WO2024042875A1 - 制御装置、制御方法および作業機械 - Google Patents

制御装置、制御方法および作業機械 Download PDF

Info

Publication number
WO2024042875A1
WO2024042875A1 PCT/JP2023/024786 JP2023024786W WO2024042875A1 WO 2024042875 A1 WO2024042875 A1 WO 2024042875A1 JP 2023024786 W JP2023024786 W JP 2023024786W WO 2024042875 A1 WO2024042875 A1 WO 2024042875A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection signal
tilt amount
neutral position
working machine
output
Prior art date
Application number
PCT/JP2023/024786
Other languages
English (en)
French (fr)
Inventor
利江 川又
良太 榎本
雄二 福田
勝 西藤
雄一 寺西
大輔 高木
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024042875A1 publication Critical patent/WO2024042875A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present disclosure relates to a control device, a control method, and a work machine.
  • This application claims priority to Japanese Patent Application No. 2022-134218 filed in Japan on August 25, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses that the tilting angle of the operating lever of a working machine (movable body) is detected and compared using two detection units, the presence or absence of an abnormality is determined based on the comparison result, and if it is abnormal, the angle is small.
  • a control device is described that controls a work machine based on the detection result of one of the two.
  • the two detection units described in Patent Document 1 have a characteristic that one of them decreases the voltage of the detection signal as the angle increases, and the other increases the voltage of the detection signal as the angle increases. Then, the control device determines whether there is an abnormality by comparing the total value of the two detection signals with a normal value.
  • Patent Document 1 operates the work machine at a faster speed as the tilt angle of the operating lever from the neutral position is larger. For this reason, for example, if an abnormality occurs in the two detection units in that they are only able to output a signal indicating that the tilting angle from the neutral position is large, the control of the work equipment may become inappropriate. There is a problem.
  • the present disclosure has been made in view of the above circumstances, and provides a control device, a control method, and a work machine that can appropriately deal with the occurrence of an abnormality in the detection of the tilt amount of the operating lever of the work machine.
  • the purpose is to
  • One aspect of the present disclosure is a control device for a work machine including a work machine, wherein an operating lever of the work machine is tilted from a neutral position in a first direction or in a second direction opposite to the first direction.
  • a first detection signal outputted by a first tilting amount sensor that detects the tilting amount according to the tilting amount
  • a second detection signal outputted by a second tilting amount sensor that detects the tilting amount according to the tilting amount.
  • a control device comprising:
  • One aspect of the present disclosure is a method for controlling a working machine including a working machine, in which a control lever of the working machine is tilted from a neutral position in a first direction or in a second direction opposite to the first direction.
  • a first detection signal outputted by a first tilting amount sensor that detects the tilting amount according to the tilting amount
  • a second detection signal outputted by a second tilting amount sensor that detects the tilting amount according to the tilting amount.
  • One aspect of the present disclosure provides a work machine and a first tilt amount sensor that detects a tilt amount of an operating lever of the work machine that is tilted from a neutral position in a first direction or a second direction opposite to the first direction.
  • an acquisition unit that repeatedly acquires a first detection signal outputted by the sensor according to the tilting amount and a second detection signal outputted by a second tilting amount sensor that detects the tilting amount according to the tilting amount;
  • the machine is started, it is repeatedly determined for a predetermined period whether or not the first detection signal and the second detection signal have values corresponding to the neutral position; If the value does not correspond to the neutral position, a warning to that effect is output from a predetermined output section, and both the first detection signal and the second detection signal correspond to the neutral position before the predetermined time elapses.
  • the working machine further includes a control unit that stops outputting the alarm when the first detection signal reaches the specified value, and generates and outputs a predetermined control signal for controlling the working machine based on the
  • control device According to the control device, control method, and working machine of the present disclosure, it is possible to appropriately deal with an abnormality in the detection of the tilt amount of the operating lever of the working machine.
  • FIG. 1 is a side view showing a working machine according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a configuration example of a control system for a work machine according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing an operating lever according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing an operating lever according to an embodiment of the present disclosure.
  • FIG. 3 is an output characteristic diagram of an angle sensor according to an embodiment of the present disclosure.
  • FIG. 3 is a state transition diagram illustrating an example of the operation of the controller according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram for explaining an example of the operation of the controller according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram for explaining an example of the operation of the controller according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram for explaining an example of the operation of the controller according to the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram for explaining an example of the operation of the controller according to the embodiment of the present disclosure.
  • a local coordinate system is set in the work machine 1, and the positional relationship of each part will be explained with reference to the local coordinate system.
  • the first axis extending in the left-right direction (vehicle width direction) of the work machine 1 is the X-axis
  • the second axis extending in the front-rear direction of the work machine 1 is the Y-axis
  • the vertical direction of the work machine 1 is the Y-axis.
  • the third axis extending to the Z axis be the Z axis.
  • the X-axis and Y-axis are orthogonal.
  • the Y axis and the Z axis are orthogonal.
  • the Z axis and the X axis are orthogonal.
  • the +X direction is the right direction
  • the -X direction is the left direction.
  • the +Y direction is the front direction
  • the -Y direction is the rear direction.
  • the +Z direction is the upward direction, and the -Z direction is the
  • FIG. 1 is a side view showing a working machine 1 according to the present embodiment.
  • the working machine 1 according to this embodiment is, for example, a wheel loader.
  • the work machine 1 will be appropriately referred to as a wheel loader 1.
  • the wheel loader 1 includes a vehicle body 2, a cab 3, a traveling device 4, and a working machine 10.
  • the wheel loader 1 travels around the work site using a traveling device 4.
  • the wheel loader 1 performs work using a work machine 10 at a work site.
  • the wheel loader 1 can use the working machine 10 to perform tasks such as excavation work, loading work, transportation work, and snow removal work.
  • the cab 3 is supported by the vehicle body 2. Inside the cab 3, a driver's seat 31 in which an operator sits, an operating device 32 to be described later, a display input section 35, and an output section 36 are arranged.
  • the traveling device 4 has rotatable wheels 5.
  • the wheels 5 support the vehicle body 2.
  • the wheel loader 1 can travel on a road surface (or ground) RS using a traveling device 4.
  • FIG. 1 only the left front wheel 5F and rear wheel 5R are illustrated.
  • the work machine 10 is supported by the vehicle body 2.
  • the work machine 10 includes a bucket 12 as an example of a work tool, and a movable support part 17 that changes the position and attitude of the bucket 12.
  • the movable support section 17 includes a boom 11 , a boom cylinder 13 , a bucket cylinder 14 , a bell crank 15 , and a link 16 .
  • the boom 11 is rotatably supported with respect to the vehicle body 2 and moves in the vertical direction according to the expansion and contraction of the boom cylinder 13.
  • the boom cylinder 13 is an actuator that generates power for moving the boom 11, and one end is connected to the vehicle body 2 and the other end is connected to the boom 11.
  • a boom operating lever 33 (FIG. 2) included in the operating device 32
  • the boom cylinder 13 expands and contracts. This causes the boom 11 to move in the vertical direction.
  • the boom cylinder 13 is, for example, a hydraulic cylinder.
  • the bucket 12 has a cutting edge 12T and is a working tool for digging and loading objects to be excavated such as earth and sand.
  • the bucket 12 is rotatably connected to the boom 11 and rotatably connected to one end of the link 16 .
  • the other end of the link 16 is rotatably connected to one end of the bell crank 15.
  • the bell crank 15 has a center portion rotatably connected to the boom 11, and the other end portion rotatably connected to one end portion of the bucket cylinder 14.
  • the other end of the bucket cylinder 14 is rotatably connected to the vehicle body 2.
  • Bucket 12 is operated by power generated by bucket cylinder 14.
  • Bucket cylinder 14 is an actuator that generates power to move bucket 12. When the operator operates the bucket operating lever 34 (FIG.
  • the bucket cylinder 14 expands and contracts. This causes the bucket 12 to swing.
  • the bucket cylinder 14 is, for example, a hydraulic cylinder.
  • the cutting edge 12T has a shape such as a serpentine blade or a flat blade, and is replaceably attached to the end of the bucket 12.
  • FIG. 2 is a block diagram showing a configuration example of a control system for the wheel loader 1 according to the present embodiment.
  • the wheel loader 1 includes a power source 201, a PTO (Power Take Off) 202, a hydraulic pump 203, a control valve 200, an operating device 32, a display input section 35, and an output section 36. and a controller 100.
  • PTO Power Take Off
  • the power source 201 generates driving force for operating the working machine.
  • Examples of the power source include an internal combustion engine and an electric motor.
  • the PTO 202 transmits at least a portion of the driving force of the power source 201 to the hydraulic pump 203.
  • the PTO 202 distributes the driving force of the power source 201 to the traveling device 4 and the hydraulic pump 203.
  • the hydraulic pump 203 is driven by the power source 201 and discharges hydraulic oil. At least a portion of the hydraulic fluid discharged from the hydraulic pump 203 is supplied to each of the boom cylinder 13 and the bucket cylinder 14 via the control valve 200.
  • Control valve 200 receives a predetermined control signal from controller 100 and controls the flow rate, pressure, and direction of hydraulic oil supplied from hydraulic pump 203 to boom cylinder 13 and bucket cylinder 14, respectively.
  • the work machine 10 operates using hydraulic oil from a hydraulic pump 203.
  • the operating device 32 is arranged inside the cab 3.
  • the operating device 32 is operated by an operator.
  • the operator operates the operating device 32 to adjust the traveling direction and traveling speed of the wheel loader 1, to switch between forward and backward movement, and to operate the work implement 10.
  • the operating device 32 includes, for example, a steering wheel, a shift lever, an accelerator pedal, a brake pedal, a boom operating lever 33, and a bucket operating lever 34.
  • the boom operating lever 33 is an operating lever for operating the attitude of the boom 11.
  • the boom operating lever 33 has a main angle sensor 331 and a sub-angle sensor 332, and outputs two systems of detection signals indicating the amount of tilting of the operating lever.
  • the bucket operating lever 34 is an operating lever for operating the attitude of the bucket 12.
  • the bucket operating lever 34 has a main angle sensor 341 and a sub-angle sensor 342, and outputs two systems of detection signals indicating the amount of tilting of the operating lever.
  • the boom operation lever 33 and the bucket operation lever 34 are collectively referred to as an operation lever.
  • the main angle sensor 331, the sub-angle sensor 332, the main angle sensor 341, and the sub-angle sensor 342 are collectively referred to as an angle sensor.
  • the main angle sensor 331 and the main angle sensor 341 are collectively referred to as a main angle sensor.
  • the sub-angle sensor 332 and the sub-angle sensor 342 are collectively referred to as a sub-angle sensor.
  • the angle sensor detects the amount of tilt of the operating lever and outputs a detection signal indicating the detection result as an analog voltage value.
  • the amount of tilting can be expressed as a value depending on the tilting angle, the amount of movement of the gripping portion, etc., for example.
  • the angle sensor can be configured from, for example, a combination of a variable resistor (potentiometer) and a signal processing circuit, a combination of a Hall element and a signal processing circuit, or the like. Furthermore, each detection signal is set so that the total value of the voltage value of the detection signal of the main angle sensor and the voltage value of the detection signal of the sub-angle sensor is a constant value. Furthermore, hereinafter, the main angle sensor may be simply referred to as main, and the sub angle sensor may simply be referred to as sub.
  • the display input unit 35 is composed of a combination of an input device and a display device, an input display device such as a touch panel, and the like.
  • the operator uses the display input section 35 to input, for example, setting values for controlling the work machine 10.
  • the output unit 36 includes a display device, a synthesized voice, an output device for an alarm sound or a notification sound, an indicator light such as a warning light, etc., and outputs predetermined information.
  • the main angle sensor is an example of the first tilt amount sensor according to the present disclosure.
  • the sub-angle sensor is an example of the second tilt amount sensor according to the present disclosure.
  • FIG. 3 and 4 are cross-sectional views showing the boom operating lever 33 and bucket operating lever 34 according to the present embodiment.
  • the boom operation lever 33 and the bucket operation lever 34 can have the same configuration, and the boom operation lever 33 will be described below as an example.
  • FIG. 3 shows a case where the tilted position of the boom operating lever 33 is a neutral position
  • FIG. 4 shows a case where the tilted position of the boom operating lever 33 has reached the rearward stroke end. Note that the boom operating lever 33 similarly tilts forward.
  • the boom operating lever 33 has a mechanism that automatically returns the operating lever to a neutral position when no operating force above a certain level is applied to the operating lever.
  • the angle sensor is provided below the operating lever and detects the amount of tilt of the operating lever.
  • a spring 301 is provided at the tilting center of the operating lever.
  • the spring 301 has a function of automatically returning the position of the operating lever to the neutral position.
  • a detent solenoid 302 is provided below the operating lever.
  • the detent solenoid 302 has a function of holding the operating lever at the maximum tilted position even if the operating lever is released when the operating lever is tilted to the maximum when a current flows through the detent solenoid 302.
  • the operating lever according to the present embodiment is an operating lever of the working machine 10 that tilts from a neutral position in a first direction (eg, forward direction) or in a second direction (eg, backward direction) opposite to the first direction.
  • FIG. 5 is an output characteristic diagram of the angle sensor according to the embodiment of the present disclosure.
  • the horizontal axis is the output voltage
  • the vertical axis is the operating lever stroke.
  • the operating lever stroke is expressed as a percentage when the stroke end is "1".
  • the neutral position is "0%”
  • a case where the device is tilted forward is represented by a negative value
  • a case where the device is tilted backward is represented by a positive value.
  • the voltage value V1 is, for example, "0V”
  • the voltage value V5 is, for example, "5V”.
  • the range of the signal voltage in the controller 100 is 0 to 5V DC.
  • the voltage value V2 is a voltage for determining a ground fault
  • the voltage value V4 is a voltage for determining a power fault. If the voltage of the detection signal output by the angle sensor is lower than V2, it can be determined that a ground fault has occurred. If the voltage of the detection signal output by the angle sensor is equal to or higher than V4, it can be determined that a short-to-power fault has occurred. Note that the range of the detection signal of the angle sensor is smaller than the range of voltage value V2 to voltage value V4. Further, the voltage value V3 is a voltage corresponding to the neutral position, and is, for example, "2.5V".
  • the total value of the voltage value Vm of the detection signal of the main angle sensor and the voltage value Vs of the detection signal of the sub-angle sensor is constant, for example, "5V".
  • the solid line indicates the voltage value Vm of the detection signal of the main angle sensor
  • the dashed line indicates the voltage value Vs of the detection signal of the sub-angle sensor.
  • the output characteristic shown by the two-dot chain line is an example when the output characteristic shown by the solid line drops due to some kind of malfunction. For example, if the voltage value of the detection signal of the main angle sensor drops to Vm', the sum of Vm' and Vs will fall below 5V.
  • the controller 100 is configured using, for example, an FPGA (Field Programmable Gate Array) or a microcomputer that includes a processor, a main memory device, an auxiliary memory device, an input/output device, and the like.
  • the controller 100 includes an acquisition unit 101 and a control unit 102 as a functional configuration composed of hardware or a combination of hardware and software such as a program.
  • the controller 100 of this embodiment drives and controls the boom cylinder 13 and the bucket cylinder 14 by controlling the control valve 200 in accordance with the operation of the operating device 32 and the like.
  • Controller 100 is an example of a control device according to the present disclosure.
  • the acquisition unit 101 acquires each detection signal (first detection signal) outputted by the main angle sensor according to the tilting amount of the operating lever, and each detection signal (second detection signal) outputted by the sub-angle sensor depending on the tilting amount of the operating lever. Detection signal) is repeatedly acquired, for example, at a predetermined period (for example, a period of several milliseconds to several hundred milliseconds).
  • control unit 102 determines whether each detection signal is normal or abnormal based on the detection signal of the main angle sensor and the detection signal of the sub-angle sensor, or determines whether each detection signal is normal or abnormal based on the detection signal of which angle sensor if it is abnormal. It also selects whether to control the control valve 200. Note that the control unit 102 determines whether there is an abnormality in the following two ways. One is that when the key of wheel loader 1 is turned on (when wheel loader 1 is started), each detection signal has a value indicating that the operation lever is in the neutral position, assuming that the operation lever is not operated. This is to determine whether or not there is. This judgment is called a neutral judgment.
  • the key-on time is a period of time shorter than the time normally required from turning on the key to starting operation of the operating lever, for example, from several seconds to more than ten seconds after turning on the key.
  • the other determination is whether the sum of the voltage values of the main and sub detection signals is a predetermined constant value. This determination is called sum determination or error determination. The sum judgment can be made not only at the time of startup but also during operation of the operating lever.
  • the control unit 102 determines that the detection signal of the main angle sensor (first detection signal) and the detection signal of the sub-angle sensor (second detection signal) correspond to the neutral position. If both the first detection signal and the second detection signal have values corresponding to the neutral position, a predetermined control signal for controlling the working machine 10 based on the first detection signal is sent. Generate and output. Further, for example, if either the first detection signal or the second detection signal does not have a value corresponding to the neutral position, the control unit 102 generates a control signal based on the other first detection signal or second detection signal. At the same time, the output unit 36 outputs predetermined information corresponding to the case where one of the values does not correspond to the neutral position.
  • the value corresponding to the neutral position is a voltage value within the voltage value V3 ⁇ .
  • is a voltage value within the permissible range for determination.
  • the output of predetermined information includes, for example, displaying an error code indicating that the value does not correspond to the neutral position, notifying that an abnormality has been detected using synthesized voice or electronic sound, lighting or blinking a predetermined indicator light, etc. It is. Note that outputting the predetermined information is also referred to as error reporting.
  • the control unit 102 controls the work equipment 10 based on the other first detection signal or second detection signal. Generates and outputs control signals with limited functionality. Restrictions on the functions of the work equipment 10 refer to restrictions on the action or operation of the work equipment 10, such as limiting the operating speed of the work equipment 10 to a value lower than normal (for example, about several to several tens of percent of the normal speed). It is.
  • the control unit 102 determines that both the first detection signal and the second detection signal have values corresponding to the neutral position, the total value of the first detection signal and the second detection signal is a constant value. If it is not a constant value, a control signal is generated and output to stop the operation of a predetermined actuator of the working machine 10.
  • the constant value is a voltage value within the double voltage value V3 ⁇ described with reference to FIG. Further, ⁇ is a voltage value within an allowable range for determination.
  • control unit 102 controls the detection signal (first detection signal) of the main angle sensor and the detection signal (second detection signal) of the sub-angle sensor to be at the neutral position, for example, when the wheel loader 1 is turned on (at startup). For example, it is repeatedly determined for a predetermined period of time from the key-on time whether the values correspond to each other.
  • the predetermined time can be, for example, about several seconds to ten-odd seconds. If both the first detection signal and the second detection signal do not have values corresponding to the neutral position, the control unit 102 outputs a warning to that effect from the output unit 36.
  • alarm outputs include, for example, displaying an error code indicating that the control lever is not in the neutral position, notification by synthesized voice or electronic sound that the control lever is not in the neutral position, and notification that the control lever is not in the neutral position. This includes lighting or blinking of a predetermined indicator light.
  • FIG. 6 is a state transition diagram showing an example of the operation of the controller according to the embodiment of the present disclosure.
  • 7 to 10 are schematic diagrams for explaining operation examples of the controller according to the embodiment of the present disclosure.
  • FIG. 6 shows the transition of states (states S0 to S8) in which the control unit 102 determines whether there is an abnormality based on the detection signal of the main angle sensor and the detection signal of the sub-angle sensor.
  • the state transition shown in FIG. 6 starts when the key is turned on.
  • the initial state is state S0.
  • state S0 an initial check is performed by the control unit 102 to determine which of states S1 to S4 to transition to next. Based on the result of the initial check, the state transitions from state S0 to one of states S1 to S4. Note that the selection of the main angle sensor and sub angle sensor in state S0 is main.
  • FIG. 7 shows the contents of the initial check.
  • the control unit 102 performs neutrality determination in state S0.
  • the control unit 102 performs the main/sub neutral determination after T5 time (for example, 0.3 seconds) has elapsed from the time of startup, and after T6 time (for example, 0.5 seconds) has elapsed.
  • T5 time for example, 0.3 seconds
  • T6 time for example, 0.5 seconds
  • state S0 if condition 1 is satisfied, the state transitions to state S1. In state S0, if condition 2 is satisfied, the state transitions to state S2. In state S0, if condition 3 is satisfied, the state transitions to state S3. In state S0, when condition 4 is satisfied, a transition is made to state S4.
  • FIG. 8 shows a list of conditions 1 to 7.
  • condition 1 to hold The conditions for condition 1 to hold are that condition 2 is not held, condition 3 is not held, and condition 4 is not held.
  • Condition 2 is satisfied if the main is neutral, the sub is non-neutral, and both the main and sub are not within the error detection range of disconnection, ground fault, or power fault. Note that disconnection can be determined based on whether the output signal line of each sensor is in a high impedance state.
  • Condition 3 is satisfied if the main is non-neutral, the sub is neutral, and both the main and sub are not within the error detection range of disconnection, ground fault, or power fault.
  • Condition 4 is satisfied if the main is non-neutral, the sub is non-neutral, and both the main and sub are not within the error detection range of disconnection, ground fault, or power fault.
  • State S1 is a state in which both the main and sub are normal (normal).
  • the main and sub selection is the main one.
  • the error output is a no-error state (no error notification or alarm).
  • T1 for example, 0.05 seconds
  • State S2 is a state in which the sub is abnormal.
  • the main and sub selection is the main one.
  • the error output is an error notification.
  • the working machine 10 has limited functionality. State S2 is maintained until the key is turned off.
  • State S3 is a state in which the main is abnormal.
  • the main and sub selection is sub.
  • the error output is an error notification.
  • the working machine 10 has limited functionality. State S3 is maintained until the key is turned off.
  • State S4 is a state in which both the main and sub are abnormal. The output of an error is an alarm. State S4 transitions to state S0 when condition 5 is satisfied, and transitions to state S5 when condition 6 is satisfied.
  • condition 5 is that both the main and sub are neutral for at least T3 time (for example, 0.5 seconds).
  • T3 time for example, 0.5 seconds.
  • condition for condition 6 to be established is that T4 time (for example, 10 seconds) has elapsed after the transition to state S4.
  • Condition 7 is that the total voltage value of the main and sub is outside the range of 2 ⁇ V3 ⁇ , and both the main and sub are not within the error detection range of disconnection, ground fault, or power fault.
  • State S5 is a state in which both the sub and main are abnormal.
  • the main and sub selection is the main one.
  • the error output is an error notification.
  • the working machine 10 has limited functionality. State S5 transitions to state S7 when condition 7 is satisfied for time T1.
  • State S6 is a state in which one or both of the sub and main is abnormal.
  • the main and sub selection is the main one. There is no error output.
  • the operation of a predetermined actuator is stopped.
  • State S6 transitions to state S1 when condition 7 is not satisfied, and transitions to state S8 when condition 7 is satisfied for T2 time (for example, 1 second).
  • State S7 is a state in which both the sub and main are abnormal.
  • the main and sub selection is the main one.
  • the error output is an error notification.
  • the operation of a predetermined actuator is stopped.
  • State S7 transitions to state S6 when condition 7 is not satisfied, and transitions to state S8 when condition 7 is further satisfied for time T2.
  • State S8 is a state in which one or both of the sub and main is abnormal.
  • the main and sub selection is the main one.
  • the error output is an error notification.
  • the operation of a predetermined actuator is stopped.
  • State S8 is maintained until the key is turned off.
  • emergency operation means operation of the work machine 1 while maintaining the minimum functions in an emergency such as a failure, and for example, when the work machine 1 is running on the work machine 10. This is operation in a state in which the working machine 1 is driven to a possible state and maintains the functions necessary to move the working machine 1 to a place where repair can be performed.
  • an alarm for example, an erroneous operation alarm (not a failure) is issued in case of an erroneous operation when the key is turned on, and a failure is determined if an abnormality is determined for T4 time or more.
  • state S8 in the case of a sum error, safety is ensured by forcibly stopping the working machine 10.
  • the state transitions to, for example, state S2, and if one sensor is not malfunctioning, the work implement 10 can be moved.
  • FIG. 9 collectively represents the operation of the controller 100 described with reference to FIG. 6.
  • neutral determination or error determination “ ⁇ ” indicates normality
  • x indicates abnormality.
  • emergency operation “ ⁇ ” indicates that the attitude of the work implement 10 is driven to a state in which it can travel, and it can be operated in an emergency, and “ ⁇ ” indicates that it can be operated in an emergency, depending on the case.
  • FIG. 10 summarizes the operation when the failure progresses from the normal state (No. 1) shown in FIG. 9. If the voltage of the detection signal of one or both of the angle sensors drops, the error determination becomes abnormal and the working machine 10 is stopped. Therefore, even if the neutral judgment becomes abnormal, the work machine 10 will be stopped, so the work machine 10 will not move with the operator's hand released from the operating lever. Therefore, safety can be ensured (“ ⁇ ”).
  • the wheel loader 1 may be remotely controlled.
  • part or all of the controller 100 and the operating device 32 can be provided at a location where remote control is performed, for example.
  • the working machine (or working vehicle) is not limited to a wheel loader, and may be any working machine that includes a working machine that is driven in accordance with the operation of the operating lever.
  • it may be another working machine such as a hydraulic excavator.
  • the work tool is not limited to a bucket.
  • the working tool may be, for example, a fork, bale grab, etc. that is replaceably attached to the wheel loader as an attachment.
  • controller 100 control device
  • the controller 100 can be understood as follows, for example.
  • the controller 100 is a control device for the work machine 1 including the work machine 10, and is used for the task of tilting from a neutral position in a first direction or a second direction opposite to the first direction.
  • a first detection signal outputted by a first tilt amount sensor (main stroke sensor) that detects the tilt amount of the operating lever of the machine in accordance with the tilt amount, and a second tilt amount sensor (sub stroke sensor) that detects the tilt amount.
  • the control unit 102 generates and outputs a predetermined control signal for controlling the working machine.
  • the control unit 102 is configured to control the control unit 102 based on the other first detection signal or second detection signal.
  • the control device generates and outputs the control signal, and outputs predetermined information corresponding to the case where the one of the values does not correspond to the neutral position from a predetermined output section.
  • control unit 102 is configured to control the control unit 102 based on the other first detection signal or second detection signal.
  • the control device according to (2) generates and outputs the control signal after restricting the functions of the work machine.
  • control device According to the control device, control method, and working machine of the present disclosure, it is possible to appropriately deal with an abnormality in the detection of the tilt amount of the operating lever of the working machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

制御装置は、中立位置から第1方向または反対方向の第2方向に傾倒する作業機の操作レバーの傾倒量を検出する第1傾倒量センサが傾倒量に応じて出力した第1検出信号と、第2傾倒量センサが傾倒量に応じて出力した第2検出信号とを繰り返し取得する取得部と、作業機械の起動時に第1検出信号と第2検出信号が中立位置に対応した値であるか否かを所定時間繰り返し判定し、第1検出信号と第2検出信号の両方が中立位置に対応した値でない場合、所定の出力部からその旨の警報を出力し、所定時間が経過する前に第1検出信号と第2検出信号の両方が中立位置に対応した値となったとき、警報の出力を停止するとともに、第1検出信号に基づいて作業機を制御する所定の制御信号を生成して出力する制御部とを備える。

Description

制御装置、制御方法および作業機械
 本開示は、制御装置、制御方法および作業機械に関する。
 本願は、2022年8月25日に日本に出願された特願2022-134218号について優先権を主張し、その内容をここに援用する。
 特許文献1には、作業機(可動体)の操作レバーの傾倒角度を2つの検出部で検出して比較し、比較結果に基づいて異常の有無を判定し、異常である場合、角度が小さい方の検出結果に基づいて作業機を制御する制御装置が記載されている。特許文献1に記載されている2つの検出部は、一方が角度の増大に伴って検出信号の電圧を低下させ、他方が角度の増大に伴って検出信号の電圧を上昇させる特性を有する。そして、制御装置は、2つの検出信号の合計値を正常値と比較することで異常の有無を判定する。
特開2006-328759号公報
 特許文献1に記載されている制御装置は、操作レバーの中立位置からの傾倒角度が大きいほど速い速度で作業機を動作させる。このため、例えば、2つの検出部に、中立位置からの傾倒角度が大きくなっていることを示す信号しか出力できないという異常が発生した場合、作業機の制御が不適切となってしまうおそれがあるという課題がある。
 本開示は、上記事情に鑑みてなされたものであり、作業機の操作レバーの傾倒量の検出に異常が発生した場合に適切に対処することができる制御装置、制御方法および作業機械を提供することを目的とする。
 本開示の一態様は、作業機を備える作業機械の制御装置であって、中立位置から第1方向または前記第1方向とは反対方向の第2方向に傾倒する前記作業機の操作レバーの傾倒量を検出する第1傾倒量センサが前記傾倒量に応じて出力した第1検出信号と、前記傾倒量を検出する第2傾倒量センサが前記傾倒量に応じて出力した第2検出信号とを繰り返し取得する取得部と、前記作業機械の起動時に前記第1検出信号と前記第2検出信号が前記中立位置に対応した値であるか否かを所定時間繰り返し判定し、前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値でない場合、所定の出力部からその旨の警報を出力し、前記所定時間が経過する前に前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値となったとき、前記警報の出力を停止するとともに、前記第1検出信号に基づいて前記作業機を制御する所定の制御信号を生成して出力する制御部とを備える制御装置である。
 本開示の一態様は、作業機を備える作業機械の制御方法であって、中立位置から第1方向または前記第1方向とは反対方向の第2方向に傾倒する前記作業機の操作レバーの傾倒量を検出する第1傾倒量センサが前記傾倒量に応じて出力した第1検出信号と、前記傾倒量を検出する第2傾倒量センサが前記傾倒量に応じて出力した第2検出信号とを繰り返し取得するステップと、前記作業機械の起動時に前記第1検出信号と前記第2検出信号が前記中立位置に対応した値であるか否かを所定時間繰り返し判定し、前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値でない場合、所定の出力部からその旨の警報を出力し、前記所定時間が経過する前に前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値となったとき、前記警報の出力を停止するとともに、前記第1検出信号に基づいて前記作業機を制御する所定の制御信号を生成して出力するステップとを含む制御方法である。
 本開示の一態様は、作業機と、中立位置から第1方向または前記第1方向とは反対方向の第2方向に傾倒する前記作業機の操作レバーの傾倒量を検出する第1傾倒量センサが前記傾倒量に応じて出力した第1検出信号と、前記傾倒量を検出する第2傾倒量センサが前記傾倒量に応じて出力した第2検出信号とを繰り返し取得する取得部と、前記作業機械の起動時に前記第1検出信号と前記第2検出信号が前記中立位置に対応した値であるか否かを所定時間繰り返し判定し、前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値でない場合、所定の出力部からその旨の警報を出力し、前記所定時間が経過する前に前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値となったとき、前記警報の出力を停止するとともに、前記第1検出信号に基づいて前記作業機を制御する所定の制御信号を生成して出力する制御部とを備える作業機械である。
 本開示の制御装置、制御方法および作業機械によれば、作業機の操作レバーの傾倒量の検出に異常が発生した場合に適切に対処することができる。
本開示の実施形態に係る作業機械を示す側面図である。 本開示の実施形態に係る作業機械の制御システムの構成例を示すブロック図である。 本開示の実施形態に係る操作レバーを示す断面図である。 本開示の実施形態に係る操作レバーを示す断面図である。 本開示の実施形態に係る角度センサの出力特性図である。 本開示の実施形態に係るコントローラの動作例を示す状態遷移図である。 本開示の実施形態に係るコントローラの動作例を説明するための模式図である。 本開示の実施形態に係るコントローラの動作例を説明するための模式図である。 本開示の実施形態に係るコントローラの動作例を説明するための模式図である。 本開示の実施形態に係るコントローラの動作例を説明するための模式図である。
 以下、図面を参照して本開示の実施形態について説明する。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。
 本実施形態においては、作業機械1にローカル座標系を設定し、ローカル座標系を参照しながら各部の位置関係について説明する。ローカル座標系において、作業機械1の左右方向(車幅方向)に延伸する第1軸をX軸とし、作業機械1の前後方向に延伸する第2軸をY軸とし、作業機械1の上下方向に延伸する第3軸をZ軸とする。X軸とY軸とは直交する。Y軸とZ軸とは直交する。Z軸とX軸とは直交する。+X方向は右方向であり、-X方向は左方向である。+Y方向は前方向であり、-Y方向は後方向である。+Z方向は上方向であり、-Z方向は下方向である。
[作業機械の概要]
 図1は、本実施形態に係る作業機械1を示す側面図である。本実施形態に係る作業機械1は、例えばホイールローダである。以下の説明において、作業機械1を適宜、ホイールローダ1、と称する。
 図1に示すように、ホイールローダ1は、車体2と、キャブ3と、走行装置4と、作業機10とを有する。ホイールローダ1は、走行装置4により、作業現場を走行する。ホイールローダ1は、作業現場において、作業機10を用いて作業を実施する。ホイールローダ1は、作業機10を用いて、掘削作業、積込作業、運搬作業、および除雪作業等の作業を実施することができる。
 キャブ3は、車体2に支持される。キャブ3の内部には、オペレータが着座する運転席31と、後述する操作装置32と、表示入力部35と、出力部36とが配置される。
 走行装置4は、回転可能な車輪5を有する。車輪5は、車体2を支持する。ホイールローダ1は、走行装置4によって路面(あるいは地面)RSを走行可能である。なお、図1では、左側の前輪5Fおよび後輪5Rのみが図示されている。
 作業機10は、車体2に支持される。作業機10は、作業工具の一例としてのバケット12と、バケット12の位置と姿勢を変化させる可動支持部17とから構成されている。図1に示す例では、可動支持部17は、ブーム11と、ブームシリンダ13と、バケットシリンダ14と、ベルクランク15と、リンク16とを備える。
 ブーム11は、車体2に対して回動可能に支持され、ブームシリンダ13の伸縮に応じて上下方向に移動する。ブームシリンダ13は、ブーム11を移動させるための動力を発生するアクチュエータであり、一端部は車体2に連結され、他端部はブーム11に連結される。オペレータが操作装置32に含まれるブーム操作レバー33(図2)を操作すると、ブームシリンダ13が伸縮する。これにより、ブーム11は上下方向に移動する。ブームシリンダ13は、例えば油圧シリンダである。
 バケット12は、刃先12Tを有し、土砂等の掘削対象物の掘削や、積み込みを行うための作業工具である。バケット12は、ブーム11に対して回動可能に連結されるとともに、リンク16の一端部に対して回動可能に連結されている。リンク16の他端部は、ベルクランク15の一端部に回動可能に連結されている。ベルクランク15は、中央部がブーム11に回動可能に連結され、他端部がバケットシリンダ14の一端部に回動可能に連結されている。バケットシリンダ14の他端部は車体2に回動可能に連結されている。バケット12は、バケットシリンダ14が発生する動力によって作動する。バケットシリンダ14は、バケット12を移動するための動力を発生するアクチュエータである。オペレータがバケット操作レバー34(図2)を操作すると、バケットシリンダ14が伸縮する。これにより、バケット12は揺動する。バケットシリンダ14は、例えば油圧シリンダである。刃先12Tは、山刃、平刃等の形状を有し、交換可能にバケット12の端部に取り付けられている。
[制御システムの構成]
 図2は、本実施形態に係るホイールローダ1の制御システムの構成例を示すブロック図である。図2に示すように、ホイールローダ1は、動力源201と、PTO(Power Take Off)202と、油圧ポンプ203と、制御弁200と、操作装置32と、表示入力部35と、出力部36と、コントローラ100とを備える。
 動力源201は、作業機械を作動させるための駆動力を発生する。動力源として、内燃機関や電動機が例示される。
 PTO202は、動力源201の駆動力の少なくとも一部を油圧ポンプ203に伝達する。PTO202は、動力源201の駆動力を走行装置4と油圧ポンプ203とに分配する。
 油圧ポンプ203は、動力源201によって駆動され、作動油を吐出する。油圧ポンプ203から吐出された作動油の少なくとも一部は、制御弁200を介して、ブームシリンダ13およびバケットシリンダ14のそれぞれに供給される。制御弁200は、コントローラ100から所定の制御信号を受け、油圧ポンプ203からブームシリンダ13およびバケットシリンダ14のそれぞれに供給される作動油の流量、圧力および方向を制御する。作業機10は、油圧ポンプ203からの作動油により動作する。
 操作装置32は、キャブ3の内部に配置される。操作装置32は、オペレータにより操作される。オペレータは、操作装置32を操作して、ホイールローダ1の進行方向と走行速度の調整、前進または後進の切替え、および作業機10の操作を実施する。操作装置32は、例えば、ステアリング、シフトレバー、アクセルペダル、ブレーキペダル、ブーム操作レバー33、およびバケット操作レバー34を含む。ブーム操作レバー33は、ブーム11の姿勢を操作するための操作レバーである。ブーム操作レバー33は、メイン角度センサ331とサブ角度センサ332を有し、操作レバーの傾倒量を示す2系統の検出信号を出力する。バケット操作レバー34は、バケット12の姿勢を操作するための操作レバーである。バケット操作レバー34は、メイン角度センサ341とサブ角度センサ342を有し、操作レバーの傾倒量を示す2系統の検出信号を出力する。
 なお、ブーム操作レバー33とバケット操作レバー34を総称する場合、操作レバーという。メイン角度センサ331、サブ角度センサ332、メイン角度センサ341およびサブ角度センサ342を総称する場合、角度センサという。また、メイン角度センサ331とメイン角度センサ341を総称する場合、メイン角度センサという。また、サブ角度センサ332とサブ角度センサ342を総称する場合、サブ角度センサという。角度センサは、操作レバーの傾倒量を検出し、検出結果をアナログ電圧値で示す検出信号を出力する。傾倒量は、例えば傾倒角度、把持部分の移動量等に応じた値で表すことができる。なお、角度センサは、例えば、可変抵抗器(ポテンショメータ)と信号処理回路との組み合わせ、ホール素子と信号処理回路との組み合わせ等から構成することができる。また、メイン角度センサの検出信号の電圧値と、サブ角度センサの検出信号の電圧値との合計値は、一定値となるように、各検出信号が設定されている。また、以下では、メイン角度センサを単にメイン、サブ角度センサを単にサブということがある。
 表示入力部35は、入力装置と表示装置の組み合わせ、タッチパネル等の入力表示装置等から構成される。オペレータは、表示入力部35を用いて、例えば作業機10の制御における設定値等を入力する。出力部36は、表示装置、合成音声、警報音あるいは報知音の出力装置、警告灯等の表示灯等を含み、所定の情報を出力する。
 なお、メイン角度センサが本開示に係る第1傾倒量センサの一例である。また、サブ角度センサが本開示に係る第2傾倒量センサの一例である。
 図3および図4は、本実施形態に係るブーム操作レバー33およびバケット操作レバー34を示す断面図である。ブーム操作レバー33とバケット操作レバー34は同一構成とすることができ、以下、ブーム操作レバー33を例に挙げて説明する。図3はブーム操作レバー33の傾倒位置が中立位置である場合を示し、図4はブーム操作レバー33の傾倒位置が後ろ方向のストロークエンドに達した位置である場合を示す。なお、ブーム操作レバー33は前方向にも同様に傾倒する。ブーム操作レバー33は、操作レバーに一定以上の操作力が掛けられていない状態で、操作レバーの位置を中立位置に自動的に復帰する機構を有している。本実施形態では、角度センサは操作レバーの下方に設けられ、操作レバーの傾倒量を検出する。操作レバーの傾倒中心には、バネ301が設けられている。バネ301は、操作レバーの位置を中立位置に自動的に復帰させる機能を有する。操作レバーの下方には、デテントソレノイド302が設けられている。デテントソレノイド302は、デテントソレノイド302に電流が流れると、操作レバーを最大に傾倒させた際に、操作レバーから手を放しても操作レバーを最大に傾倒させた位置に保持する機能を有する。本実施形態に係る操作レバーは、中立位置から第1方向(例えば前方向)または第1方向とは反対方向の第2方向(例えば後ろ方向)に傾倒する作業機10の操作レバーである。
 図5は、本開示の実施形態に係る角度センサの出力特性図である。横軸は出力電圧、縦軸は操作レバーストロークである。この場合、操作レバーストロークは、ストロークエンドを「1」とした場合の百分率で表している。また、中立位置を「0%」として、例えば、前に倒した場合を負の値で表し、後ろに倒した場合を正の値で表している。ただし、正負の向きは逆でもよい。電圧値V1は例えば「0V」であり、電圧値V5は例えば「5V」である。本実施形態では、コントローラ100における信号電圧の範囲が直流0~5Vである。電圧値V2は地絡故障の判定電圧であり、電圧値V4が天絡故障の判定電圧である。角度センサが出力した検出信号の電圧がV2以下の場合、地絡故障が発生していると判定することができる。角度センサが出力した検出信号の電圧がV4以上の場合、天絡故障が発生していると判定することができる。なお、角度センサの検出信号の範囲は、電圧値V2~電圧値V4の範囲よりも小さい。また、電圧値V3は中立位置に対応する電圧であり、例えば「2.5V」である。この例では、メイン角度センサの検出信号の電圧値Vmとサブ角度センサの検出信号の電圧値Vsの合計値は例えば「5V」一定となる。図5において、実線はメイン角度センサの検出信号の電圧値Vmを、一点鎖線はサブ角度センサの検出信号の電圧値Vsを示す。なお、二点鎖線で示す出力特性は、実線で示す出力特性が何らかの不具合で降下した場合の例である。例えば、メイン角度センサの検出信号の電圧値がVm′に低下した場合、Vm′とVsの和は5Vを下回ることになる。
 コントローラ100は、例えば、プロセッサ、主記憶装置、補助記憶装置、入出力装置等を有するFPGA(Field Programmable Gate Array)やマイクロコンピュータを用いて構成される。コントローラ100は、ハードウェアまたはハードウェアとプログラム等のソフトウェアの組み合わせ等から構成される機能的構成として、取得部101と、制御部102とを備える。本実施形態のコントローラ100は、操作装置32の操作等に応じて、制御弁200を制御することで、ブームシリンダ13およびバケットシリンダ14を駆動制御する。コントローラ100は、本開示に係る制御装置の一例である。
 取得部101は、メイン角度センサが操作レバーの傾倒量に応じて出力した各検出信号(第1検出信号)と、サブ角度センサが操作レバーの傾倒量に応じて出力した各検出信号(第2検出信号)とを例えば所定の周期(例えば数ミリ秒~数百ミリ秒周期)で繰り返し取得する。
 制御部102は、例えば、メイン角度センサの検出信号とサブ角度センサの検出信号に基づいて、各検出信号が正常か異常かを判定したり、異常な場合にどの角度センサの検出信号に基づいて制御弁200の制御を行うかを選択したりする。なお、制御部102が行う異常の有無の判定には次の2つがある。ひとつは、ホイールローダ1のキーオン時(ホイールローダ1の起動時)に、操作レバーが操作されていないことを前提として、各検出信号が、操作レバーが中立位置にあることを示す値となっているか否かの判定である。この判定を中立判定という。なお、キーオン時とは、キーをオンしてから操作レバーの操作を開始するまでに通常要する時間より短い時間内であり、例えばキーをオンしてから数秒~十数秒程度の時間である。もう一つは、メインとサブの各検出信号の電圧値の合計値が、所定の一定値になっているか否かの判定である。この判定を和判定あるいはエラー判定という。和判定は起動時に限らず、操作レバーの操作中も判定することができる。
 制御部102は、例えば、ホイールローダ1のキーオン時(起動時)に、メイン角度センサの検出信号(第1検出信号)とサブ角度センサの検出信号(第2検出信号)が中立位置に対応した値であるか否かを判定し、第1検出信号と第2検出信号の両方が中立位置に対応した値である場合、第1検出信号に基づいて作業機10を制御する所定の制御信号を生成して出力する。また、制御部102は、例えば、第1検出信号または第2検出信号のいずれか一方が中立位置に対応した値でない場合、他方の第1検出信号または第2検出信号に基づいて制御信号を生成して出力するとともに、出力部36から一方が中立位置に対応した値でない場合に対応した所定の情報を出力する。なお、中立位置に対応した値とは、図5に示す例では、電圧値V3±α以内の電圧値である。ここで、αは判定の許容範囲の電圧値である。また、所定の情報の出力は、例えば、中立位置に対応した値でない場合を表すエラーコードの表示、合成音声や電子音による異常が検出されたことの報知、所定の表示灯の点灯や点滅等である。なお、所定の情報の出力は、エラー発報ともいう。
 また、制御部102は、例えば、第1検出信号または第2検出信号のいずれか一方が中立位置に対応した値でない場合、他方の第1検出信号または第2検出信号に基づいて、作業機10の機能を制限した上で、制御信号を生成して出力する。作業機10の機能の制限とは、作業機10の作用あるいは動作の制限であり、例えば、作業機10の動作速度を通常より低い値(例えば通常の数~数十%程度)に制限することである。
 また、制御部102は、例えば、第1検出信号と第2検出信号の両方が中立位置に対応した値であると判定した場合、第1検出信号と第2検出信号との合計値が一定値であるか否かを判定し、一定値でない場合、作業機10の所定のアクチュエータの作動を停止するように、制御信号を生成して出力する。ここで、一定値は、図5を参照して説明した2倍の電圧値V3±β以内の電圧値である。また、βは判定の許容範囲の電圧値である。
 また、制御部102は、例えば、ホイールローダ1のキーオン時(起動時)に、メイン角度センサの検出信号(第1検出信号)とサブ角度センサの検出信号(第2検出信号)が中立位置に対応した値であるか否かを、例えば、キーオンの時刻から所定時間繰り返し判定する。所定時間は、例えば数秒~十数秒程度とすることができる。制御部102は、第1検出信号と第2検出信号の両方が中立位置に対応した値でない場合、出力部36からその旨の警報を出力する。また、制御部102は、所定時間が経過する前に第1検出信号と第2検出信号の両方が中立位置に対応した値となったとき、警報の出力を停止するとともに、第1検出信号に基づいて作業機10を制御する制御信号を生成して出力する。また、警報の出力は、例えば、操作レバーが中立位置にないことを表すエラーコードの表示、合成音声や電子音による操作レバーが中立位置にないことの報知、操作レバーが中立位置にないことを示す所定の表示灯の点灯や点滅等である。
[コントローラの動作例]
 図6は、本開示の実施形態に係るコントローラの動作例を示す状態遷移図である。図7~図10は、本開示の実施形態に係るコントローラの動作例を説明するための模式図である。図6は、制御部102が、メイン角度センサの検出信号とサブ角度センサの検出信号に基づく異常の有無の判定状態(状態S0~S8)の遷移を示す。図6に示す状態遷移は、キーオン時に開始される。初期状態は状態S0である。
 状態S0では、次に状態S1~S4のどこに遷移するかを決定するために、制御部102によってイニシャルチェックが実施される。イニシャルチェックの結果に基づいて、状態S0から状態S1~S4のいずれかに状態が遷移する。なお、状態S0でのメイン角度センサとサブ角度センサの選択はメインである。図7は、イニシャルチェックの内容を示す。制御部102は状態S0にて中立判定を実施する。制御部102は、起動時からT5時間(例えば0.3秒間)経過で、経過後T6時間(例えば0.5秒間)でメイン・サブの中立判定を実施する。制御部102は、T6時間の間、常に中立範囲内であれば中立と判定する。また、制御部102は、T6時間に一度でも中立範囲外となると非中立と判定する。
 状態S0で、条件1が成立すると状態S1へ遷移する。状態S0で、条件2が成立すると状態S2へ遷移する。状態S0で、条件3が成立すると状態S3へ遷移する。状態S0で、条件4が成立すると状態S4へ遷移する。図8は、条件1~7を一覧にして示す。
 条件1の成立条件は、条件2が不成立かつ条件3が不成立かつ条件4が不成立である。
 条件2の成立条件は、メイン中立、かつ、サブ非中立、かつ、メイン・サブ両方とも断線、地絡、または、天絡のエラー検出範囲でない、である。なお、断線については、各センサの出力信号線がハイインピーダンス状態であるか否かで判定することができる。
 条件3の成立条件は、メイン非中立、かつ、サブ中立、かつ、メイン・サブ両方とも断線、地絡、または、天絡のエラー検出範囲でない、である。
 条件4の成立条件は、メイン非中立、かつ、サブ非中立、かつ、メイン・サブ両方とも断線、地絡、または、天絡のエラー検出範囲でない、である。
 状態S1はメインもサブも正常(通常)である状態である。メインとサブの選択はメインである。エラーの出力はエラー無しの状態(エラー発報も警報も無い状態)である。状態S1で条件7がT1時間(例えば0.05秒間)継続して成立すると、状態S1から状態S6へ遷移する。
 状態S2はサブが異常である状態である。メインとサブの選択はメインである。エラーの出力はエラー発報である。作業機10は機能制限される。状態S2は、キーオフとなるまで維持される。
 状態S3はメインが異常である状態である。メインとサブの選択はサブである。エラーの出力はエラー発報である。作業機10は機能制限される。状態S3は、キーオフとなるまで維持される。
 状態S4はメインもサブも両方とも異常である状態である。エラーの出力は警報である。状態S4は、条件5が成立すると状態S0へ遷移し、条件6が成立すると状態S5へ遷移する。
 条件5の成立条件は、メイン・サブ両方とも中立がT3時間(例えば0.5秒間)以上経過したである。制御部102は、この遷移をする場合にはイニシャルチェック結果をメイン・サブともに中立に変更する。
 条件6の成立条件は、状態S4に遷移後T4時間(例えば10秒間)経過である。
 条件7は、メイン・サブの電圧値の合計値が2×V3±βの範囲外、かつ、メイン・サブ両方とも断線、地絡、または、天絡のエラー検出範囲でない、である。
 状態S5はサブもメインも異常である状態である。メインとサブの選択はメインである。エラーの出力はエラー発報である。作業機10は機能制限される。状態S5は、条件7がT1時間成立した場合に状態S7へ遷移する。
 状態S6はサブとメインの一方または両方が異常である状態である。メインとサブの選択はメインである。エラーの出力はなしである。作業機10は所定のアクチュエータの作動が停止される。状態S6は、条件7が不成立で状態S1へ遷移し、条件7がT2時間(例えば1秒間)成立した場合に状態S8へ遷移する。
 状態S7はサブもメインも異常である状態である。メインとサブの選択はメインである。エラーの出力はエラー発報である。作業機10は所定のアクチュエータの作動が停止される。状態S7は、条件7が不成立の場合に状態S6へ遷移し、条件7がさらにT2時間成立した場合に状態S8へ遷移する。
 状態S8はサブとメインの一方または両方が異常である状態である。メインとサブの選択はメインである。エラーの出力はエラー発報である。作業機10は所定のアクチュエータの作動が停止される。状態S8は、キーオフとなるまで維持される。
 図6に示す状態遷移において、状態S2および状態S3では、メインとサブのどちらかが非中立でも片方が正常なら作業機10は動かせるため、非常時稼働が可能である。また、エラー発報が行われているので、修理が促され、他方の角度センサも故障(二重故障)してしまう可能性を低くすることができる。なお、本実施形態において非常時稼働とは、故障等が発生した非常時において最低限の機能を維持した状態での作業機械1の稼働を意味し、例えば、作業機10を作業機械1が走行可能な状態まで駆動し、作業機械1を走行させて、修理が可能な場所等まで移動させるのに必要な機能を維持した状態での稼働である。
 また、状態S4では、キーオン時の誤操作では警報(例えば誤操作警報(故障ではない))を行い、T4時間以上、異常と判定された場合に故障と判断するようにした。
 状態S8では、和エラーの場合、作業機10の強制停止で安全が確保される。非常時稼働したい場合、キーオフからキーオンすれば、例えば状態S2等へ遷移し、片方のセンサが故障していなければ作業機10を動かすことができる。
 図9は、図6を参照して説明したコントローラ100の動作をまとめて表す。中立判定またはエラー判定については、「〇」が正常、「×」が異常を表す。非常時稼働については、「〇」が作業機10の姿勢を走行可能な状態まで駆動し、非常時稼働可能であること、「△」は場合によっては非常時稼働可能であることを表す。
 図10は、図9に示す正常(No.1)から、故障が進行した場合の動作をまとめて示す。角度センサの片方または両方の検出信号の電圧が降下した場合、いずれもエラー判定が異常となり、作業機10が停止される。よって、中立判定が異常となるような状態となった場合でも作業機10が停止されることになるので、操作レバーから手を離した状態で作業機10が動くようなことはない。したがって、安全性を確保することができる(「〇」)。
(作用・効果)
 本実施形態によれば、作業機の操作レバーの傾倒量の検出に異常が発生した場合に適切に対処することができる。
<本実施形態の変形例または他の実施形態>
 以上、この発明の実施形態について図面を参照して説明してきたが、具体的な構成は上記実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上記実施形態でコンピュータが実行するプログラムの一部または全部は、コンピュータ読取可能な記録媒体や通信回線を介して頒布することができる。
 例えば、ホイールローダ1は、遠隔操作できるものとしてもよい。この場合、コントローラ100の一部または全部と、操作装置32とを、例えば、遠隔操作を行う場所に設けることができる。
 また、例えば、作業機械(あるいは作業車両)は、ホイールローダに限定されず、操作レバーの操作に応じて駆動される作業機を備える作業機械であればよい。例えば、油圧ショベル等の他の作業機械とすることができる。また、作業工具は、バケットに限られない。作業工具は、例えばアタッチメントとしてホイールローダに交換可能に取り付けられるフォーク、ベールグラブ等としてもよい。
<付記>
 上記実施形態に記載のコントローラ100(制御装置)は、例えば以下のように把握される。
(1)コントローラ100(制御装置)は、作業機10を備える作業機械1の制御装置であって、中立位置から第1方向または前記第1方向とは反対方向の第2方向に傾倒する前記作業機の操作レバーの傾倒量を検出する第1傾倒量センサ(メインストロークセンサ)が前記傾倒量に応じて出力した第1検出信号と、前記傾倒量を検出する第2傾倒量センサ(サブストロークセンサ)が前記傾倒量に応じて出力した第2検出信号とを繰り返し取得する取得部101と、前記作業機械の起動時に前記第1検出信号と前記第2検出信号が前記中立位置に対応した値であるか否かを所定時間繰り返し判定し、前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値でない場合、所定の出力部36からその旨の警報を出力し、前記所定時間が経過する前に前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値となったとき、前記警報の出力を停止するとともに、前記第1検出信号に基づいて前記作業機を制御する所定の制御信号を生成して出力する制御部102とを備える。
(2)前記制御部102は、前記第1検出信号または前記第2検出信号のいずれか一方が前記中立位置に対応した値でない場合、他方の前記第1検出信号または前記第2検出信号に基づいて前記制御信号を生成して出力するとともに、所定の出力部から前記一方が前記中立位置に対応した値でない場合に対応した所定の情報を出力する(1)の制御装置である。
(3)前記制御部102は、前記第1検出信号または前記第2検出信号のいずれか一方が前記中立位置に対応した値でない場合、他方の前記第1検出信号または前記第2検出信号に基づいて、前記作業機の機能を制限した上で、前記制御信号を生成して出力する(2)の制御装置である。
 本開示の制御装置、制御方法および作業機械によれば、作業機の操作レバーの傾倒量の検出に異常が発生した場合に適切に対処することができる。
 1…ホイールローダ(作業機械)、2…車体、3…キャブ、4…走行装置、5…車輪、6…タイヤ、10…作業機、11…ブーム、12…バケット(作業工具)、12T…刃先、13…ブームシリンダ、14…バケットシリンダ、15…ベルクランク、16…リンク、17…可動支持部、32…操作装置、33…ブーム操作レバー、34…バケット操作レバー、331、341…メインストロークセンサ、332、342…サブストロークセンサ、100…コントローラ(制御装置)、101…取得部、102…制御部

Claims (5)

  1.  作業機を備える作業機械の制御装置であって、
     中立位置から第1方向または前記第1方向とは反対方向の第2方向に傾倒する前記作業機の操作レバーの傾倒量を検出する第1傾倒量センサが前記傾倒量に応じて出力した第1検出信号と、前記傾倒量を検出する第2傾倒量センサが前記傾倒量に応じて出力した第2検出信号とを繰り返し取得する取得部と、
     前記作業機械の起動時に前記第1検出信号と前記第2検出信号が前記中立位置に対応した値であるか否かを所定時間繰り返し判定し、
     前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値でない場合、所定の出力部からその旨の警報を出力し、
     前記所定時間が経過する前に前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値となったとき、前記警報の出力を停止するとともに、前記第1検出信号に基づいて前記作業機を制御する所定の制御信号を生成して出力する制御部と
     を備える制御装置。
  2.  前記制御部は、前記第1検出信号または前記第2検出信号のいずれか一方が前記中立位置に対応した値でない場合、他方の前記第1検出信号または前記第2検出信号に基づいて前記制御信号を生成して出力するとともに、所定の出力部から前記一方が前記中立位置に対応した値でない場合に対応した所定の情報を出力する
     請求項1に記載の制御装置。
  3.  前記制御部は、前記第1検出信号または前記第2検出信号のいずれか一方が前記中立位置に対応した値でない場合、他方の前記第1検出信号または前記第2検出信号に基づいて、前記作業機の機能を制限した上で、前記制御信号を生成して出力する
     請求項2に記載の制御装置。
  4.  作業機を備える作業機械の制御方法であって、
     中立位置から第1方向または前記第1方向とは反対方向の第2方向に傾倒する前記作業機の操作レバーの傾倒量を検出する第1傾倒量センサが前記傾倒量に応じて出力した第1検出信号と、前記傾倒量を検出する第2傾倒量センサが前記傾倒量に応じて出力した第2検出信号とを繰り返し取得するステップと、
     前記作業機械の起動時に前記第1検出信号と前記第2検出信号が前記中立位置に対応した値であるか否かを所定時間繰り返し判定し、
     前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値でない場合、所定の出力部からその旨の警報を出力し、
     前記所定時間が経過する前に前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値となったとき、前記警報の出力を停止するとともに、前記第1検出信号に基づいて前記作業機を制御する所定の制御信号を生成して出力するステップと
     を含む制御方法。
  5.  作業機と、
     中立位置から第1方向または前記第1方向とは反対方向の第2方向に傾倒する前記作業機の操作レバーの傾倒量を検出する第1傾倒量センサが前記傾倒量に応じて出力した第1検出信号と、前記傾倒量を検出する第2傾倒量センサが前記傾倒量に応じて出力した第2検出信号とを繰り返し取得する取得部と、
     作業機械の起動時に前記第1検出信号と前記第2検出信号が前記中立位置に対応した値であるか否かを所定時間繰り返し判定し、
     前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値でない場合、所定の出力部からその旨の警報を出力し、
     前記所定時間が経過する前に前記第1検出信号と前記第2検出信号の両方が前記中立位置に対応した値となったとき、前記警報の出力を停止するとともに、前記第1検出信号に基づいて前記作業機を制御する所定の制御信号を生成して出力する制御部と
     を備える作業機械。
PCT/JP2023/024786 2022-08-25 2023-07-04 制御装置、制御方法および作業機械 WO2024042875A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134218A JP2024030958A (ja) 2022-08-25 2022-08-25 制御装置、制御方法および作業機械
JP2022-134218 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024042875A1 true WO2024042875A1 (ja) 2024-02-29

Family

ID=90012921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024786 WO2024042875A1 (ja) 2022-08-25 2023-07-04 制御装置、制御方法および作業機械

Country Status (2)

Country Link
JP (1) JP2024030958A (ja)
WO (1) WO2024042875A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142130A (ja) * 1986-12-03 1988-06-14 Komatsu Ltd 被作動体の駆動制御装置
JP2000087908A (ja) * 1998-09-14 2000-03-28 Hitachi Constr Mach Co Ltd 建設機械の操作系制御装置
JP2001049698A (ja) * 1999-08-13 2001-02-20 Hitachi Constr Mach Co Ltd 電気レバー装置の故障診断方法及び油圧駆動制御装置
JP2006328759A (ja) * 2005-05-25 2006-12-07 Hitachi Constr Mach Co Ltd 操作系の制御装置
JP2018053448A (ja) * 2016-09-26 2018-04-05 日立建機株式会社 建設機械
JP2019203282A (ja) * 2018-05-22 2019-11-28 コベルコ建機株式会社 遠隔操作システム
JP2019206878A (ja) * 2018-05-30 2019-12-05 日立建機株式会社 作業機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142130A (ja) * 1986-12-03 1988-06-14 Komatsu Ltd 被作動体の駆動制御装置
JP2000087908A (ja) * 1998-09-14 2000-03-28 Hitachi Constr Mach Co Ltd 建設機械の操作系制御装置
JP2001049698A (ja) * 1999-08-13 2001-02-20 Hitachi Constr Mach Co Ltd 電気レバー装置の故障診断方法及び油圧駆動制御装置
JP2006328759A (ja) * 2005-05-25 2006-12-07 Hitachi Constr Mach Co Ltd 操作系の制御装置
JP2018053448A (ja) * 2016-09-26 2018-04-05 日立建機株式会社 建設機械
JP2019203282A (ja) * 2018-05-22 2019-11-28 コベルコ建機株式会社 遠隔操作システム
JP2019206878A (ja) * 2018-05-30 2019-12-05 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
JP2024030958A (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
CN114364847B (zh) 作业机械以及周围监视***
KR102061043B1 (ko) 건설 기계의 구동 제어 장치
JP4750067B2 (ja) 建設機械の非常停止システムおよび建設機械
WO2014203990A1 (ja) 建設機械の異常情報制御装置
KR20210152558A (ko) 작업 기계 및 작업 기계의 제어 시스템
CN112638696B (zh) 电动式作业机械
KR101654117B1 (ko) 작업 차량 및 작업 차량의 제어 방법
JP2009144505A (ja) 小旋回式掘削機のブーム衝撃緩和装置及びその制御方法
EP2269894A1 (en) Steering controller and steering control method of working vehicle
US20220341129A1 (en) Construction machine
KR20150107825A (ko) 건설 기계의 보수 장치
KR20210152559A (ko) 작업 기계
JP4271685B2 (ja) 作業車両及び作業車両のエンジン再始動制御方法
EP1574627A1 (en) Emergency control method for a work device of a construction equipment
JP2021050545A (ja) 建設機械
WO2024042875A1 (ja) 制御装置、制御方法および作業機械
WO2024042980A1 (ja) 制御装置、制御方法および作業機械
JP2019056234A (ja) 作業機械
US11225771B2 (en) Shovel
WO2022176991A1 (ja) 作業機械の制御システム、作業機械の制御方法、および作業機械
JP7514248B2 (ja) 作業機械
JP7489794B2 (ja) 作業機械の報知システム、作業機械および報知システムの制御方法
WO2024048063A1 (ja) 制御装置、制御方法および作業機械
JPH08218415A (ja) 油圧ショベル用の運転室干渉防止装置及び油圧ショベル
JP6695288B2 (ja) 建設機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856992

Country of ref document: EP

Kind code of ref document: A1