WO2024088222A1 - 一种开放式耳机 - Google Patents

一种开放式耳机 Download PDF

Info

Publication number
WO2024088222A1
WO2024088222A1 PCT/CN2023/126051 CN2023126051W WO2024088222A1 WO 2024088222 A1 WO2024088222 A1 WO 2024088222A1 CN 2023126051 W CN2023126051 W CN 2023126051W WO 2024088222 A1 WO2024088222 A1 WO 2024088222A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
sound
open
emitting part
area
Prior art date
Application number
PCT/CN2023/126051
Other languages
English (en)
French (fr)
Inventor
张磊
童珮耕
解国林
李永坚
徐江
招涛
武多多
戢澳
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2023/079409 external-priority patent/WO2024087442A1/zh
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Publication of WO2024088222A1 publication Critical patent/WO2024088222A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones

Definitions

  • the present application relates to the field of acoustic technology, and in particular to an open-type earphone.
  • acoustic output devices e.g., headphones
  • electronic devices such as mobile phones and computers
  • acoustic devices can generally be divided into head-mounted, ear-hook, and in-ear types.
  • the output performance and wearing experience of acoustic devices have a great impact on the user's comfort.
  • an open-type earphone comprising: a sound-emitting part; and an ear hook, the ear hook comprising a first part and a second part connected in sequence, the first part being hung between the user's auricle and the head, the second part extending toward the front and outer side of the auricle and connected to the sound-emitting part, and the sound-emitting part being worn near the ear canal but not blocking the ear canal opening; wherein the open-type earphone and the auricle respectively have a first projection and an eighth projection on the sagittal plane, the centroid of the sound-emitting part in the first projection and the highest point of the eighth projection have a first distance in the vertical axis direction, and the ratio of the first distance to the height of the eighth projection in the vertical axis direction is between 0.35-0.6; in a non-wearing state, the distance between the centroid of the projection of the sound-emitting part on the first plane and the
  • an open-type earphone comprising: a sound-emitting part; and an ear hook, the ear hook comprising a first part and a second part connected in sequence, the first part being hung between the user's auricle and the head, the second part extending toward the front and outer side of the auricle and connected to the sound-emitting part, and the sound-emitting part being worn near the ear canal but not blocking the ear canal opening; wherein the open-type earphone and the auricle respectively have a first projection and an eighth projection on the sagittal plane, the centroid of the sound-emitting part in the first projection and the highest point of the eighth projection have a first distance in the vertical axis direction, and the ratio of the first distance to the height of the eighth projection in the vertical axis direction is between 0.25-0.4; in a non-wearing state, the distance between the centroid of the projection of the sound-emitting part on the first plane and
  • FIG1 is a schematic diagram of an exemplary ear according to some embodiments of the present specification.
  • FIG2 is an exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG3 is an exemplary wearing diagram of an open-type headset according to some other embodiments of the present specification.
  • FIG4 is a schematic diagram of an acoustic model formed by an open-type earphone according to some embodiments of this specification.
  • FIG5A is an exemplary wearing diagram of an open-type earphone according to some embodiments of the present specification.
  • FIG5B is an exemplary wearing diagram of an open-type earphone according to some embodiments of the present specification.
  • FIG5C is an exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG5D is an exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG6 is a schematic diagram of the structure of an open-type earphone in a non-wearing state according to some embodiments of this specification;
  • FIG7 is a schematic diagram of a projection formed by projecting an open-type earphone in a non-wearing state onto an earhook plane according to some embodiments of this specification;
  • FIG8 is a schematic diagram of a cavity-like structure according to some embodiments of the present specification.
  • FIG. 9 is a graph showing a listening index of a cavity-like structure having leakage structures of different sizes according to some embodiments of the present specification.
  • FIG10 is a schematic diagram showing the difference in shape between an open-type earphone in a wearing state and a non-wearing state according to some embodiments of this specification;
  • FIG11A is a schematic diagram of an exemplary structure of an open-type earphone according to some embodiments of this specification.
  • FIG11B is a schematic diagram of a user wearing an open-ear headset according to some embodiments of the present specification.
  • FIG12A is a schematic diagram of a triangle formed by the center of mass of the ear hook, the battery compartment, and the sound-emitting part of an open-type earphone according to some embodiments of the present specification;
  • FIG12B is another schematic diagram of the structure of an open-type earphone according to some embodiments of this specification.
  • FIG12C is a schematic diagram of a tangent segment of a first projection according to some embodiments of the present specification.
  • FIG13 is an exemplary wearing diagram of an open-type headset according to yet other embodiments of the present specification.
  • FIG14 is a schematic diagram of an acoustic model formed by an open-type earphone according to some other embodiments of this specification.
  • FIG15A is a schematic diagram of an exemplary wearing method of an open-type earphone according to other embodiments of the present specification.
  • FIG15B is an exemplary wearing diagram of an open-type headset according to other embodiments of the present specification.
  • FIG. 16 is a schematic diagram showing the difference in shape of an open-type earphone in a wearing state and a non-wearing state according to some embodiments of this specification.
  • system means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • device means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • unit means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • the words can be replaced by other expressions.
  • connection can refer to a fixed connection, a detachable connection, or an integral connection; it can refer to a mechanical connection or an electrical connection; it can refer to a direct connection or an indirect connection through an intermediate medium, it can refer to the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can refer to a fixed connection, a detachable connection, or an integral connection; it can refer to a mechanical connection or an electrical connection; it can refer to a direct connection or an indirect connection through an intermediate medium, it can refer to the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present specification.
  • the ear 100 may include an external auditory canal 101, a cavity concha 102, a cymba concha 103, a triangular fossa 104, an antihelix 105, a scaphoid 106, an auricle 107, an earlobe 108, a crus helix 109, an outer contour 1013, and an inner contour 1014.
  • the crus 1011, the crus 1012, and the antihelix 105 are collectively referred to as the antihelix region in the embodiments of this specification.
  • the acoustic device may be supported by one or more parts of the ear 100 to achieve stability in wearing the acoustic device.
  • the external auditory canal 101, the cavity concha 102, the cymba concha 103, the triangular fossa 104, and other parts have a certain depth and volume in three-dimensional space, which can be used to meet the wearing requirements of the acoustic device.
  • an acoustic device e.g., an in-ear headset
  • the acoustic device can be worn with the help of other parts of the ear 100 except the external auditory canal 101.
  • the acoustic device can be worn with the help of parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, or the helix 107 or a combination thereof.
  • parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, or the helix 107 or a combination thereof.
  • it in order to improve the comfort and reliability of the acoustic device in wearing, it can also be further used with the user's earlobe 108 and other parts.
  • the external auditory canal 101 of the user's ear can be "liberated".
  • the acoustic device When the user wears the acoustic device (open earphones), the acoustic device will not block the user's external auditory canal 101, and the user can receive both the sound from the acoustic device and the sound from the environment (for example, horns, car bells, surrounding human voices, traffic control sounds, etc.), thereby reducing the probability of traffic accidents.
  • the acoustic device can be designed to be compatible with the ear 100 according to the structure of the ear 100, so as to realize the wearing of the sound-emitting part of the acoustic device at different positions of the ear.
  • the open-type earphone can include a suspension structure (e.g., ear hook) and a sound-emitting part, and the sound-emitting part is physically connected to the suspension structure, and the suspension structure can be adapted to the shape of the auricle, so as to place the whole or part of the structure of the sound-emitting part of the ear on the front side of the crus helix 109 (e.g., the area J surrounded by the dotted line in FIG1 ).
  • a suspension structure e.g., ear hook
  • the sound-emitting part is physically connected to the suspension structure
  • the suspension structure can be adapted to the shape of the auricle, so as to place the whole or part of the structure of the sound-emitting part of the ear on the front side of the crus helix 109 (e.g., the area J surrounded by the dotted line in FIG1 ).
  • the whole or part of the structure of the sound-emitting part can contact the upper part of the external auditory canal 101 (e.g., the position of one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, and the helix 107).
  • the upper part of the external auditory canal 101 e.g., the position of one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, and the helix 107.
  • the entire or partial structure of the sound-producing part may be located in a cavity formed by one or more parts of the ear (e.g., the concha cavity 102, the cymba concha 103, the triangular fossa 104, etc.).
  • the area M1 enclosed by the dotted line in FIG. 1 includes at least the cymba concha 103 and the triangular fossa 104 and the area M2 includes at least the cavum concha 102).
  • a simulator containing a head and its (left and right) ears made based on ANSI: S3.36, S3.25 and IEC: 60318-7 standards, such as GRAS 45BC KEMAR, can be used as a reference for wearing an acoustic device, thereby presenting the scene of most users wearing the acoustic device normally.
  • the ear used as a reference may have the following relevant characteristics: the projection area of the auricle on the sagittal plane of the human body is within the range of 1300mm2-1700mm2 . Therefore, in this specification, descriptions such as “user wears " , “in a wearing state” and “in a wearing state” may refer to the acoustic device described in this specification being worn on the ear of the aforementioned simulator.
  • the structure, shape, size, thickness, etc. of one or more parts of the ear 100 can be differentially designed according to ears of different shapes and sizes. These differentiated designs can be manifested as characteristic parameters of one or more parts of the acoustic device (for example, the sound-emitting part, ear hook, etc. mentioned below) having different ranges of values to adapt to different ears.
  • the sagittal plane refers to a plane perpendicular to the ground along the front-to-back direction of the body, which divides the human body into left and right parts
  • the coronal plane refers to a plane perpendicular to the ground along the left-to-right direction of the body, which divides the human body into front and back parts
  • the horizontal plane refers to a plane parallel to the ground along the vertical direction perpendicular to the body, which divides the human body into upper and lower parts.
  • the sagittal axis refers to an axis along the front-to-back direction of the body and perpendicular to the coronal plane
  • the coronal axis refers to an axis along the left-to-right direction of the body and perpendicular to the sagittal plane
  • the vertical axis refers to an axis along the up-down direction of the body and perpendicular to the horizontal plane.
  • the "front side of the ear" described in this specification is a concept relative to the "back side of the ear”.
  • the front side of the ear refers to the side of the ear that is located along the sagittal axis and faces the human face area
  • the back side of the ear refers to the side of the ear that is located along the sagittal axis and faces away from the human face area.
  • the description of the ear 100 is for illustrative purposes only and is not intended to limit the scope of this specification.
  • a person skilled in the art can make various changes and modifications based on the description of this specification.
  • a part of the structure of the acoustic device can cover part or all of the external auditory canal 101. These changes and modifications are still within the scope of protection of this specification.
  • Fig. 2 is an exemplary wearing diagram of an open-type earphone according to some embodiments of the present specification.
  • the open-type earphone 10 may include a sound-emitting portion 11 and a suspension structure 12.
  • the open-type earphone 10 may wear the sound-emitting portion 11 on the user's body (e.g., the head, neck, or upper torso of the human body) through the suspension structure 12.
  • the suspension structure 12 may be an ear hook, and the sound-emitting portion 11 is connected to one end of the ear hook, and the ear hook may be arranged in a shape that matches the user's ear.
  • the ear hook may be an arc-shaped structure.
  • the suspension structure 12 may also be a clamping structure that matches the user's auricle, so that the suspension structure 12 may be clamped at the user's auricle.
  • the suspension structure 12 may include, but is not limited to, an ear hook, an elastic band, etc., so that the open-type earphone 10 may be better fixed to the user to prevent the user from falling off during use.
  • the sound-emitting portion 11 can be worn on the user's body, and a speaker can be provided in the sound-emitting portion 11 to generate sound for input into the user's ear 100.
  • the open-type earphone 10 can be combined with products such as glasses, headphones, head-mounted display devices, AR/VR helmets, etc. In this case, the sound-emitting portion 11 can be fixed near the user's ear 100 by hanging or clamping.
  • the sound-emitting portion 11 can be in the shape of a ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape, or a semicircle, so that the sound-emitting portion 11 can be directly hung on the user's ear 100.
  • At least part of the sound-emitting part 11 may be located above, below, in front of the user's ear 100 (for example, the area J in front of the tragus shown in FIG. 1 ) or inside the auricle (for example, the area M1 or M2 shown in FIG. 1 ).
  • the following will be exemplarily described in conjunction with different wearing positions (11A, 11B, and 11C) of the sound-emitting part 11.
  • the sound-emitting part 11A is located on the side of the user's ear 100 facing the human face area along the sagittal axis direction, that is, the sound-emitting part 11A is located on the face area of the ear 100 facing the human body (for example, the area J shown in FIG. 1 ).
  • a speaker is provided inside the shell of the sound-emitting part 11A, and at least one sound outlet hole (not shown in FIG. 2 ) may be provided on the shell of the sound-emitting part 11A.
  • the sound outlet hole may be located on the side wall of the shell facing or close to the user's external auditory canal, and the speaker may output sound to the user's ear canal through the sound outlet hole.
  • the speaker may include a diaphragm, and the chamber inside the shell is divided into at least a front chamber and a rear chamber by the diaphragm.
  • the sound outlet is acoustically coupled with the front chamber, and the vibration of the diaphragm drives the air in the front chamber to vibrate to produce air-conducted sound, and the air-conducted sound produced in the front chamber is transmitted to the outside through the sound outlet.
  • the shell may also include one or more pressure relief holes, and the pressure relief holes may be located on the side wall of the shell adjacent to or opposite to the side wall where the sound outlet is located.
  • the pressure relief holes are acoustically coupled with the rear chamber, and the vibration of the diaphragm also drives the air in the rear chamber to vibrate to produce air-conducted sound, and the air-conducted sound produced in the rear chamber can be transmitted to the outside through the pressure relief holes.
  • the speaker in the sound-emitting part 11A can output sound with a phase difference (for example, opposite phase) through the sound outlet and the pressure relief holes.
  • the sound outlet can be located on the side wall of the shell of the sound-emitting part 11A facing the external auditory canal 101 of the user, and the pressure relief hole can be located on the side of the shell of the sound-emitting part 11 away from the external auditory canal 101 of the user.
  • the shell can act as a baffle. Increase the sound path difference between the sound outlet and the pressure relief hole to the external auditory canal 101 to increase the sound intensity at the external auditory canal 101 and reduce the volume of far-field sound leakage.
  • the sound-emitting portion 11 may have a long axis direction Y and a short axis direction Z that are perpendicular to the thickness direction X and orthogonal to each other.
  • the long axis direction Y can be defined as the direction with the largest extension dimension in the shape of the two-dimensional projection surface of the sound-emitting portion 11 (for example, the projection of the sound-emitting portion 11 on the plane where its outer side surface is located, or the projection on the sagittal plane) (for example, when the projection shape is a rectangle or an approximate rectangle, the long axis direction is the length direction of the rectangle or the approximate rectangle), and the short axis direction Z can be defined as the direction perpendicular to the long axis direction Y in the shape of the projection of the sound-emitting portion 11 on the sagittal plane (for example, when the projection shape is a rectangle or an approximate rectangle, the short axis direction is the width direction of the rectangle or the approximate rectangle).
  • the thickness direction X can be defined as a direction perpendicular to the two-dimensional projection surface, for example, consistent with the direction of the coronal axis, both pointing to the left and right directions of the body.
  • the long axis direction Y and the short axis direction Z are still parallel or approximately parallel to the sagittal plane, and the long axis direction Y can have a certain angle with the direction of the sagittal axis, that is, the long axis direction Y is also tilted accordingly, and the short axis direction Z can have a certain angle with the direction of the vertical axis, that is, the short axis direction Z is also tilted, as shown in the wearing state of the sound-emitting part 11B in FIG2.
  • the entire or partial structure of the shell of the sound-emitting part 11B can extend into the concha cavity, that is, the projection of the shell of the sound-emitting part 11B on the sagittal plane and the projection of the concha cavity on the sagittal plane have an overlapping part.
  • the specific content of the sound-emitting part 11B reference can be made to the content elsewhere in this specification, for example, FIG3 and its corresponding specification content.
  • the sound-emitting part can also be in a horizontal state or an approximately horizontal state in the wearing state, as shown in the sound-emitting part 11C of FIG2, the long axis direction Y can be consistent or approximately consistent with the direction of the sagittal axis, both pointing to the front and back directions of the body, and the short axis direction Z can be consistent or approximately consistent with the direction of the vertical axis, both pointing to the up and down directions of the body.
  • the sound-emitting part 11C in an approximately horizontal state, which may mean that the angle between the long axis direction of the sound-emitting part 11C shown in FIG2 and the sagittal axis is within a specific range (for example, not more than 20°).
  • the wearing position of the sound-emitting part 11 is not limited to the sound-emitting part 11A, the sound-emitting part 11B and the sound-emitting part 11C shown in FIG2, and it only needs to satisfy the area J, the area M1 or the area M2 shown in FIG1.
  • the whole or part of the structure of the sound-emitting part 11 may be located in front of the crus helix 109 (for example, the area J surrounded by the dotted line in FIG1).
  • the whole or part of the structure of the sound-emitting part may contact the upper part of the external auditory canal 101 (for example, the location of one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, etc.).
  • the entire or partial structure of the sound-producing part may be located in a cavity formed by one or more parts of the ear (e.g., the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (e.g., the area M1 surrounded by the dotted lines in FIG. 1 which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 which includes at least the cavum concha 102).
  • the cavum concha 102 the cavum concha 102
  • the cymba concha 103 the triangular fossa 104
  • the area M2 which includes at least the cavum concha 102
  • the open earphone 10 can adopt any one of the following methods or a combination thereof.
  • the suspension structure 12 is configured as a contoured structure that fits at least one of the back side of the ear and the head, so as to increase the contact area between the suspension structure 12 and the ear and/or the head, thereby increasing the resistance of the acoustic device 10 to fall off the ear.
  • at least a portion of the suspension structure 12 is configured as an elastic structure so that it has a certain amount of deformation when worn, so as to increase the positive pressure of the suspension structure 12 on the ear and/or the head, thereby increasing the resistance of the open earphone 10 to fall off the ear.
  • the suspension structure 12 is configured to abut against the ear and/or the head when worn, so as to form a reaction force that presses the ear, so that the sound-generating portion 11 is pressed against the side of the ear away from the human head along the coronal axis direction, thereby increasing the resistance of the open earphone 10 to fall off the ear.
  • the sound-generating part 11 and the suspension structure 12 are configured to clamp the antihelix region and the area where the concha cavity is located from the front and back sides of the ear when worn, thereby increasing the resistance of the open-type earphone 10 to falling off the ear.
  • the sound-generating part 11 or the structure connected thereto is configured to at least partially extend into the concha cavity 102, the cymba concha 103, the triangular fossa 104 and the scaphoid 106, thereby increasing the resistance of the open-type earphone 10 to falling off the ear.
  • the end FE (also referred to as the free end) of the sound-emitting portion 11 can extend into the concha cavity.
  • the sound-emitting portion 11 and the suspension structure 12 can be configured to clamp the aforementioned ear region from the front and rear sides of the ear region corresponding to the concha cavity, thereby increasing the resistance of the open-type earphone 10 to falling off the ear, thereby improving the stability of the open-type earphone 10 in the wearing state.
  • the end FE of the sound-emitting portion is pressed in the concha cavity in the thickness direction X.
  • the end FE abuts against the concha cavity in the major axis direction Y and/or the minor axis direction Z (for example, abuts against the inner wall of the opposite end FE of the concha cavity).
  • the end FE of the sound-emitting portion 11 refers to the end portion of the sound-emitting portion 11 that is arranged opposite to the fixed end connected to the suspension structure 12, also referred to as the free end.
  • the sound-emitting portion 11 can be a structure with a regular or irregular shape.
  • an exemplary description is given to further illustrate the end FE of the sound-emitting portion 11.
  • the end wall surface of the sound-emitting part 11 is a plane
  • the end FE of the sound-emitting part 11 is an end side wall of the sound-emitting part 11 that is arranged opposite to the fixed end connected to the suspension structure 12.
  • the end FE of the sound-emitting part 11 may refer to a specific area away from the fixed end obtained by cutting the sound-emitting part 11 along the Y-Z plane (a plane formed by the short axis direction Z and the thickness direction X), and the ratio of the size of the specific area along the long axis direction Y to the size of the sound-emitting part along the long axis direction Y may be in the range of 0.05-0.2.
  • the listening volume at the listening position (for example, at the opening of the ear canal), especially the listening volume of the mid- and low-frequency sounds, can be increased, while still maintaining a good far-field sound leakage cancellation effect.
  • the sound-emitting part 11 and the concha cavity 102 form a structure similar to a cavity (hereinafter referred to as a quasi-cavity).
  • the quasi-cavity can be understood as a semi-enclosed structure surrounded by the side walls of the sound-emitting part 11 and the concha cavity 102 structure.
  • the semi-enclosed structure is not completely sealed and isolated from the external environment, but has a leakage structure (for example, an opening, a gap, a pipe, etc.) that is acoustically connected to the external environment.
  • a leakage structure for example, an opening, a gap, a pipe, etc.
  • One or more sound outlet holes may be provided on one side of the sound-emitting portion 11, and one or more pressure relief holes may be provided on other side walls of the shell of the sound-emitting portion 11 (for example, the side walls away from or facing away from the user's ear canal).
  • the sound outlet hole is acoustically coupled with the front cavity of the open-type earphone 10
  • the pressure relief hole is acoustically coupled with the rear cavity of the open-type earphone 10.
  • the sound output by the sound outlet hole and the sound output by the pressure relief hole can be approximately regarded as two sound sources, and the sound of the two sound sources are equal in magnitude and opposite in phase.
  • the inner wall corresponding to the sound-emitting portion 11 and the concha cavity forms a cavity-like structure, wherein the sound source corresponding to the sound outlet hole is located inside the cavity-like structure, and the sound source corresponding to the pressure relief hole is located outside the cavity-like structure, forming the acoustic model shown in FIG4.
  • FIG4 is a schematic diagram of an acoustic model formed by an open-type earphone according to some embodiments of the present specification.
  • a cavity-like structure 402 may include a listening position and at least one sound source 401A.
  • “include” may mean that at least one of the listening position and the sound source 401A is inside the cavity-like structure 402, or at least one of the listening position and the sound source 401A is at the inner edge of the cavity-like structure 402.
  • the listening position may be equivalent to the entrance of the ear canal, or may be an acoustic reference point of the ear, such as the ear reference point (ERP), the ear-drum reference point (DRP), etc., or may be an entrance structure leading to the listener, etc.
  • the sound source 401B is located outside the cavity-like structure 402, and the sound sources 401A and 401B with opposite phases radiate sound to the surrounding space respectively and cause interference and destructive phenomenon of sound waves, thereby achieving the effect of sound leakage cancellation. Specifically, since the sound source 401A is wrapped by the cavity-like structure 402, most of the sound radiated by it will reach the listening position by direct radiation or reflection.
  • the sound generated by the secondary sound source 401B' has a weak anti-phase cancellation effect on the sound source 401A in the cavity, which significantly increases the listening volume at the listening position.
  • the sound source 401A radiates sound to the outside through the leakage structure 402 of the cavity, which is equivalent to generating a secondary sound source 401A' at the leakage structure 402.
  • the intensity of the secondary sound source 401A' is equivalent to that of the sound source 401A, and still maintains a considerable effect of reducing sound leakage.
  • the outer wall surface of the shell of the sound-emitting part 11 is usually a plane or a curved surface, while the contour of the user's concha is an uneven structure.
  • a cavity-like structure connected to the outside world is formed between the sound-emitting part 11 and the contour of the concha.
  • the sound outlet hole is arranged at a position where the shell of the sound-emitting part faces the opening of the user's ear canal and close to the edge of the concha
  • the pressure relief hole is arranged at a position where the sound-emitting part 11 is away from or far away from the opening of the ear canal, so as to construct the acoustic model shown in Figure 4, thereby enabling the user to improve the listening position at the ear opening when wearing open-ear headphones and reduce the sound leakage effect in the far field.
  • the sound-generating part of the open earphone may include a transducer and a housing for accommodating the transducer, wherein the transducer is an element that can receive an electrical signal and convert it into a sound signal for output.
  • the type of transducer may include a low-frequency (e.g., 30 Hz to 150 Hz) speaker, a mid-low-frequency (e.g., 150 Hz to 500 Hz) speaker, a mid-high-frequency (e.g., 500 Hz to 5 kHz) speaker, a high-frequency (e.g., 5 kHz to 16 kHz) speaker, or a full-frequency (e.g., 30 Hz to 16 kHz) speaker, or any combination thereof, by frequency.
  • a low-frequency e.g., 30 Hz to 150 Hz
  • a mid-low-frequency e.g., 150 Hz to 500 Hz
  • a mid-high-frequency e.g., 500 Hz to 5 kHz
  • the low frequency, high frequency, etc. mentioned here only represent the approximate range of frequency, and different division methods may be used in different application scenarios.
  • a crossover point may be determined, the low frequency represents the frequency range below the crossover point, and the high frequency represents the frequency above the crossover point.
  • the crossover point may be any value within the audible range of the human ear, for example, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 1000 Hz, etc.
  • the transducer may include a diaphragm.
  • a front cavity (not shown) for transmitting sound is provided at the front side of the diaphragm in the housing.
  • the front cavity is acoustically coupled to the sound outlet hole, and the sound at the front side of the diaphragm may be emitted from the sound outlet hole through the front cavity.
  • a rear cavity (not shown) for transmitting sound is provided at the rear side of the diaphragm in the housing.
  • the rear cavity is acoustically coupled to the pressure relief hole, and the sound at the rear side of the diaphragm may be emitted from the pressure relief hole through the rear cavity.
  • the ear hook may include a first portion 121 and a second portion 122 connected in sequence, wherein the first portion 121 may be hung between the auricle of the user and the head, and the second portion 122 may extend to the outside of the ear (the side of the ear away from the human head along the coronal axis) and connect to the sound-emitting portion, thereby fixing the sound-emitting portion near the user's ear canal but not blocking the ear canal opening.
  • a sound outlet may be provided on the side wall of the housing facing the auricle, thereby directing the sound generated by the transducer out of the housing and then transmitting it to the ear canal opening of the user.
  • the ear hook itself is elastic, and the relative position of the sound-emitting part 11 and the ear hook may be different in the wearing state and the non-wearing state.
  • the distance from the end FE of the sound-emitting part 11 to the ear hook in the non-wearing state is smaller than the distance from the end FE of the sound-emitting part 11 to the ear hook in the wearing state, so that the sound-emitting part 11 tends to move closer to the ear hook in the wearing state, forming a clamping force to clamp the auricle.
  • the open-type earphone 10 can be projected onto a specific plane, and the open-type earphone 10 can be described by parameters related to the projection shape on the plane.
  • the open-type earphone 10 in the wearing state, can be projected onto the sagittal plane of the human body to form a corresponding projection shape.
  • a first plane similar to this can be selected with reference to the relative positional relationship between the sagittal plane of the human body and the open-type earphone 10, so that the open-type earphone 10 is on the first plane.
  • the first plane 60 can be determined according to the shape of the ear hook.
  • the first plane 60 can be determined in the following manner: the ear hook is placed on a flat support surface (such as a horizontal desktop, a ground plane, etc.), and when the ear hook is in contact with the support surface and placed stably, the support plane is the first plane 60 corresponding to the open earphone 10 at this time.
  • the first plane 60 can also be the sagittal plane of the human body, and the non-wearing state here can be expressed as removing the auricle structure in the user's head model, and using a fixing piece or glue to fix the sound-generating part 11 to the human head model in the same posture as in the wearing state.
  • the first plane 60 can also refer to a plane formed by a bisector that bisects or roughly bisects the ear hook along its length extension direction.
  • the sound-emitting part 11 when the user wears the open earphone 10, the sound-emitting part 11 has a seventh projection on the sagittal plane (i.e., the plane formed by the T-axis and the S-axis in Figure 5A) along the coronal axis direction R, and the shape of the sound-emitting part 11 can be a regular or irregular three-dimensional shape.
  • the seventh projection of the sound-emitting part 11 on the sagittal plane is a regular or irregular shape.
  • the seventh projection of the sound-emitting part 11 on the sagittal plane may be a rectangle or a quasi-rectangle (for example, a runway shape).
  • the seventh projection of the sound-emitting part 11 on the sagittal plane may be an irregular shape
  • a rectangular area shown in a solid line frame P can be delineated around the projection of the sound-emitting part 11 (i.e., the seventh projection) shown in Figures 5A and 5B, and the centroid O of the rectangular area shown in the solid line frame P can be approximately regarded as the centroid of the seventh projection.
  • the above description of the seventh projection and its centroid is only used as an example, and the shape of the seventh projection is related to the shape of the sound-emitting part 11 or the wearing condition relative to the ear.
  • the auricle has an eighth projection on the sagittal plane along the coronal axis R direction.
  • the distance h 1 also referred to as the first distance
  • the distance h 1 between the centroid O of the seventh projection and the highest point of the eighth projection in the vertical axis direction (for example, the T-axis direction shown in FIG. 5A ) and the height h of the eighth projection in the vertical axis direction may be between 0.35 and 0.6.
  • the sound-emitting part 11 and the suspension structure 12 may be two independent structures or an integrally formed structure.
  • the thickness direction X, the major axis direction Y and the minor axis direction Z are introduced here according to the three-dimensional structure of the sound-emitting part 11, wherein the major axis direction Y is perpendicular to the minor axis direction Z, and the thickness direction X is perpendicular to the plane formed by the major axis direction Y and the minor axis direction Z.
  • the confirmation process of the solid-line frame P is as follows: determine the two points of the sound-emitting part 11 that are farthest apart in the long-axis direction Y, and draw a first line segment and a second line segment through the two points respectively, which are parallel to the short-axis direction Z. Determine the two points of the sound-emitting part 11 that are farthest apart in the short-axis direction Z, and draw a third line segment and a fourth line segment through the two points respectively, which are parallel to the long-axis direction Y.
  • the area formed by the above-mentioned line segments can obtain the rectangular area of the solid-line frame P shown in Figures 5A and 5B.
  • the ratio of the distance w1 (also referred to as the second distance) between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction (for example, the S-axis direction shown in FIG. 5A ) to the width w of the eighth projection in the sagittal axis direction can be between 0.4 and 0.7.
  • the highest point of the eighth projection can be understood as the point with the largest distance from the projection of a certain point on the user's neck on the sagittal plane in the vertical axis direction among all its projection points, that is, the projection of the highest point of the auricle (for example, point A1 in FIG. 5A ) on the sagittal plane is the highest point of the eighth projection.
  • the lowest point of the eighth projection can be understood as the point with the smallest distance from the projection of a certain point on the user's neck on the sagittal plane in the vertical axis direction among all its projection points, that is, the projection of the lowest point of the auricle (for example, point A2 in FIG.
  • the height of the eighth projection in the vertical axis direction is the difference between the point with the largest distance and the point with the smallest distance from the projection of a certain point on the user's neck on the sagittal plane in the vertical axis direction among all the projection points in the eighth projection (the height h shown in FIG. 5A ), that is, the distance between point A1 and point A2 in the vertical axis T direction.
  • the end point of the eighth projection can be understood as the point with the largest distance in the sagittal axis direction relative to the projection of the user's nose tip on the sagittal plane among all its projection points, that is, the projection of the end point of the auricle (for example, point B1 shown in FIG. 5A ) on the sagittal plane is the end point of the eighth projection.
  • the front end point of the eighth projection can be understood as the point with the smallest distance in the sagittal axis direction relative to the projection of the user's nose tip on the sagittal plane among all its projection points, that is, the projection of the front end point of the auricle (for example, point B2 shown in FIG.
  • the width of the eighth projection in the sagittal axis direction is the difference between the point with the largest distance and the point with the smallest distance in the sagittal axis direction relative to the projection of the nose tip on the sagittal plane among all the projection points in the eighth projection (the width w shown in FIG. 5A ), that is, the distance between point B1 and point B2 in the sagittal axis S direction.
  • the projection of the structures such as the sound-producing part 11 or the auricle on the sagittal plane refers to the projection on the sagittal plane along the coronal axis R direction, which will not be emphasized in the following text of the specification.
  • the area of the seventh projection of the sound-emitting part 11 on the sagittal plane is generally much smaller than the projection area of the auricle on the sagittal plane, so as to ensure that the user's ear canal opening is not blocked when wearing the open earphone 10, and at the same time reduce the load on the user when wearing it, so as to facilitate the user's daily carrying.
  • the sound outlet provided on the sound-emitting part 11 may also cause the sound outlet provided on the sound-emitting part 11 to be far away from the ear canal opening, affecting the listening volume of the user's ear canal opening.
  • the ratio of the distance h1 between the centroid O of the seventh projection and the highest point A1 of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction is:
  • the sound-emitting part 11 can be controlled between 0.35-0.6, so that when part or the whole structure of the sound-emitting part extends into the concha cavity, the force of the concha cavity on the sound-emitting part 11 can be used to support and limit the sound-emitting part 11 to a certain extent, thereby improving its wearing stability and comfort.
  • the sound-emitting part 11 can also form an acoustic model shown in Figure 4 with the concha cavity to ensure the listening volume of the user at the listening position (for example, the ear canal opening) and reduce the sound leakage volume in the far field.
  • the ratio of the distance h1 between the centroid O of the seventh projection and the highest point A1 of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction is controlled between 0.35-0.55. More preferably, the ratio of the distance h1 between the centroid O of the seventh projection and the highest point A1 of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction is controlled between 0.4-0.5.
  • part or the entire structure of the sound-emitting part 11 may be located in the facial area in front of the ear, or extend out of the outer contour of the auricle, which will also cause the sound-emitting part 11 to be unable to construct the acoustic model shown in FIG. 4 with the concha cavity, and will also cause the open-type earphone 10 to be unstable when worn.
  • the open-type earphone provided in the embodiment of the present specification can improve the wearing stability and comfort of the open-type earphone while ensuring the acoustic output effect of the sound-emitting part by controlling the ratio of the distance w1 between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction to be between 0.4 and 0.7.
  • the ratio of the distance w1 between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction can be 0.45-0.68.
  • the ratio of the distance w1 between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction is controlled within a range of 0.5-0.6.
  • the height h of the eighth projection in the vertical axis direction can be 55mm ⁇ 65mm.
  • the distance h1 between the centroid O of the seventh projection and the projection of the highest point of the eighth projection in the sagittal plane in the vertical axis direction is less than 15mm or greater than 50mm, the sound-emitting part 11 will be located far away from the concha cavity. Not only will the acoustic model shown in Figure 4 fail to be constructed, but there will also be a problem of unstable wearing.
  • the distance h1 between the centroid O of the seventh projection and the highest point of the eighth projection in the vertical axis direction can be controlled to be between 15mm and 50mm.
  • the width of the eighth projection in the sagittal axis direction can be 40mm ⁇ 55mm.
  • the sound-emitting part 11 When the distance between the projection of the centroid O of the seventh projection in the sagittal plane and the end point of the eighth projection in the sagittal axis direction is greater than 45mm or less than 15mm, the sound-emitting part 11 will be too forward or too backward relative to the user's ear, which will also cause the sound-emitting part 11 to be unable to construct the acoustic model shown in Figure 4, and will also cause the open earphone 10 to be unstable when wearing.
  • the distance between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction can be controlled between 15mm and 45mm.
  • FIG. 8 is a schematic diagram of a cavity-like structure according to some embodiments of the present specification.
  • FIG. 9 is a listening index curve of a cavity-like structure with leakage structures of different sizes according to some embodiments of the present specification.
  • the opening area of the leakage structure on the cavity-like structure is S
  • the area of the cavity-like structure directly acted upon by the contained sound source e.g., "+” shown in FIG. 8
  • S 0 the area of the cavity-like structure directly acted upon by the contained sound source
  • Direct action here means that the sound emitted by the contained sound source directly acts on the wall of the cavity-like structure acoustically without passing through the leakage structure.
  • the distance between the two sound sources is d 0
  • the distance from the center of the opening shape of the leakage structure to another sound source is L.
  • the larger the relative opening size S/S 0 is, the smaller the listening index is. This is because the larger the relative opening is, the more sound components are directly radiated outward from the included sound source, and the less sound reaches the listening position, causing the listening volume to decrease as the relative opening increases, which in turn causes the listening index to decrease. It can be inferred from this that the larger the opening is, the smaller the listening volume is at the listening position.
  • the relative position of the sound-emitting part 11 and the user's ear canal (e.g., the concha cavity) will affect the size of the gap formed between the sound-emitting part 11 and the concha cavity.
  • the gap size will be smaller, and when the end FE of the sound-emitting part 11 does not abut against the concha cavity, the gap size will be larger.
  • the gap formed between the sound-emitting part 11 and the concha cavity can be regarded as a leakage structure in the acoustic model in FIG. 4.
  • the relative position of the sound-emitting part 11 and the user's ear canal (e.g., the concha cavity) will affect the number of leakage structures of the cavity-like structure formed by the sound-emitting part 11 and the user's concha cavity and the opening size of the leakage structure, and the opening size of the leakage structure will directly affect the listening quality, which is specifically manifested in that the larger the opening of the leakage structure, the more sound components directly radiated outward by the sound-emitting part 11, and the less sound reaching the listening position.
  • the sound-emitting part 11 can be made to fit the user's concha cavity as much as possible.
  • the ratio of the distance h1 between the centroid O of the seventh projection and the highest point of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction can be controlled between 0.35-0.6
  • the ratio of the distance w1 between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction can be controlled between 0.4-0.65.
  • the ratio of the distance h1 between the centroid O of the seventh projection and the highest point of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction can also be between 0.35-0.55, and the ratio of the distance w1 between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction can be between 0.45-0.68.
  • the ratio of the distance h1 between the centroid O of the seventh projection and the highest point of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction can also be between 0.35 and 0.5.
  • the ratio of the distance w1 of the end point of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction may be between 0.48 and 0.6.
  • the aforementioned ratio range may float within a certain range. For example, when the user's earlobe is long, the height h of the eighth projection in the vertical axis direction will be larger than that in general. At this time, when the user wears the open earphone 100, the ratio of the distance h1 between the centroid O of the seventh projection and the highest point of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction will become smaller, for example, it can be between 0.2-0.55.
  • the width w of the eighth projection in the sagittal axis direction will be smaller than that in general, and the distance w1 between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction will also be smaller.
  • the ratio of the distance w1 between the centroid O of the seventh projection and the end point of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction may become larger, for example, it can be between 0.4-0.75.
  • the open earphone 10 may be influential to define the open earphone 10 by the ratio of the distance between the centroid O of the seventh projection and the highest point of the eighth projection (the seventh distance) to the height of the eighth projection on the vertical axis.
  • the highest point A3 and the lowest point A4 of the connection area between the user's auricle and the head are selected here for illustration.
  • the highest point of the connection between the auricle and the head can be understood as the position where the projection of the connection area between the auricle and the head in the sagittal plane has the maximum distance relative to the projection of a specific point on the neck in the sagittal plane.
  • the highest and lowest points of the connection between the auricle and the head can be understood as the position where the projection of the connection area between the auricle and the head in the sagittal plane has the minimum distance relative to the projection of a specific point on the neck in the sagittal plane.
  • the sound-emitting part 11 can be made to fit the user's concha cavity as much as possible.
  • the ratio of the distance h3 between the centroid O of the seventh projection and the highest point of the projection of the connection area between the auricle and the head on the sagittal plane in the vertical axis direction to the height h2 of the highest and lowest points of the projection of the connection area between the auricle and the head on the sagittal plane in the vertical axis direction can be controlled between 0.4-0.65.
  • the ratio of the distance h3 between the centroid O of the seventh projection and the highest point of the projection of the connection area between the auricle and the head on the sagittal plane in the vertical axis direction to the height h2 of the highest and lowest points of the projection of the connection area between the auricle and the head on the sagittal plane in the vertical axis direction can be controlled between 0.45-0.6.
  • the ratio of the distance h3 between the centroid O of the seventh projection and the highest point of the projection of the connection area between the auricle and the head on the sagittal plane in the vertical axis direction to the height h2 of the highest and lowest points of the projection of the connection area between the auricle and the head on the sagittal plane in the vertical axis direction can be in the range of 0.5-0.6.
  • the open earphone 10 may form a first projection on a first plane 60 (such as a sagittal plane), and the first projection includes an outer contour, a first end contour, an inner contour, and a second end contour.
  • the first end contour may be a projection contour of the end FE of the sound-emitting portion 11 on the ear hook plane, and the two end points P0 and P1 of the first end contour are projection points of the junction between the end FE and other parts of the sound-emitting portion 11 on the ear hook plane.
  • the end FE please refer to the relevant description of FIG. 3 of this specification.
  • the second end contour may be a projection contour of the free end BE of the suspension structure 12 on the ear hook plane, and the two end points Q0 and Q1 of the second end contour are projection points of the junction between the free end BE and other parts of the suspension structure 12 on the ear hook plane.
  • the outer contour may be a contour where the first projection is located between point P1 and point Q1.
  • the inner contour may be a contour where the first projection is located between point P0 and point Q0.
  • the free end BE of the suspension structure 12 may be at least a partial area of the end of the first part of the suspension structure 12 away from the second part.
  • the end of the first part of the suspension structure 12 away from the second part may be a structure with a regular or irregular shape.
  • an exemplary description is given to further illustrate the free end BE of the suspension structure 12. For example, when the end of the first part of the suspension structure 12 away from the second part is a rectangular parallelepiped structure, its end wall surface is a plane. At this time, the free end BE of the suspension structure 12 is the end side wall of the end of the first part of the suspension structure 12 away from the second part.
  • the free end BE of the suspension structure 12 may be an area obtained after extending a specific distance from the farthest position away from the second part to the second part in the extension direction of the first part of the suspension structure 12.
  • the ratio of the specific distance to the total extension distance of the first part of the suspension structure 12 may be in the range of 0.05-0.2.
  • the first end contour can be a straight line segment or an arc
  • point P0 and point P1 respectively represent the two ends of the first end contour.
  • point P0 can be the intersection point of the arc formed by the projection of the end FE and the line segment of the upper side wall projection.
  • point P1 can be the intersection point of the arc formed by the projection of the end FE and the line segment of the lower side wall projection.
  • the end of the ear hook away from the sound-emitting part 11 also has a free end.
  • the projection of the free end of the ear hook on the ear hook plane 60 forms a second end contour.
  • the second end contour can be a straight line segment or an arc, and point Q0 and point Q1 respectively represent the two ends of the second end contour.
  • point Q0 and point Q1 can be the two end points of a line segment or an arc projected from the free end of the first part 121 of the ear hook in a direction away from the second part 122 of the ear hook on the first plane 60.
  • the end point close to the sound-emitting part 11 is point Q0, and the end point away from the sound-emitting part 11 is Q1.
  • the projection shape of the open-type earphone 10 on the ear hook plane 60 and the human body sagittal plane can reflect the wearing method of the open-type earphone 10 on the ear.
  • the area of the first projection can reflect the area of the auricle that the open-type earphone 10 can cover when worn, as well as the contact method between the sound-emitting part 11 and the ear hook and the ear.
  • the inner contour, outer contour, first end contour, and second end contour in the first projection form a non-enclosed area. The size of this area is similar to that of the open-type earphone 10.
  • a tangent segment 50 connecting the first end contour and the second end contour may be determined, and an area enclosed by a third closed curve defined by the tangent segment 50, the inner contour, the first end contour, and the second end contour is taken as the third area of the first projection.
  • the wearing position of the sound-emitting portion 11 (that is, the relative position of the sound-emitting portion 11 and the ear canal or the concha cavity of the user) will affect the third area of the first projection of the open earphone 10 formed in the sagittal plane, thereby affecting the number of leakage structures of the cavity-like structure formed by the sound-emitting portion 11 and the concha cavity of the user and the opening size of the leakage structure, and the opening size of the leakage structure will directly affect the listening quality.
  • the sound-emitting portion 11 may not be able to abut against the edge of the concha cavity, causing the opening of the leakage structure of the cavity-like structure formed by the sound-emitting portion 11 and the concha cavity to be too large,
  • the sound components directly radiated outward from the sound hole increase, and the sound reaching the listening position decreases, which in turn leads to a decrease in the sound efficiency of the sound-emitting part 11.
  • the sound efficiency can be understood as the ratio of the listening volume at the ear canal opening to the leakage volume in the far field.
  • the third area when the third area is too large, it may also lead to a decrease in the clamping effect between the ear hook and the sound-emitting part 11, resulting in unstable wearing.
  • the third area of the third closed curve should not be too large.
  • the third area of the third closed curve does not exceed 600mm 2.
  • the distance between the ear hook (for example, the top of the ear hook) and the sound-emitting part 11 may be too small, or the clamping force between the ear hook and the sound-emitting part 11 on the user's auricle may be too large, thereby affecting the wearing comfort of the open earphone 10. Based on this, the third area of the third closed curve should not be too small.
  • the third area may be no less than 200mm2 .
  • the third area of the third closed curve may be in the range of 200mm2 to 600mm2 .
  • the third area of the third closed curve is in the range of 300mm2 to 500mm2 .
  • FIG10 is a schematic diagram of the morphological difference between the open earphone 10 in the wearing state and the non-wearing state according to some embodiments of the present specification.
  • the dotted area represents the first part of the ear hook in the wearing state, which is farther from the end FE of the sound-emitting part than the first part of the ear hook in the non-wearing state.
  • the open earphone 10 forms a second projection on the sagittal plane of the human body, similar to the first projection shown in FIG6 , and the second projection also includes an outer contour, a first end contour, an inner contour, and a second end contour, and the inner contour, the first end contour, the second end contour, and the tangent segment connecting the first end contour and the second end contour jointly define a fourth closed curve.
  • the projection shape formed by the projection of the open earphone 10 on the first plane is close to the projection shape formed by the projection of the open earphone 10 on the sagittal plane of the human body.
  • the contour boundary points as shown in FIG6 namely point P0, point P1, point Q0, and point Q1 can still be used to describe the division of each contour in the second projection. That is to say, the definitions of the outer contour, the first end contour, the inner contour, the second end contour, and the tangent segment in the second projection are similar to those in the first projection, and are not repeated here.
  • the inner contour, the first end contour, the second end contour, and the tangent segment 50 connecting the first end contour and the second end contour jointly define a fourth closed curve. Similar to the third area, in some embodiments, the tangent segment 50 connecting the first end contour and the second end contour can be determined, and the fourth closed curve jointly defined by the tangent segment 50, the inner contour, the first end contour, and the second end contour has a fourth area. The difference between the fourth closed curve and the third closed curve can reflect the degree of fit between the sound-emitting portion 11 and the ear hook and the ear when the open earphone 10 is worn.
  • the distance between the ear hook and the sound-emitting part 11 increases in the wearing state, so the fourth area formed by the open earphone 10 in the wearing state is greater than the third area formed in the non-wearing state.
  • the sound-emitting part 11 may not abut the edge of the concha cavity, causing the opening of the leakage structure of the cavity-like structure formed by the sound-emitting part 11 and the concha cavity to be too large, and the sound components directly radiated outward from the sound outlet increase, and the sound reaching the listening position decreases, thereby reducing the sound efficiency of the sound-emitting part 11.
  • the fourth area of the fourth closed curve should not be too large.
  • the fourth area of the fourth closed curve does not exceed 900 mm2 .
  • the fourth area if the fourth area is too small, the distance between the ear hook (e.g., the top of the ear hook) and the sound source 11 may be too small, or the clamping force between the ear hook and the sound source 11 on the user's auricle may be too large, thereby affecting the wearing comfort of the open earphone 10. Based on this, the fourth area of the fourth closed curve should not be too small. In some embodiments, the fourth area is not less than 350 mm 2 .
  • the fourth area of the fourth closed curve ranges from 350 mm 2 to 900 mm 2. In some embodiments, in order to ensure the wearing stability of the user, ensure the listening volume of the open earphone 10 at the listening position (for example, at the opening of the ear canal), and improve the wearing comfort of the user, the fourth area of the fourth closed curve ranges from 450 mm 2 to 750 mm 2 .
  • the ratio of the third area of the fourth area is between 0.5 and 0.85. In some embodiments, in order to further improve the fit between the sound-emitting part 11 and the ear hook and the ear, and to increase the stability of the open earphone when worn, the ratio of the third area to the fourth area is between 0.59 and 0.77.
  • the open-type earphone provided in the embodiments of the present specification can make the sound-emitting part 11 at least partially extend into the concha cavity and form the acoustic model shown in FIG4 with the concha cavity of the user by controlling the ratio of the distance h1 between the centroid O of the seventh projection of the sound-emitting part 11 on the sagittal plane and the highest point of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction within a range of 0.35-0.6, and can make the sound-emitting part 11 abut against the edge of the concha cavity by controlling the area of the closed curve defined by the projections of the open-type earphone in the wearing state and the non-wearing state (such as the third area of the first projection and the fourth area of the second projection) within a suitable range, so that the opening of the leakage structure of the cavity-like structure formed by the sound-emitting part 11 and the concha cavity is smaller, so as to reduce the sound radiated out
  • the fourth area may be too large.
  • the wearing may be unstable (the sound-emitting part 11 and the ear hook cannot effectively clamp the ear at this time) and the sound-emitting part 11 cannot effectively extend into the concha cavity (or the opening of the leakage structure of the cavity-like structure formed by the sound-emitting part 11 and the concha cavity is too large), thereby affecting the listening effect; and if the distance is too small, the fourth area may be too small.
  • the distance between the centroid O of the seventh projection and the projection of the first part 121 of the ear hook on the sagittal plane can range from 18mm to 43mm.
  • the fourth area can be within a suitable range (e.g., the fourth area is within a range of 450 mm 2 to 750 mm 2 ), so that the ear hook fits the user's ear well, while ensuring that the sound-emitting portion 11 is exactly located at the user's concha cavity, and the acoustic model shown in FIG. 4 can be formed to ensure that the sound output by the sound-emitting portion 11 can be transmitted to the user well.
  • a suitable range e.g., the fourth area is within a range of 450 mm 2 to 750 mm 2
  • the distance range between the centroid O of the seventh projection and the projection of the first part 121 of the ear hook on the sagittal plane should not be too large, for example, less than 41 mm.
  • the distance range between the centroid O of the seventh projection and the projection of the first part 121 of the ear hook on the sagittal plane should not be too small, for example, greater than 20 mm. In some embodiments, considering the listening effect, wearing stability and comfort of the open earphone 10, the distance between the centroid O of the seventh projection and the projection of the first part 121 of the ear hook on the sagittal plane can range from 20mm to 41mm.
  • the distance between the centroid O of the seventh projection and the projection of the first part 121 of the ear hook on the sagittal plane can range from 22mm to 40.5mm.
  • the minimum distance d3 between the projection of the centroid O of the seventh projection on the sagittal plane and the projection of the first part 121 of the ear hook on the sagittal plane can be 21mm
  • the maximum distance d4 between the projection of the centroid O of the seventh projection on the user's sagittal plane and the projection of the first part 121 of the ear hook on the sagittal plane can be 41.2mm.
  • the distance between the sound-emitting part 11 and the ear hook can change to a certain extent in the wearing state and the non-wearing state (usually the distance in the non-wearing state is smaller than the distance in the wearing state).
  • the distance between the centroid of the projection of the sound-emitting part 11 on the first plane and the projection of the first part 121 of the ear hook on the first plane can be in the range of 15mm-38mm.
  • the third area can be within a suitable range (such as making the third area range from 300mm2 to 500mm2 ), so that the ear hook fits the user's ear better, while ensuring that the sound-emitting part 11 is exactly located at the user's concha cavity, and the acoustic model shown in Figure 4 can be formed to ensure that the sound output by the sound-emitting part 11 can be better transmitted to the user.
  • a suitable range such as making the third area range from 300mm2 to 500mm2
  • the distance range between the centroid of the projection of the sound-emitting part 11 on the first plane and the projection of the first part 121 of the ear hook on the first plane should not be too large, for example, less than 36mm.
  • the distance range between the centroid of the projection of the sound-emitting part 11 on the first plane and the projection of the first part 121 of the ear hook on the first plane should not be too small, for example, greater than 16mm.
  • the distance range between the centroid of the projection of the sound-emitting part 11 on the first plane and the projection of the first part 121 of the ear hook on the first plane can be 16mm-36mm.
  • the ear hook of the open earphone 100 can generate a certain clamping force on the user's ear when it is worn, thereby improving the stability of the user when wearing it without affecting the user's wearing experience.
  • FIG11A is a schematic diagram of an exemplary structure of an open-type earphone provided in some embodiments of the present specification
  • FIG11B is a schematic diagram of a user wearing an open-type earphone according to some embodiments of the present specification.
  • the open-type earphone 10 may further include a battery compartment 13, and the sound-emitting portion 11 and the battery compartment 13 are respectively located at the two ends of the suspension structure 12.
  • the end of the first part 121 of the ear hook away from the sound-emitting portion 11 is connected to the battery compartment 13, and a battery electrically connected to the sound-emitting portion 11 is disposed in the battery compartment 13.
  • the ear hook is an arc-shaped structure adapted to the connection between the human auricle and the head.
  • the sound-emitting portion 11 and the battery compartment 13 are in contact with each other.
  • the battery compartment 13 can be located on the front outer side and the rear inner side of the auricle, respectively, wherein the sound-emitting part 11 extends toward the first part 121 of the ear hook, so that the whole or part of the structure of the sound-emitting part 11 extends into the concha cavity and cooperates with the concha cavity to form a cavity-like structure.
  • the battery compartment 13 When the size (length) of the first part 121 in its extension direction is too small, the battery compartment 13 will be located near the top of the user's auricle. At this time, the first part 121 and the second part 121 cannot provide the open earphone 10 with sufficient contact area for the ear and/or head, causing the open earphone 10 to easily fall off the ear. Therefore, the length of the first part 121 of the ear hook needs to be long enough to ensure that the ear hook can provide a large enough contact area for the ear and/or head, thereby increasing the resistance of the open earphone 10 to fall off from the ear and/or head of the human body.
  • the battery compartment 13 is far away from the auricle, and cannot provide sufficient clamping force for the open earphone, which is easy to fall off.
  • the battery compartment 13 or the sound-emitting part 11 squeezes the auricle, and long-term wearing affects the user's comfort.
  • the length of the first part 121 of the ear hook in its extension direction and the distance between the end of the sound-emitting part 11 and the first part 121 can be characterized by the distance between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane (i.e., the seventh projection) and the centroid Q of the projection of the battery compartment 13 on the sagittal plane.
  • the distance of the centroid Q of the projection of the battery compartment 13 on the sagittal plane relative to the horizontal plane is smaller than the distance of the centroid O of the projection of the sound-emitting part 11 on the sagittal plane relative to the horizontal plane. That is, in the wearing state, the centroid Q of the projection of the battery compartment 13 on the sagittal plane is located below the centroid O of the projection of the sound-emitting part 11 on the sagittal plane. In the wearing state, the position of the sound-emitting part 11 needs to be partially or completely extended into the concha cavity, and its position is relatively fixed.
  • the battery compartment 13 will be tightly pressed against or even pressed against the posterior medial side of the auricle, affecting the wearing comfort of the user.
  • the distance between the projection centroid O of the sound-emitting part 11 on the sagittal plane and the projection centroid Q of the battery compartment 13 on the sagittal plane is too small, the length of the first part 121 of the ear hook will also be shorter, resulting in a smaller fourth area, which will also affect the wearing comfort of the user.
  • the length of the first part 121 of the ear hook will also be longer, resulting in a larger fourth area.
  • the user wears it he or she will obviously feel that the earphone part located on the posterior medial side of the auricle is heavy or the battery compartment 13 is far away from the auricle, and the user is prone to fall off when exercising, affecting the wearing comfort of the user and the stability of the open earphone when wearing it.
  • the distance d8 between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane ranges from 20mm to 30mm.
  • the distance d8 between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane should not be too small, for example, greater than 22mm.
  • the distance d8 between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane should not be too large, for example, less than 28mm.
  • the distance d8 between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane is in the range of 22mm-28mm.
  • the distance d8 between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane is in the range of 23mm-26mm.
  • the distance between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane will change when the open earphone 10 is in the wearing state and the unwearing state.
  • the distance d7 between the centroid of the projection of the sound-emitting part 11 on the first plane and the centroid of the projection of the battery compartment 13 on the first plane ranges from 16.7 mm to 25 mm.
  • the distance d7 between the centroid of the projection of the sound-emitting part 11 on the first plane and the centroid of the projection of the battery compartment 13 on the first plane should not be too small, for example, greater than 18 mm. In some embodiments, in order to prevent the third area from being too large and affecting the wearing stability of the open earphone 10, in the unwearing state, the distance d7 between the centroid of the projection of the sound-emitting part 11 on the first plane and the centroid of the projection of the battery compartment 13 on the first plane should not be too large, for example, less than 23 mm.
  • the distance d7 between the centroid of the projection of the sound-emitting part 11 on the first plane and the centroid of the projection of the battery compartment 13 on the first plane ranges from 18mm to 23mm. In some embodiments, in order to take into account the stability and comfort of the user when wearing the open earphone 10 and prevent the third area from being too large or too small, when not worn, the distance d7 between the centroid of the projection of the sound-emitting part 11 on the first plane and the centroid of the projection of the battery compartment 13 on the first plane ranges from 19.6mm to 21.8mm.
  • the distance between the centroid of the projection of the sound-emitting part 11 on the projection plane (e.g., sagittal plane, first plane) and the centroid of the projection of the battery compartment 13 on the projection plane will change, and the change value can reflect the softness of the ear hook.
  • the softness of the ear hook is too large, the overall structure and shape of the open earphone 10 are unstable, and the sound-emitting part 11 and the battery compartment 13 cannot be strongly supported. The wearing stability is also poor and it is easy to fall off.
  • the open earphone 10 is not easy to deform.
  • the ear hook will be tightly attached to or even pressed on the area between the human ear and/or head, affecting the wearing comfort.
  • the ratio of the distance change between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane when the open-ear headphones 10 are worn to the distance between the centroid of the projection of the sound-emitting part 11 on the first plane and the centroid of the projection of the battery compartment 13 on the first plane when the open-ear headphones 10 are not worn is in the range of 0.3-0.8.
  • the ratio of the change in the distance between the centroid O of the projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the battery compartment 13 on the sagittal plane when the open earphone 10 is worn and the distance between the centroid of the projection of the sound-emitting part 11 on the first plane and the centroid of the projection of the battery compartment 13 on the first plane when the open earphone 10 is not worn is in the range of 0.45-0.68.
  • the battery compartment 13 and the first part 121 of the ear hook can be independent structures, and the battery compartment 13 and the first part 121 of the ear hook are connected by means of embedding, snapping, etc.
  • the splicing point or splicing line between the battery compartment 13 and the first part 121 can be used to more accurately obtain the projection of the battery compartment 13 on the sagittal plane.
  • the battery compartment 13 can also be regarded as a part of the first part 121 of the ear hook.
  • the battery compartment 13 is located at the end of the first part 121 away from the sound-emitting part 11, and the first end contour in the first projection and/or the second projection is the projection contour of the free end of the battery compartment on the first plane 60.
  • the distribution of the weight of the ear hook needs to be considered.
  • the center of mass of the ear hook (such as point F shown in Figure 6) can be set near the sound-emitting part 11. In this way, after the sound-emitting part 11 extends into the concha cavity, the concha cavity can simultaneously support part of the weight of the sound-emitting part 11 and the ear hook, reducing the sense of pressure on the auricle caused by the fulcrum of the ear hook.
  • the battery compartment 13 is regarded as a part of the first part 121 of the ear hook, and the center of mass of the ear hook mentioned here refers to the center of mass of the ear hook as a whole (including the battery compartment 13 but not including the sound-emitting part 11).
  • FIG12A is a schematic diagram of a triangle formed by the centroids of the ear hook, battery compartment, and sound-emitting part of an open-type earphone according to some embodiments of the present specification.
  • the three vertices of the triangle 1100 in the figure correspond to the centroid 1110 of the ear hook of the open-type earphone 10, the centroid 1120 of the sound-emitting part, and the centroid 1130 of the battery compartment.
  • the triangle 1100 formed by the aforementioned three centroids affects the stability and comfort of the open-type earphone 10 when worn. In addition, the distribution of the three centroids will also affect the position of the centroid of the open-type earphone 10.
  • the open-type earphone 10 will have poor stability when worn. For example, if the distance between the center of mass 1130 of the battery compartment and the center of mass 1110 of the ear hook is too short, the open-type earphone 10 may tend to tilt toward the location of the sound-emitting part 11 when worn. As the wearing time increases or the user moves while wearing the open-type earphone 10, the sound-emitting part 11 may tilt to a certain extent or even fall off, affecting the user's wearing experience. If the distance between the center of mass 1130 of the battery compartment and the center of mass 1110 of the ear hook is too long, the open-type earphone 10 may tend to tilt toward the location of the battery compartment 13 when worn.
  • the sound-emitting part 11 may also tilt to a certain extent or even fall off, affecting the user's wearing experience.
  • the relative distance between the center of mass 1130 of the battery compartment and the center of mass 1110 of the ear hook is between 40 mm and 62 mm.
  • the relative distance between the center of mass 1130 of the battery compartment and the center of mass 11 of the ear hook is between 35 mm and 55 mm.
  • the relative distance between the center of mass 1120 of the sound-emitting part and the center of mass 1130 of the battery compartment is too short.
  • the length of the first part 121 of the ear hook will also be shorter (this is because the battery compartment 13 is regarded as a part of the first part 121 of the ear hook), which will result in a smaller third area, thereby affecting the user's wearing comfort; and if the relative distance between the center of mass 1120 of the sound-emitting part and the center of mass 1130 of the battery compartment is too long, the length of the first part 121 of the ear hook will also be longer, which will affect the wearing comfort, and will also result in a larger third area, thereby affecting the stability of the open earphone when worn.
  • the relative distance between the center of mass 1120 of the sound-emitting part and the center of mass 1130 of the battery compartment is between 11 mm and 35 mm. In some embodiments, in order to take into account both the stability and comfort of the open-type earphones in wearing, when not worn, the relative distance between the center of mass 1120 of the sound-emitting part and the center of mass 1130 of the battery compartment is between 15 mm and 30 mm.
  • the wearing position of the ear hook on the ear 100 is relatively fixed, so the relative distance between the center of mass 1120 of the sound-emitting part and the center of mass 1110 of the ear hook can reflect the position of the sound-emitting part 11 on the ear 100.
  • the relative distance between the center of mass 1120 of the sound-emitting part and the center of mass 1110 of the ear hook is between 15 mm and 40 mm.
  • the relative distance between the center of mass 1120 of the sound-emitting part and the center of mass 11 of the ear hook is between 20 mm and 35 mm.
  • the outer contour, the first end contour, the second end contour, and the tangent segment 50 connecting the first end contour and the second end contour jointly define a first closed curve.
  • the tangent segment 50 connecting the first end contour and the second end contour can be determined, and the area enclosed by the first closed curve jointly defined by the tangent segment 50, the first end contour, and the second end contour is used as the third area of the first projection.
  • the first closed curve can reflect the area of the auricle that the open earphone 10 can cover when worn, as well as the contact method between the sound-emitting part 11 and the ear hook and the ear.
  • the difference between the first area and the third area is equal to the projection area of the open earphone 10 on the first plane (i.e., the sum of the projection area of the sound-emitting part 11 on the first plane and the projection area of the ear hook on the first plane).
  • the size of the sound-emitting portion 11 can be set smaller to adapt to the size of the concha cavity.
  • the open-ear headphone 10 is more comfortable to wear.
  • the distance between the sound-emitting part 11 and the first part 121 of the ear hook should not be too far, so that by providing a suitable clamping force, it can be ensured that the open earphone 10 is not completely supported only by the upper edge of the ear in the wearing state, thereby improving the wearing comfort.
  • the first area enclosed by the first closed curve can be set to be smaller in the non-wearing state. In some embodiments, the range of the first area enclosed by the first closed curve is not greater than 1500mm2 .
  • the ear hook is at least partially arranged to abut against the ear and/or the head in the wearing state, so as to form a force to press the ear, if the first area is too small, some people (such as people with large auricles) may feel a foreign body after wearing it.
  • the range of the first area of the first closed curve is not less than 1000 mm 2 ; at the same time, in some embodiments, considering that the relative position of the sound-emitting part 11 and the user's ear canal (such as the concha cavity) will affect the number of leakage structures of the cavity-like structure formed by the sound-emitting part 11 and the user's concha cavity and the opening size of the leakage structure, and the opening size of the leakage structure will directly affect the listening quality.
  • the sound-emitting part 11 may not abut against the edge of the concha cavity, resulting in too large an opening of the leakage structure of the cavity-like structure formed by the sound-emitting part 11 and the concha cavity, and the sound component directly radiated outward from the sound outlet increases, and the sound reaching the listening position decreases, thereby reducing the sound efficiency of the sound-emitting part 11.
  • the first area is too large, it may also reduce the clamping effect of the ear hook and the sound-emitting part 11, resulting in unstable wearing.
  • the first area of the first closed curve may be in the range of 1000 mm 2 to 1500 mm 2 .
  • the range of the first area of the first closed curve is not less than 1150 mm 2 .
  • the range of the first area of the first closed curve is not greater than 1350 mm 2 . Therefore, in some embodiments, the range of the first area of the first closed curve can be between 1150 mm 2 and 1350 mm 2 to ensure the sound efficiency of the sound-emitting part 11 and the comfort of the user wearing the open earphone 10.
  • the appropriate first area can ensure the listening volume of the open earphone 10 at the listening position (for example, at the ear canal opening), especially the listening volume of the mid-low frequency, while maintaining a good far-field leakage cancellation effect.
  • the relative size between the projection area of the sound-emitting part 11 on the first plane 60 and the first area can be set.
  • the ratio of the projection area of the sound-emitting part 11 on the first plane 60 to the first area can be small, so that the sound-emitting part 11 can abut against the edge of the concha cavity, so that the opening of the leakage structure of the cavity-like structure formed between the sound-emitting part 11 and the concha cavity is small, thereby improving the listening effect, and at the same time, it can also ensure that the user's ear canal opening is not blocked when the user wears the open-type earphone 10, and at the same time, the user's load when wearing it is reduced, so that the user can obtain ambient sound or daily communication when wearing it daily.
  • the projection area of the sound-emitting part 11 on the first plane 60 can be made not more than half of the first area (that is, the ratio is not greater than 0.5).
  • the ratio of the projection area of the sound-emitting portion 11 on the first plane 60 to the first area may be between 0.25 and 0.4, thereby alleviating the wearing feeling of the user.
  • the open earphone 10 forms a second projection on the sagittal plane of the human body, similar to the first projection in FIG6 , and the second projection also includes an outer contour, a first end contour, an inner contour, and a second end contour, and the outer contour, the first end contour, the second end contour, and the tangent segment connecting the first end contour and the second end contour jointly define a second closed curve.
  • the projection shape formed by the open earphone 10 projected on the first plane is close to the projection shape formed by the open earphone 10 projected on the sagittal plane of the human body.
  • the contour boundary points such as FIG6 , i.e., point P0, point P1, point Q0, and point Q1
  • the definitions of the outer contour, the first end contour, the inner contour, the second end contour, and the tangent segment in the second projection are similar to those of the first projection, and are not repeated here.
  • the area enclosed by the second closed curve is regarded as the second area of the second projection.
  • the second area can reflect the fit of the open earphone 10 with the user's ear in the wearing state.
  • the second area enclosed by the second closed curve is larger than the first area enclosed by the first closed curve.
  • the difference between the second area and the first area should be within a certain range.
  • the second area may be 20 mm 2 to 500 mm 2 larger than the first area.
  • the second area may be 50 mm 2 to 400 mm 2 larger than the first area.
  • the second area may be 60 mm 2 to 100 mm 2 larger than the first area.
  • the ratio of the first area of the first closed curve to the second area of the second closed curve is between 0.6 and 1. In some embodiments, in order to ensure that the ear hook part has good elasticity, the ratio of the first area of the first closed curve to the second area of the second closed curve should not be too large, for example, less than 0.95.
  • the ratio of the first area of the first closed curve to the second area of the second closed curve should not be too small, for example, greater than 0.75. In some embodiments, in order to take into account the elasticity and wearing stability of the ear hook, the ratio range is between 0.75 and 0.95.
  • an appropriate second area can ensure the listening volume of the open-type earphone 10 at the listening position (e.g., at the ear canal opening), especially the listening volume of the mid-low frequency, while maintaining a good far-field sound leakage cancellation effect.
  • the second area ranges from 1100 mm 2 to 1700 mm 2.
  • the second area in order to ensure the sound efficiency of the sound-emitting part 11, should not be too small, for example, greater than 1300 mm 2.
  • the second area in order to ensure the stability of the user wearing the open-type earphone 10, The second area should not be too large, for example, less than 1650 mm 2 .
  • the second area may be between 1300 mm 2 and 1650 mm 2 .
  • the sound-emitting part 11 fits the concha cavity in the worn state, an overly large size of the sound-emitting part 11 may block the ear (such as the ear canal opening), while an overly small size of the sound-emitting part 11 may increase the difficulty of arranging the internal structure of the sound-emitting part 11 (such as the magnetic circuit, circuit board, etc.). Based on this, in some embodiments, when the open earphone 10 is worn, the ratio of the projection area of the sound-emitting part 11 on the sagittal plane of the human body to the second area is between 0.15 and 0.45.
  • the ratio of the projection area of the sound-emitting part 11 on the sagittal plane of the human body to the second area should not be too large, for example, less than 0.35. In some embodiments, in order to reduce the difficulty of arranging the internal structure of the sound-emitting part 11, in the worn state, the ratio of the projection area of the sound-emitting part 11 on the sagittal plane of the human body to the second area should not be too small, for example, greater than 0.2.
  • the ratio of the projection area of the sound-emitting part 11 on the sagittal plane of the human body to the second area is between 0.2 and 0.35.
  • the distance between the midpoint of the projection of the upper side wall 111 and the lower side wall 112 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane can reflect the size of the sound-emitting part 11 along the short axis direction Z (the direction indicated by the arrow Z shown in FIG. 3 ).
  • the upper vertex of the ear hook can be the position on the ear hook that has the maximum distance in the vertical axis direction relative to a specific point on the user's neck when the user wears the open-type earphone, for example, the vertex T1 shown in FIG. 5D .
  • the distance d13 between the midpoint C1 of the projection of the upper side wall 111 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex T1 of the ear hook on the sagittal plane ranges from 17 mm to 36 mm
  • the distance between the midpoint C2 of the projection of the lower side wall 112 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex d14 of the ear hook on the sagittal plane ranges from 28 mm to 52 mm.
  • the distance between the midpoint of the projection of the upper side wall 111 and the lower side wall 112 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane can also reflect the size of the fourth area.
  • the fourth area is smaller; if the distance between the midpoint of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane is smaller, the fourth area is smaller; if the distance between the midpoint of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane is larger, the fourth area is larger.
  • the distance d13 between the midpoint C1 of the projection of the upper side wall 111 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex T1 of the ear hook on the sagittal plane is in the range of 21mm-32mm
  • the distance d14 between the midpoint C2 of the projection of the lower side wall 112 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex T1 of the ear hook on the sagittal plane is in the range of 32mm-48mm.
  • the distance d13 between the midpoint C1 of the projection of the upper side wall 111 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex T1 of the ear hook on the sagittal plane ranges from 24 mm to 30 mm
  • the distance d14 between the midpoint C2 of the projection of the lower side wall 112 of the sound-emitting part 11 on the sagittal plane and the projection of the upper vertex T1 of the ear hook on the sagittal plane ranges from 35 mm to 45 mm.
  • the center of mass position of the open-type earphone 10 is also closely related to the wearing stability of the open-type earphone 10.
  • FIG12B is another schematic diagram of the structure of the open-type earphone according to some embodiments of the present specification.
  • the size of the angle R1 between the projection of the center of mass position of the open-type earphone 10 on the sagittal plane (i.e., position S) and the line connecting the extreme point T2 of the ear hook and the long axis Y1 of the sound-emitting part 11 in the first projection determines the shape of the inner contour of the open-type earphone 10 to a certain extent, and the shape of the inner contour is related to the wearing feeling of the user.
  • the angle that is too large or too small may cause the shape to change when worn, affecting the fit, and may not form the cavity-like structure shown in Figure 4, affecting the sound efficiency of the sound-emitting part 11. Therefore, in some embodiments, when the open earphone 10 is not worn, the angle R1 between the projection of the center of mass position of the open earphone 10 on the sagittal plane and the line connecting the extreme point T2 of the ear hook and the long axis Y1 of the sound-emitting part 11 in the first projection is between 50° and 90°.
  • the angle R1 in order to prevent the angle from being too large and causing unstable wearing, can be between 50° and 85°. In some embodiments, in order to prevent the angle from being too small and causing the cavity-like structure to fail to form, the angle R1 can be between 55° and 90°. In some embodiments, in order to ensure that the open earphone 10 can fit the ear or head and form a cavity-like structure, the angle R1 can be between 55° and 85°.
  • the extreme point of the ear hook can be determined by the following method: obtaining the inner contour of the projection curve of the open earphone 10 in the worn state on the sagittal plane of the human body (or the inner contour of the projection of the open earphone 10 in the non-worn state on the first plane), and taking the extreme point (for example, the maximum point) of the inner contour in the short axis direction Z as the extreme point of the ear hook.
  • the method for determining the extreme point of the inner contour in the short axis direction Z can be: constructing a coordinate system with the long axis direction Y of the sound-emitting part as the horizontal axis and the short axis direction Z as the vertical axis, and taking the maximum point (for example, the first-order derivative is 0) of the inner contour of the projection curve in the coordinate system as the extreme point of the inner contour of the projection curve in the short axis direction Z.
  • the center of mass position of the open-type earphones can be determined in the following manner: tie a wire to a position on the open-type earphones (such as point A) and place the open-type earphones in a suspended state.
  • state A model a state model of the open-type earphones
  • point B another position on the open-type earphones
  • state B model a state model of the open-type earphones
  • the overlap position of the space line LA and the space line LB is the center of mass position of the open earphone. It should be noted that in order to improve the accuracy of determining the center of mass position of the open earphone, in other embodiments, more positions on the open earphone can be selected for hanging test to obtain more state models (such as 3), and the multiple state models are overlapped to obtain the center of mass position of the open earphone.
  • FIG12C is a schematic diagram of a tangent segment of the first projection shown in some embodiments of the present specification.
  • the tangent segment 50 that defines the first closed curve together with the first projection is tangent to the first end contour at the first tangent point K0 and tangent to the second end contour at the second tangent point K1.
  • the lines connecting the first tangent point K0, the second tangent point K1 and the extreme point (such as point T2) of the projection of the ear hook on the first plane can form a triangle.
  • the area change of the triangle formed by the lines connecting the first tangent point K0, the second tangent point K1 and the extreme point of the projection of the ear hook on the first plane will lead to a change in the first area.
  • an increase in the area of the triangle corresponds to a decrease in the first area, thereby affecting the user's wearing feeling.
  • the area of the triangle formed by the first tangent point K0, the second tangent point K1 and the extreme point of the projection of the ear hook on the first plane is between 110 mm 2 and 230 mm 2. In some embodiments, the area of the triangle formed by the first tangent point K0, the second tangent point K1 and the extreme point of the projection of the ear hook on the first plane is between 150 mm 2 and 190 mm 2 , so that the range of the first area of the first closed curve is between 1150 mm 2 and 1350 mm 2 .
  • one end of the sound-emitting part 11 of the embodiment of the present specification is connected to the second part 122 of the suspension structure 12, and the end can be called a fixed end, and the end of the sound-emitting part 11 away from the fixed end can be called a free end or a terminal end, wherein the terminal end of the sound-emitting part 11 faces the first part 121 of the ear hook.
  • the suspension structure 12 for example, the vertex T1 shown in FIG.
  • the upper side wall is the side wall of the sound-emitting part 11 other than the fixed end and the terminal end
  • the center point (for example, the geometric center point) is the smallest distance from the vertex on the ear hook in the vertical axis direction (for example, the upper side wall 111 shown in FIG. 5D ).
  • the lower side wall is the side wall opposite to the upper side wall of the sound-emitting part 11, that is, the side wall whose center point (for example, the geometric center point) of the side wall of the sound-emitting part 11 except the fixed end and the end is the largest distance from the upper vertex of the ear hook in the vertical axis direction (for example, the lower side wall 112 shown in Figure 5D).
  • the sound-emitting part can have other wearing modes other than extending into the concha cavity.
  • the open-type earphone 1200 shown in FIG. 13 is taken as an example to explain the open-type earphone 1200 in detail. It should be noted that, without violating the corresponding acoustic principles, the structure of the open-type earphone 1200 in FIG. 13 and its corresponding parameters can also be applied to the open-type earphone 10 mentioned above that the sound-emitting part can be extended into the concha cavity.
  • the output effect of the open-type earphone 1200 can be improved, that is, the sound intensity at the near-field listening position is increased, while the volume of the far-field sound leakage is reduced.
  • one or more sound outlet holes can be provided on the shell of the sound-emitting part 1201 close to or facing the user's ear canal, and one or more pressure relief holes are provided on the other side walls of the shell of the sound-emitting part 1201 (for example, the side walls away from or away from the user's ear canal).
  • the sound outlet holes are acoustically coupled with the front cavity of the open-type earphone 1200
  • the pressure relief holes are acoustically coupled with the back cavity of the open-type earphone 1200.
  • the sound-emitting part 1201 includes a sound outlet hole and a pressure relief hole
  • the sound output by the sound outlet hole and the sound output by the pressure relief hole can be approximately regarded as two sound sources, and the sound of the two sound sources is equal in magnitude and opposite in phase.
  • the sound emitted by the sound outlet can be directly transmitted to the user's ear canal without hindrance, while the sound emitted by the pressure relief hole needs to bypass the shell of the sound-emitting part 1201 or pass through the sound-emitting part 1201 to form an acoustic model similar to that shown in FIG14.
  • the sound field of the point sound source A2 needs to bypass the baffle to interfere with the sound wave of the point sound source A1 at the listening position, which is equivalent to increasing the sound path from the point sound source A2 to the listening position.
  • the amplitude difference between the sound waves of the point sound source A1 and the point sound source A2 at the listening position increases compared to the case where no baffle is provided, thereby reducing the degree of cancellation of the two-way sound at the listening position, thereby increasing the volume at the listening position.
  • the sound waves generated by the point sound source A1 and the point sound source A2 can interfere in a larger spatial range without bypassing the baffle (similar to the case without a baffle), the sound leakage in the far field will not increase significantly compared to the case without a baffle. Therefore, by setting a baffle structure around one of the sound sources of the point sound source A1 and the point sound source A2, the volume at the near-field listening position can be significantly increased without significantly increasing the volume of the far-field sound leakage.
  • the sound-emitting part 1201 and the user's auricle respectively have a seventh projection (the rectangular area shown in the solid-line frame U shown in FIG. 15A and FIG. 15B is approximately equivalent to the seventh projection) and an eighth projection on the sagittal plane of the user's head (for example, refer to the S-T plane in FIG. 15A and FIG. 15B).
  • the ratio of the distance h6 between the centroid O of the seventh projection and the highest point A6 of the eighth projection in the vertical axis direction (for example, the T axis direction shown in FIG. 15A and FIG. 15B) and the height h of the eighth projection in the vertical axis direction can be between 0.25 and 0.4.
  • the concave-convex structure of the area can also play the role of a baffle, so as to increase the sound path of the sound emitted by the pressure relief hole to the external auditory canal 101, thereby increasing the sound path difference between the sound-emitting hole and the pressure relief hole to the external auditory canal 101, so as to increase the sound intensity at the external auditory canal 101, and at the same time reduce the far-field sound leakage. Volume.
  • the sound-emitting part 1201 can be made to fit the anti-helix area of the user as closely as possible.
  • the ratio of the distance h6 in the vertical axis direction between the centroid O of the seventh projection of the sound-emitting part 1201 on the sagittal plane and the highest point A6 of the eighth projection of the user's auricle on the sagittal plane to the height h of the eighth projection in the vertical axis direction can be controlled between 0.25-0.4, and at the same time, the ratio of the distance w6 in the sagittal axis direction between the centroid O of the seventh projection of the sound-emitting part 1201 on the sagittal plane and the end point B6 of the eighth projection of the user's auricle on the sagittal plane to the width w of the eighth projection in the sagittal axis direction can be controlled between 0.4-0.6.
  • the ratio of the distance h6 between the centroid O of the seventh projection and the highest point A6 of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction may also be between 0.25-0.35, and the ratio of the distance w6 between the centroid O of the seventh projection and the end point B6 of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction may be between 0.42-0.6.
  • the ratio of the distance h6 between the centroid O of the seventh projection and the highest point A6 of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction may also be between 0.25-0.34, and the ratio of the distance w6 between the centroid O of the seventh projection and the end point B6 of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction may be between 0.42-0.55.
  • the aforementioned ratio range may float within a certain range.
  • the height h of the eighth projection in the vertical axis direction will be larger than in general.
  • the ratio of the distance h6 between the centroid O of the seventh projection and the highest point A6 of the eighth projection in the vertical axis direction to the height h of the eighth projection in the vertical axis direction will become smaller, for example, it may be between 0.2-0.35.
  • the width w of the eighth projection in the sagittal axis direction will be smaller than in general, and the distance w6 between the centroid O of the seventh projection and the end point B6 of the eighth projection in the sagittal axis direction will also be smaller.
  • the ratio of the distance w6 between the centroid O of the seventh projection and the end point B6 of the eighth projection in the sagittal axis direction to the width w of the eighth projection in the sagittal axis direction may become larger, for example, it may be between 0.4-0.7.
  • the listening volume, sound leakage reduction effect, and comfort and stability of the sound-emitting part 1201 during wearing can also be improved by adjusting the distance between the centroid O of the seventh projection and the contour of the eighth projection.
  • the distance between the centroid O of the seventh projection and a point in a certain area of the boundary of the eighth projection is too small, and the distance relative to a point in another area is too large, and the anti-helix area cannot cooperate with the sound-emitting part 1201 to play the role of a baffle, affecting the acoustic output effect of the open-ear headphones.
  • the distance between the centroid O of the seventh projection and a point in a certain area of the boundary of the eighth projection is too large, and there may be a gap between the end FE of the sound-emitting part 1201 and the inner contour 1014 of the auricle.
  • the sound emitted by the sound outlet and the sound emitted by the pressure relief hole will be acoustically short-circuited in the area between the end FE of the sound-emitting part 1201 and the inner contour 1014 of the auricle, resulting in a decrease in the listening volume at the user's ear canal opening.
  • the centroid O of the seventh projection of the sound-emitting portion 1201 on the sagittal plane of the user's head may also be located in the area surrounded by the outline of the eighth projection, but compared to when at least part of the sound-emitting portion 1201 extends into the concha cavity of the user, in this wearing state, the distance range between the centroid O of the seventh projection of the sound-emitting portion 1201 on the sagittal plane of the user's head and the outline of the eighth projection will be somewhat different.
  • the structure of the sound-emitting portion 1201 covers the anti-helix region, which can fully expose the ear canal opening, allowing the user to better receive sounds from the external environment.
  • the distance range between the centroid O of the seventh projection and the contour of the eighth projection can be between 13mm-54mm.
  • the distance range between the centroid O of the seventh projection and the contour of the eighth projection can be between 18mm-50mm. More preferably, the distance range between the centroid of the seventh projection and the contour of the eighth projection can also be between 20mm-45mm.
  • the sound-emitting part 1201 can be approximately located in the anti-helix area of the user, and at least a portion of the sound-emitting part 1201 can form a baffle with the anti-helix area to increase the sound path of the sound emitted by the pressure relief hole to the external auditory canal 101, thereby increasing the sound path difference between the sound outlet and the pressure relief hole to the external auditory canal 101, so as to increase the sound intensity at the external auditory canal 101 and reduce the volume of far-field sound leakage.
  • FIG16 shows the difference in morphology between the open-type earphone 1200 in the wearing state and the non-wearing state according to some embodiments of the present specification.
  • the dotted area represents the first part of the ear hook in the wearing state, which is farther from the free end of the sound-emitting part than the first part of the ear hook in the non-wearing state.
  • the open-type earphone 1200 in the non-wearing state, forms a fifth projection on the first plane, and the fifth projection includes an outer contour, a first end contour, an inner contour, and a second end contour.
  • the first end contour in the fifth projection can be the projection contour of the end FE of the sound-emitting part 1201 on the first plane, and the two end points P0 and P1 of the first end contour are the projection points of the junction position of the end FE and the other parts of the sound-emitting part 1201 on the first plane.
  • the second end contour can be the projection contour of the free end BE of the suspension structure 1202 on the first plane, and the two end points Q0 and Q1 of the second end contour are the projection points of the junction position of the free end BE and the other parts of the suspension structure 1202 on the first plane.
  • the outer contour can be the contour where the fifth projection is located between point P1 and point Q1.
  • the inner contour may be a contour where the fifth projection is located between point P0 and point Q0.
  • the first end contour can be a straight line segment or an arc, and point P0 and point P1 respectively represent the two ends of the first end contour.
  • point P0 can be the intersection point of the arc formed by the projection of the free end of the sound-emitting part 1201 and the line segment of the upper side wall projection
  • point P1 can be the intersection point of the arc formed by the projection of the free end of the sound-emitting part 1201 and the line segment of the lower side wall projection.
  • the end of the ear hook away from the sound-emitting part 1201 also has a free end
  • the projection of the free end of the ear hook on the first plane 60 forms a second end contour
  • the second end contour can be a straight line segment or an arc
  • point Q0 and point Q1 respectively represent the two ends of the second end contour.
  • point Q0 and point Q1 can be the two end points of a line segment or an arc projected from the free end of the first part of the ear hook in the direction away from the second part of the ear hook on the first plane 60. Furthermore, in the long axis direction Y of the sound-emitting part 11, the endpoint close to the sound-emitting part 1201 is point Q0, and the endpoint away from the sound-emitting part 1201 is Q1.
  • the projection shape of the open earphone 1200 on the first plane and the sagittal plane of the human body can reflect the wearing method of the open earphone 1200 on the ear.
  • the area of the fifth projection can reflect the area of the auricle that the open earphone 1200 can cover when worn, and the contact method between the sound-emitting part 1201 and the ear hook and the ear.
  • the inner contour, the outer contour, the first end contour, and the second end contour in the fifth projection form a non-closed area.
  • the size of this area is closely related to the wearing effect of the open earphone 1200 (for example, the stability of wearing, the sound-emitting position, etc.).
  • the tangent segment 1250 connecting the first end contour and the second end contour can be determined, and the area enclosed by the fifth closed curve defined by the tangent segment 1250, the outer contour, the first end contour, and the second end contour is used as the area of the fifth projection (also referred to as the "fifth area").
  • the difference between the open earphone 1200 and the open earphone 10 shown in FIG. 6 includes: the sound-emitting portion 1201 of the open earphone 1200 is located at the antihelix 105 of the user when worn, so the range of the fifth area is smaller than the first area.
  • the fifth area may be 0.2 to 0.6 times the first area.
  • the fifth area may be 0.3 to 0.5 times the first area.
  • the fifth area of the fifth closed curve may be in the range of 250 mm 2 to 1000 mm 2 .
  • the range of the fifth area of the fifth closed curve should not be too small, for example, greater than 400 mm 2.
  • the range of the fifth area of the fifth closed curve should not be too large, for example, less than 800 mm 2 .
  • the fifth area of the fifth closed curve ranges from 400 mm 2 to 800 mm 2 .
  • the open earphone 1200 forms a sixth projection on the sagittal plane of the human body. Similar to the fifth projection, the sixth projection also includes an outer contour, a first end contour, an inner contour, and a second end contour, and the outer contour, the first end contour, the second end contour, and the tangent segment 1250 connecting the first end contour and the second end contour jointly define a sixth closed curve.
  • the projection shape formed by the open earphone 1200 projected on the first plane is close to the projection shape formed by the open earphone 1200 projected on the sagittal plane of the human body.
  • the contour boundary points in the unworn state namely, point P0, point P1, point Q0, and point Q1
  • the definitions of the outer contour, the first end contour, the inner contour, the second end contour, and the tangent segment 1250 in the sixth projection are similar to those in the fifth projection, and are not repeated here.
  • the area enclosed by the sixth closed curve is regarded as the area of the sixth projection (also referred to as the "sixth area").
  • the sixth area can reflect the fit of the open earphone 1200 with the user's ear in the wearing state.
  • an appropriate sixth area can ensure the listening volume of the open earphone 1200 at the listening position (e.g., at the antihelix) while maintaining a good far-field sound leakage cancellation effect.
  • the sixth area ranges from 400 mm 2 to 1100 mm 2. In some embodiments, considering the elasticity of the ear hook 1202 and the wearing comfort and stability, the sixth area ranges from 500 mm 2 to 900 mm 2 .
  • the distance between the centroid O of the seventh projection and the projection of the first part of the ear hook on the sagittal plane can be controlled in the range of 8mm-45mm.
  • the sixth area can be within a suitable range (for example, the sixth area is between 500 mm 2 and 900 mm 2 ), so that the first part of the ear hook can be well fitted with the posterior inner side of the user's auricle when worn, and at the same time, the sound-emitting part 1201 is exactly located in the anti-helix area of the user, so that the sound-emitting part 1201 and the anti-helix area form a baffle to increase the sound path of the sound emitted by the pressure relief hole to the external auditory canal 101, thereby increasing the distance from the sound-emitting hole and the pressure relief hole to the external auditory canal.
  • a suitable range for example, the sixth area is between 500 mm 2 and 900 mm 2
  • the distance range between the centroid O of the seventh projection of the sound-emitting part 1201 on the user's sagittal plane and the projection of the first part of the ear hook on the sagittal plane should not be too small, for example, greater than 15 mm.
  • the distance range between the centroid O of the seventh projection of the sound-emitting part 1201 on the user's sagittal plane and the projection of the first part of the ear hook on the sagittal plane should not be too large, for example, less than 33 mm.
  • the distance range between the centroid O of the seventh projection of the sound-emitting part 1201 on the user's sagittal plane and the projection of the first part of the ear hook on the sagittal plane can be 15 mm-33 mm.
  • the distance range between the centroid O of the seventh projection of the sound-emitting part 1201 on the user's sagittal plane and the projection of the first part of the ear hook on the sagittal plane can be 20 mm-25 mm.
  • the ear hook may be elastic and may be deformed to a certain extent in a worn state compared to an unworn state.
  • the distance between the centroid of the seventh projection of the sound-emitting portion 1201 on the user's sagittal plane and the projection of the first part of the ear hook on the sagittal plane may be greater in a worn state than in an unworn state.
  • the fifth area may be too large, resulting in unstable wearing and a larger area between the end FE of the sound-emitting portion 1201 and the inner contour 1014 of the auricle; if the distance between the centroid of the projection of the sound-emitting portion 1201 on the first plane and the projection of the first part of the ear hook on the first plane is too small, the fifth area may be too small, resulting in poor wearing comfort and the inability to cooperate with the anti-helix area to achieve better acoustic output quality.
  • the distance between the centroid of the projection of the sound-emitting part 1201 on the first plane and the projection of the first part of the ear hook on the first plane can be in the range of 10mm-50mm.
  • the fifth area can be within a suitable range (for example, the fifth area is between 400mm2 and 800mm2 ), so that the first part of the ear hook can be well fitted with the posterior inner side of the user's auricle when worn, and at the same time, the sound-emitting part 1201 is exactly located in the anti-helix area of the user, so that the sound-emitting part 1201 and the anti-helix area form a baffle to increase the sound path of the sound emitted by the pressure relief hole to the external auditory canal 101, thereby increasing the sound path difference between the sound-emitting hole and the pressure relief hole to the external auditory canal 101, so as to increase the sound intensity at the external auditory canal 101, and at the same time reduce the volume of far-field sound leakage.
  • a suitable range for example, the fifth area is between 400mm2 and 800mm2
  • the distance range between the centroid of the projection of the sound-emitting part 1201 on the first plane and the projection of the first part of the ear hook on the first plane should not be too small, for example, greater than 32 mm.
  • the distance range between the centroid of the projection of the sound-emitting part 1201 on the first plane and the projection of the first part of the ear hook on the first plane should not be too large, for example, less than 40 mm.
  • the distance range between the centroid of the projection of the sound-emitting part 1201 on the first plane and the projection of the first part of the ear hook on the first plane can be 32 mm-40 mm.
  • the ear hook and the sound-emitting part of the open earphone 10 can generate a certain clamping force on the user's ear when the open earphone is in the worn state, thereby improving the stability of the user when wearing it without affecting the user's wearing experience.
  • the distance between the centroid O of the seventh projection of the sound-emitting part 1201 and the centroid Q of the projection of the battery compartment 1203 on the sagittal plane will change compared to the wearing state in which at least part of the sound-emitting part 1201 extends into the user's concha cavity. Similar to the wearing method in which at least part of the sound-emitting part 1201 extends into the user's concha cavity, in the wearing state, the position of the sound-emitting part 1201 needs to partially or completely cover the antihelix area, and its position is relatively fixed.
  • the battery compartment 1203 will be closely attached to or even pressed against the posterior side of the auricle, affecting the wearing comfort of the user.
  • the distance between the centroid O of the seventh projection of the sound-emitting part 1201 and the centroid Q of the projection of the battery compartment 1203 on the sagittal plane is too small, the length of the first part of the ear hook will also be shorter, resulting in a smaller sixth area, which will also affect the wearing comfort of the user.
  • the distance between the centroid O of the seventh projection of the sound-emitting part 1201 and the centroid Q of the projection of the battery compartment 1203 on the sagittal plane is 23mm-40mm.
  • the distance between the centroid O of the seventh projection of the sound-emitting part 1201 and the centroid Q of the projection of the battery compartment 1203 on the sagittal plane should not be too small, for example, greater than 25mm. In some embodiments, in order to prevent the sixth area from being too large and affecting the stability of the user when wearing, in the wearing state, the distance between the centroid O of the seventh projection of the sound-emitting part 1201 and the centroid Q of the projection of the battery compartment 1203 on the sagittal plane should not be too large, for example, less than 31mm.
  • the centroid O of the projection of the sound-emitting part 1201 on the sagittal plane and the centroid Q of the projection of the battery compartment 1203 on the sagittal plane can range from 25 mm to 31 mm.
  • the distance between the centroid O of the projection corresponding to the sound-emitting part 1201 and the centroid Q of the projection corresponding to the battery compartment 1203 of the open earphone 1200 will change when the earphone is worn and when it is not worn.
  • the distance (fifth distance) between the centroid O of the projection of the sound-emitting part 1201 on the first plane and the centroid Q of the projection of the battery compartment 1203 on the first plane can range from 16.7mm to 25mm.
  • the distance between the centroid O of the projection of the sound-emitting part 1201 on the first plane and the centroid Q of the projection of the battery compartment 1203 on the first plane can range from 23mm to 31mm. In some embodiments, in order to ensure better stability and comfort for the user when wearing the open earphones 1200, when not worn, the distance (fifth distance) between the centroid O of the sound-emitting part 1201 projected on the first plane and the centroid Q of the battery compartment 1203 projected on the first plane can be in the range of 23mm-25mm.
  • the load on the user when wearing it is also reduced, so that the user can obtain ambient sound or daily communication during daily wear.
  • the ratio of the projection area of the sound-emitting part 1201 on the first plane to the fifth area is between 0.3 and 0.85.
  • the ratio of the projection area of the sound-emitting part 1201 on the first plane to the fifth area should not be too small, for example, greater than 0.4. In some embodiments, in order to prevent the size of the sound-emitting part 1201 from being too large and blocking the ear, in the non-wearing state, the ratio of the projection area of the sound-emitting part 1201 on the first plane to the fifth area should not be too large, for example, less than 0.75.
  • the ratio of the projected area of the sound-emitting part 1201 on the first plane to the fifth area is between 0.4 and 0.75.
  • the appropriate ratio of the projection area of the sound-emitting part 1201 on the sagittal plane of the human body to the sixth area can reduce the load on the user when wearing it.
  • the ratio of the projection area of the sound-emitting part 1201 on the sagittal plane of the human body to the sixth area is between 0.25 and 0.9.
  • the ratio of the projection area of the sound-emitting part 1201 on the sagittal plane of the human body to the sixth area should not be too small, for example, greater than 0.35. In some embodiments, in order to prevent the size of the sound-emitting part 1201 from being too large and blocking the ear, in the worn state, the ratio of the projection area of the sound-emitting part 1201 on the sagittal plane of the human body to the sixth area should not be too large, for example, less than 0.75.
  • the ratio of the projection area of the sound-emitting part 1201 on the sagittal plane of the human body to the sixth area is between 0.35 and 0.75.
  • the whole or part of the structure of the sound-emitting part 1201 covers the antihelix area to form a baffle, and the listening effect when the user wears the open earphone 1200 is related to the distance between the sound hole and the pressure relief hole on the sound-emitting part 1201.
  • the spacing between the sound hole and the pressure relief hole is related to the size of the sound-emitting part 1201.
  • the sound hole can be set on the side wall of the sound-emitting part 1201 close to the user's ear canal opening (for example, the lower side wall or the inner side), and the pressure relief hole can be set on the side wall of the sound-emitting part 1201 away from the user's ear canal opening (for example, the upper side wall or the outer side). Therefore, the size of the sound-emitting part will affect the listening volume at the user's ear canal opening. For example, when the size is too large, it will bring a sense of oppression to most areas of the ear, affecting the user's wearing comfort and convenience when carrying it with them.
  • the size of the sound-emitting part 1201 along the short axis direction Z can be reflected by the distance between the midpoint of the projection of the upper side wall 111 and the lower side wall 112 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane.
  • the distance between the midpoint of the projection of the upper side wall 111 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane can be in the range of 13mm-20mm, and the distance between the midpoint of the projection of the lower side wall 112 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane can be in the range of 22mm-36mm.
  • the distance between the midpoint of the projection of the upper side wall 111 and the lower side wall 112 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane can also reflect the size of the sixth area.
  • the distance between the midpoint of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane is small, and the sixth area is small; the distance between the midpoint of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane is large, and the sixth area is large.
  • the distance between the midpoint of the projection of the upper side wall 111 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane can range from 14mm to 19.5mm
  • the distance between the midpoint of the projection of the lower side wall 112 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper vertex of the ear hook on the sagittal plane can range from 22.5mm to 35mm.
  • the distance range between the midpoint of the projection of the upper side wall 111 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper apex of the ear hook on the sagittal plane can be 15mm-18mm, and the distance range between the midpoint of the projection of the lower side wall 112 of the sound-emitting part 1201 on the sagittal plane and the projection of the upper apex of the ear hook on the sagittal plane is 26mm-30mm.
  • the present application uses specific words to describe the embodiments of the present application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” refer to a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment.
  • some features, structures or characteristics in one or more embodiments of the present application can be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)

Abstract

一种开放式耳机(10),包括:发声部(11);以及耳挂,耳挂包括依次连接的第一部分(121)和第二部分(122),第一部分(121)挂设在用户耳廓和头部之间,第二部分(122)向耳廓的前外侧面延伸并连接发声部,将发声部佩戴于耳道附近但不堵塞耳道口的位置;其中,开放式耳机和耳廓在矢状面上分别具有第一投影和第八投影,第一投影中发声部(11)的形心与第八投影的最高点在垂直轴方向具有第一距离,第一距离与第八投影在垂直轴方向的高度之比在0.35-0.6之间;在非佩戴状态下,发声部(11)在第一平面投影的形心与耳挂的第一部分(121)在第一平面的投影的距离范围为13mm-38mm。

Description

一种开放式耳机
交叉引用
本申请要求于2022年10月28日提交的申请号为202211336918.4的中国申请的优先权,于2022年12月1日提交的申请号为202223239628.6的中国申请的优先权,于2022年12月30日提交的申请号为PCT/CN2022/144339的PCT申请的优先权,于2023年3月2日提交的申请号为PCT/CN2023/079409的PCT申请的优先权,以及于2023年3月2日提交的申请号为PCT/CN2023/079401的PCT申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及声学技术领域,特别涉及一种开放式耳机。
背景技术
随着声学输出技术的发展,声学输出装置(例如,耳机)已广泛地应用于人们的日常生活,其可以与手机、电脑等电子设备配合使用,以便于为用户提供听觉盛宴。按照用户佩戴的方式,声学装置一般可以分为头戴式、耳挂式和入耳式等。声学装置的输出性能以及佩戴体验对于用户的使用舒适度具有很大的影响。
因此,有必要提供一种开放式耳机,以提高声学输出装置的输出性能以及佩戴体验。
发明内容
本说明书实施例之一提供一种开放式耳机,包括:发声部;以及耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;其中,所述开放式耳机和所述耳廓在矢状面上分别具有第一投影和第八投影,所述第一投影中发声部的形心与所述第八投影的最高点在垂直轴方向具有第一距离,所述第一距离与所述第八投影在所述垂直轴方向的高度之比在0.35-0.6之间;在非佩戴状态下,所述发声部在第一平面投影的形心与所述耳挂的第一部分在所述第一平面的投影的距离范围为13mm-38mm。
本说明书实施例之一还提供一种开放式耳机,包括:发声部;以及耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;其中,所述开放式耳机和所述耳廓在矢状面上分别具有第一投影和第八投影,所述第一投影中发声部的形心与所述第八投影的最高点在垂直轴方向具有第一距离,所述第一距离与所述第八投影在所述垂直轴方向的高度之比在0.25-0.4之间;在非佩戴状态下,所述发声部在第一平面的投影的形心与所述耳挂的第一部分在所述第一平面的投影的形心的距离范围为10mm-50mm。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性耳部示意图;
图2是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图3是根据本说明书又一些实施例所示的开放式耳机的示例性佩戴示意图;
图4是根据本说明书一些实施例所示的开放式耳机形成的声学模型示意图;
图5A是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图5B是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图5C是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图5D是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图6是根据本说明书一些实施例所示的非佩戴状态下的开放式耳机的结构示意图;
图7是根据本说明书一些实施例所示的非佩戴状态下的开放式耳机在耳挂平面上投影形成的投影示意图;
图8是根据本说明书一些实施例所示的类腔体结构的示意图;
图9是根据本说明书一些实施例所示的具有不同大小的泄漏结构的类腔体结构的听音指数曲线图;
图10是根据本说明书一些实施例所示的开放式耳机在佩戴状态和非佩戴状态下的形态差异示意图;
图11A是根据本说明书一些实施例提供的开放式耳机的示例性结构示意图;
图11B是根据本说明书一些实施例提供的用户佩戴开放式耳机的示意图;
图12A是根据本说明书一些实施例所示的开放式耳机的耳挂、电池仓和发声部的质心形成的三角形的示意图;
图12B是根据本说明书一些实施例所示的开放式耳机的另一结构示意图;
图12C是根据本说明书一些实施例所示的第一投影的切线段的示意图;
图13是根据本说明书又一些实施例所示的开放式耳机的示例性佩戴示意图;
图14是根据本说明书又一些实施例所示的开放式耳机形成的声学模型示意图;
图15A是根据本说明书另一些实施例所示的开放式耳机的示例性佩戴示意图;
图15B是根据本说明书另一些实施例所示的开放式耳机的示例性佩戴示意图;
图16是根据本说明书一些实施例所示的开放式耳机在佩戴状态和非佩戴状态下的形态差异示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“***”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
在本申请的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等术语应做广义理解。例如,术语“连接”可以指固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
图1是根据本说明书一些实施例所示的示例性耳部示意图。
参见图1,耳部100可以包括外耳道101、耳甲腔102、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳垂108,耳轮脚109,外轮廓1013和内轮廓1014。需要说明的是,为便于描述,本说明书实施例中将对耳轮上脚1011和对耳轮下脚1012以及对耳轮105统称为对耳轮区域。在一些实施例中,可以借助耳部100的一个或多个部位对声学装置的支撑,实现声学装置佩戴的稳定。在一些实施例中,外耳道101、耳甲腔102、耳甲艇103、三角窝104等部位在三维空间中具有一定的深度及容积,可以用于实现声学装置的佩戴需求。例如,声学装置(例如,入耳式耳机)可以佩戴于外耳道101中。在一些实施例中,可以借助耳部100中除外耳道101外的其他部位,实现声学装置的佩戴。例如,可以借助耳甲艇103、三角窝104、对耳轮105、耳舟106、或耳轮107等部位或其组合实现声学装置的佩戴。在一些实施例中,为了改善声学装置在佩戴方面的舒适度及可靠性,也可以进一步借助用户的耳垂108等部位。通过借助耳部100中除外耳道101之外的其他部位,实现声学装置的佩戴和声音的传播,可以“解放”用户耳部的外耳道101。当用户佩戴声学装置(开放式耳机)时,声学装置不会堵塞用户外耳道101,用户既可以接收来自声学装置的声音又可以接收来自环境中的声音(例如,鸣笛声、车铃声、周围人声、交通指挥声等),从而能够降低交通意外的发生概率。在一些实施例中,可以根据耳部100的构造,将声学装置设计成与耳部100适配的结构,以实现声学装置的发声部在耳部不同位置的佩戴。例如,声学装置为开放式耳机时,开放式耳机可以包括悬挂结构(例如,耳挂)和发声部,发声部与悬挂结构通过物理方式进行连接,悬挂结构可以与耳廓的形状相适配,以将耳部发声部的整体或者部分结构置于耳轮脚109的前侧(例如,图1中虚线围成的区域J)。又例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以与外耳道101的上部(例如,耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置)接触。再例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以位于耳部的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内 (例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
不同的用户可能存在个体差异,导致耳部存在不同的形状、大小等尺寸差异。为了便于描述和理解,如果没有特别说明,本说明书将主要以具有“标准”形状和尺寸的耳部模型作为参考,进一步描述不同实施例中的声学装置在该耳部模型上的佩戴方式。例如,可以以基于ANSI:S3.36,S3.25和IEC:60318-7标准制得的含头部及其(左、右)耳部的模拟器,例如GRAS 45BC KEMAR,作为佩戴声学装置的参照物,以此呈现出大多数用户正常佩戴声学装置的情景。仅仅作为示例,作为参考的耳部可以具有如下相关特征:耳廓在人体矢状面上的投影面积为1300mm2-1700mm2的范围内。因此,本说明书中,诸如“用户佩戴”、“处于佩戴状态”及“在佩戴状态下”等描述可以指本说明书所述的声学装置佩戴于前述模拟器的耳部。当然,考虑到不同的用户存在个体差异,耳部100中一个或多个部位的结构、形状、大小、厚度等可以根据不同形状和尺寸的耳部进行差异化设计,这些差异化设计可以表现为声学装置中一个或多个部位(例如,下文中的发声部、耳挂等)的特征参数可以具有不同范围的数值,以此适应不同的耳部。
需要说明的是:在医学、解剖学等领域中,可以定义人体的矢状面(Sagittal Plane)、冠状面(Coronal Plane)和水平面(Horizontal Plane)三个基本切面以及矢状轴(Sagittal Axis)、冠状轴(Coronal Axis)和垂直轴(Vertical Axis)三个基本轴。其中,矢状面是指沿身体前后方向所作的与地面垂直的切面,它将人体分为左右两部分;冠状面是指沿身体左右方向所作的与地面垂直的切面,它将人体分为前后两部分;水平面是指沿垂直于身体的上下方向所作的与地面平行的切面,它将人体分为上下两部分。相应地,矢状轴是指沿身体前后方向且垂直于冠状面的轴,冠状轴是指沿身体左右方向且垂直于矢状面的轴,垂直轴是指沿身体上下方向且垂直于水平面的轴。进一步地,本说明书所述的“耳部的前侧”是一个相对于“耳部的后侧”的概念,耳部的前侧指沿着矢状轴方向且位于耳部朝向人体面部区域的一侧,耳部的后侧沿着矢状轴方向且位于指耳部背离人体面部区域的一侧。其中,沿人体冠状轴所在方向观察上述模拟器的耳部,可以得到图1所示的耳部的前侧轮廓示意图。
关于上述耳部100的描述仅是出于阐述的目的,并不旨在限制本说明书的范围。对于本领域的普通技术人员来说,可以根据本说明书的描述,做出各种各样的变化和修改。例如,声学装置的部分结构可以遮蔽外耳道101的部分或者全部。这些变化和修改仍处于本说明书的保护范围之内。
图2是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图。如图2所示,开放式耳机10可以包括发声部11和悬挂结构12。在一些实施例中,开放式耳机10可以通过悬挂结构12将发声部11佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干)。在一些实施例中,悬挂结构12可以为耳挂,发声部11与耳挂的一端连接,耳挂可以设置成与用户耳部相适配的形状。例如,耳挂可以为弧形结构。在一些实施例中,悬挂结构12也可以为与用户耳廓相适配的夹持结构,以使悬挂结构12可以夹持于用户耳廓处。在一些实施例中,悬挂结构12可以包括但不限于耳挂、弹性带等,使得开放式耳机10可以更好地固定在用户身上,防止用户在使用时发生掉落。
在一些实施例中,发声部11可以用于佩戴在用户的身体上,发声部11内可以设有扬声器以产生声音输入用户耳部100。在一些实施例中,开放式耳机10可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,发声部11可以采用悬挂或夹持的方式固定在用户的耳部100的附近。在一些实施例中,发声部11可以为圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便发声部11可以直接挂靠在用户的耳部100处。
结合图1和图2,在一些实施例中,当用户佩戴开放式耳机10时,发声部11的至少部分可以位于用户耳部100的上方、下方、前侧(例如,图1中示出耳屏前侧的区域J)或耳廓内(例如,图1中示出的区域M1或M2)。以下将结合发声部11的不同佩戴位置(11A、11B和11C)进行示例性说明。在一些实施例中,发声部11A位于用户耳部100沿矢状轴方向朝向人体面部区域的一侧,即发声部11A位于耳部100朝向人体的面部区域(例如,图1中示出的区域J)。进一步地,发声部11A的壳体内部设置有扬声器,发声部11A的壳体上可以设置有至少一个出声孔(图2中未示出),出声孔可以位于壳体上朝向或靠近用户外耳道的侧壁上,扬声器可以通过出声孔向用户耳道处输出声音。在一些实施例中,扬声器可以包括振膜,壳体内部的腔室被振膜至少分隔为前腔和后腔,出声孔与前腔声学耦合,振膜振动带动前腔的空气振动产生气导声音,前腔产生的气导声音通过出声孔向外界传播。在一些实施例中,壳体上还可以包括一个或多个泄压孔,泄压孔可以位于壳体上与出声孔所在侧壁相邻或相对的侧壁上,泄压孔与后腔声学耦合,振膜振动的同时也会带动后腔的空气产生振动产生气导声音,后腔产生的气导声音可以通过泄压孔向外界传递。示例性地,在一些实施例中,发声部11A内的扬声器可以通过出声孔和泄压孔输出具有相位差(例如,相位相反)的声音,出声孔可以位于发声部11A的壳体朝向用户外耳道101的侧壁上,泄压孔可以位于发声部11的壳体背离用户外耳道101的一侧,此时壳体可以起到挡板的作用, 增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量。在一些实施例中,发声部11可以具有垂直于厚度方向X且彼此正交的长轴方向Y和短轴方向Z。其中,长轴方向Y可以定义为发声部11的二维投影面(例如,发声部11在其外侧面所在平面上的投影,或在矢状面上的投影)的形状中具有最大延伸尺寸的方向(例如,当投影形状为长方形或近似长方形时,长轴方向即长方形或近似长方形的长度方向),短轴方向Z可以定义为在发声部11在矢状面上投影的形状中垂直于长轴方向Y的方向(例如,当投影形状为长方形或近似长方形时,短轴方向即长方形或近似长方形的宽度方向)。厚度方向X可以定义为垂直于二维投影面的方向,例如,与冠状轴的方向一致,均指向身体左右的方向。在一些实施例中,当佩戴状态下发声部11处于倾斜状态时,长轴方向Y与短轴方向Z仍平行或近似平行于矢状面,长轴方向Y可以与矢状轴的方向具有一定夹角,即长轴方向Y也相应倾斜设置,短轴方向Z可以与垂直轴的方向具有一定夹角,即短轴方向Z也倾斜设置,如图2所示的发声部11B的佩戴情况。在一些实施例中,发声部11B的壳体的整体或部分结构可以伸入耳甲腔中,也就是说,发声部11B的壳体在矢状面上的投影与耳甲腔在矢状面上的投影具有重叠的部分。关于发声部11B的具体内容可以参考本说明书其他地方的内容,例如,图3及其对应的说明书内容。在一些实施例中,佩戴状态下发声部也可以处于水平状态或近似水平状态,如图2的发声部11C所示,长轴方向Y可以与矢状轴的方向一致或近似一致,均指向身体的前后方向,短轴方向Z可以与垂直轴的方向一致或近似一致,均指向身体的上下方向。需要注意的是,佩戴状态下,发声部11C处于近似水平状态可以是指图2所示的发声部11C的长轴方向与矢状轴的夹角在特定范围(例如,不大于20°)内。此外,发声部11的佩戴位置不限于图2中所示的发声部11A、发声部11B和发声部11C,满足图1中示出的区域J、区域M1或区域M2即可。例如,发声部11整体或者部分结构可以位于耳轮脚109的前侧(例如,图1中虚线围成的区域J)。又例如,发声部的整体或者部分结构可以与外耳道101的上部(例如,耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置)接触。再例如,发声部的整体或者部分结构可以位于耳部的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
为了改善开放式耳机10在佩戴状态下的稳定性,开放式耳机10可以采用以下几种方式中的任何一种或其组合。其一,悬挂结构12的至少部分设置成与耳部的后侧和头部中的至少一者贴合的仿形结构,以增加悬挂结构12与耳部和/或头部的接触面积,从而增加声学装置10从耳部上脱落的阻力。其二,悬挂结构12的至少部分设置成弹性结构,使之在佩戴状态下具有一定的形变量,以增加悬挂结构12对耳部和/或头部的正压力,从而增加开放式耳机10从耳部上脱落的阻力。其三,悬挂结构12至少部分设置成在佩戴状态下抵靠在耳部和/或头部上,使之形成压持耳部的反作用力,以使得发声部11压持在耳部沿冠状轴方向远离人体头部一侧,从而增加开放式耳机10从耳部上脱落的阻力。其四,发声部11和悬挂结构12设置成在佩戴状态下从耳部的前后两侧夹持对耳轮区域、耳甲腔所在区域等,从而增加开放式耳机10从耳部上脱落的阻力。其五,发声部11或者与之连接的结构设置成至少部分伸入耳甲腔102、耳甲艇103、三角窝104及耳舟106等腔体内,从而增加开放式耳机10从耳部上脱落的阻力。
示例性地,结合图3,在佩戴状态下,发声部11的末端FE(也被称为自由端)可以伸入耳甲腔内。可选地,发声部11和悬挂结构12可以设置成从耳甲腔所对应的耳部区域的前后两侧共同夹持前述耳部区域,从而增加开放式耳机10从耳部上脱落的阻力,进而改善开放式耳机10在佩戴状态下的稳定性。例如,发声部的末端FE在厚度方向X上压持在耳甲腔内。再例如,末端FE在长轴方向Y和/或短轴方向Z上抵接在耳甲腔内(例如,与耳甲腔的相对末端FE的内壁相抵接)。需要说明的是,发声部11的末端FE是指发声部11中与悬挂结构12连接的固定端相对设置的端部,也被称为自由端。发声部11可以为形状规则或不规则的结构体,这里为了进一步说明发声部11的末端FE,进行示例性说明。例如,发声部11为长方体结构时,发声部11的端部壁面为平面,此时发声部11的末端FE为发声部11中与悬挂结构12连接的固定端相对设置的端部侧壁。又例如,发声部11为球体、椭球体或不规则的结构体时,发声部11的末端FE可以是指沿Y-Z平面(短轴方向Z和厚度方向X形成的平面)对发声部11进行切割,获取的远离固定端的特定区域,该特定区域沿长轴方向Y的尺寸与发声部沿长轴方向Y的尺寸的比值的取值范围可以为0.05-0.2。
通过将发声部11至少部分伸入耳甲腔内,可以提高听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量,同时仍然保持较好的远场漏音相消的效果。仅作为示例性说明,发声部11的整体或部分结构伸入耳甲腔102内时,发声部11与耳甲腔102形成类似于腔体(以下简称为类腔体)的结构,在说明书实施例中,类腔体可以理解为由发声部11的侧壁与耳甲腔102结构共同围成的半封闭结构,该半封闭结构使的内部与外部环境并非完全密闭隔绝,而是具有与外部环境声学连通的泄漏结构(例如,开口、缝隙、管道等)。用户在佩戴开放式耳机10时,发声部11的壳体上靠近或朝向用户耳道 的一侧可以设置一个或多个出声孔,发声部11的壳体的其它侧壁(例如,远离或背离用户耳道的侧壁)上设置一个或多个泄压孔,出声孔与开放式耳机10的前腔声学耦合,泄压孔与开放式耳机10的后腔声学耦合。以发声部11包括一个出声孔和泄压孔作为示例,出声孔输出的声音和泄压孔输出的声音可以近似视为两个声源,该两个声源的声音大小相等、相位相反。发声部11和耳甲腔对应的内壁形成类腔体结构,其中,出声孔对应的声源位于类腔体结构内,泄压孔对应的声源位于类腔体结构外,形成图4所示的声学模型。
图4是根据本说明书一些实施例所示的开放式耳机形成的声学模型示意图。如图4所示,类腔体结构402中可以包含听音位置和至少一个声源401A。这里的“包含”可以表示听音位置和声源401A至少有一者在类腔体结构402内部,也可以表示听音位置和声源401A至少有一者在类腔体结构402内部边缘处。听音位置可以等效为耳部耳道入口,也可以是耳部声学参考点,如耳参考点(ear reference point,ERP)、鼓膜参考点(ear-drum reference point,DRP)等,也可以是导向听音者的入口结构等。声源401B位于类腔体结构402的外部,相位相反的声源401A和401B分别向周围空间辐射声音并发生声波的干涉相消现象,实现漏音相消效果。具体地,由于声源401A被类腔体结构402包裹,其辐射出来的声音大部分会通过直射或反射的方式到达听音位置。相对地,在没有类腔体结构402的情况,声源401A辐射出的声音大部分不会到达听音位置。因此,腔体结构的设置使得到达听音位置的声音音量得到显著提高。同时,类腔体结构402外的反相声源401B辐射出来的反相声音只有较少的一部分会通过类腔体结构402的泄漏结构403进入类腔体结构402中。这相当于在泄漏结构403处生成了一个次级声源401B’,其强度显著小于声源401B,亦显著小于声源401A。次级声源401B’产生的声音在腔体内对声源401A产生反相相消的效果微弱,使听音位置的听音音量显著提高。对于漏音来说,声源401A通过腔体的泄漏结构402向外界辐射声音相当于在泄漏结构402处生成了一个次级声源401A’,由于声源401A辐射的几乎所有声音均从泄漏结构403输出,且类腔体结构402尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为次级声源401A’的强度与声源401A相当,仍然保持了相当的降漏音效果。
在具体应用场景中,发声部11的壳体外壁面通常为平面或曲面,而用户耳甲腔的轮廓为凹凸不平的结构,通过将发声部11部分或整体结构伸入耳甲腔内,发声部11与耳甲腔的轮廓之间形成与外界连通的类腔体结构,进一步地,将出声孔设置在发声部的壳体朝向用户耳道口和靠近耳甲腔边缘的位置,以及将泄压孔设置在发声部11背离或远离耳道口的位置就可以构造图4所示的声学模型,从而使得用户在佩戴开放式耳机时能够提高用户在耳口处的听音位置,以及降低远场的漏音效果。
在一些实施例中,开放式耳机的发声部可以包括换能器和容纳换能器的壳体,其中,换能器是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,按频率进行区分,换能器的类型可以包括低频(例如,30Hz~150Hz)扬声器、中低频(例如,150Hz~500Hz)扬声器、中高频(例如,500Hz~5kHz)扬声器、高频(例如,5kHz~16kHz)扬声器或全频(例如,30Hz~16kHz)扬声器,或其任意组合。这里所说的低频、高频等只表示频率的大致范围,在不同的应用场景中,可以具有不同的划分方式。例如,可以确定一个分频点,低频表示分频点以下的频率范围,高频表示分频点以上的频率。该分频点可以为人耳可听范围内的任意值,例如,500Hz,600Hz,700Hz,800Hz,1000Hz等。
在一些实施例中,换能器可以包括一个振膜。当振膜振动时,声音可以分别从该振膜的前侧和后侧发出。在一些实施例中,壳体内振膜前侧的位置设有用于传递声音的前腔(未示出)。前腔与出声孔声学耦合,振膜前侧的声音可以通过前腔从出声孔中发出。壳体内振膜后侧的位置设有用于传递声音的后腔(未示出)。后腔与泄压孔声学耦合,振膜后侧的声音可以通过后腔从泄压孔中发出。
参照图3,这里以耳挂作为悬挂结构12的一个示例进行说明,在一些实施例中,耳挂可以包括依次连接的第一部分121和第二部分122,其中,第一部分121可以挂设在用户耳廓和头部之间,第二部分122可以向耳部的外侧(耳部沿冠状轴方向背离人体头部的一侧)延伸并连接发声部,从而将发声部固定于用户耳道附近但不堵塞耳道口的位置。在一些实施例中,出声孔可以开设在壳体朝向耳廓的侧壁上,从而将换能器产生的声音导出壳体后传向用户的耳道口。
在一些实施例中,耳挂自身具有弹性,发声部11与耳挂的相对位置在佩戴状态和未佩戴状态下可能有所区别。例如,为了方便佩戴以及保证佩戴后的稳定性,未佩戴状态下发声部11末端FE到耳挂的距离小于佩戴状态下发声部11末端FE到耳挂的距离,使得佩戴状态下发声部11产生向耳挂靠近的趋势,形成夹持耳廓的夹紧力。针对开放式耳机10的佩戴状态和未佩戴状态,在后文中将分别进行说明。
为了方便理解和描述开放式耳机10在非佩戴状态或佩戴状态下的形态,可以将开放式耳机10投影到特定平面上,并通过该平面上的投影形状有关的参数对开放式耳机10进行描述。仅作为示例,在佩戴状态下,可以将开放式耳机10投影在人体矢状面以形成相应的投影形状。在非佩戴状态下,可以参照人体矢状面与开放式耳机10的相对位置关系,选择与此类似的第一平面,使得开放式耳机10在第一平面 投影形成的投影形状接近开放式耳机10在人体矢状面投影形成的投影形状。为了方便描述,参考图7,在一些实施例中,用户未佩戴开放式耳机10时,可以根据耳挂的形态确定第一平面60。例如,第一平面60可以通过如下方式确定:将耳挂放置于平坦的支撑面(如水平桌面、地平面等),耳挂与支撑面接触并放置平稳时,该支撑平面即为此时开放式耳机10对应的第一平面60。当然,为了保持佩戴状态和非佩戴状态所对应的特定平面的统一性,第一平面60还可以是人体矢状面,这里的非佩戴状态可以表现为将用户的人头模型中的耳廓结构去除,并采用固定件或者胶水将发声部11以与佩戴状态下相同的姿态固定在人体头部模型。在一些实施例中,第一平面60也是可以指耳挂沿其长度延伸方向将其平分或大致平分的平分线所构成的平面。
结合图3和图5A,在一些实施例中,用户佩戴开放式耳机10时,发声部11沿冠状轴方向R在矢状面(即图5A中T轴和S轴所形成的平面)上具有第七投影,发声部11的形状可以为规则或不规则的三维形状,对应地,发声部11在矢状面上的第七投影为规则或不规则的形状,例如,发声部11的形状为长方体、类长方体、圆柱体时,发声部11在矢状面上的第七投影可能为长方形或类长方形(例如,跑道形),考虑到发声部11在矢状面上的第七投影可能为不规则形状,为方便描述第七投影,可在图5A和图5B中所示的发声部11投影(即第七投影)周围划定实线框P所示的矩形区域,并将实线框P所示的矩形区域的形心O近似视为第七投影的形心。需要说明的是,上述关于第七投影及其形心的描述仅作为一个示例,第七投影的形状与发声部11的形状或相对耳部的佩戴情况相关。耳廓沿冠状轴R方向在矢状面上具有第八投影。为了使得开放式耳机10在佩戴状态下,发声部11的至少部分结构可以伸入耳甲腔内(例如,图2中所示的发声部11B相对于耳部的位置),在一些实施例中,第七投影的形心O与第八投影的最高点在垂直轴方向(例如图5A所示的T轴方向)的距离h1(也被称为第一距离)与第八投影在垂直轴方向的高度h之比可以在0.35-0.6之间。在一些实施例中,发声部11与悬挂结构12可以是两个相互独立的结构或者为一体成型式的结构。为了更为清楚描述发声部的第七投影区域,这里根据发声部11的三维结构引入厚度方向X、长轴方向Y和短轴方向Z,其中长轴方向Y和短轴方向Z垂直,厚度方向X与长轴方向Y和短轴方向Z形成的平面垂直。仅作为示例,实线框P的确认过程如下:确定发声部11在长轴方向Y上相距最远的两点,分别过该两点作与短轴方向Z平行的第一线段和第二线段。确定发声部11在短轴方向Z上相距最远的两点,分别过该两点作与长轴方向Y平行的第三线段和第四线段,通过上述各线段所形成的区域可以获取图5A和图5B所示实线框P的矩形区域。
在一些实施例中,为了使得发声部11的整体或部分结构可以伸入耳甲腔内,第七投影的形心O与第八投影的末端点在矢状轴方向(例如图5A所示的S轴方向)的距离w1(也被称为第二距离)与第八投影在矢状轴方向的宽度w之比可以在0.4-0.7之间。
第八投影的最高点可以理解为其所有投影点中相对于用户颈部的某个点矢状面上的投影在垂直轴方向上的距离最大的点,也就是说,耳廓的最高点(例如,图5A中的A1点)在矢状面上的投影为第八投影的最高点。第八投影的最低点可以理解为其所有投影点中相对于用户颈部的某个点矢状面上的投影在垂直轴方向上的距离最小的点,也就是说,耳廓的最低点(例如,图5A中的A2点)在矢状面上的投影为第八投影的最低点。第八投影在垂直轴方向的高度为第八投影中所有投影点中相对于用户颈部的某个点在矢状面上的投影沿垂直轴方向上的距离最大的点与最小的点之间的差值(图5A中示出的高度h),即,A1点与A2点在垂直轴T方向的距离。第八投影的末端点可以理解为其所有投影点中相对于用户鼻尖在矢状面上的投影在矢状轴方向上距离最大的点,也就是说,耳廓的末端点(例如,图5A中示出的B1点)在矢状面的投影为第八投影的末端点。第八投影的前端点可以理解为其所有投影点中相对于用户鼻尖在矢状面上的投影在矢状轴方向上距离最小的点,也就是说,耳廓的前端点(例如,图5A中示出的B2点)在矢状面的投影为第八投影的前端点。第八投影在矢状轴方向的宽度为第八投影中所有投影点中相对于鼻尖在矢状面上的投影沿矢状轴方向上的距离最大的点与最小的点之间的差值(图5A中示出的宽度w),即B1点与B2点在矢状轴S方向的距离。需要说明的是,本说明书的实施例中发声部11或耳廓等构造在矢状面上的投影均指沿冠状轴R方向在矢状面上的投影,在说明书后文中不再进行强调。
需要说明的是,发声部11在矢状面上的第七投影的面积一般远小于耳廓在矢状面上的投影面积,以保证用户在佩戴开放式耳机10时不堵塞用户耳道口,同时也降低用户在佩戴时的负荷,便于用户的日常携带。在此前提下,在佩戴状态下,当发声部11在矢状面的投影(第七投影)的形心O与耳廓最高点A1在矢状面的投影(第八投影的最高点)在垂直轴方向的距离h1与第八投影的垂直轴方向的高度h比值过小或过大时,发声部11的部分结构可能位于耳廓顶部的上方或者位于用户的耳垂处,无法利用耳廓对发声部11起到足够支撑和限位作用,存在佩戴不稳定容易发生脱落的问题,另一方面,还可能导致发声部11上设置的出声孔距离耳道口较远,影响用户耳道口的听音音量。为了保证开放式耳机不堵塞用户耳道口的前提下,保证用户佩戴开放式耳机的稳定性和舒适性以及具有较好的听音效果,在一些实施例中,第七投影的形心O与第八投影的最高点A1在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比 控制在0.35-0.6之间,以使得发声部的部分或整体结构伸入耳甲腔时,则可以通过耳甲腔对发声部11的作用力,对发声部11起到一定的支撑和限位作用,进而提升其佩戴稳定性和舒适性。同时发声部11还可以与耳甲腔形成图4所示的声学模型,保证用户在听音位置(例如,耳道口)的听音音量,降低远场的漏音音量。优选地,第七投影的形心O与第八投影的最高点A1在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比控制在0.35-0.55之间。较为优选地,第七投影的形心O与第八投影的最高点在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比控制在0.4-0.5之间。
类似地,当第七投影的形心O与第八投影的末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比过大或过小时,发声部11的部分或整体结构可能位于耳部前侧的面部区域,或伸出耳廓的外轮廓,同样会导致发声部11无法与耳甲腔构建图4所示的声学模型的问题,同时也会导致开放式耳机10佩戴不稳定。基于此,本说明书实施例中提供的开放式耳机,通过将第七投影的形心O与第八投影末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比控制在0.4-0.7之间,还可以在保证发声部的声学输出效果的同时,提升开放式耳机的佩戴稳定性和舒适度。优选地,第七投影的形心O与第八投影末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比可以为0.45-0.68。较为优选地,第七投影的形心O与第八投影末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比控制在0.5-0.6。
作为一个具体的示例,第八投影在垂直轴方向的高度h可以为55mm~65mm,在佩戴状态下,如果第七投影的形心O与第八投影最高点在矢状面的投影在垂直轴方向的距离h1小于15mm或大于50mm,发声部11会位于距离耳甲腔较远的位置,不仅无法构建图4所示的声学模型,同时还存在佩戴不稳定的问题,因此,为了确保发声部的声学输出效果以及开放式耳机的佩戴稳定性,可以将第七投影的形心O与第八投影最高点在垂直轴方向的距离h1控制在为15mm~50mm之间。类似地,在一些实施例中,第八投影在矢状轴方向的宽度可以为40mm~55mm,当第七投影的形心O在矢状面的投影与第八投影末端点在矢状轴方向的距离大于45mm或小于15mm时,发声部11会相对于用户耳部过于靠前或过于靠后,同样会导致发声部11无法构建图4所示的声学模型的问题,同时也会导致开放式耳机10佩戴不稳定,因此,为了确保发声部11的声学输出效果以及开放式耳机的佩戴稳定性,可以将第七投影的形心O与第八投影末端点在矢状轴方向的距离控制在15mm~45mm之间。
如前文所述,当用户佩戴开放式耳机10时,其发声部11的至少部分可以伸入用户的耳甲腔,形成图4所示的声学模型。发声部11的壳体外壁面通常为平面或曲面,而用户耳甲腔的轮廓为凹凸不平的结构,通过将发声部11部分或整体结构伸入耳甲腔内时,由于发声部11无法与耳甲腔完成紧密贴合,从而会形成缝隙,该缝隙与图4中所示出的泄露结构403对应。图8是根据本说明书一些实施例所示的类腔体结构的示意图;图9是根据本说明书一些实施例所示的具有不同大小的泄漏结构的类腔体结构的听音指数曲线图。如图8所示,类腔体结构上泄漏结构的开口面积为S,类腔体结构中受被包含的声源(例如,图8中示出的“+”)直接作用的面积为S0。这里的“直接作用”指被包含声源发出的声音不经过泄漏结构直接声学作用于类腔体结构的壁面。两声源的间距为d0,泄漏结构的开口形状的中心到另一个声源(例如,图8中示出的“-”)的距离为L。如图9所示,保持L/d0=1.09不变,相对开口大小S/S0越大,听音指数越小。这是由于相对开口越大,被包含的声源直接向外辐射的声音成分越多,到达听音位置的声音越少,造成了听音音量随着相对开口增大而下降,进而导致听音指数变小。由此可以推断出,开口越大,在听音位置的听音音量越小。
在一些实施例中,考虑到发声部11与用户耳道(例如耳甲腔)的相对位置会影响发声部11与耳甲腔之间形成的缝隙尺寸,例如,发声部11的末端FE与耳甲腔相抵靠时,缝隙尺寸会较小,当发声部11的末端FE不抵靠耳甲腔时,缝隙尺寸较大。这里发声部11与耳甲腔之间形成的缝隙可以视为图4中声学模型中的泄露结构,因此发声部11与用户耳道(例如耳甲腔)的相对位置会影响发声部11与用户耳甲腔所构成的类腔体结构的泄露结构的数量以及泄露结构的开口大小,而该泄露结构的开口大小会直接影响听音质量,具体表现为泄露结构的开口越大,发声部11直接向外辐射的声音成分越多,到达听音位置的声音越少。基于此,为了兼顾发声部11的听音音量和降漏音效果,以保证发声部11的声学输出质量,可以使发声部11尽可能地与用户的耳甲腔相贴合。相应地,可以将第七投影的形心O与第八投影最高点在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比控制在0.35-0.6之间,同时将第七投影的形心O与第八投影末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比控制在0.4-0.65之间。优选地,在一些实施例中,为了在保证发声部11的声学输出质量的同时提升开放式耳机的佩戴舒适度,第七投影的形心O与第八投影最高点在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比还可以在0.35-0.55之间,第七投影的形心O与第八投影末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比可以在0.45-0.68之间。较为优选地,第七投影的形心O与第八投影最高点在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比还可以在0.35-0.5之间,第七投影的形心O与 第八投影末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比可以在0.48-0.6之间。
在一些实施例中,考虑到不同用户的耳部在形状和尺寸上可能会存在一定的差异,因此,前述比值范围可以在一定范围内浮动。示例性地,当用户耳垂较长时,第八投影在垂直轴方向的高度h相比一般情况会偏大,此时,用户在佩戴开放式耳机100的情况下第七投影的形心O与第八投影最高点在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比则会变小,例如,可以为0.2-0.55之间。类似地,在一些实施例中,当用户耳轮呈向前弯曲的形态时,第八投影在矢状轴方向的宽度w相比一般情况会偏小,第七投影的形心O与第八投影末端点在矢状轴方向的距离w1也会偏小,此时,用户在佩戴开放式耳机100的情况下第七投影的形心O与第八投影末端点在矢状轴方向的距离w1与第八投影在矢状轴方向的宽度w之比可能会变大,例如,可以为0.4-0.75之间。
不同用户的耳部有所差异,例如,有些用户的耳垂较长,这时采用第七投影的形心O和第八投影最高点的距离(第七距离)与第八投影在垂直轴上的高度比值来限定开放式耳机10可能会有影响,如图5B所示,这里选取用户耳廓与头部之间的连接区域的最高点A3和最低点A4来进行说明。耳廓与头部之间的连接处的最高点可以理解为耳廓与头部连接区域在矢状面的投影相对脖颈处特定点在矢状面的投影具有最大距离的位置。耳廓与头部之间的连接处的最高低可以理解为耳廓与头部连接区域在矢状面的投影相对脖颈处特定点在矢状面的投影具有最小距离的位置。为了兼顾发声部11的听音音量和降漏音效果,以保证发声部11的声学输出质量,可以使发声部11尽可能地与用户的耳甲腔相贴合。相应地,可以将第七投影的形心O与耳廓与头部的连接区域的在矢状面上的投影最高点在垂直轴方向的距离h3与耳廓与头部的连接区域在矢状面上投影的最高点和最低点在垂直轴方向的高度h2之比控制在0.4-0.65之间。优选地,在一些实施例中,为了在保证发声部11的声学输出质量的同时提升开放式耳机的佩戴舒适度,可以将第七投影的形心O与耳廓与头部的连接区域的在矢状面上的投影最高点在垂直轴方向的距离h3与耳廓与头部的连接区域在矢状面上投影的最高点和最低点在垂直轴方向的高度h2之比控制在0.45-0.6之间。较为优选地,第七投影的形心O与耳廓与头部的连接区域的在矢状面上的投影最高点在垂直轴方向的距离h3与耳廓与头部的连接区域在矢状面上投影的最高点和最低点在垂直轴方向的高度h2之比的范围可以为0.5-0.6。
结合图6和图7,在一些实施例中,开放式耳机10在第一平面60(如矢状面)可以形成第一投影,第一投影包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓。第一端部轮廓可以是发声部11的末端FE在耳挂平面上的投影轮廓,第一端部轮廓的两个端点P0和P1即为末端FE与发声部11其它部分交界位置在耳挂平面的投影点,关于末端FE的划分可以参见本说明书图3的相关描述。第二端部轮廓可以是悬挂结构12的自由端BE在耳挂平面上的投影轮廓,第二端部轮廓的两个端点Q0和Q1即为自由端BE与悬挂结构12其它部分交界位置在耳挂平面的投影点。外轮廓可以是第一投影位于点P1与点Q1之间的轮廓。内轮廓可以是第一投影位于点P0与点Q0之间的轮廓。
需要说明的是,悬挂结构12的自由端BE可以是悬挂结构12的第一部分中远离第二部分的一端中的至少部分区域。悬挂结构12的第一部分远离第二部分的一端可以为形状规则或不规则的结构体,这里为了进一步说明悬挂结构12的自由端BE,进行示例性说明。例如,悬挂结构12的第一部分远离第二部分的一端为长方体结构时,其端部壁面为平面,此时悬挂结构12的自由端BE为悬挂结构12的第一部分远离第二部分的一端的端部侧壁。又例如,悬挂结构12的第一部分远离第二部分的一端为球体、椭球体或不规则的结构体时,悬挂结构12的自由端BE可以是在悬挂结构12的第一部分的延伸方向上,由远离第二部分的最远位置向第二部分延进特定距离后所获取的区域,该特定距离与悬挂结构12第一部分的总延伸距离的比值的取值范围可以为0.05-0.2。
以发声部11在耳挂平面60上的投影为类长方形(例如,跑道形)为例,发声部11的投影中存在平行或近似平行的上侧壁投影和下侧壁投影,以及连接上侧壁投影和下侧壁投影的第一端部轮廓,第一端部轮廓可以是直线段或圆弧,点P0和点P1分别表示第一端部轮廓两端。仅作为示例性说明,点P0可以是末端FE投影形成的弧线与上侧壁投影的线段的交界点,与点P0类似,点P1可以是末端FE投影形成的弧线与下侧壁投影的线段的交界点。相似的,耳挂远离发声部11的一端也具有自由端,耳挂的自由端在耳挂平面60的投影形成第二端部轮廓,第二端部轮廓可以是直线段或圆弧,点Q0和点Q1分别表示第二端部轮廓两端。在一些实施例中,点Q0和点Q1可以是耳挂的第一部分121在第一平面60上远离耳挂第二部分122的方向上的自由端投影的线段或弧线的两端点,进一步的,在发声部11的长轴方向Y上,靠近发声部11的端点为点Q0,远离发声部11的端点为Q1。
开放式耳机10在耳挂平面60和人体矢状面的投影形状能够反映开放式耳机10在耳部的佩戴方式。例如,第一投影的面积可以反映开放式耳机10在佩戴状态下能够覆盖的耳廓的区域,以及发声部11和耳挂与耳部的接触方式。在一些实施例中,由于发声部11与耳挂的第一部分121并未接触,第一投影中内轮廓、外轮廓、第一端部轮廓、第二端部轮廓形成一个非封闭的区域。该区域的大小与开放式耳机 10的佩戴效果(例如,佩戴的稳定性、发声位置等)密切相关。为了方便理解,在一些实施例中,可以确定连接第一端部轮廓和第二端部轮廓的切线段50,将切线段50、内轮廓、第一端部轮廓和第二端部轮廓共同界定出的第三封闭曲线围成的面积作为第一投影的第三面积。
在一些实施例中,发声部11的佩戴位置(也就是,发声部11与用户耳道或者耳甲腔的相对位置会影响开放式耳机10在矢状面形成的第一投影的第三面积,从而影响发声部11与用户耳甲腔所构成的类腔体结构的泄露结构的数量以及泄露结构的开口大小,而该泄露结构的开口大小会直接影响听音质量。具体表现为:第三面积过大时,发声部11可能无法抵接耳甲腔的边缘,造成发声部11与耳甲腔形成的类腔体结构的泄露结构的开口过大,出声孔直接向外辐射的声音成分增多,到达听音位置的声音变少,进而导致发声部11的发声效率降低。发声效率可以理解为耳道口的听音音量与远场的漏音音量的比值。此外,第三面积过大时,还可能导致耳挂与发声部11的夹持效果降低,导致佩戴不稳定。基于此,第三封闭曲线的第三面积不宜过大,在一些实施例中,考虑开放式耳机10的整体结构,以及耳挂的形状需要适应耳部和头部之间的空间等,第三封闭曲线的第三面积不超过600mm2。在一些实施例中,第三面积过小时,可能会导致耳挂(例如,耳挂上顶点)与发声部11之间的距离过小,或耳挂与发声部11在用户耳廓的夹紧力度过大,从而影响开放式耳机10在佩戴方面的舒适度。基于此,第三封闭曲线的第三面积也不宜过小,在一些实施例中,第三面积可以不小于200mm2。在一些实施例中,综合考虑开放式耳机10的发声效率以及佩戴方面的稳定性和舒适度,第三封闭曲线的第三面积的范围可以在200mm2~600mm2之间。在一些实施例中,为了降低发声部11直接向外辐射的声音,保证开放式耳机10在听音位置(例如,耳道口处)的听音音量,并提高用户佩戴时的舒适度和稳定性,第三封闭曲线的第三面积的范围在300mm2~500mm2之间。
图10是根据本说明书一些实施例所示的开放式耳机10在佩戴状态和非佩戴状态下的形态差异示意图。虚线区域表示佩戴状态下耳挂的第一部分,其相比于非佩戴状态下耳挂的第一部分距离发声部末端FE的距离更远。在佩戴状态下,开放式耳机10在人体矢状面形成第二投影,类似于图6所示的第一投影,第二投影也包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓,且内轮廓、第一端部轮廓、第二端部轮廓以及连接第一端部轮廓和第二端部轮廓的切线段共同界定出第四封闭曲线。如前文,开放式耳机10在第一平面投影形成的投影形状接近开放式耳机10在人体矢状面投影形成的投影形状,因此,在第二投影中,仍然可以采用如图6的轮廓边界点,即点P0、点P1、点Q0和点Q1来描述第二投影中各个轮廓的划分。也就是说,第二投影中的外轮廓、第一端部轮廓、内轮廓和第二端部轮廓以及切线段的定义均与第一投影中的轮廓类似,在此不在赘述。
在一些实施例中,开放式耳机10在佩戴状态下,内轮廓、第一端部轮廓、第二端部轮廓以及连接第一端部轮廓和第二端部轮廓的切线段50共同界定出第四封闭曲线。与第三面积类似,在一些实施例中,可以确定连接第一端部轮廓和第二端部轮廓的切线段50,切线段50、内轮廓、第一端部轮廓和第二端部轮廓共同界定出的第四封闭曲线具有第四面积。第四封闭曲线与第三封闭曲线的差异能够反映开放式耳机10佩戴时,发声部11和耳挂与耳部的贴合程度。
在一些实施例中,由于耳挂存在一定程度上的弹性,在佩戴状态下,耳挂与发声部11之间的距离增加,因此开放式耳机10在佩戴状态下形成的第四面积大于非佩戴状态下形成的第三面积。在一些实施例中,当第四面积过大时,发声部11可能无法抵接耳甲腔的边缘,造成发声部11与耳甲腔形成的类腔体结构的泄露结构的开口过大,出声孔直接向外辐射的声音成分增多,到达听音位置的声音变少,进而导致发声部11的发声效率降低。此外,第四面积过大时,还可能导致耳挂与发声部11的夹持效果降低,导致佩戴不稳定。基于此,第四封闭曲线的第四面积不宜过大,在一些实施例中,考虑开放式耳机10的整体结构,以及耳挂的形状需要适应耳部和头部之间的空间等,第四封闭曲线的第四面积不超过900mm2。在一些实施例中,第四面积过小时,可能会导致耳挂(例如,耳挂上顶点)与发声部11之间的距离过小,或耳挂与发声部11在用户耳廓的夹紧力度过大,从而影响开放式耳机10在佩戴方面的舒适度。基于此,第四封闭曲线的第四面积也不宜过小,在一些实施例中,第四面积不小于350mm2
在一些实施例中,综合考虑开放式耳机10的发声效率以及佩戴方面的稳定性和舒适度,第四封闭曲线的第四面积的范围在350mm2~900mm2之间。在一些实施例中,为了保证用户佩戴的稳定性,以及保证开放式耳机10在听音位置(例如,耳道口处)的听音音量,并提高用户佩戴时的舒适度,第四封闭曲线的第四面积的范围在450mm2~750mm2之间。
第三面积与第四面积的比值过小可能会造成夹持用户耳廓的夹紧力过小,进而导致佩戴不稳,而第三面积与第四面积的比值过大,可能导致耳挂部分弹性较差,不便于用户佩戴,且佩戴后耳部有异物感。因此,在一些实施例中,为了保证耳挂适当的弹性,第三封闭曲线的第三面积与第四封闭曲线的第四面积的比值范围在0.5~0.85之间。在一些实施例中,为了进一步提高发声部11和耳挂与耳部的贴合程度,以及增加开放式耳机佩戴时的稳定性,第三面积与第四面积的比值在0.59~0.77之间。
本说明书实施例中提供的开放式耳机,通过将发声部11在矢状面的第七投影的形心O与第八投影的最高点在垂直轴方向的距离h1与第八投影在垂直轴方向的高度h之比控制在0.35-0.6之间,可以使发声部11至少部分伸入耳甲腔内,并与用户的耳甲腔形成图4所示的声学模型,以及通过将开放式耳机在佩戴状态下和非佩戴状态下的投影界定出的封闭曲线的面积(如第一投影的第三面积、第二投影的第四面积)控制在合适的范围内,可以使得发声部11抵接在耳甲腔的边缘,使得发声部11与耳甲腔形成的类腔体结构的泄露结构的开口较小,以减少出声孔向外辐射的声音,从而提高开放式耳机在听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量,同时保持较好的远场漏音相消的效果。此外,发声部11至少部分伸入耳甲腔内时,耳甲腔可以对发声部11起到一定的支撑和限位作用,提高开放式耳机10在佩戴状态下的稳定性。
在一些实施例中,考虑到用户在佩戴开放式耳机10时,若第七投影的形心O与耳挂的第一部分121在矢状面上的投影的距离过大,可能会导致第四面积过大,这种情况下,可能会出现佩戴不稳定的问题(此时发声部11与耳挂之间无法对耳部形成有效的夹持)和发声部11无法有效伸入耳甲腔的问题(或发声部11与耳甲腔形成的类腔体结构的泄露结构的开口过大),从而影响听音效果;而该距离过小时,可能会导致第四面积过小,这种情况下,则不仅会影响发声部11与用户耳甲腔以及耳道口的相对位置,还可能会导致发声部11或耳挂压迫耳部,导致佩戴舒适度较差的问题。基于此,为避免前述问题,在一些实施例中,佩戴状态下,第七投影的形心O与耳挂的第一部分121在矢状面上的投影的距离范围可以为18mm-43mm。通过将该距离控制在18mm-43mm,可以使得第四面积位于合适的范围内(如使得第四面积的范围为450mm2~750mm2),从而使得耳挂与用户耳部较好地贴合,同时保证发声部11恰好位于用户耳甲腔处,并且可以构成图4所示的声学模型,以确保发声部11输出的声音能够较好地传递给用户。在一些实施例中,为了使得发声部11与耳甲腔形成的类腔体结构的泄露结构的开口较小,减少出声孔直接向外辐射的声音,以提高听音效果,佩戴状态下,第七投影的形心O与耳挂的第一部分121在矢状面上的投影的距离范围不宜过大,例如,小于41mm。在一些实施例中,为了防止发声部11或耳挂压迫耳部而造成开放式耳机10的佩戴舒适性问题,佩戴状态下,第七投影的形心O与耳挂的第一部分121在矢状面上的投影的距离范围不宜过小,例如,大于20mm。在一些实施例中,综合考虑开放式耳机10的听音效果和佩戴的稳定性以及舒适性,第七投影的形心O与耳挂的第一部分121在矢状面上的投影的距离范围可以为20mm-41mm。在一些实施例中,为了进一步提升开放式耳机的佩戴稳定性以及保证发声部11在耳道口的听音效果,第七投影的形心O与耳挂的第一部分121在矢状面上的投影的距离范围可以为22mm-40.5mm。作为具体的示例,参见图5C,第七投影的形心O在矢状面上的投影与耳挂的第一部分121在矢状面上的投影的最小距离d3可以为21mm,第七投影的形心O在用户矢状面上的投影与耳挂的第一部分121在该矢状面上的投影的最大距离d4可以为41.2mm。
在一些实施例中,由于耳挂自身具有弹性,发声部11与耳挂的距离在佩戴状态和未佩戴状态可以发生一定的变化(通常未佩戴状态下的距离小于佩戴状态下的距离)。示例性地,在一些实施例中,当开放式耳机10处于未佩戴状态时,发声部11在第一平面的投影的形心与耳挂的第一部分121在第一平面上的投影的距离范围可以为15mm-38mm。通过将该距离控制在15mm-38mm,可以使得第三面积位于合适的范围内(如使得第三面积的范围为300mm2~500mm2),从而使得耳挂与用户耳部较好地贴合,同时保证发声部11恰好位于用户耳甲腔处,并且可以构成图4所示的声学模型,以确保发声部11输出的声音能够较好地传递给用户。在一些实施例中,为了使得发声部11与耳甲腔形成的类腔体结构的泄露结构的开口较小,减少出声孔直接向外辐射的声音,以提高听音效果,当开放式耳机10处于未佩戴状态时,发声部11在第一平面的投影的形心与耳挂的第一部分121在第一平面上的投影的距离范围不宜过大,例如,小于36mm。在一些实施例中,为了防止发声部11或耳挂压迫耳部而造成开放式耳机10的佩戴舒适性问题,当开放式耳机10处于未佩戴状态时,发声部11在第一平面的投影的形心与耳挂的第一部分121在第一平面上的投影的距离范围不宜过小,例如,大于16mm。在一些实施例中,综合考虑开放式耳机10的听音效果和佩戴的稳定性以及舒适性,当开放式耳机100处于未佩戴状态时,发声部11在第一平面的投影的形心与耳挂的第一部分121在该第一平面上的投影的距离范围可以为16mm-36mm。在一些实施例中,通过使发声部在第一平面上的投影的形心与耳挂的第一部分121在第一平面上的投影的距离在未佩戴状态下略小于佩戴状态,可以使得开放式耳机100在处于佩戴状态时其耳挂能够对用户耳部产生一定的夹紧力,从而使得其在不影响用户佩戴体验的情况下提高用户佩戴时的稳定性。
图11A是本说明书一些实施例提供的开放式耳机的示例性结构示意图,图11B是根据本说明书一些实施例提供的用户佩戴开放式耳机的示意图。如图11A和图11B所示,开放式耳机10还可以包括电池仓13,发声部11和电池仓13分别位于悬挂结构12的两端。在一些实施例中,耳挂的第一部分121远离发声部11的一端与电池仓13连接,电池仓13内设置有与发声部11电性连接的电池。在一些实施例中,耳挂为与人体耳廓和头部连接处相适配的弧形结构,当用户佩戴开放式耳机10时,发声部11和电池 仓13可以分别位于耳廓的前外侧面和后内侧面,其中,发声部11向耳挂的第一部分121处延伸,使得发声部11的整体或部分结构伸入耳甲腔中,并与耳甲腔配合形成类腔体结构。当第一部分121在其延伸方向的尺寸(长度)过小时,电池仓13会在靠近用户耳廓顶部的位置,此时第一部分121和第二部分121无法为开放式耳机10提供对耳部和/或头部的足够的接触面积,导致开放式耳机10容易从耳部脱落,因此耳挂的第一部分121的长度需要足够长,以保证耳挂可以提供对耳部和/或头部的足够大的接触面积,从而增加开放式耳机10从人体耳部和/或头部脱落的阻力。此外,当发声部11的末端与耳挂的第一部分121的间距过大时,在佩戴状态下,电池仓13距离耳廓较远,无法为开放式耳机提供足够的夹持力,容易发生脱落。当发声部11的末端与耳挂的第一部分121的间距过小时,电池仓13或发声部11对耳廓造成挤压,长时间佩戴影响用户的舒适性。这里以用户佩戴开放式耳机作为示例,耳挂的第一部分121在其延伸方向的长度以及发声部11的末端与第一部分121之间的间距可以通过发声部11在矢状面上的投影(即,第七投影)的形心O和电池仓13在矢状面上的投影的形心Q的距离来表征,为了保证耳挂可以提供对耳部和/或头部的足够大的接触面积,电池仓13在矢状面上的投影的形心Q相对于水平面(例如,地平面)的距离小于发声部11在矢状面上的投影的形心O相对于水平面的距离,也就是说,在佩戴状态下,电池仓13在矢状面上的投影的形心Q位于发声部11在矢状面上的投影的形心O的下方。在佩戴状态下,发声部11的位置需要部分或整体伸入耳甲腔,其位置相对固定,如果发声部11在矢状面上的投影形心O和电池仓13在矢状面上的投影的形心Q之间的距离过小,电池仓13会紧紧贴靠甚至压迫在耳廓后内侧面,影响用户佩戴的舒适性,此外,发声部11在矢状面上的投影形心O和电池仓13在矢状面上的投影的形心Q之间的距离过小时,耳挂的第一部分121的长度也会较短,会导致第四面积较小,这也会影响用户佩戴的舒适性。而发声部11在矢状面上的投影的形心O和电池仓13在矢状面上的投影的形心Q的距离过大时,耳挂的第一部分121的长度也会较长,导致第四面积较大,用户在佩戴时明显感觉到位于耳廓后内侧面的耳机部分偏沉或者电池仓13相对耳廓的位置较远,用户在运动时容易发生脱落,影响用户佩戴舒适度和开放式耳机佩戴时的稳定性。基于此,在一些实施例中,在佩戴状态下,发声部11在矢状面上的投影的形心O和电池仓13在矢状面上的投影的形心Q之间的距离d8范围为20mm-30mm。在一些实施例中,为了防止第四面积过小而影响用户佩戴的舒适性,在佩戴状态下,发声部11在矢状面上的投影的形心O和电池仓13在矢状面上的投影的形心Q之间的距离d8不宜过小,例如,大于22mm。在一些实施例中,为了防止第四面积过大而影响开放式耳机10佩戴的稳定性,在佩戴状态下,发声部11在矢状面上的投影的形心O和电池仓13在矢状面上的投影的形心Q之间的距离d8不宜过大,例如,小于28mm。在一些实施例中,为了使得用户佩戴开放式耳机10时同时具有较好的稳定性和舒适性,发声部11在矢状面上的投影的形心O和电池仓13在矢状面上的投影的形心Q之间的距离d8范围为22mm-28mm。在一些实施例中,为了使得用户佩戴开放式耳机10时同时具有较好的稳定性和舒适性,发声部11在矢状面上的投影的形心O和电池仓13在矢状面上的投影的形心Q之间的距离d8范围为23mm-26mm。
由于耳挂自身具有弹性,开放式耳机10在佩戴状态下和未佩戴状态下,发声部11在矢状面上的投影的形心O和电池仓13在矢状面上的投影的形心Q之间的距离会发生变化。在一些实施例中,在未佩戴状态下,发声部11在第一平面的投影的形心和电池仓13在第一平面的投影的形心之间的距离d7范围为16.7mm-25mm。在一些实施例中,为了防止第三面积过小而影响用户佩戴的舒适性,在未佩戴状态下,发声部11在第一平面的投影的形心和电池仓13在第一平面的投影的形心之间的距离d7不宜过小,例如,大于18mm。在一些实施例中,为了防止第三面积过大而影响开放式耳机10佩戴的稳定性,在未佩戴状态下,发声部11在第一平面的投影的形心和电池仓13在第一平面的投影的形心之间的距离d7不宜过大,例如,小于23mm。在一些实施例中,为了兼顾用户佩戴开放式耳机10时的稳定性和舒适性,防止第三面积过大或过小,在未佩戴状态下,发声部11在第一平面的投影的形心和电池仓13在第一平面的投影的形心之间的距离d7范围为18mm-23mm。在一些实施例中,为了兼顾用户佩戴开放式耳机10时的稳定性和舒适性,防止第三面积过大或过小,在未佩戴状态下,发声部11在第一平面的投影的形心和电池仓13在第一平面的投影的形心之间的距离d7范围为19.6mm-21.8mm。
在一些实施例中,开放式耳机10在佩戴状态下和未佩戴状态下,发声部11在投影平面(例如,矢状面、第一平面)的投影的形心和电池仓13在投影平面的投影的形心之间的距离会发生变化,该变化值可以反映耳挂的柔软度。耳挂的柔软度过大时,开放式耳机10的整体结构和形态不稳定,无法对发声部11和电池仓13进行较强支撑,佩戴的稳定也较差,容易发生脱落;考虑到耳挂需要挂设在耳廓与头部的连接处,耳挂的柔软度过小时,开放式耳机10不易发生形变,用户佩戴开放式耳机时,耳挂会紧紧贴靠甚至压迫在人体耳部和/或头部之间的区域,影响佩戴的舒适性。为了使得用户佩戴开放式耳机10时具有较好的稳定性和舒适性,在一些实施例中,开放式耳机10在佩戴状态下发声部11在矢状面的投影的形心O在与电池仓13在矢状面的投影的形心Q的距离变化值与开放式耳机10在非佩戴状态下发声部11在第一平面的投影的形心与电池仓13在第一平面的投影的形心的距离的比值范围为0.3-0.8。优选地,开放 式耳机10在佩戴状态下发声部11在矢状面的投影的形心O在与电池仓13在矢状面的投影的形心Q的距离变化值与开放式耳机10在非佩戴状态下发声部11在第一平面的投影的形心与电池仓13在第一平面的投影的形心的距离的比值范围为0.45-0.68。
需要注意的是,关于电池仓13在矢状面上的投影的形状及形心Q的内容可以参考本说明书中关于发声部11在矢状面的投影的形状和形心O的相关描述。此外,本实施例中,电池仓13与耳挂的第一部分121可以为相互独立的结构,电池仓13与耳挂的第一部分121之间采用嵌接、卡接等的方式连接,确定电池仓13的投影时可以以电池仓13与第一部分121之间的拼接点或拼接线以更加准确地获取电池仓13在矢状面上的投影。在其他实施例中,电池仓13也可以视为是耳挂的第一部分121的一部分,这种情况下,电池仓13位于第一部分121上远离发声部11的一端,第一投影和/或第二投影中的第一端部轮廓即为电池仓的自由端在第一平面60的投影轮廓。
在一些实施例中,为了保证开放式耳机10佩戴时的舒适性,需要考虑耳挂重量的分布。为了减轻耳挂的支点(例如,上顶点)对耳廓的压迫感,可以将耳挂的质心位置(如图6中示出的点F)设置在发声部11附近。如此方式,在发声部11伸入耳甲腔后,耳甲腔可以同时支撑发声部11和耳挂的部分重量,减少耳挂的支点对耳廓的压迫感。需要说明的是,本实施例中将电池仓13视为是耳挂的第一部分121的一部分,这里所述的耳挂的质心是指耳挂整体(包括电池仓13但不包括发声部11)的质心。
图12A是根据本说明书一些实施例所示的开放式耳机的耳挂、电池仓和发声部的质心形成的三角形的示意图。参考图12A,图中三角形1100的三个顶点分别对应开放式耳机10的耳挂的质心1110、发声部的质心1120和电池仓的质心1130。前述三个质心构成的三角形1100影响开放式耳机10佩戴时的稳定性、舒适度,此外,三个质心的分布也会对开放式耳机10的质心位置产生影响。三角形1100中某一线段过长会导致开放式耳机10佩戴时稳定性较差,例如电池仓的质心1130与耳挂质心1110的距离过短,可能会导致开放式耳机10佩戴时出现向发声部11所在位置倾斜的趋势,随着佩戴时间的延长或用户佩戴开放式耳机10时的运动,发声部11可能会产生一定倾斜甚至脱落,影响用户佩戴体验;电池仓的质心1130与耳挂质心1110的距离过长,会导致开放式耳机10佩戴时出现向电池仓13方向所在位置倾斜的趋势,随着佩戴时间的延长或用户佩戴开放式耳机10时的运动,发声部11同样会产生一定倾斜设甚至脱落,影响用户佩戴体验。在一些实施例中,考虑佩戴的稳定性,开放式耳机10在非佩戴状态下,电池仓的质心1130与耳挂的质心1110的相对距离在40mm~62mm之间。在一些实施例中,为了进一步提高用户佩戴开放式耳机10的舒适度,开放式耳机10在非佩戴状态下,电池仓的质心1130与耳挂的质心11的相对距离在35mm~55mm之间。
在一些实施例中,发声部的质心1120与电池仓的质心1130的相对距离过短,为了保证佩戴状态下发声部11能够伸入耳甲腔以使发声部11和耳甲腔之间形成类腔体的声学结构,耳挂的第一部分121的长度也会较短(这是由于电池仓13视为是耳挂的第一部分121的一部分),由此会导致第三面积较小,从而影响用户佩戴的舒适性;而发声部的质心1120与电池仓的质心1130的相对距离过长,耳挂的第一部分121的长度也会较长,会影响佩戴的舒适度,同时也会导致第三面积较大,从而影响开放式耳机佩戴时的稳定性。在一些实施例中,在非佩戴状态下,发声部的质心1120与电池仓的质心1130的相对距离在11mm~35mm之间。在一些实施例中,为了兼顾开放式耳机在佩戴方面的稳定性和舒适度,在非佩戴状态下,发声部的质心1120与电池仓的质心1130的相对距离在15mm~30mm之间。
在一些实施例中,用户佩戴开放式耳机10时,耳挂在耳部100上的佩戴位置相对固定,因此,发声部的质心1120与耳挂的质心1110的相对距离可以反映发声部11在耳部100上的位置。在一些实施例中,为了使得发声部11能够伸入耳甲腔以使发声部11与耳甲腔之间形成类腔体的声学模型,从而提高听音效果,开放式耳机10在非佩戴状态下,发声部的质心1120与耳挂的质心1110的相对距离在15mm~40mm之间。在一些实施例中,为了进一步提高用户佩戴开放式耳机10的舒适度,开放式耳机10在非佩戴状态下,发声部的质心1120与耳挂的质心11的相对距离在20mm~35mm之间。
参考图6,在一些实施例中,开放式耳机10在非佩戴状态下,外轮廓、第一端部轮廓、第二端部轮廓以及连接第一端部轮廓和第二端部轮廓的切线段50共同界定出第一封闭曲线。为了方便理解,与第三面积类似,在一些实施例中,可以确定连接第一端部轮廓和第二端部轮廓的切线段50,将切线段50、第一端部轮廓和第二端部轮廓共同界定出的第一封闭曲线围成的面积作为第一投影的第三面积。第一封闭曲线能够反映开放式耳机10在佩戴状态下能够覆盖的耳廓的区域,以及发声部11和耳挂与耳部的接触方式。第一面积与第三面积的差等于开放式耳机10在第一平面上的投影面积(即发声部11在第一平面的投影面积与耳挂在第一平面的投影面积之和)。
为了使得发声部11的整体或部分结构可以伸入耳甲腔内以提高发声部11的发声效率。如图2中所示的发声部11B相对于耳部的位置,可以将发声部11的尺寸设置的较小以适应耳甲腔的尺寸。此外,为了使得耳挂的第一部分121与发声部11在耳甲腔边缘处提供合适的夹紧力,让开放式耳机10佩戴更加 稳定,在非佩戴状态下,发声部11与耳挂的第一部分121之间的距离不宜太远,这样,通过提供合适的夹紧力,可以确保在佩戴状态下开放式耳机10不完全仅由耳部上缘支撑,提升佩戴的舒适度。考虑到以上因素,在非佩戴状态下可以将第一封闭曲线围成的第一面积设置得较小。在一些实施例中,第一封闭曲线围成的第一面积的范围不大于1500mm2
在一些实施例中,由于耳挂至少部分设置成在佩戴状态下抵靠在耳部和/或头部上,使之形成压持耳部的作用力,第一面积过小可能造成部分人群(如耳廓较大人群)佩戴后存在异物感,因此,考虑到佩戴方式和耳部的尺寸,第一封闭曲线的第一面积的范围不小于1000mm2;同时,在一些实施例中,考虑到发声部11与用户耳道(例如耳甲腔)的相对位置会影响发声部11与用户耳甲腔所构成的类腔体结构的泄露结构的数量以及泄露结构的开口大小,而该泄露结构的开口大小会直接影响听音质量。具体表现为:第一面积过小时,发声部11可能无法抵接耳甲腔的边缘,造成发声部11与耳甲腔形成的类腔体结构的泄露结构的开口过大,出声孔直接向外辐射的声音成分增多,到达听音位置的声音变少,进而导致发声部11的发声效率降低。而第一面积过大时,还可能导致耳挂与发声部11的夹持效果降低,导致佩戴不稳定。综上,在一些实施例中,第一封闭曲线的第一面积的范围可以在1000mm2~1500mm2之间。
在一些实施例中,考虑开放式耳机10的整体结构,以及耳挂的形状需要适应耳部和头部之间的空间等,第一封闭曲线的第一面积的范围不小于1150mm2。在一些实施例中,为保证发声部11的发声效率以及夹紧力的适中,第一封闭曲线的第一面积的范围不大于1350mm2。因此,在一些实施例中,第一封闭曲线的第一面积的范围可以在1150mm2~1350mm2之间,以保证发声部11的发声效率以及用户佩戴开放式耳机10的舒适度,同时,适当的第一面积可以保证开放式耳机10在听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量,同时保持较好的远场漏音相消的效果。
为了使得发声部11的整体或部分结构可以伸入耳甲腔内,例如,图2中所示的发声部11B相对于耳部的位置,并与用户的耳甲腔形成图4所示的声学模型,可以设置发声部11在第一平面60上的投影面积与第一面积之间的相对大小。在一些实施例中,可以使得开放式耳机10在非佩戴状态下,发声部11在第一平面60上的投影面积与第一面积的比值较小,以使发声部11能够抵接在耳甲腔的边缘,从而使得发声部11与耳甲腔之间形成的类腔体结构的泄露结构的开口较小,从而提高听音效果,同时还可以保证用户在佩戴开放式耳机10时不堵塞用户耳道口,同时也降低用户在佩戴时的负荷,便于用户的日常佩戴时获取环境音或日常交流。例如,可以使得发声部11在第一平面60上的投影面积不超过第一面积的一半(即比值不大于0.5)。在一些实施例中,发声部11在第一平面60上的投影面积与第一面积的比值可以在0.25~0.4之间,从而减轻用户的佩戴感。
如前文所述,在佩戴状态下,开放式耳机10在人体矢状面形成第二投影,类似于图6中的第一投影,第二投影也包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓,且外轮廓、第一端部轮廓、第二端部轮廓以及连接第一端部轮廓和第二端部轮廓的切线段共同界定出第二封闭曲线。如前文,开放式耳机10在第一平面投影形成的投影形状接近开放式耳机10在人体矢状面投影形成的投影形状,因此,在第二投影中,仍然可以采用如图6的轮廓边界点,即点P0、点P1、点Q0和点Q1来描述第二投影中各个轮廓的划分。也就是说,第二投影中的外轮廓、第一端部轮廓、内轮廓和第二端部轮廓以及切线段的定义均与第一投影的轮廓类似,在此不在赘述。第二封闭曲线围成的面积视为第二投影的第二面积。在一些实施例中,第二面积可以反应开放式耳机10在佩戴状态下与用户耳部的贴合情况。
由于开放式耳机10在佩戴状态下,耳挂与发声部11之间的距离增加,导致第二封闭曲线围成的第二面积大于第一封闭曲线围成的第一面积。在一些实施例中,为了使得佩戴状态下发声部11能够伸入耳甲腔且耳挂与耳部能够较好地贴合,应当使得第二面积与第一面积之差在一定的范围内。例如,第二面积可以比第一面积大20mm2~500mm2。在一些实施例中,第二面积可以比第一面积大50mm2~400mm2。在一些实施例中,第二面积可以比第一面积大60mm2~100mm2
第一面积与第二面积的比值过小可能会造成夹持用户耳廓的夹紧力过小,进而导致佩戴不稳,而第一面积与第二面积的比值过大,可能导致耳挂部分弹性较差,不便于用户佩戴,且佩戴后耳部有异物感。因此,在一些实施例中,第一封闭曲线具有的第一面积与第二封闭曲线具有的第二面积的比值范围在0.6~1之间。在一些实施例中,为了保证耳挂部分具有较好的弹性,第一封闭曲线具有的第一面积与第二封闭曲线具有的第二面积的比值不宜过大,例如,小于0.95。在一些实施例中,为了提高佩戴的稳定性,第一封闭曲线具有的第一面积与第二封闭曲线具有的第二面积的比值不宜过小,例如,大于0.75。在一些实施例中,为了兼顾耳挂的弹性和佩戴稳定性,该比值范围在0.75~0.95之间。
基于与第一面积类似的理由,适当的第二面积可以保证开放式耳机10在听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量,同时保持较好的远场漏音相消的效果。在一些实施例中,第二面积的范围在1100mm2~1700mm2之间。在一些实施例中,为保证发声部11的发声效率,第二面积的范围不宜过小,例如,大于1300mm2。在一些实施例中,为了保证用户佩戴开放式耳机10的稳定性, 第二面积的范围不宜过大,例如,小于1650mm2。在一些实施例中,为了兼顾发声部11在耳甲腔内的发声效率以及用户佩戴开放式耳机10的舒适度和稳定性,第二面积的范围可以在1300mm2~1650mm2之间。
由于在佩戴状态,发声部11与耳甲腔贴合,过大的发声部11尺寸可能会对耳部(如耳道口)形成遮挡,而过小的发声部11尺寸可能导致发声部11内部结构(如磁路、电路板等)布置难度增加。基于此,在一些实施例中,开放式耳机10在佩戴状态下,发声部11在人体矢状面上的投影面积与第二面积的比值在0.15~0.45之间。在一些实施例中,为了防止发声部11尺寸过大而对耳部形成遮挡,在佩戴状态下,发声部11在人体矢状面上的投影面积与第二面积的比值不宜过大,例如,小于0.35。在一些实施例中,为了减小发声部11内部结构的布置难度,在佩戴状态下,发声部11在人体矢状面上的投影面积与第二面积的比值不宜过小,例如,大于0.2。在一些实施例中,为保证用户在佩戴开放式耳机10时不堵塞用户耳道口,同时也降低用户在佩戴时的负荷,便于用户的日常佩戴时获取环境音或日常交流,发声部11在人体矢状面上的投影面积与第二面积的比值在0.2~0.35之间。
在一些实施例中,参见图5D,发声部11的上侧壁111和下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面的投影的距离可以反映发声部11在沿短轴方向Z(图3中示出的箭头Z所示的方向)的尺寸。耳挂上顶点可以是用户佩戴开放式耳机时,耳挂上相对用户脖颈处特定点在垂直轴方向具有最大距离的位置,例如,图5D中所示的顶点T1。为了保证开放式耳机10不堵塞用户耳道口的同时,提高开放式耳机10的听音效果,在一些实施例中,发声部11的上侧壁111在矢状面上的投影的中点C1与耳挂上顶点T1在矢状面上的投影的距离d13范围为17mm-36mm,发声部11的下侧壁112在矢状面上的投影的中点C2与耳挂上顶点d14在矢状面上的投影的距离范围为28mm-52mm。在一些实施例中,发声部11的上侧壁111和下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面的投影的距离还可以反映第四面积的大小。具体表现为:发声部11的上侧壁111或下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面的投影的距离较小,第四面积较小;发声部11的上侧壁111或下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面的投影的距离较大,第四面积较大。为了保证佩戴状态下发声部11能够伸入耳甲腔并与耳甲腔形成类腔体的声学结构,以及使得第四面积在合适的范围内以提高发声部11的发声效率,在一些实施例中,发声部11的上侧壁111在矢状面上的投影的中点C1与耳挂上顶点T1在矢状面上的投影的距离d13范围为21mm-32mm,发声部11的下侧壁112在矢状面上的投影的中点C2与耳挂上顶点T1在矢状面上的投影的距离d14范围为32mm-48mm。在一些实施例中,为了进一步提高开放式耳机在佩戴状态下的稳定性和舒适度,发声部11的上侧壁111在矢状面上的投影的中点C1与耳挂上顶点T1在矢状面上的投影的距离d13范围为24mm-30mm,发声部11的下侧壁112在矢状面上的投影的中点C2与耳挂上顶点T1在矢状面上的投影的距离d14范围为35mm-45mm。
在一些实施例中,开放式耳机10的质心位置也与开放式耳机10佩戴的稳定性具有较大的关联。图12B是根据本说明书一些实施例所示的开放式耳机的另一结构示意图。在一些实施例中,开放式耳机10的质心位置在矢状面上的投影(即位置S)与耳挂的极值点T2的连线与第一投影中发声部11的长轴轴线Y1之间的夹角R1的大小一定程度上决定了开放式耳机10内轮廓的形态,而内轮廓的形态与用户佩戴感相关。具体的,为了保证用户在佩戴该开放式耳机10时,耳挂与用户耳部或头部的贴合,该夹角过大或过小均可能会导致佩戴时的形态改变,影响贴合的同时,可能无法形成图4所示的类腔体结构,影响发声部11的发声效率,因此,在一些实施例中,开放式耳机10在非佩戴状态下,开放式耳机10的质心位置在矢状面上的投影与耳挂的极值点T2的连线与第一投影中发声部11的长轴轴线Y1的夹角R1在50°~90°之间。在一些实施例中,为了防止该夹角过大导致佩戴不稳定,夹角R1可以在50°~85°。在一些实施例中,为了防止该夹角过小而导致无法形成类腔体结构,夹角R1可以在55°~90°。在一些实施例中,为了保证开放式耳机10能够贴合耳部或头部且形成类腔体结构,夹角R1可以在55°~85°之间。在一些实施例中,耳挂的极值点可以通过以下方式确定:获取佩戴状态下的开放式耳机10在人体矢状面上的投影曲线的内轮廓(或者非佩戴状态下的开放式耳机10在第一平面上的投影的内轮廓),以内轮廓在短轴方向Z上的极值点(例如,极大值点)作为耳挂的极值点。内轮廓在短轴方向Z上的极值点的确定方法可以为:以发声部的长轴方向Y作为横轴,短轴方向Z作为纵轴构建坐标系,将所述投影曲线的内轮廓在该坐标系上的极大值点(例如,一阶导数为0)作为所述投影曲线的内轮廓在短轴方向Z上的极值点。在一些实施例中,开放式耳机的质心位置可以通过以下方式确定:将一根线拴在开放式耳机上的一个位置(如A点位置)并使开放式耳机处于悬空状态,待开放式耳机悬空静止后,利用三维扫描仪扫描得到开放式耳机的状态模型(记为A状态模型);类似的,将一根线拴在开放式耳机上的另一个位置(如B点位置)并使开放式耳机处于悬空状态,待开放式耳机悬空静止后,利用三维扫描仪扫描得到开放式耳机的另一状态模型(记为B状态模型)。将A状态模型和B状态模型导入三维模型处理软件中(导入过程中保持两个模型的三维坐标系一致),并做出A状态模型中沿垂直轴方向(垂直轴方向对应于悬空状态时的竖直方向)且经过A点的空间线LA,以及做出B状态模型中沿垂直轴方向且经过B点的空间 线LB,可以理解的是,空间线LA和空间线LB均为开放式耳机的质心所在线,故而,利用三维模型处理软件将A状态模型和B状态模型重合时,空间线LA和空间线LB的重合位置即为开放式耳机的质心位置。需要说明的是,为了提高确定开放式耳机质心位置的准确性,在其他实施例中,可以选取开放式耳机上的更多个位置进行悬空测试而获得更多状态模型(如,3个),多个状态模型进行重合处理进而得到开放式耳机的质心位置。
图12C是根据本说明书一些实施例所示的第一投影的切线段的示意图。参考图12C,与第一投影共同界定出第一封闭曲线的切线段50,分别与第一端部轮廓相切于第一切点K0、与第二端部轮廓相切于第二切点K1。第一切点K0、第二切点K1与耳挂在第一平面上投影的极值点(如点T2)三点的连线可以构成一个三角形,由于第一切点K0和第二切点K1的位置与第一封闭曲线的第一面积相关,故第一切点K0、第二切点K1与耳挂在第一平面上投影的极值点这三点的连线构成的三角形的面积改变,会导致第一面积的改变,例如,所述三角形的面积增大对应第一面积的减小,进而影响用户的佩戴感。
在一些实施例中,考虑到用户的佩戴感以及第一封闭曲线的第一面积的实际范围,开放式耳机10在非佩戴状态下,第一切点K0、第二切点K1与耳挂在第一平面上投影的极值点构成的三角形的面积在110mm2~230mm2之间。在一些实施例中,第一切点K0、第二切点K1与耳挂在第一平面上投影的极值点构成的三角形的面积在150mm2~190mm2之间,以使得第一封闭曲线的第一面积的范围在1150mm2~1350mm2之间。
需要说明的是,本说明书实施例的发声部11的一端与悬挂结构12的第二部分122连接,该端部可以称为固定端,发声部11背离该固定端的一端可以称为自由端或末端,其中,发声部11的末端朝向耳挂的第一部分121。在佩戴状态时,悬挂结构12(例如,耳挂)具有顶点(例如,图5D示出的顶点T1),即相对水平面距离最高的位置,该顶点T1靠近第一部分121和第二部分122的连接处,上侧壁为发声部11除固定端和末端之外的且中心点(例如,几何中心点)与耳挂上顶点在垂直轴方向距离最小的一个侧壁(例如,图5D中示出的上侧壁111)。相对应地,下侧壁为与发声部11上侧壁相对的侧壁,即,发声部11除固定端和末端之外的侧壁中心点(例如,几何中心点)与耳挂上顶点在垂直轴方向距离最大的一个侧壁(例如,图5D中示出的下侧壁112)。
在一些实施例中,如前文所描述的,发声部可以具有不同于伸入耳甲腔的其它佩戴方式。以下以图13所示的开放式耳机1200为例,对开放式耳机1200进行详细说明。需要知道的是,在不违背相应声学原理的情况下,图13的开放式耳机1200的结构以及其对应的参数也可以同样适用于上文中提到可以将发声部伸入耳甲腔的开放式耳机10中。
通过将发声部1201至少部分位于用户对耳轮105处,可以提高开放式耳机1200的输出效果,即增大近场听音位置的声音强度,同时减小远场漏音的音量。用户在佩戴开放式耳机1200时,发声部1201的壳体上靠近或朝向用户耳道的一侧可以设置一个或多个出声孔,发声部1201的壳体的其它侧壁(例如,远离或背离用户耳道的侧壁)上设置一个或多个泄压孔,出声孔与开放式耳机1200的前腔声学耦合,泄压孔与开放式耳机1200的后腔声学耦合。以发声部1201包括一个出声孔和泄压孔作为示例,出声孔输出的声音和泄压孔输出的声音可以近似视为两个声源,该两个声源的声音大小相等、相位相反。出声孔发出的声音可以不受阻碍地直接传递到用户耳道口,而泄压孔发出的声音需要绕过发声部1201的壳体或者穿过发声部1201形成类似图14所示的声学模型。如图14所示,当点声源A1和点声源A2之间设有挡板时,在近场,点声源A2的声场需要绕过挡板才能与点声源A1的声波在听音位置处产生干涉,相当于增加了点声源A2到听音位置的声程。因此,假设点声源A1和点声源A2具有相同的幅值,则相比于没有设置挡板的情况,点声源A1和点声源A2在听音位置的声波的幅值差增大,从而两路声音在听音位置进行相消的程度减少,使得听音位置的音量增大。在远场,由于点声源A1和点声源A2产生的声波在较大的空间范围内都不需要绕过挡板就可以发生干涉(类似于无挡板情形),则相比于没有挡板的情况,远场的漏音不会明显增加。因此,在点声源A1和点声源A2的其中一个声源周围设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量。
在一些实施例中,当开放式耳机1200处于佩戴状态时,发声部1201和用户耳廓在用户头部的矢状面(例如可以参考图15A和图15B中的S-T平面)上分别具有第七投影(图15A和图15B中所示的实线框U所示的矩形区域近似等效为第七投影)和第八投影。为了使得发声部1201的整体或部分结构覆盖用户的对耳轮区域(例如,位于对耳轮、三角窝、对耳轮上脚或对耳轮下脚的位置),第七投影的形心O与第八投影的最高点A6在垂直轴方向(例如,图15A和图15B所示的T轴方向)的距离h6与第八投影在该垂直轴方向的高度h之比可以在0.25-0.4之间。
考虑到发声部1201的侧壁贴靠在对耳轮区域,为了使得发声部1201与更大区域的对耳轮区域相贴靠,使得区域的凹凸结构也可以起到挡板的作用,以增大泄压孔发出的声音传播到外耳道101的声程,从而增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的 音量。基于此,为了兼顾发声部1201的听音音量和漏音量,以保证发声部1201的声学输出质量,可以使发声部1201尽可能地与用户的对耳轮区域相贴合。相应地,可以将发声部1201在矢状面上的第七投影的形心O与用户耳廓在该矢状面上的第八投影的最高点A6在垂直轴方向的距离h6与第八投影在垂直轴方向的高度h之比控制在0.25-0.4之间,同时将发声部1201在矢状面上的第七投影的形心O与用户耳廓在该矢状面上的第八投影的末端点B6在矢状轴方向的距离w6与第八投影在矢状轴方向的宽度w之比控制在0.4-0.6之间。优选地,在一些实施例中,为了在保证发声部1201的声学输出质量的同时提升开放式耳机的佩戴舒适度,第七投影的形心O与第八投影的最高点A6在垂直轴方向的距离h6与第八投影在垂直轴方向的高度h之比还可以在0.25-0.35之间,第七投影的形心O与第八投影的末端点B6在矢状轴方向的距离w6与第八投影在矢状轴方向的宽度w之比可以在0.42-0.6之间。较为优选地,第七投影的形心O与第八投影的最高点A6在垂直轴方向的距离h6与第八投影在垂直轴方向的高度h之比还可以在0.25-0.34之间,第七投影的形心O与第八投影的末端点B6在矢状轴方向的距离w6与第八投影在矢状轴方向的宽度w之比可以在0.42-0.55之间。
类似地,当用户耳朵在形状和尺寸上存在差异,前述比值范围可以在一定范围内浮动。示例性地,当用户耳垂较长时,第八投影在垂直轴方向的高度h相比一般情况会偏大,此时,用户在佩戴开放式耳机1200的情况下第七投影的形心O与第八投影的最高点A6在垂直轴方向的距离h6与第八投影在垂直轴方向的高度h之比则会变小,例如,可以为0.2-0.35之间。类似地,在一些实施例中,当用户耳轮呈向前弯曲的形态时,第八投影在矢状轴方向的宽度w相比一般情况会偏小,第七投影的形心O与第八投影的末端点B6在矢状轴方向的距离w6也会偏小,此时,用户在佩戴开放式耳机1200的情况下第七投影的形心O与第八投影的末端点B6在矢状轴方向的距离w6与第八投影在矢状轴方向的宽度w之比可能会变大,例如,可以为0.4-0.7之间。
在一些实施例中,还可以通过调整第七投影的形心O与第八投影的轮廓之间的距离来提高发声部1201的听音音量、降漏音效果以及佩戴时的舒适性和稳定性。比如,发声部1201位于耳廓顶部、耳垂处、耳廓前侧的面部区域或耳廓的内轮廓和耳甲腔的边缘之间时,具体体现为第七投影的形心O与第八投影的边界的某个区域的点的距离过小,相对于另一区域的点的距离过大,对耳轮区域无法与发声部1201相配合起到挡板的作用,影响开放式耳机的声学输出效果。此外,第七投影的形心O与第八投影的边界的某个区域的点的距离过大,发声部1201的末端FE相对耳廓的内轮廓1014之间可能具有间隙,出声孔发出的声音和泄压孔发出的声音会在发声部1201的末端FE与耳廓的内轮廓1014之间的区域发生声短路,导致用户耳道口处的听音音量降低,而发声部1201的末端FE与耳廓的内轮廓1014之间的区域越大,声短路现象越明显。在一些实施例中,当开放式耳机1200的佩戴状态为其发声部1201的至少部分覆盖用户的对耳轮区域时,发声部1201在用户头部的矢状面上的第七投影的形心O也可以位于第八投影的轮廓围成的区域中,但是,相较于发声部1201的至少部分伸入用户耳甲腔而言,该佩戴状态下,发声部1201在用户头部的矢状面上的第七投影的形心O与第八投影的轮廓的距离范围会存在一定的不同。在开放式耳机1200中,发声部1201的至少部分结构覆盖对耳轮区域,可以让耳道口充分暴露,使得用户可以更好地接收外界环境中的声音。在一些实施例中,为了在该佩戴方式下兼顾发声部1201的听音音量、降漏音效果以及接收外部环境的声音的效果以及发声部1201的末端FE与耳廓的内轮廓1014之间的区域尽量降低,使发声部1201具有较好的声学输出质量,该第七投影的形心O与第八投影的轮廓的距离范围可以在13mm-54mm之间。优选地,第七投影的形心O与第八投影的轮廓的距离范围可以在18mm-50mm之间。较为优选地,第七投影的形心与第八投影的轮廓的距离范围还可以在20mm-45mm之间。在一些实施例中,通过将发声部1201在用户头部的矢状面上的第七投影的形心O与第八投影的轮廓的距离范围控制在在23mm-40mm之间,可以使得发声部1201大致位于用户的对耳轮区域,并且,可以使得发声部1201的至少部分与对耳轮区域形成挡板,以增大泄压孔发出的声音传播到外耳道101的声程,从而增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量。
图16是根据本说明书一些实施例所示的开放式耳机1200在佩戴状态和非佩戴状态下的形态差异。虚线区域表示佩戴状态下耳挂的第一部分,其相比于非佩戴状态下耳挂的第一部分距离发声部自由端的距离更远。如图16所示,在非佩戴状态下,开放式耳机1200在第一平面形成第五投影,第五投影包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓。与图3中开放式耳机10结构类似,第五投影中的第一端部轮廓可以是发声部1201的末端FE在第一平面上的投影轮廓,第一端部轮廓的两个端点P0和P1即为末端FE与发声部1201其它部分交界位置在第一平面的投影点。第二端部轮廓可以是悬挂结构1202的自由端BE在第一平面上的投影轮廓,第二端部轮廓的两个端点Q0和Q1即为自由端BE与悬挂结构1202其它部分交界位置在第一平面的投影点。外轮廓可以是第五投影位于点P1与点Q1之间的轮廓。内轮廓可以是第五投影位于点P0与点Q0之间的轮廓。关于末端FE和悬挂结构1202的自由端BE的划分可以参见开放式耳机10的相关描述(如本说明书图3和图6相关描述)。
以发声部1201在第一平面上的投影为类长方形(例如,跑道形)为例,发声部1201的投影中存在平行或近似平行的上侧壁投影和下侧壁投影,以及连接上侧壁投影和下侧壁投影的第一端部轮廓,第一端部轮廓可以是直线段或圆弧,点P0和点P1分别表示第一端部轮廓两端。仅作为示例,点P0可以是发声部1201自由端投影形成的弧线与上侧壁投影的线段的交界点,与点P0类似,点P1可以是发声部1201自由端投影的弧线与下侧壁投影的线段的交界点。相似的,耳挂远离发声部1201的一端也具有自由端,耳挂的自由端在第一平面60的投影形成第二端部轮廓,第二端部轮廓可以是直线段或圆弧,点Q0和点Q1分别表示第二端部轮廓两端。在一些实施例中,点Q0和点Q1可以是耳挂的第一部分在第一平面60上远离耳挂第二部分的方向上的自由端投影的线段或弧线的两端点,进一步的,在发声部11的长轴方向Y上,靠近发声部1201的端点为点Q0,远离发声部1201的端点为Q1。
如图16所示,开放式耳机1200在第一平面和人体矢状面的投影形状能够反映开放式耳机1200在耳部的佩戴方式。例如,第五投影的面积可以反映开放式耳机1200在佩戴状态下能够覆盖的耳廓的区域,以及发声部1201和耳挂与耳部的接触方式。在一些实施例中,由于发声部1201与耳挂的第一部分并未接触,第五投影中内轮廓、外轮廓、第一端部轮廓、第二端部轮廓形成一个非封闭的区域。该区域的大小与开放式耳机1200的佩戴效果(例如,佩戴的稳定性、发声位置等)密切相关。为了方便理解,在一些实施例中,可以确定连接第一端部轮廓和第二端部轮廓的切线段1250,将切线段1250、外轮廓、第一端部轮廓和第二端部轮廓共同界定出的第五封闭曲线围成的面积作为第五投影的面积(也称为“第五面积”)。
在一些实施例中,开放式耳机1200与图6所示的开放式耳机10的不同之处包括:开放式耳机1200的发声部1201在佩戴状态下位于用户对耳轮105处,因此,第五面积的范围小于第一面积。在一些实施例中,第五面积可以为第一面积的0.2倍~0.6倍。在一些实施例中,第五面积可以为第一面积的0.3倍~0.5倍。在一些实施例中,第五封闭曲线的第五面积的范围可以在250mm2~1000mm2之间。在一些实施例中,当第七投影的形心O与第八投影的最高点A6在垂直轴方向的距离h6与第八投影在该垂直轴方向的高度h之比在0.25-0.4之间,使得发声部1201的至少部分结构覆盖对耳轮区域时,为了进一步提高发声部1201与对耳轮区域相贴靠的面积,使得贴靠区域的凹凸结构起到挡板的作用,以增大泄压孔发出的声音传播到外耳道101的声程,从而增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量,第五封闭曲线的第五面积的范围不宜过小,例如,大于400mm2。在一些实施例中,为了保证开放式耳机1200对耳部有足够的夹紧力,以提高佩戴的稳定性,第五封闭曲线的第五面积的范围不宜过大,例如,小于800mm2。在一些实施例中,为保证发声部1201的发声效率以及夹紧力的适中,避免开放式耳机1200在佩戴时产生的异物感,第五封闭曲线的第五面积的范围在400mm2~800mm2之间。
在佩戴状态下,开放式耳机1200在人体矢状面形成第六投影,类似于第五投影,第六投影也包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓,且外轮廓、第一端部轮廓、第二端部轮廓以及连接第一端部轮廓和第二端部轮廓的切线段1250共同界定出第六封闭曲线。如前文,开放式耳机1200在第一平面投影形成的投影形状接近开放式耳机1200在人体矢状面投影形成的投影形状,因此,在第六投影中,仍然可以采用未佩戴状态下的轮廓边界点,即点P0、点P1、点Q0和点Q1来描述第六投影中各个轮廓的划分。又也就是说,第六投影中的外轮廓、第一端部轮廓、内轮廓和第二端部轮廓以及切线段1250的定义均与第五投影中的轮廓类似,在此不在赘述。第六封闭曲线围成的面积视为第六投影的面积(也称为“第六面积”)。在一些实施例中,第六面积可以反应开放式耳机1200在佩戴状态下与用户耳部的贴合情况。
基于与第五面积类似的理由,适当的第六面积可以保证开放式耳机1200在听音位置(例如,对耳轮处)的听音音量,同时保持较好的远场漏音相消的效果。在一些实施例中,第六面积的范围在400mm2~1100mm2之间。在一些实施例中,考虑耳挂1202的弹性和佩戴的舒适度和稳定性,第六面积的范围在500mm2~900mm2之间。
在一些实施例中,为了避免该第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离过大,导致第六面积过大,从而导致佩戴不稳定以及使得发声部1201的末端FE与耳廓的内轮廓1014之间的区域较大的问题,同时避免该第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离过小而导致第六面积过小,从而导致佩戴舒适度较差以及无法与对耳轮区域相配合以实现较好的声学输出质量的问题,可以将发声部1201在用户矢状面上的第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离范围控制在8mm-45mm之间。通过将该距离控制在8mm-45mm,可以使得第六面积位于合适的范围内(例如,使得第六面积位于500mm2~900mm2之间),从而使得耳挂的第一部分在佩戴时能够与用户耳廓的后内侧面较好地贴合,同时保证发声部1201恰好位于用户的对耳轮区域,使发声部1201与对耳轮区域形成挡板,以增大泄压孔发出的声音传播到外耳道101的声程,从而增大出声孔和泄压孔到外耳 道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量。此外,将发声部1201在用户矢状面上的第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离范围控制在8mm-45mm之间,可以使得发声部1201的末端FE与耳廓的内轮廓1014之间的区域尽量减小,以减小发声部1201周围的声短路区域,从而提高用户耳道口的听音音量。在一些实施例中,发声部1201的至少部分结构覆盖对耳轮区域时,为了进一步提高发声部1201与对耳轮区域相贴靠的面积,提高声学输出质量,发声部1201在用户矢状面上的第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离范围不宜过小,例如,大于15mm。在一些实施例中,为了进一步提高开放式耳机佩戴的稳定性,发声部1201在用户矢状面上的第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离范围不宜过大,例如,小于33mm。在一些实施例中,为了兼顾发声部1201的声学输出质量以及佩戴的稳定性,发声部1201在用户矢状面上的第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离范围可以为15mm-33mm。在一些实施例中,为了进一步提高开放式耳机佩戴的舒适度,发声部1201在用户矢状面上的第七投影的形心O与耳挂的第一部分在该矢状面上的投影的距离范围可以为20mm-25mm。
在一些实施例中,耳挂可以具有弹性,其在佩戴状态相较于未佩戴状态可以发生一定的形变。示例性地,在一些实施例中,发声部1201在用户矢状面上的第七投影的形心与耳挂的第一部分在该矢状面上的投影的距离在佩戴状态可以大于未佩戴状态。在一些实施例中,如果发声部1201在第一平面上的投影的形心与耳挂的第一部分在第一平面上的投影的距离过大,会导致第五面积过大,从而导致佩戴不稳定以及使得发声部1201的末端FE与耳廓的内轮廓1014之间的区域较大的问题;如果发声部1201在第一平面上的投影的形心与耳挂的第一部分在第一平面上的投影的距离过小,会导致第五面积过小,从而导致佩戴舒适度较差以及无法与对耳轮区域相配合以实现较好的声学输出质量的问题。为了解决上述问题,在一些实施例中,当开放式耳机1200处于未佩戴状态时,发声部1201在第一平面上的投影的形心与耳挂的第一部分在第一平面上的投影的距离范围可以为10mm-50mm。通过将该距离控制在10mm-50mm,可以使得第五面积位于合适的范围内(例如,使得第五面积位于400mm2~800mm2之间),从而使得耳挂的第一部分在佩戴时能够与用户耳廓的后内侧面较好地贴合,同时保证发声部1201恰好位于用户的对耳轮区域,使发声部1201与对耳轮区域形成挡板,以增大泄压孔发出的声音传播到外耳道101的声程,从而增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量。在一些实施例中,发声部1201的至少部分结构覆盖对耳轮区域时,为了进一步提高发声部1201与对耳轮区域相贴靠的面积,提高声学输出质量,当开放式耳机1200处于未佩戴状态时,发声部1201在第一平面上的投影的形心与耳挂的第一部分在第一平面上的投影的距离范围不宜过小,例如,大于32mm。在一些实施例中,为了进一步提高开放式耳机佩戴的稳定性,当开放式耳机1200处于未佩戴状态时,发声部1201在第一平面上的投影的形心与耳挂的第一部分在第一平面上的投影的距离范围不宜过大,例如,小于40mm。在一些实施例中,为了兼顾发声部1201的声学输出质量以及佩戴的稳定性,当开放式耳机1200处于未佩戴状态时,发声部1201在第一平面上的投影的形心与耳挂的第一部分在第一平面上的投影的距离范围可以为32mm-40mm。可以理解,在一些实施例中,通过使发声部1201在第一平面上的形心与耳挂的第一部分在第一平面上的投影的距离在未佩戴状态下略小于佩戴状态,可以使得开放式耳机10在处于佩戴状态时其耳挂和发声部能够对用户耳朵产生一定的夹紧力,从而使得其在不影响用户佩戴体验的情况下提高用户佩戴时的稳定性。
在一些实施例中,开放式耳机1200在佩戴状态下,发声部1201的至少部分覆盖用户的对耳轮区域时,发声部1201的第七投影的形心O与电池仓1203在矢状面上的投影的形心Q的距离相较于发声部1201的至少部分伸入用户耳甲腔的佩戴方式会发生一定的变化。与发声部1201的至少部分伸入用户耳甲腔的佩戴方式同理,在佩戴状态下,发声部1201的位置需要部分或整体覆盖对耳轮区域,其位置相对固定,如果发声部1201的第七投影的形心O与电池仓1203在矢状面上的投影的形心Q的距离过小,电池仓1203会紧贴靠甚至压迫在耳廓后侧面,影响用户佩戴的舒适性,此外,发声部1201的第七投影的形心O与电池仓1203在矢状面上的投影的形心Q的距离过小时,耳挂的第一部分的长度也会较短,会导致第六面积较小,这也会影响用户佩戴的舒适性。而发声部1201的第七投影的形心O与电池仓1203在矢状面上的投影的形心Q的距离过大时,耳挂的第一部分的长度也会较大,会导致第六面积较大,从而影响开放式耳机1200佩戴的稳定性。基于此,在一些实施例中,发声部1201的第七投影的形心O与电池仓1203在矢状面上的投影的形心Q的距离为23mm-40mm。在一些实施例中,为了防止第六面积过小而影响用户佩戴的舒适性,在佩戴状态下,发声部1201的第七投影的形心O与电池仓1203在矢状面上的投影的形心Q的距离不宜过小,例如,大于25mm。在一些实施例中,为了防止第六面积过大而影响用户佩戴的稳定性,在佩戴状态下,发声部1201的第七投影的形心O与电池仓1203在矢状面上的投影的形心Q的距离不宜过大,例如,小于31mm。在一些实施例中,为了使得用户佩戴开放式耳机1200时具有较好的稳定性和舒适性,在佩戴状态下,发声部1201在矢状面上的投影的形心O和电池仓1203在矢状面上的投影的 形心Q之间的距离范围可以为25mm-31mm。
由于耳挂自身具有弹性,开放式耳机1200在佩戴状态下和未佩戴状态下,发声部1201对应的投影的形心O和电池仓1203对应的投影的形心Q之间的距离会发生变化。在一些实施例中,为了防止第五面积过大而影响用户佩戴的稳定性,在未佩戴状态下,发声部1201在第一平面上投影的形心O和电池仓1203在第一平面上投影的形心Q之间的距离(第五距离)范围可以为16.7mm-25mm。在一些实施例中,为了防止第五面积过小而影响用户佩戴的舒适度,在未佩戴状态下,发声部1201在第一平面上投影的形心O和电池仓1203在第一平面上投影的形心Q之间的距离范围可以为23mm-31mm。在一些实施例中,为了使得用户佩戴开放式耳机1200时具有较好的稳定性和舒适性,在未佩戴状态下,发声部1201在第一平面上投影的形心O和电池仓1203在第一平面上投影的形心Q之间的距离(第五距离)范围可以为23mm-25mm。
在一些实施例中,为保证用户在佩戴开放式耳机1200时,发声部1201靠近对耳轮位置,同时也降低用户在佩戴时的负荷,便于用户的日常佩戴时获取环境音或日常交流。在一些实施例中,开放式耳机1200在非佩戴状态下,发声部1201在第一平面上的投影面积与第五面积的比值在0.3~0.85之间。在一些实施例中,为了提高发声部1201与对耳轮区域相贴靠的面积,提高声学输出质量,在非佩戴状态下,发声部1201在第一平面上的投影面积与第五面积的比值不宜过小,例如,大于0.4。在一些实施例中,为了防止发声部1201的尺寸过大而对耳部形成遮挡,在非佩戴状态下,发声部1201在第一平面上的投影面积与第五面积的比值不宜过大,例如,小于0.75。在一些实施例中,为了提高发声部1201的声学输出质量以及避免发声部1201对耳部形成遮挡,发声部1201在第一平面上的投影面积与第五面积的比值在0.4~0.75之间。
基于与第五面积类似的理由,佩戴状态下,发声部1201在人体矢状面上的投影面积与第六面积适当的比值,能够降低用户在佩戴时的负荷。在一些实施例中,在佩戴状态下,发声部1201在人体矢状面上的投影面积与第六面积的比值在0.25~0.9之间。在一些实施例中,为了提高发声部1201与对耳轮区域相贴靠的面积,提高声学输出质量,在佩戴状态下,发声部1201在人体矢状面上的投影面积与第六面积的比值不宜过小,例如,大于0.35。在一些实施例中,为了防止发声部1201的尺寸过大而对耳部形成遮挡,在佩戴状态下,发声部1201在人体矢状面上的投影面积与第六面积的比值不宜过大,例如,小于0.75。在一些实施例中,为了提高发声部1201的声学输出质量以及避免发声部1201对耳部形成遮挡,发声部1201在人体矢状面上的投影面积与第六面积的比值在0.35~0.75之间。
发声部1201的整体或部分结构覆盖对耳轮区域可以形成挡板,而用户佩戴开放式耳机1200时的听音效果与发声部1201上出声孔和泄压孔之间的距离相关,出声孔和泄压孔之间的距离越近,二者发出的声音在用户耳道口处相抵消的越多,用户耳道口处的听音音量越小。出声孔和泄压孔之间的间距与发声部1201的尺寸相关,比如,出声孔可以设置在发声部1201靠近用户耳道口的侧壁(例如,下侧壁或内侧面),泄压孔可以设置在发声部1201远离用户耳道口的侧壁(例如,上侧壁或外侧面)。因此,发声部的尺寸会影响用户耳道口处的听音音量,例如,当该尺寸过大时,会给耳部大部分区域带来压迫感,影响用户的佩戴舒适性以及随身携带时的便捷性。在一些实施例中,可以通过发声部1201的上侧壁111和下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面上的投影的距离反映发声部1201在沿短轴方向Z的尺寸。为了保证开放式耳机1200不堵塞用户耳道口的同时,提高开放式耳机1200的听音效果,在一些实施例中,发声部1201的上侧壁111在矢状面上的投影的中点与耳挂上顶点在矢状面上的投影的距离范围为可以13mm-20mm,发声部1201的下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面上的投影的距离范围为22mm-36mm。在一些实施例中,发声部1201的上侧壁111和下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面的投影的距离还可以反映第六面积的大小。具体表现为:发声部1201的上侧壁111或下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面的投影的距离较小,第六面积较小;发声部1201的上侧壁111或下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面的投影的距离较大,第六面积较大。为了保证佩戴状态下发声部1201能够覆盖对耳轮区域,以及使得第六面积在合适的范围内以提高发声部1201的声学输出质量,在一些实施例中,发声部1201的上侧壁111在矢状面上的投影的中点与耳挂上顶点在矢状面上的投影的距离范围可以为14mm-19.5mm,发声部1201的下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面上的投影的距离范围可以为22.5mm-35mm。在一些实施例中,为了进一步提高开放式耳机1200佩戴的稳定性和舒适性,发声部1201的上侧壁111在矢状面上的投影的中点与耳挂上顶点在矢状面上的投影的距离范围可以为15mm-18mm,发声部1201的下侧壁112在矢状面上的投影的中点与耳挂上顶点在矢状面上的投影的距离范围为26mm-30mm。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范 实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (22)

  1. 一种开放式耳机,包括:
    发声部;以及
    耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;
    其中,所述开放式耳机和所述耳廓在矢状面上分别具有第一投影和第八投影,所述第一投影中发声部的形心与所述第八投影的最高点在垂直轴方向具有第一距离,所述第一距离与所述第八投影在所述垂直轴方向的高度之比在0.35-0.6之间;
    在非佩戴状态下,所述发声部在第一平面投影的形心与所述耳挂的第一部分在所述第一平面的投影的距离范围为13mm-38mm。
  2. 根据权利要求1所述的开放式耳机,其中,在非佩戴状态下,所述第一投影包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓,所述内轮廓、所述第一端部轮廓、所述第二端部轮廓以及连接所述第一端部轮廓和所述第二端部轮廓的切线段共同界定出第三封闭曲线,所述第三封闭曲线的第三面积的范围在300mm2-500mm2之间。
  3. 根据权利要求1或2所述的开放式耳机,其中,在非佩戴状态下,所述开放式耳机的质心位置在所述矢状面上的投影与所述耳挂在第一方向的极值点的连线与所述第一投影中发声部的长轴轴线之间的夹角在55°~85°之间。
  4. 根据权利要求1-3中任一项所述的开放式耳机,其中,所述开放式耳机还包括电池仓,所述电池仓位于所述耳挂远离所述发声部的一端;
    在非佩戴状态下,所述发声部在所述第一平面的投影的形心与所述电池仓在所述第一平面的投影的形心之间的距离范围为16.7mm-25mm。
  5. 根据权利要求2所述的开放式耳机,其中,所述切线段与所述第一端部轮廓相切于第一切点,与所述第二端部轮廓相切于第二切点,在非佩戴状态下,所述第一切点、所述第二切点与极值点构成的三角形的面积在150mm2-190mm2之间。
  6. 根据权利要求2所述的开放式耳机,其中,所述外轮廓、所述第一端部轮廓、所述第二端部轮廓以及连接所述第一端部轮廓和所述第二端部轮廓的切线段共同界定出第一封闭曲线,在非佩戴状态下,所述第一封闭曲线的第一面积的范围在1000mm2~1500mm2之间。
  7. 根据权利要求6所述的开放式耳机,其中,在非佩戴状态下,所述第一投影中发声部的面积与所述第一面积的比值在0.25~0.4之间。
  8. 根据权利要求1所述的开放式耳机,其中,在佩戴状态下,所述开放式耳机在矢状面形成第二投影,所述第二投影包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓,所述内轮廓、所述第一端部轮廓、所述第二端部轮廓以及连接所述第一端部轮廓和所述第二端部轮廓的切线段共同界定出第四封闭曲线,所述第四封闭曲线的第四面积的范围在450mm2~750mm2之间。
  9. 根据权利要求8所述的开放式耳机,其中,在佩戴状态下,所述第二投影中发声部的形心与所述耳挂的第一部分在所述矢状面上的投影的距离范围为18mm-43mm。
  10. 根据权利要求8所述的开放式耳机,其中,所述开放式耳机还包括电池仓,所述电池仓位于所述耳挂远离所述发声部的一端;
    在佩戴状态下,所述第二投影中发声部的形心与所述电池仓在所述矢状面上的投影的形心之间的距离范围为20mm-30mm。
  11. 根据权利要求8所述的开放式耳机,其中,在佩戴状态下,所述外轮廓、所述第一端部轮廓、所述第二端部轮廓以及连接所述第一端部轮廓和所述第二端部轮廓的切线段共同界定出第二封闭曲线,所述第二封闭曲线的第二面积的范围在1100mm2~1700mm2之间。
  12. 根据权利要求11所述的开放式耳机,其中,在佩戴状态下,所述第二投影中发声部的投影面积与所述第二面积的比值在0.2~0.35之间。
  13. 根据权利要求8所述的开放式耳机,其中,在佩戴状态下,所述第二投影中发声部的上侧壁的中点与耳挂上顶点在所述矢状面上的投影的距离范围为21mm-32mm;所述发声部下侧壁的中点与所述耳挂上顶点在所述矢状面上的投影的距离范围为32mm-48mm。
  14. 一种开放式耳机,包括:
    发声部;以及
    耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;
    其中,所述开放式耳机和所述耳廓在矢状面上分别具有第一投影和第八投影,所述第一投影中发声部的形心与所述第八投影的最高点在垂直轴方向具有第一距离,所述第一距离与所述第八投影在所述垂直轴方向的高度之比在0.25-0.4之间;
    在非佩戴状态下,所述发声部在第一平面的投影的形心与所述耳挂的第一部分在所述第一平面的投影的形心的距离范围为10mm-50mm。
  15. 根据权利要求14所述的开放式耳机,其中,在非佩戴状态下,所述开放式耳机在所述第一平面形成第五投影,所述第五投影包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓,且所述外轮廓、所述第一端部轮廓、所述第二端部轮廓以及连接所述第一端部轮廓和所述第二端部轮廓的切线段共同界定出第五封闭曲线,所述第五封闭曲线的第五面积的范围在400mm2~800mm2之间。
  16. 根据权利要求14或15所述的开放式耳机,其中,所述开放式耳机还包括电池仓,所述电池仓位于所述耳挂远离所述发声部的一端;
    在非佩戴状态下,所述发声部在所述第一平面上投影的形心与所述电池仓的在所述第一平面上投影的形心之间的距离范围为20mm-31mm。
  17. 根据权利要求15所述的开放式耳机,其中,在非佩戴状态下,所述发声部在所述第一平面上的投影面积与所述第五面积的比值在0.4~0.75之间。
  18. 根据权利要求14所述的开放式耳机,其中,在佩戴状态下,所述开放式耳机在所述矢状面形成第六投影,所述第六投影包括外轮廓、第一端部轮廓、内轮廓和第二端部轮廓,且所述外轮廓、所述第一端部轮廓、所述第二端部轮廓以及连接所述第一端部轮廓和所述第二端部轮廓的切线段共同界定出第六封闭曲线,所述第六封闭曲线的第六面积的范围在500mm2~900mm2之间。
  19. 根据权利要求18所述的开放式耳机,其中,在佩戴状态下,所述发声部在所述矢状面上的投影的形心相对于所述耳挂的第一部分在所述矢状面上的投影的距离范围为8mm-45mm。
  20. 根据权利要求18所述的开放式耳机,其中,所述开放式耳机还包括电池仓,所述电池仓位于所述耳挂远离所述发声部的一端;
    在佩戴状态下,所述发声部在所述矢状面上的投影的形心与所述电池仓在所述矢状面上的投影的形心之间的距离范围为25mm-40mm。
  21. 根据权利要求18所述的开放式耳机,其中,在佩戴状态下,所述发声部在所述矢状面上的投影面积与所述第六面积的比值在0.35~0.75之间。
  22. 根据权利要求18所述的开放式耳机,其中,在佩戴状态下,所述发声部的上侧壁在所述矢状面上的投影的中点与耳挂上顶点在所述矢状面上的投影的距离范围为13mm-20mm;所述发声部的下侧壁在所述矢状面上的投影的中点与所述耳挂上顶点在所述矢状面上的投影的距离范围为22mm-36mm。
PCT/CN2023/126051 2022-10-28 2023-10-23 一种开放式耳机 WO2024088222A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202211336918.4 2022-10-28
CN202211336918 2022-10-28
CN202223239628 2022-12-01
CN202223239628.6 2022-12-01
CNPCT/CN2022/144339 2022-12-30
CN2022144339 2022-12-30
CNPCT/CN2023/079401 2023-03-02
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
CNPCT/CN2023/079409 2023-03-02
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机

Publications (1)

Publication Number Publication Date
WO2024088222A1 true WO2024088222A1 (zh) 2024-05-02

Family

ID=90797256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126051 WO2024088222A1 (zh) 2022-10-28 2023-10-23 一种开放式耳机

Country Status (2)

Country Link
CN (1) CN117956367A (zh)
WO (1) WO2024088222A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114454A (ja) * 2009-11-25 2011-06-09 Victor Co Of Japan Ltd ヘッドホン
JP2015070468A (ja) * 2013-09-30 2015-04-13 株式会社Jvcケンウッド 耳掛け式ヘッドホン
CN114286236A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN114339511A (zh) * 2020-10-10 2022-04-12 万魔声学(湖南)科技有限公司 无线耳机
CN114554339A (zh) * 2020-11-24 2022-05-27 深圳市韶音科技有限公司 一种声学装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114454A (ja) * 2009-11-25 2011-06-09 Victor Co Of Japan Ltd ヘッドホン
JP2015070468A (ja) * 2013-09-30 2015-04-13 株式会社Jvcケンウッド 耳掛け式ヘッドホン
CN114286236A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN114286239A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN114339511A (zh) * 2020-10-10 2022-04-12 万魔声学(湖南)科技有限公司 无线耳机
CN114554339A (zh) * 2020-11-24 2022-05-27 深圳市韶音科技有限公司 一种声学装置

Also Published As

Publication number Publication date
CN117956367A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2024088222A1 (zh) 一种开放式耳机
WO2024087439A1 (zh) 一种开放式耳机
WO2024088246A1 (zh) 一种耳机
WO2024087908A1 (zh) 一种耳机
WO2024087486A1 (zh) 一种耳机
US11902734B1 (en) Open earphones
WO2024087487A1 (zh) 一种耳机
WO2024087485A1 (zh) 一种耳机
WO2024087490A1 (zh) 一种耳机
TW202418824A (zh) 一種開放式耳機
TW202418825A (zh) 一種開放式耳機
TW202418831A (zh) 一種開放式耳機
WO2024087491A1 (zh) 一种耳机
TW202418852A (zh) 一種耳機