面积与所述振膜在其振动方向的投影面积之比在0.016~0.261之间。
  27. 根据权利要求26所述的开放式耳机,其中,在佩戴状态下,所述壳体至少部分***耳甲腔,所述出声孔的截面积为2.87mm2~46.10mm2,所述振膜在其振动方向的投影面积为150mm2~230mm2
  28. 一种开放式耳机,包括:
    发声部,包括换能器和容纳所述换能器的壳体;
    耳挂,在佩戴状态下,所述耳挂的第一部分挂设在用户耳廓和头部之间,所述耳挂的第二部分向所述耳廓背离所述头部的一侧延伸并连接所述发声部以将所述发声部固定于耳道附近但不堵塞耳道的位置,其中,所述换能器包括振膜,所述壳体朝向所述耳廓的内侧面上开设有出声孔,用于将所述振膜振动产生的声音导出所述壳体后传向所述耳道,其中,所述出声孔的中心与所述耳挂的上顶点之间的距离的范围为22.5mm~34.5mm。
PCT/CN2023/079410 2014-01-06 2023-03-02 一种开放式耳机 WO2024087443A1 (zh)

Priority Applications (35)

Application Number Priority Date Filing Date Title
CN202322249714.3U CN220711632U (zh) 2022-10-28 2023-03-24 一种发声部
CN202310328947.4A CN117956355A (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083545 WO2024087490A1 (zh) 2022-10-28 2023-03-24 一种耳机
CN202310339595.2A CN117956379A (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083546 WO2024087491A1 (zh) 2022-10-28 2023-03-24 一种耳机
CN202320619488.0U CN220325780U (zh) 2022-10-28 2023-03-24 一种耳机
CN202322166740.XU CN220693334U (zh) 2022-10-28 2023-03-24 一种发声部
CN202322160783.7U CN220693317U (zh) 2022-10-28 2023-03-24 一种耳机
CN202310327044.4A CN117956351A (zh) 2022-10-28 2023-03-24 一种耳机
CN202322226229.4U CN220711647U (zh) 2022-10-28 2023-03-24 一种发声部
CN202322511885.9U CN220511247U (zh) 2022-10-28 2023-03-24 一种发声部
CN202320619439.7U CN220210579U (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083543 WO2024087488A1 (zh) 2022-10-28 2023-03-24 一种发声部
CN202320731109.7U CN220273826U (zh) 2022-10-28 2023-03-24 一种发声部
CN202322303205.4U CN220457584U (zh) 2022-10-28 2023-03-24 一种发声部
US18/332,747 US20240147144A1 (en) 2022-10-28 2023-06-11 Open earphones
US18/334,401 US20240147108A1 (en) 2022-10-28 2023-06-14 Earphones
CN202311159929.4A CN117956363A (zh) 2022-10-28 2023-09-08 一种耳机
PCT/CN2023/117783 WO2024087908A1 (zh) 2022-10-28 2023-09-08 一种耳机
CN202311169733.3A CN117956364A (zh) 2022-10-28 2023-09-08 一种耳机
PCT/CN2023/117777 WO2024087907A1 (zh) 2022-10-28 2023-09-08 一种耳机
US18/468,676 US20240007804A1 (en) 2014-01-06 2023-09-15 Systems and methods for suppressing sound leakage
US18/472,180 US20240015452A1 (en) 2014-01-06 2023-09-21 Systems and methods for suppressing sound leakage
US18/473,206 US20240015455A1 (en) 2014-01-06 2023-09-22 Systems and methods for suppressing sound leakage
US18/472,580 US20240015454A1 (en) 2014-01-06 2023-09-22 Systems and methods for suppressing sound leakage
US18/472,442 US20240015453A1 (en) 2014-01-06 2023-09-22 Systems and methods for suppressing sound leakage
US18/476,276 US20240040301A1 (en) 2020-07-29 2023-09-27 Earphone
US18/476,212 US20240031724A1 (en) 2020-07-29 2023-09-27 Earphone
US18/475,376 US20240031723A1 (en) 2020-07-29 2023-09-27 Earphone
US18/476,225 US20240031725A1 (en) 2020-07-29 2023-09-27 Earphone
US18/476,438 US20240031726A1 (en) 2020-07-29 2023-09-28 Earphone
CN202311386846.9A CN117956366A (zh) 2022-10-28 2023-10-23 一种耳机
PCT/CN2023/126052 WO2024088223A1 (zh) 2022-10-28 2023-10-23 一种耳机
US18/492,820 US20240147162A1 (en) 2022-10-28 2023-10-24 Sound production components
US18/499,199 US20240147113A1 (en) 2022-10-28 2023-10-31 Earphones

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211336918.4 2022-10-28
CN202211336918 2022-10-28
CN202223239628 2022-12-01
CN202223239628.6 2022-12-01
CNPCT/CN2022/144339 2022-12-30
CN2022144339 2022-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/332,747 Continuation US20240147144A1 (en) 2014-01-06 2023-06-11 Open earphones

Publications (1)

Publication Number Publication Date
WO2024087443A1 true WO2024087443A1 (zh) 2024-05-02

Family

ID=88743304

Family Applications (14)

Application Number Title Priority Date Filing Date
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079407 WO2024087441A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083551 WO2024087494A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机

Family Applications After (10)

Application Number Title Priority Date Filing Date
PCT/CN2023/079407 WO2024087441A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083551 WO2024087494A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部

Country Status (3)

Country Link
US (2) US20240147142A1 (zh)
CN (58) CN220528213U (zh)
WO (14) WO2024087445A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326986A (ja) * 2000-05-15 2001-11-22 Audio Technica Corp ヘッドホン
US20210067857A1 (en) * 2019-08-28 2021-03-04 Bose Corporation Open Audio Device
CN216217487U (zh) * 2021-10-21 2022-04-05 深圳市大十科技有限公司 一种开放式耳挂型可穿戴发声装置
CN114286240A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN216357224U (zh) * 2021-11-01 2022-04-19 东莞市猎声电子科技有限公司 一种耳机
CN114554339A (zh) * 2020-11-24 2022-05-27 深圳市韶音科技有限公司 一种声学装置

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057731B2 (ja) * 1990-08-21 2000-07-04 ソニー株式会社 電気音響変換器及び音響再生システム
US7050598B1 (en) * 2002-12-06 2006-05-23 Plantronics, Inc. Self-adjusting earloop for an over-the-ear headset
EP1694092A4 (en) * 2003-11-13 2009-12-23 Panasonic Corp TWEETER
JP4723400B2 (ja) * 2006-02-28 2011-07-13 スター精密株式会社 電気音響変換器
WO2009104264A1 (ja) * 2008-02-21 2009-08-27 東北パイオニア株式会社 スピーカ装置
JP5262818B2 (ja) * 2009-02-20 2013-08-14 株式会社Jvcケンウッド 耳掛け式イヤホン装置、イヤホン装置用耳掛けアーム
US9025782B2 (en) * 2010-07-26 2015-05-05 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for multi-microphone location-selective processing
JP6107581B2 (ja) * 2013-09-30 2017-04-05 株式会社Jvcケンウッド 耳掛け式ヘッドホン
US10182287B2 (en) * 2016-08-16 2019-01-15 Bose Corporation Earphone having damped ear canal resonance
KR101760754B1 (ko) * 2016-08-23 2017-07-25 주식회사 이엠텍 방수 기능 사이드 진동판 및 이를 구비하는 마이크로스피커
WO2018132996A1 (zh) * 2017-01-19 2018-07-26 声电电子科技(惠州)有限公司 一种微型扬声器
JP6903933B2 (ja) * 2017-02-15 2021-07-14 株式会社Jvcケンウッド 収音装置、及び収音方法
US11405712B2 (en) * 2017-07-21 2022-08-02 Sony Corporation Sound output apparatus
CN107277718A (zh) * 2017-07-28 2017-10-20 常州市润蒙声学科技有限公司 扬声器
CN207926857U (zh) * 2017-12-21 2018-09-28 歌尔科技有限公司 发声装置单体、耳机以及电子设备
GB2584535B (en) * 2019-04-02 2021-12-01 Tymphany Acoustic Tech Huizhou Co Ltd In-ear headphone device with active noise control
CN210053540U (zh) * 2019-08-02 2020-02-11 深圳新锐芯科技有限公司 一种固定功能的耳挂式蓝牙耳机
KR102209486B1 (ko) * 2019-10-29 2021-01-29 주식회사 이엠텍 리시버의 진동판 부착 구조
CN110958526A (zh) * 2019-12-19 2020-04-03 歌尔科技有限公司 耳机
CN113542956B (zh) * 2020-04-22 2024-04-09 耳一号声学科技(深圳)有限公司 一种入耳式耳机及耳机固持结构
CN113556638B (zh) * 2020-04-24 2024-03-19 万魔声学股份有限公司 耳机
GB2595971B (en) * 2020-06-12 2022-09-21 Tymphany Acoustic Tech Ltd Earphone body with tuned vents
CN113810812A (zh) * 2020-06-17 2021-12-17 耳一号声学科技(深圳)有限公司 一种耳机及其耳撑
CN111654790A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111654789A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111698608B (zh) * 2020-07-02 2022-02-01 立讯精密工业股份有限公司 一种骨传导耳机
CN217159954U (zh) * 2020-07-29 2022-08-09 深圳市韶音科技有限公司 一种耳机
CN214429681U (zh) * 2020-11-15 2021-10-19 深圳市大十科技有限公司 一种挂夹耳开放式耳机
CN113301463A (zh) * 2021-02-03 2021-08-24 深圳市大十科技有限公司 一种用于耳机的夹耳结构
CN115209267A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209285A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209268A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN116918350A (zh) * 2021-04-25 2023-10-20 深圳市韶音科技有限公司 声学装置
US11140469B1 (en) * 2021-05-03 2021-10-05 Bose Corporation Open-ear headphone
CN215818549U (zh) * 2021-08-25 2022-02-11 深圳市冠旭电子股份有限公司 可旋转开放式tws耳机
CN215682610U (zh) * 2021-09-17 2022-01-28 深圳市科奈信科技有限公司 开放式耳机
CN216600066U (zh) * 2021-10-29 2022-05-24 华为技术有限公司 扬声器以及声音输出装置
CN113905304A (zh) * 2021-11-01 2022-01-07 东莞市猎声电子科技有限公司 一种耳机及其定向出声的方法
CN217011123U (zh) * 2021-12-20 2022-07-19 深圳市科奈信科技有限公司 骨传导耳机
CN114390394A (zh) * 2022-02-24 2022-04-22 听智慧(南京)科技有限公司 定制无线耳机
CN114760554A (zh) * 2022-03-28 2022-07-15 广东小天才科技有限公司 一种夹耳式耳机的麦克风管理方法、装置及夹耳式耳机
CN114928800A (zh) * 2022-05-10 2022-08-19 歌尔股份有限公司 发声装置和电子设备
CN114866925A (zh) * 2022-05-31 2022-08-05 歌尔股份有限公司 发声装置和发声设备
CN217643682U (zh) * 2022-06-24 2022-10-21 深圳市韶音科技有限公司 一种开放式耳机
CN115460496A (zh) * 2022-09-15 2022-12-09 深圳市冠旭电子股份有限公司 耳挂连接结构及蓝牙耳机
CN218352706U (zh) * 2022-09-30 2023-01-20 东莞市猎声电子科技有限公司 符合人体工学以提高佩戴舒适度的耳机
CN115550783B (zh) * 2022-09-30 2023-10-31 东莞市猎声电子科技有限公司 一种开放式耳机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326986A (ja) * 2000-05-15 2001-11-22 Audio Technica Corp ヘッドホン
US20210067857A1 (en) * 2019-08-28 2021-03-04 Bose Corporation Open Audio Device
CN114286240A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN114554339A (zh) * 2020-11-24 2022-05-27 深圳市韶音科技有限公司 一种声学装置
CN216217487U (zh) * 2021-10-21 2022-04-05 深圳市大十科技有限公司 一种开放式耳挂型可穿戴发声装置
CN216357224U (zh) * 2021-11-01 2022-04-19 东莞市猎声电子科技有限公司 一种耳机

Also Published As

Publication number Publication date
CN117956359A (zh) 2024-04-30
CN117956337A (zh) 2024-04-30
CN220711634U (zh) 2024-04-02
CN220067644U (zh) 2023-11-21
CN117956340A (zh) 2024-04-30
WO2024087440A1 (zh) 2024-05-02
CN220067646U (zh) 2023-11-21
CN117956348A (zh) 2024-04-30
CN220254651U (zh) 2023-12-26
CN220067648U (zh) 2023-11-21
CN117956338A (zh) 2024-04-30
CN220711630U (zh) 2024-04-02
CN117956352A (zh) 2024-04-30
CN117956346A (zh) 2024-04-30
CN220325779U (zh) 2024-01-09
CN220210580U (zh) 2023-12-19
CN117956334A (zh) 2024-04-30
CN220528213U (zh) 2024-02-23
CN220368781U (zh) 2024-01-19
CN220342445U (zh) 2024-01-12
CN117956343A (zh) 2024-04-30
CN220210576U (zh) 2023-12-19
WO2024087492A1 (zh) 2024-05-02
CN220693319U (zh) 2024-03-29
WO2024087442A1 (zh) 2024-05-02
WO2024087438A1 (zh) 2024-05-02
WO2024087441A1 (zh) 2024-05-02
CN220493121U (zh) 2024-02-13
CN220493122U (zh) 2024-02-13
CN117956345A (zh) 2024-04-30
CN220254655U (zh) 2023-12-26
CN220067643U (zh) 2023-11-21
CN220823261U (zh) 2024-04-19
WO2024087439A1 (zh) 2024-05-02
WO2024087482A1 (zh) 2024-05-02
CN220732986U (zh) 2024-04-05
CN220210578U (zh) 2023-12-19
CN220528220U (zh) 2024-02-23
CN117956344A (zh) 2024-04-30
CN117956353A (zh) 2024-04-30
CN220528217U (zh) 2024-02-23
CN117956356A (zh) 2024-04-30
WO2024087481A1 (zh) 2024-05-02
CN117956335A (zh) 2024-04-30
CN117956342A (zh) 2024-04-30
CN220254653U (zh) 2023-12-26
CN220711628U (zh) 2024-04-02
CN220511241U (zh) 2024-02-20
CN220067645U (zh) 2023-11-21
US20240147161A1 (en) 2024-05-02
CN117956341A (zh) 2024-04-30
CN220254652U (zh) 2023-12-26
WO2024087444A1 (zh) 2024-05-02
CN220528214U (zh) 2024-02-23
WO2024087445A1 (zh) 2024-05-02
CN220254654U (zh) 2023-12-26
WO2024087480A1 (zh) 2024-05-02
CN220711638U (zh) 2024-04-02
CN220528219U (zh) 2024-02-23
CN220711629U (zh) 2024-04-02
US20240147159A1 (en) 2024-05-02
WO2024087483A1 (zh) 2024-05-02
CN220673920U (zh) 2024-03-26
CN220108163U (zh) 2023-11-28
CN117956339A (zh) 2024-04-30
CN220108162U (zh) 2023-11-28
CN220528194U (zh) 2024-02-23
CN220210577U (zh) 2023-12-19
CN220043614U (zh) 2023-11-17
US20240147142A1 (en) 2024-05-02
CN220528215U (zh) 2024-02-23
WO2024087494A1 (zh) 2024-05-02
CN117956336A (zh) 2024-04-30
CN117956347A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2024087443A1 (zh) 一种开放式耳机
WO2024087491A1 (zh) 一种耳机
WO2024087907A1 (zh) 一种耳机
WO2024087488A1 (zh) 一种发声部
TW202418843A (zh) 一種開放式耳機
TW202418822A (zh) 一種開放式耳機
TW202418826A (zh) 一種開放式耳機
CN220325780U (zh) 一种耳机
WO2024087908A1 (zh) 一种耳机
WO2024088223A1 (zh) 一种耳机
WO2024088246A1 (zh) 一种耳机
US11902731B1 (en) Open earphones
WO2024087485A1 (zh) 一种耳机
WO2024088222A1 (zh) 一种开放式耳机
TW202418827A (zh) 一種開放式耳機
TW202418829A (zh) 一種開放式耳機
TW202418844A (zh) 一種耳機
TW202418835A (zh) 一種開放式耳機
TW202418840A (zh) 一種發聲部
CN118138938A (zh) 一种开放式耳机