WO2024004709A1 - 非水電解質二次電池用正極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2024004709A1
WO2024004709A1 PCT/JP2023/022391 JP2023022391W WO2024004709A1 WO 2024004709 A1 WO2024004709 A1 WO 2024004709A1 JP 2023022391 W JP2023022391 W JP 2023022391W WO 2024004709 A1 WO2024004709 A1 WO 2024004709A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
secondary battery
Prior art date
Application number
PCT/JP2023/022391
Other languages
English (en)
French (fr)
Inventor
元治 斉藤
毅 小笠原
光宏 日比野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004709A1 publication Critical patent/WO2024004709A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 describes an NCM-based lithium transition metal composite oxide ( Single particles with a Ni content of 0.3 ⁇ Ni ⁇ 0.6 are disclosed.
  • Patent Document 2 describes an NCM-based lithium transition metal composite oxide (Ni content: 0.3 ⁇ Ni ⁇ 0.6) with an average particle size of 3 ⁇ m to 8 ⁇ m and a crystallite size of 1100 ⁇ to 2000 ⁇ . Single particles are disclosed.
  • Patent Documents 1 and 2 do not consider achieving both high capacity and high durability, and there is still room for improvement.
  • An object of the present disclosure is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can improve the capacity and durability of the non-aqueous electrolyte secondary battery.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery that is an embodiment of the present disclosure includes a lithium transition metal composite oxide containing 70 mol% or more of Ni and Mn with respect to the total molar amount of metal elements excluding Li.
  • the lithium transition metal composite oxide is characterized by being composed of single particles, the average particle size of the single particles being 0.65 ⁇ m to 4 ⁇ m, and the crystallite size of the single particles being 380 ⁇ to 750 ⁇ .
  • a non-aqueous electrolyte secondary battery that is one aspect of the present disclosure is characterized by comprising a positive electrode containing the above-described positive electrode active material, a negative electrode, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte secondary battery with high capacity and improved durability can be provided.
  • FIG. 1 is an axial cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment.
  • FIG. 2 is a schematic cross-sectional view of test cells produced in Examples and Comparative Examples.
  • FIG. 3 is a SEM image of the positive electrode active material according to Example C1 before and after crushing.
  • FIG. 7 is a SEM image of the positive electrode active material according to Example C2 before and after crushing.
  • FIG. 7 is a SEM image of the positive electrode active material according to Example C3 before and after crushing.
  • FIG. FIG. 7 is a SEM image of the positive electrode active material according to Comparative Example C4 before and after crushing.
  • FIG. FIG. 7 is a SEM image of the positive electrode active material according to Comparative Example C5 before and after crushing.
  • the positive electrode active material is preferably one containing relatively inexpensive Ni and Mn as main components.
  • the present inventors found that single particles of a lithium transition metal composite oxide containing Ni and Mn as main components have a predetermined average particle diameter and crystallite size. We have discovered that it is possible to achieve both high capacity and high durability.
  • a cylindrical battery in which a wound type electrode body is housed in a cylindrical exterior body is illustrated, but the electrode body is not limited to the wound type, and a plurality of positive electrodes and a plurality of negative electrodes are housed in a separator. It may also be of a laminated type in which the sheets are alternately laminated one by one.
  • the exterior body is not limited to a cylindrical shape, and may be, for example, square, coin-shaped, or the like. Further, the exterior body may be a pouch type made of a laminate sheet including a metal layer and a resin layer.
  • the expression "numerical value (A) to numerical value (B)” means greater than or equal to numerical value (A) and less than or equal to numerical value (B).
  • FIG. 1 is an axial cross-sectional view of a cylindrical secondary battery 10 that is an example of an embodiment.
  • an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15.
  • the electrode body 14 has a wound structure in which a positive electrode 11 and a negative electrode 12 are wound with a separator 13 in between.
  • the sealing body 16 side will be referred to as "upper” and the bottom side of exterior body 15 will be referred to as "lower”.
  • the inside of the secondary battery 10 is sealed. Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22, which is the bottom plate of the sealing body 16.
  • the cap 26, which is the top plate of the sealing body 16 electrically connected to the filter 22, serves as a positive terminal.
  • the negative electrode lead 20 passes through the through hole of the insulating plate 18 , extends to the bottom side of the exterior body 15 , and is welded to the bottom inner surface of the exterior body 15 .
  • the exterior body 15 serves as a negative terminal. Note that when the negative electrode lead 20 is installed at the outer end of the winding, the negative electrode lead 20 passes through the outside of the insulating plate 18, extends to the bottom side of the exterior body 15, and is welded to the bottom inner surface of the exterior body 15. .
  • the exterior body 15 is, for example, a cylindrical metal exterior can with a bottom.
  • a gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure airtightness inside the secondary battery 10.
  • the exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed by, for example, pressing a side surface from the outside.
  • the grooved portion 21 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and supports the sealing body 16 via the gasket 27 on its upper surface.
  • the sealing body 16 includes a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except the insulating member 24 is electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between their peripheral edges.
  • the positive electrode 11, negative electrode 12, separator 13, and non-aqueous electrolyte that constitute the electrode body 14 will be explained in detail, especially the positive electrode 11.
  • the positive electrode 11 includes a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer is preferably formed on both sides of the positive electrode current collector.
  • a foil made of a metal such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode 11, a film in which the metal is disposed on the surface, or the like can be used.
  • the positive electrode mixture layer includes, for example, a positive electrode active material, a conductive agent, a binder, and the like.
  • the thickness of the positive electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the positive electrode current collector.
  • the positive electrode 11 is made by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, and a binder to the surface of a positive electrode current collector, drying the coating film, and then rolling it to form a positive electrode mixture layer. It is produced by forming on both sides of a positive electrode current collector.
  • Examples of the conductive agent contained in the positive electrode mixture layer include carbon-based particles such as carbon black (CB), acetylene black (AB), Ketjen black, carbon nanotubes (CNT), graphene, and graphite. These may be used alone or in combination of two or more.
  • the content of the conductive agent is, for example, 0.1% by mass to 5.0% by mass based on 100 parts by mass of the positive electrode active material.
  • binder included in the positive electrode mixture layer examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or its salts, polyethylene oxide (PEO), and the like.
  • the content of the binder is, for example, 0.1% by mass to 5.0% by mass based on 100 parts by mass of the positive electrode active material.
  • the positive electrode active material contained in the positive electrode mixture layer contains a lithium transition metal composite oxide.
  • the lithium transition metal composite oxide is composed of single particles.
  • the positive electrode active material may also include secondary particles formed by agglomeration of single particles. This increases the charging density of the positive electrode active material in the positive electrode mixture layer, so that the capacity of the secondary battery 10 can be increased.
  • the secondary particles formed by agglomeration of single particles are, for example, formed by aggregation of 2 to 1000 single particles. Further, it may include general primary particles that are not single particles, and secondary particles formed by agglomeration of these primary particles.
  • the positive electrode active material may contain LiF, Li 2 S, etc. in addition to the lithium transition metal composite oxide.
  • the proportion of single particles in the positive electrode active material is preferably 10% or more, more preferably 80% or more, particularly preferably 90% or more, and may be substantially 100%.
  • the lithium transition metal composite oxide may contain secondary particles formed by agglomerating more than 100 primary particles.
  • the average particle size of single particles is 0.65 ⁇ m to 4 ⁇ m.
  • the average particle size means the volume-based median diameter (D50).
  • D50 means a particle size at which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution, and is also called the median diameter.
  • the particle size distribution of the positive electrode active material can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) using water as a dispersion medium. If the particle size of the single particles is too large, the battery capacity will decrease or the charging/discharging efficiency will deteriorate. If the particle size of the single particles is too small, secondary aggregation occurs, which causes battery deterioration.
  • the BET specific surface area of a single particle is, for example, 0.5 m 2 /g to 4 m 2 /g. Secondary particles have voids within them, so even if the particle size is large, the specific surface area is relatively large. On the other hand, since single particles have no voids within the particles, the larger the particle size, the smaller the BET specific surface area.
  • the particle shapes of the secondary particles and single particles vary depending on the production conditions, so the BET specific surface area changes.
  • the BET specific surface area can be measured using Tristar II3020 (manufactured by Shimadzu Corporation) under the following conditions.
  • the product AB of A and B is 1 It is preferable to satisfy .5 ⁇ AB ⁇ 6.
  • the battery capacity and durability of the secondary battery 10 are significantly improved.
  • Secondary particles that are agglomerated single particles with small particle sizes may have cracked grain boundaries, resulting in a decrease in charge/discharge cycle characteristics.
  • Single particles with a large particle size may reduce battery capacity.
  • the BET specific surface area of the single particles is small, the contact area with the non-aqueous electrolyte is small, which may lead to a decrease in battery capacity and deterioration of load characteristics.
  • the crystallite size of a single particle is 380 ⁇ to 750 ⁇ .
  • the crystallite size is calculated from the half-value width of the diffraction peak of the (104) plane of the X-ray diffraction pattern obtained by X-ray diffraction using the Scherrer equation expressed by the following equation.
  • s is the crystallite size
  • is the wavelength of the X-ray
  • B is the half-width of the diffraction peak of the (104) plane
  • is the diffraction angle (rad)
  • K is the Scherrer constant.
  • the lithium transition metal composite oxide contains Ni and Mn in an amount of 70 mol% or more based on the total molar amount of metal elements excluding Li. This makes it possible to obtain a lithium transition metal composite oxide that is relatively inexpensive and has a high capacity. Note that the lithium transition metal composite oxide may be composed only of Ni and Mn.
  • Ni is preferably contained in the largest amount among the metal elements other than Li that constitute the lithium-transition metal composite oxide.
  • the Ni content in the lithium transition metal composite oxide is preferably 50 mol% or more, more preferably 70 mol% or more, based on the total molar amount of metal elements excluding Li.
  • the upper limit of the Ni content may be 95 mol%, but is preferably 90 mol%.
  • Mn is preferably contained in the second largest amount next to Ni among the metal elements other than Li that constitute the lithium-transition metal composite oxide. Mn can stabilize the crystal structure of the lithium transition metal composite oxide.
  • the Mn content in the lithium-transition metal composite oxide is, for example, 5 mol% to 50 mol% with respect to the total molar amount of metal elements excluding Li.
  • lithium transition metal composite oxides with a Ni content of 80% or less and a high Mn content can obtain high capacity by increasing the charging potential, so single particles with high potential resistance can be used. is necessary.
  • a surface modification layer containing a boron compound may be formed on the surface of the single particle. This improves charging and discharging efficiency. It is presumed that the boron compound suppresses the decomposition of the electrolytic solution and promotes the exchange of Li ions between the nonaqueous electrolyte and the positive electrode active material on the surface of the lithium transition metal composite oxide.
  • a boron compound is a compound containing B (boron). Examples of boron compounds include boron oxide, boron fluoride, boron chloride, and boron sulfide. Preferably, the boron compound is a boron oxide.
  • boron oxides examples include boric acid (H 3 BO 3 ), boron oxide (B 2 O 3 ), and lithium borate (LiBO 2 , LiB 3 O 5 , Li 2 B 4 O 7 ).
  • the boron compound present on the surface of the lithium-transition metal composite oxide can be confirmed by low-acceleration SEM, TEM-EDX, or the like.
  • the thickness of the surface modification layer is, for example, 1 nm to 100 nm.
  • the amount of the boron compound in the surface modification layer is, for example, 0.1 mol% to 7 mol% with respect to the total molar amount of metal elements excluding Li in the single particle.
  • the atomic concentration of each element can be measured by X-ray photoelectron spectroscopy (XPS).
  • the lithium transition metal composite oxide may further contain at least one metal element selected from the group consisting of Ca, Sr, W, and S. These metal elements may be contained in the lithium transition metal composite oxide, but are preferably present on the surface of the lithium transition metal composite oxide. Thereby, side reactions between the lithium transition metal composite oxide and the electrolytic solution can be suppressed, and battery deterioration can be suppressed. These metal elements may be contained together with B in the surface modification layer.
  • the positive electrode active material may contain, for example, 0.01 mol% to 5 mol% of these metal elements based on the total amount of Ni and Mn.
  • the method for producing a positive electrode active material includes, for example, a synthesis step, a washing step, a drying step, and a crushing step.
  • a metal hydroxide containing 70 mol% or more of Ni and Mn and a Li compound are mixed and fired to obtain a lithium transition metal composite oxide.
  • the metal hydroxide can be prepared by adding an alkaline solution such as sodium hydroxide dropwise to a solution of a metal salt containing Ni, Mn, and any metal element (Fe, etc.) while stirring, and adjusting the pH to the alkaline side (for example, 8. 5 to 12.5) and precipitate (co-precipitate).
  • a metal oxide obtained by heat-treating the metal hydroxide may be used instead of the metal hydroxide.
  • the particle size of the metal hydroxide is preferably 7 ⁇ m or less because the smaller the particle size, the easier the primary particles will grow.
  • Li compound examples include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH ⁇ H 2 O, LiH, LiF, and the like.
  • the mixing ratio of the metal hydroxide and the Li compound is such that the above-mentioned parameters can be easily adjusted within the above-defined ranges.
  • the molar ratio of metal elements other than Li:Li is 1:0.
  • the ratio is preferably in the range of 98 to 1:1.1.
  • a Ca compound, a Sr compound, a W compound, etc. may be added.
  • the Ca compound include CaO, Ca(OH) 2 and CaCO 3 .
  • Sr compound examples include SrO, Sr(OH) 2 and SrCO 3 .
  • W compound examples include WO 3 , Li 2 WO 4 , Li 4 WO 5 , and Li 6 W 2 O 9 .
  • the mixture of metal hydroxide, Li compound, etc. is fired, for example, in an oxygen atmosphere (flowing gas with an oxygen concentration of 80% or more).
  • the firing conditions are such that the temperature increase rate is in the range of more than 1.0°C/min and less than 5.5°C/min at 450°C or more and 680°C or less, and the maximum temperature is in the range of 850°C or more and 1100°C or less. There may be.
  • the temperature increase rate from over 680°C to the maximum temperature may be, for example, 0.1°C/min to 3.5°C/min. Further, the maximum temperature may be maintained for 1 hour or more and 30 hours or less.
  • this firing step may be a multi-stage firing, and a plurality of first temperature increase rates and second temperature increase rates may be set for each temperature range as long as they are within the ranges defined above.
  • the particle size of the single particles can be adjusted. For example, by increasing the maximum temperature, the particle size of single particles can be increased.
  • the lithium transition metal composite oxide obtained in the synthesis step is washed with water and dehydrated to obtain a cake-like composition. Washing with water and dehydration can be performed using known methods and conditions. This may be carried out within a range where lithium is not eluted from the lithium-transition metal composite oxide and the battery characteristics are not deteriorated. Note that a Ca compound, Sr compound, W compound, S compound, P compound, etc. may be added to the cake-like composition.
  • the cake-like composition obtained in the washing step is dried to obtain a powder-like composition.
  • the drying step may be performed under a vacuum atmosphere. Drying conditions are, for example, 150° C. to 400° C. for 0.5 hours to 15 hours.
  • Single particles can be obtained by crushing the powder composition obtained in the drying step.
  • a jet mill or the like can be used for crushing.
  • Crushing with a jet mill can be carried out using, for example, PJM-80 (manufactured by Nippon Pneumatic) under the following conditions.
  • a surface modification layer containing a boron compound is formed on the surface of the single particles.
  • the amount of the boron-containing compound added is, for example, 0.1 mol% to 7 mol% with respect to the total molar amount of metal elements other than Li in the lithium-transition metal composite oxide.
  • the negative electrode 12 includes a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer is preferably formed on both sides of the negative electrode current collector.
  • a metal foil such as copper that is stable in the potential range of the negative electrode 12, a film with the metal disposed on the surface, or the like can be used.
  • the negative electrode mixture layer contains, for example, a negative electrode active material, a binder, and the like.
  • the negative electrode 12 is produced, for example, by coating a negative electrode mixture slurry containing a negative electrode active material and a binder on the surface of a negative electrode current collector, drying the coating film, and then rolling the negative electrode mixture layer to form a negative electrode current collector. It is produced by forming it on both sides of.
  • the negative electrode 12 may contain boron. A part of boron present on the surface of the positive electrode active material may move from the positive electrode 11 to the negative electrode 12. Even if a metal element such as Ni is precipitated on the surface of the negative electrode, deterioration of the battery can be suppressed by coexisting with B.
  • the amount of boron contained in the negative electrode is preferably 50 ⁇ g or more, more preferably 400 ⁇ g or more and 1200 ⁇ g or less per 1 g of positive electrode active material. For example, 35% or more of boron added to the positive electrode is deposited on the negative electrode, and 55% or less remains on the positive electrode.
  • the negative electrode active material contained in the negative electrode mixture layer includes, for example, a carbon-based active material that reversibly occludes and releases lithium ions.
  • Suitable carbon-based active materials include natural graphite such as flaky graphite, lumpy graphite, and earthy graphite, and graphite such as artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB).
  • a Si-based active material composed of at least one of Si and a Si-containing compound may be used, or a carbon-based active material and a Si-based active material may be used in combination.
  • the binder contained in the negative electrode mixture layer fluororesin, PAN, polyimide, acrylic resin, polyolefin, etc. can be used as in the case of the positive electrode 11, but styrene-butadiene rubber (SBR) is used. It is preferable. Moreover, it is preferable that the negative electrode mixture layer further contains CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), or the like. Among these, it is preferable to use SBR, CMC or a salt thereof, and PAA or a salt thereof in combination. Note that the negative electrode mixture layer may contain a conductive agent.
  • a porous sheet having ion permeability and insulation properties is used.
  • porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics.
  • Suitable materials for the separator 13 include polyolefins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may have a single layer structure or a laminated structure. Further, the surface of the separator 13 may be provided with a resin layer having high heat resistance such as an aramid resin, and a filler layer containing an inorganic compound filler.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least some of the hydrogen atoms of these solvents are replaced with halogen atoms such as fluorine.
  • halogen-substituted product examples include fluorinated cyclic carbonate esters such as fluoroethylene carbonate (FEC), fluorinated chain carbonate esters, fluorinated chain carboxylic acid esters such as methyl fluoropropionate (FMP), and the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid esters
  • esters examples include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), and methylpropyl carbonate.
  • chain carbonate esters such as ethylpropyl carbonate and methyl isopropyl carbonate
  • cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, and methyl propionate (MP).
  • chain carboxylic acid esters such as ethyl propionate, and the like.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 - Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butylphenyl ether, pentylphenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl
  • the electrolyte salt is a lithium salt.
  • lithium salts include LiBF4 , LiClO4 , LiPF6 , LiAsF6 , LiSbF6 , LiAlCl4 , LiSCN, LiCF3SO3 , LiCF3CO2 , Li(P( C2O4 ) F4 ) , LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic carboxylic acid lithium, Li 2 B 4 O 7 , borates such as Li(B(C 2 O 4 )F 2 ), LiN(SO 2 CF 3 ) 2 , LiN(C 1 F 2l+1 SO 2 )(C m F 2m+1 SO 2 ) ⁇ l , m is an integer of 0 or more ⁇ .
  • the lithium salts may be used alone or in combination.
  • LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, etc.
  • the concentration of the lithium salt is preferably 0.8 mol to 1.8 mol per liter of nonaqueous solvent, for example.
  • This mixture was fired from room temperature to 650°C for 5 hours under an oxygen stream with an oxygen concentration of 90% or more (flow rate of 0.15 to 0.2 L/min per 1 L of furnace volume), and then fired at 1000°C. C. for 2 hours and held for 9 hours to obtain a lithium transition metal composite oxide. Excess lithium of this lithium-transition metal composite oxide was removed by washing with water and dried to obtain secondary particles in which single particles were aggregated. Furthermore, this secondary particle was crushed with a jet mill to obtain positive electrode active material A1.
  • Positive electrode active materials A2 to 5 were obtained in the same manner as positive electrode active material A1, except that the maximum temperature reached was changed as shown in Tables 1 and 3.
  • ⁇ Positive electrode active material B1-4> The same procedure as positive electrode active material A1 was used except that the composition of the hydroxide to be mixed was changed to Ni 0.6 Mn 0.4 (OH) 2 and the maximum temperature was changed as shown in Tables 1 and 3. Thus, positive electrode active materials B1 to B4 were obtained.
  • ⁇ Cathode active material C1-5> In the preparation of the positive electrode active material, the composition of the hydroxide to be mixed was changed to Ni 0.7 Mn 0.3 (OH) 2 , and the maximum temperature reached was changed as shown in Tables 1 and 3. Positive electrode active materials C1 to C5 were obtained in the same manner as positive electrode active material A1. SEM images of positive electrode active materials before and after crushing of positive electrode active materials C1 to C5 are shown in FIGS. 3 to 7. Before crushing in Figures 3, 4, and 6, the primary particles were in the form of aggregated secondary particles, but after crushing in Figures 3 and 4, the shape of single particles was confirmed. On the other hand, after the crushing shown in FIG. 6, the shape of the single particles cannot be confirmed.
  • the average particle size of the single particles is 0.65 ⁇ m to 4 ⁇ m, and the crystallite size of the single particles is If it is 380 ⁇ to 750 ⁇ , the effect as a single particle will be exhibited.
  • particles that are hardly crushed as shown in FIG. 6 are not single particles and do not exhibit the effect as a single particle.
  • FIGS. 5 and 7 some particles are in the form of single particles even before being crushed. However, as in the example shown in FIG. 7, if the average particle diameter or crystallite size of the particles is outside the above range, the characteristics of the battery will not be sufficiently improved.
  • ⁇ Positive electrode active material D1-3> In preparing the positive electrode active material, the composition of the hydroxide to be mixed was changed to Ni 0.75 Mn 0.25 (OH) 2 and the maximum temperature reached was changed as shown in Tables 1 and 3. Positive electrode active materials D1 to D3 were obtained in the same manner as positive electrode active material A1.
  • the amount of boric acid added was 2 mol % with respect to the total molar amount of metal elements other than Li in the single particles.
  • Positive electrode active materials E2 to 4 were obtained in the same manner as positive electrode active material E1, except that the maximum temperature reached was changed as shown in Tables 2 and 4.
  • ⁇ Positive electrode active material F1-4> The same procedure as positive electrode active material E1 was used except that the composition of the hydroxide to be mixed was changed to Ni 0.6 Mn 0.4 (OH) 2 and the maximum temperature was changed as shown in Tables 2 and 4. Thus, positive electrode active materials F1 to F4 were obtained.
  • ⁇ Cathode active material G1-4> In the preparation of the positive electrode active material, the composition of the hydroxide to be mixed was changed to Ni 0.7 Mn 0.3 (OH) 2 , and the maximum temperature reached was changed as shown in Tables 2 and 4. Positive electrode active materials G1 to G4 were obtained in the same manner as positive electrode active material E1.
  • ⁇ Positive electrode active material H1, 2> In preparing the positive electrode active material, the composition of the hydroxide to be mixed was changed to Ni 0.75 Mn 0.25 (OH) 2 and the maximum temperature reached was changed as shown in Tables 2 and 4. Positive electrode active materials H1 and 2 were obtained in the same manner as positive electrode active material E1.
  • test cell The test cell shown in FIG. 2 was produced by the following procedure. First, the above positive electrode active material, acetylene black (conductive material), and polyvinylidene fluoride (binder) were mixed in a weight ratio of 80:10:10, and N-methyl-2-pyrrolidone was used. It was made into a slurry. Next, this slurry was applied onto an aluminum foil current collector serving as a positive electrode current collector, and vacuum dried at 110° C. to produce a working electrode 30 (positive electrode).
  • acetylene black conductive material
  • binder polyvinylidene fluoride
  • test cells A1 to H4 corresponding to each of the positive electrode active materials A1 to H4 were obtained. Details of each component are as follows.
  • Counter electrode Lithium metal Reference electrode: Lithium metal Separator: Polyethylene separator
  • Non-aqueous electrolyte Non-aqueous electrolyte obtained by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume ratio of 3:7.
  • LiPF 6 as an electrolyte salt is dissolved in an aqueous solvent to a concentration of 1.0 mol/l.
  • Tables 1 and 2 show the evaluation results of Examples and Comparative Examples.
  • Table 1 shows the results for test cells A1 to D2
  • Table 2 shows the results for test cells E1 to H2.
  • the results of test cells containing single particles with an average particle diameter of 0.65 ⁇ m to 4 ⁇ m and a crystallite size of 380 ⁇ to 750 ⁇ were used as examples, and the results of test cells other than those described above were used as comparative examples.
  • the results of test cell F1 were designated as Example F1-1.
  • Tables 3 and 4 show the evaluation results of Examples and Comparative Examples.
  • Table 3 shows the results for test cells A1 to D3, and Table 4 shows the results for test cells E1 to H2.
  • the results of test cells containing single particles with an average particle diameter of 0.65 ⁇ m to 4 ⁇ m and a crystallite size of 380 ⁇ to 750 ⁇ were used as examples, and the results of test cells other than those described above were used as comparative examples.
  • the results of test cell E1 were designated as Example E1-2.
  • test cells of the examples achieved both charging capacity and capacity retention rate.
  • test cells of the comparative examples were inferior to the examples in either charging capacity or capacity retention rate. Therefore, it can be seen that when the single particles have a predetermined average particle diameter and crystallite size, both high capacity and high durability can be achieved.
  • the single particles themselves can improve battery characteristics, the protection of the positive electrode surface by the boron compound further improves battery capacity, charge/discharge efficiency, and capacity retention rate. In addition, it has the effect of suppressing generated gas.
  • Configuration 1 Contains a lithium transition metal composite oxide containing 70 mol% or more of Ni and Mn with respect to the total molar amount of metal elements excluding Li,
  • the lithium transition metal composite oxide is composed of single particles, The average particle size of the single particles is 0.65 ⁇ m to 4 ⁇ m,
  • Configuration 2 When the BET specific surface area of the lithium transition metal composite oxide is A (m 2 /g), and the average particle size of the lithium transition metal composite oxide is B ( ⁇ m), The positive electrode active material for a non-aqueous electrolyte secondary battery according to Configuration 1, wherein the product AB of A and B satisfies 1.5 ⁇ AB ⁇ 6.
  • Configuration 3 The positive electrode active material for a non-aqueous electrolyte secondary battery according to configuration 1 or 2, wherein a surface modification layer containing a boron compound is formed on the surface of the single particle.
  • Configuration 4 The lithium transition metal composite oxide further contains at least one metal element selected from the group consisting of Ca, Sr, W, S, and P.
  • Positive electrode active material for water electrolyte secondary batteries The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 4, which includes, in addition to the single particles, secondary particles formed by agglomerating the single particles.
  • Configuration 6 For a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 5, the single particle is contained in an amount of 10% by mass or more based on the total amount of the positive electrode active material for a non-aqueous electrolyte secondary battery. Cathode active material.
  • Configuration 7 A nonaqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of Configurations 1 to 6, a negative electrode, and a nonaqueous electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池の容量と耐久性を向上させることができる非水電解質二次電池用正極活物質を提供する。この非水電解質二次電池に含まれている正極活物質は、Liを除く金属元素の総モル量に対して、Ni及びMnを70モル%以上含有するリチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物が、単粒子で構成され、単粒子の平均粒径が、0.65μm~4μmであり、単粒子の結晶子サイズが、380Å~750Åである。

Description

非水電解質二次電池用正極活物質及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質及び非水電解質二次電池に関する。
 非水電解質二次電池であるリチウムイオン二次電池の正極活物質には、リチウム遷移金属複合酸化物が使用されている。近年、耐久性の向上を目的として、リチウム遷移金属複合酸化物の単粒子化が検討されている。例えば、特許文献1には、平均粒径が2μm~20μm、BET比表面積が0.15m/g~1.9m/gで、ホウ素を添加した、NCM系のリチウム遷移金属複合酸化物(Niの含有率が0.3≦Ni≦0.6)の単粒子が開示されている。また、特許文献2には、平均粒径が3μm~8μm、結晶子サイズが1100Å~2000Åの、NCM系のリチウム遷移金属複合酸化物(Niの含有率が0.3≦Ni≦0.6)の単粒子が開示されている。
特表2018-532236号公報 特許第6850949号公報
 本発明者らが鋭意検討した結果、単粒子化したリチウム遷移金属複合酸化物であっても、耐久性が悪い場合があることが判明した。また、本発明者らは、さらに検討を重ね、単粒子においては、電池容量と耐久性が両立しない場合があることを見出した。特許文献1及び2は、高容量と高耐久性との両立について考慮しておらず、未だ改良の余地がある。
 本開示の目的は、非水電解質二次電池の容量と耐久性を向上させることができる非水電解質二次電池用正極活物質を提供することである。
 本開示の一態様である非水電解質二次電池用正極活物質は、Liを除く金属元素の総モル量に対して、Ni及びMnを70モル%以上含有するリチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物が、単粒子で構成され、単粒子の平均粒径が、0.65μm~4μmであり、単粒子の結晶子サイズが、380Å~750Åであることを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記正極活物質を含む正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極活物質によれば、高容量で、耐久性が向上した非水電解質二次電池を提供することができる。
実施形態の一例である非水電解質二次電池の軸方向断面図である。 実施例及び比較例で作製した試験セルの模式断面図である。 実施例C1に係る正極活物質の解砕前後におけるSEM像である。 実施例C2に係る正極活物質の解砕前後におけるSEM像である。 実施例C3に係る正極活物質の解砕前後におけるSEM像である。 比較例C4に係る正極活物質の解砕前後におけるSEM像である。 比較例C5に係る正極活物質の解砕前後におけるSEM像である。
 近年、非水電解質二次電池の車載用途や蓄電用途への普及に伴い、高容量で、且つ耐久性に優れた非水電解質二次電池が益々求められている。また、非水電解質二次電池の低コスト化も要望されており、正極活物質としては、比較的安価なNi及びMnを主成分とするものが好ましい。耐久性の向上を目的として、正極活物質としてのリチウム遷移金属複合酸化物の単粒子化が検討されているが、単粒子の特性については未だ不明な点も多い。
 本発明者らは、上記課題を解決するために鋭意検討した結果、Ni及びMnを主成分とするリチウム遷移金属複合酸化物の単粒子が、所定の平均粒径と結晶子サイズを有することで、高容量と高耐久性の両立が可能なことを見出した。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が円筒形の外装体に収容された円筒形電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。外装体は円筒形に限定されず、例えば、角形、コイン形等であってもよい。また、外装体は金属層及び樹脂層を含むラミネートシートで構成されたパウチ型であってもよい。また、本明細書において、「数値(A)~数値(B)」との記載は、数値(A)以上、数値(B)以下であることを意味する。
 図1は、実施形態の一例である円筒形の二次電池10の軸方向断面図である。図1に示す二次電池10は、電極体14及び非水電解質(図示せず)が外装体15に収容されている。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。
 外装体15の上端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。なお、負極リード20が巻外端部に設置されている場合は、負極リード20は絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。
 外装体15は、例えば、有底円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば、側面部を外側からプレスして形成された、封口体16を支持する溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。
 封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば、円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。
 以下、電極体14を構成する正極11、負極12、セパレータ13、及び非水電解質について、特に正極11について詳説する。
 [正極]
 正極11は、正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。正極合剤層は、正極集電体の両面に形成されることが好ましい。正極集電体には、アルミニウム、アルミニウム合金など正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、例えば、正極活物質、導電剤、結着剤等を含む。正極合剤層の厚みは、例えば正極集電体の片側で10μm~150μmである。正極11は、例えば、正極集電体の表面に正極活物質、導電剤、及び結着剤を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合剤層を正極集電体の両面に形成することにより作製される。
 正極合剤層に含まれる導電剤としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ(CNT)、グラフェン、黒鉛等のカーボン系粒子が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。導電剤の含有率は、100質量部の正極活物質に対して、例えば、0.1質量%~5.0質量%である。
 正極合剤層に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)などが併用されてもよい。結着剤の含有率は、100質量部の正極活物質に対して、例えば、0.1質量%~5.0質量%である。
 正極合剤層に含まれる正極活物質は、リチウム遷移金属複合酸化物を含む。リチウム遷移金属複合酸化物は、単粒子で構成されている。正極活物質は、単粒子以外に、単粒子が凝集して形成された二次粒子を含んでもよい。これにより、正極合剤層における正極活物質の充電密度が大きくなるので、二次電池10を高容量化することができる。単粒子が凝集して形成された二次粒子は、例えば、2個~1000個の単粒子が凝集して形成されている。また、単粒子ではない一般的な一次粒子、及び、この一次粒子が凝集して形成された二次粒子を含んでもよい。なお、正極活物質は、リチウム遷移金属複合酸化物以外に、LiF、LiS等を含有してもよい。
 正極活物質における単粒子の割合は、質量比で、10%以上が好ましく、80%以上がより好ましく、90%以上が特に好ましく、実質的に100%であってもよい。なお、リチウム遷移金属複合酸化物には、100個超の一次粒子が凝集してなる二次粒子が含まれていてもよい。
 単粒子の平均粒径は、0.65μm~4μmである。本明細書において、平均粒径とは、体積基準のメジアン径(D50)を意味する。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。正極活物質の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。単粒子の粒子径が大きすぎると電池容量が減少したり、充放電効率が悪化したりする。単粒子の粒子径が小さすぎると二次凝集し、これが電池劣化要因となる。
 単粒子のBET比表面積は、例えば、0.5m/g~4m/gである。二次粒子は、粒子内に空隙が存在するため、粒子径が大きくても比表面積は比較的大きい。一方、単粒子は、粒子内に空隙が無いため、粒子径が大きいほどBET比表面積は小さくなる。二次粒子と単粒子は、それぞれ作製条件により粒子形状が様々に変化するので、BET比表面積が変化する。BET比表面積の測定は、トライスターII3020(島津製作所製)を用いて、以下の条件で測定できる。
 測定点数:11点(P/P0:0.05~0.3)
 Warm Free Space:Measured
 Equilibration Interval:5s
 Analysis Adsorptive:N2
 Analysis Bath Temp.:77.3K(液化窒素温度)
 Cold Free Space:Measured
 Low Pressure Done:None
 解析方法:BET多点法
 リチウム遷移金属複合酸化物のBET比表面積をA(m/g)とし、前記リチウム遷移金属複合酸化物の平均粒径をB(μm)としたとき、AとBとの積ABが、1.5≦AB≦6を満たすことが好ましい。これにより、二次電池10の電池容量と耐久性が顕著に向上する。粒子径の小さい単粒子が凝集した二次粒子は、粒界が割れることで充放電サイクル特性が低下する場合がある。粒子径の大きな単粒子は、電池容量が低下する場合がある。また、単粒子のBET比表面積が小さいと、非水電解質との接触面積が小さく、電池容量の低下や負荷特性が悪化する場合がある。単粒子のBET比表面積が大きいと、正極ではガス発生など多くの副反応が起こり、充放電サイクル特性が低下する場合がある。したがって、平均粒径(D50)とBET比表面積の積が上記範囲内であることで、高容量、高耐久性で、ガス発生が抑制された二次電池10を得ることができる。
 単粒子の結晶子サイズは、380Å~750Åである。単粒子が、上記の平均粒径と結晶子サイズを有することで、高容量で耐久性が向上した二次電池10を得ることができる。ここで、結晶子サイズは、X線回折によるX線回折パターンの(104)面の回折ピークの半値幅から、下式で表されるシェラーの式により算出される。下式において、sは結晶子サイズ、λはX線の波長、Bは(104)面の回折ピークの半値幅、θは回折角(rad)、Kはシェラー定数である。本実施形態においてKは0.9とする。
 s=Kλ/Bcosθ
 X線回折パターンは、粉末X線回折装置(株式会社リガク製、商品名「RINT-TTR」、線源Cu-Kα)を用いて、以下の条件による粉末X線回折法によって得られる。
測定範囲:15-120°
スキャン速度:4°/min
解析範囲:30-120°
バックグラウンド:B-スプライン
プロファイル関数:分割型擬Voigt関数
束縛条件:Li(3a)+Ni(3a)=1
     Ni(3a)+Ni(3b)=α(αは各々のNi含有割合)
ICSD No.:98-009-4814
 リチウム遷移金属複合酸化物は、Liを除く金属元素の総モル量に対して、Ni及びMnを70モル%以上含有する。これにより、比較的安価で、高容量のリチウム遷移金属複合酸化物を得ることができる。なお、リチウム遷移金属複合酸化物は、Ni及びMnのみから構成されていてもよい。
 Niは、好適には、リチウム遷移金属複合酸化物を構成するLi以外の金属元素の中で最も多く含有される。リチウム遷移金属複合酸化物におけるNiの含有率は、Liを除く金属元素の総モル量に対して、50モル%以上が好ましく、70モル%以上がより好ましい。Ni含有率の上限値は、95モル%であってもよいが、好ましくは90モル%である。
 Mnは、好適には、リチウム遷移金属複合酸化物を構成するLi以外の金属元素の中で、Niに次いで2番目に多く含有される。Mnは、リチウム遷移金属複合酸化物の結晶構造を安定化させることができる。リチウム遷移金属複合酸化物におけるMnの含有率は、Liを除く金属元素の総モル量に対して、例えば、5モル%~50モル%である。
 単粒子を用いることで、高い充電電位においても高い容量維持率を保持できる。特に、組成中のNiの含有率が80%以下でMnの含有率が高いリチウム遷移金属複合酸化物は、充電電位を高くすることで高い容量が得られることから、高電位耐性のある単粒子が必要である。
 単粒子の表面には、ホウ素化合物を含む表面修飾層が形成されていてもよい。これにより、充放電効率が向上する。ホウ素化合物が電解液の分解を抑え、リチウム遷移金属複合酸化物表面で非水電解質と正極活物質のLiイオンの交換を促進させると推察される。ホウ素化合物とは、B(ホウ素)を含む化合物である。ホウ素化合物は、例えば、ホウ素酸化物、ホウ素フッ化物、ホウ素塩化物、ホウ素硫化物である。ホウ素化合物は、ホウ素酸化物であることが好ましい。ホウ素酸化物は、例えば、ホウ酸(HBO)、酸化ホウ素(B)、ホウ酸リチウム(LiBO、LiB、Li)である。リチウム遷移金属複合酸化物の表面に存在しているホウ素化合物は、低加速SEMやTEM-EDX等により確認できる。
 表面修飾層の厚みは、例えば、1nm~100nmである。表面修飾層中のホウ素化合物の量は、単粒子におけるLiを除く金属元素の総モル量に対して、例えば、0.1モル%~7モル%である。各元素の原子濃度は、X線光電子分光法(XPS)で測定することができる。
 リチウム遷移金属複合酸化物は、さらに、Ca、Sr、W、及びSからなる群より選択される少なくとも1種の金属元素を含んでもよい。これらの金属元素は、リチウム遷移金属複合酸化物に含有されてもよいが、リチウム遷移金属複合酸化物の表面に存在することが好ましい。これにより、リチウム遷移金属複合酸化物と電解液との間の副反応を抑制し、電池の劣化を抑制できる。これらの金属元素は、表面修飾層にBと共に含有されてもよい。正極活物質は、これらの金属元素を、Ni及びMnの総量に対して、例えば、0.01モル%~5モル%含んでもよい。
 次に、本実施形態に係る正極活物質の製造方法の一例について説明する。正極活物質の製造方法は、例えば、合成工程と、洗浄工程と、乾燥工程と、解砕工程とを含む。
 合成工程においては、Ni及びMnを70モル%以上含有する金属水酸化物と、Li化合物とを混合し、焼成してリチウム遷移金属複合酸化物を得る。
 金属水酸化物は、例えば、Ni、Mn及び任意の金属元素(Fe等)を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~12.5)に調整し、析出(共沈)させることにより得ることができる。なお、金属水酸化物の代わりに、金属水酸化物を熱処理して得られる金属酸化物を用いてもよい。金属水酸化物の粒径は小さい方が一次粒子が成長しやすいことから、7μm以下が好ましい。
 Li化合物としては、例えば、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。金属水酸化物とLi化合物との混合割合は、上記各パラメータを上記規定した範囲に調整することを容易とする点で、例えば、Liを除く金属元素:Liのモル比が、1:0.98~1:1.1の範囲となる割合とすることが好ましい。なお、金属水酸化物と、Li化合物とを混合する際に、Ca化合物、Sr化合物、W化合物等を添加してもよい。Ca化合物としては、例えば、CaO、Ca(OH)、及びCaCOを挙げることができる。Sr化合物としては、例えば、SrO、Sr(OH)、及びSrCOを挙げることができる。W化合物としては、例えば、WO、LiWO、LiWO、及びLiを挙げることができる。
 金属水酸化物とLi化合物等との混合物は、例えば、酸素雰囲気下(酸素濃度80%以上のガスをフロー)で焼成される。焼成条件は、450℃以上680℃以下での昇温速度が1.0℃/分超5.5℃/分以下の範囲であり、且つ、最高到達温度が850℃以上1100℃以下の範囲であってもよい。680℃超から最高到達温度までの昇温速度は、例えば、0.1℃/分~3.5℃/分としてもよい。また、最高到達温度の保持時間は1時間以上30時間以下であってもよい。また、この焼成工程は、多段階焼成であってもよく、第1昇温速度、第2昇温速度は、上記規定した範囲内であれば、温度領域毎に複数設定してもよい。焼成条件を調整することで、単粒子の粒径を調整することができる。例えば、最高到達温度を高くすることで、単粒子の粒径を大きくすることができる。
 洗浄工程では、合成工程で得られたリチウム遷移金属複合酸化物を水洗し、脱水してケーキ状組成物を得る。水洗及び脱水は、公知の方法及び条件で行うことができる。リチウム遷移金属複合酸化物からリチウムが溶出して電池特性が劣化しない範囲で行えばよい。なお、ケーキ状組成物にCa化合物、Sr化合物、W化合物、S化合物、P化合物等を添加してもよい。
 乾燥工程では、洗浄工程で得られたケーキ状組成物を乾燥させ、粉体状組成物を得る。乾燥工程は、真空雰囲気下で行ってもよい。乾燥条件は、例えば、150℃~400℃で0.5時間~15時間である。
 乾燥工程で得られた粉体状組成物を解砕することで、単粒子を得ることができる。解砕には、ジェットミル等を用いることができる。ジェットミルによる解砕は、例えば、PJM-80(日本ニューマチック製)を用いて、以下の条件で行うことができる。
 消費圧縮空気量:0.5Nm/分
 供給ガス圧力:0.53MPa
 処理量:2000g/時間
 得られた単粒子にホウ酸(HBO)等のホウ素を含む化合物を添加し、200℃~400℃に昇温することで、単粒子の表面にホウ素化合物を含有する表面修飾層を形成してもよい。ホウ素を含む化合物の添加量は、リチウム遷移金属複合酸化物におけるLiを除く金属元素の総モル量に対して、例えば、0.1モル%~7モル%である。
 [負極]
 負極12は、負極集電体と、負極集電体の表面に形成された負極合剤層とを有する。負極合剤層は、負極集電体の両面に形成されることが好ましい。負極集電体には、銅などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合剤層は、例えば、負極活物質、結着剤等を含む。負極12は、例えば、負極集電体の表面に負極活物質及び結着剤を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合剤層を負極集電体の両面に形成することにより作製される。
 負極12は、ホウ素を含んでもよい。正極活物質の表面に存在するホウ素の一部が、正極11から負極12に移動することがある。負極表面においてNi等の金属元素が析出した場合でもBとを共存させることで、電池の劣化を抑制することができる。負極に含まれるホウ素の量は、正極活物質1gあたり、好適には50μg以上であり、より好適には400μg以上1200μg以下である。例えば、正極に添加したホウ素の内、35%以上が負極に析出し、55%以下が正極に残る。
 負極合剤層に含有される負極活物質としては、例えば、リチウムイオンを可逆的に吸蔵、放出する炭素系活物質が含まれる。好適な炭素系活物質は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの黒鉛である。また、負極活物質には、SiおよびSi含有化合物の少なくとも一方で構成されるSi系活物質が用いられてもよく、炭素系活物質とSi系活物質が併用されてもよい。
 負極合剤層に含有される結着剤としては、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン等を用いることもできるが、スチレン-ブタジエンゴム(SBR)を用いることが好ましい。また、負極合剤層は、さらに、CMCまたはその塩、ポリアクリル酸(PAA)またはその塩、ポリビニルアルコール(PVA)などを含むことが好ましい。中でも、SBRと、CMCまたはその塩、PAAまたはその塩を併用することが好適である。なお、負極合剤層には、導電剤が含まれていてもよい。
 [セパレータ]
 セパレータ13には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、積層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素原子の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.8モル~1.8モルとすることが好ましい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 [正極活物質の作製]
 <正極活物質A1>
 LiOH及び共沈法により得られた平均粒径6μmのNi0.5Mn0.5(OH)粉末を、Liと、Ni及びMnの総量とのモル比が1.1:1になるように混合して混合物を得た。この混合物を酸素濃度90%以上の酸素気流下(炉の容積1Lに対して0.15~0.2L/minの流量)で、当該混合物を、室温から650℃まで5hで焼成した後、1000℃まで2hで焼成し、9時間保持してリチウム遷移金属複合酸化物を得た。このリチウム遷移金属複合酸化物の余剰リチウムを水洗で除去し、乾燥させて、単粒子が凝集した二次粒子を得た。さらに、この二次粒子をジェットミルで解砕して、正極活物質A1を得た。
 <正極活物質A2~5>
 最高到達温度を表1及び3に記載のように変更したこと以外は、正極活物質A1と同様にして、正極活物質A2~5を得た。
 <正極活物質B1~4>
 混合する水酸化物の組成をNi0.6Mn0.4(OH)に変更し、最高到達温度を表1及び3に記載のように変更したこと以外は、正極活物質A1と同様にして、正極活物質B1~4を得た。
 <正極活物質C1~5>
 正極活物質の作製において、混合する水酸化物の組成をNi0.7Mn0.3(OH)に変更し、最高到達温度を表1及び3に記載のように変更したこと以外は、正極活物質A1と同様にして、正極活物質C1~5を得た。正極活物質C1~5に係る正極活物質の解砕前後のSEM像を図3~7に示す。図3、4、及び6の解砕前では、いずれも一次粒子が凝集した二次粒子の形状を構成していたが、図3及び4の解砕後では、単粒子の形状を確認することができるのに対して、図6の解砕後では、単粒子の形状を確認することができない。このように、SEM像における二次粒子の形状が略同じであっても、単粒子であるものと、単粒子でないものがある。また、図3のように、単粒子に解砕されながらも、凝集体が一部残っていたとしても、単粒子の平均粒径が0.65μm~4μmで、且つ、単粒子の結晶子サイズが380Å~750Åであれば、単粒子としての効果を発現する。しかし、図6のようにほとんど解砕されない粒子は、単粒子ではなく、単粒子としての効果を発現しない。一方、図5及び7のように解砕前から単粒子の形態となっているものもある。しかし、図7に示す例のように粒子の平均粒径又は結晶子サイズが上記の範囲外であれば、電池の特性が十分に向上しない。
 <正極活物質D1~3>
 正極活物質の作製において、混合する水酸化物の組成をNi0.75Mn0.25(OH)に変更し、最高到達温度を表1及び3に記載のように変更したこと以外は、正極活物質A1と同様にして、正極活物質D1~3を得た。
 <正極活物質E1>
 正極活物質A1に、ホウ酸(HBO)を添加し、熱処理することで、正極活物質A1の表面にホウ素化合物を含有する表面修飾層を形成して、正極活物質E1を得た。ホウ酸の添加量は、単粒子におけるLiを除く金属元素の総モル量に対して、2モル%とした。
 <正極活物質E2~4>
 最高到達温度を表2及び4に記載のように変更したこと以外は、正極活物質E1と同様にして、正極活物質E2~4を得た。
 <正極活物質F1~4>
 混合する水酸化物の組成をNi0.6Mn0.4(OH)に変更し、最高到達温度を表2及び4に記載のように変更したこと以外は、正極活物質E1と同様にして、正極活物質F1~4を得た。
 <正極活物質G1~4>
 正極活物質の作製において、混合する水酸化物の組成をNi0.7Mn0.3(OH)に変更し、最高到達温度を表2及び4に記載のように変更したこと以外は、正極活物質E1と同様にして、正極活物質G1~4を得た。
 <正極活物質H1、2>
 正極活物質の作製において、混合する水酸化物の組成をNi0.75Mn0.25(OH)に変更し、最高到達温度を表2及び4に記載のように変更したこと以外は、正極活物質E1と同様にして、正極活物質H1、2を得た。
 [試験セルの作製]
 以下の手順により、図2に示す試験セルを作製した。まず始めに、上記の正極活物質、アセチレンブラック(導電材)、ポリフッ化ビニリデン(結着剤)を重量比で80:10:10となるように混合し、N-メチル-2-ピロリドンを用いてスラリー化した。次に、このスラリーを正極集電体であるアルミニウム箔集電体上に塗布し、110℃で真空乾燥して作用極30(正極)を作製した。
 露点-50℃以下のドライエアー下で、電極タブ38を取り付けた上記作用極30、対極31(負極)及び参照極32の各電極間にセパレータ34を介在させた電極群を外装体35内に収容した後、外装体35内に電解液36を注入し、外装体35を密閉して、非水電解質二次電池である試験セルを作製した。これにより、正極活物質A1~H4の各々に対応する試験セルA1~H4が得られた。各構成要素の詳細は、以下の通りである。
 対極:リチウム金属
 参照極:リチウム金属
 セパレータ:ポリエチレン製セパレータ
 非水電解質:エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)とを体積比が3:7となるように混合して得られた非水溶媒に、電解質塩としてLiPFを1.0mol/lの濃度になるように溶解させたもの。
 [充電容量、放電容量、及び充放電効率の評価1]
 環境温度25℃の下、上記の試験セルを、0.2Cの定電流で4.5V(リチウム基準)まで充電した後、4.5Vの定電圧で0.02Cまで充電した。その後、0.1Cの定電流で、2.5Vまで放電した。この時の充電容量及び放電容量を測定し、この放電容量をこの充電容量で除して充放電効率を算出した。
 [耐久性の評価1]
 環境温度25℃の下、上記の試験セルを、0.2Cの定電流で4.5Vまで充電した後、4.5Vの定電圧で0.02Cまで充電した。その後、0.1Cの定電流で、2.5Vまで放電した。この充放電を1サイクルとし、11サイクル、21サイクル、及び31サイクルでは上述の条件で測定し、これ以外のサイクルでは、放電時の定電流を0.2Cとしたこと以外は上記と同様にして充放電を行った。下記式により容量維持率を求めた。
 容量維持率=(31サイクル目の放電容量/1サイクル目の放電容量)×100
 表1及び2に、実施例及び比較例の評価結果を示す。表1には、試験セルA1~D2についての結果を示し、表2には、試験セルE1~H2についての結果を示す。平均粒径が0.65μm~4μmで、結晶子サイズが380Å~750Åの単粒子を含む試験セルの結果を実施例とし、上記以外の試験セルの結果を比較例とした。例えば、試験セルF1の結果は、実施例F1-1と表した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [充電容量、放電容量、及び充放電効率の評価2]
 環境温度25℃の下、上記の試験セルを、0.2Cの定電流で4.7V(リチウム基準)まで充電した後、4.7Vの定電圧で0.02Cまで充電した。その後、0.1Cの定電流で、2.5Vまで放電した。この時の充電容量及び放電容量を測定し、この放電容量をこの充電容量で除して充放電効率を算出した。
 [耐久性の評価2]
 環境温度25℃の下、上記の試験セルを、0.2Cの定電流で4.7Vまで充電した後、4.7Vの定電圧で0.02Cまで充電した。その後、0.1Cの定電流で、2.5Vまで放電した。この充放電を1サイクルとし、11サイクル、21サイクル、及び31サイクルでは上述の条件で測定し、これ以外のサイクルでは、放電時の定電流を0.2Cとしたこと以外は上記と同様にして充放電を行った。下記式により容量維持率を求めた。
 容量維持率=(31サイクル目の放電容量/1サイクル目の放電容量)×100
 表3及び4に、実施例及び比較例の評価結果を示す。表3には、試験セルA1~D3についての結果を示し、表4には、試験セルE1~H2についての結果を示す。平均粒径が0.65μm~4μmで、結晶子サイズが380Å~750Åの単粒子を含む試験セルの結果を実施例とし、上記以外の試験セルの結果を比較例とした。例えば、試験セルE1の結果は、実施例E1-2と表した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び2において、実施例の試験セルは、充電容量と容量維持率が両立できている。一方、表1及び2において、比較例の試験セルは、充電容量及び容量維持率のいずれかが実施例よりも劣っている。よって、単粒子が、所定の平均粒径と結晶子サイズを有することで、高容量と高耐久性の両立が可能なことがわかる。また、表3及び4に示すように、単粒子そのものでも電池特性の向上が図れるが、ホウ素化合物が正極表面を保護することにより、さらに、電池容量、充放電効率、及び容量維持率の改善、並びに、発生ガスの抑制などの効果がある。
 本開示は、以下の実施形態によりさらに説明される。
構成1:
 Liを除く金属元素の総モル量に対して、Ni及びMnを70モル%以上含有するリチウム遷移金属複合酸化物を含み、
 前記リチウム遷移金属複合酸化物が、単粒子で構成され、
 前記単粒子の平均粒径が、0.65μm~4μmであり、
 前記単粒子の結晶子サイズが、380Å~750Åである、非水電解質二次電池用正極活物質。
構成2:
 前記リチウム遷移金属複合酸化物のBET比表面積をA(m/g)とし、前記リチウム遷移金属複合酸化物の平均粒径をB(μm)としたとき、
 AとBとの積ABが、1.5≦AB≦6を満たす、構成1に記載の非水電解質二次電池用正極活物質。
構成3:
 前記単粒子の表面には、ホウ素化合物を含む表面修飾層が形成されている、構成1又は2に記載の非水電解質二次電池用正極活物質。
構成4:
 前記リチウム遷移金属複合酸化物は、さらに、Ca、Sr、W、S、及びPからなる群より選択される少なくとも1種の金属元素を含む、構成1~3のいずれか1つに記載の非水電解質二次電池用正極活物質。
構成5:
 前記単粒子以外に、前記単粒子が凝集して形成された二次粒子を含む、構成1~4のいずれか1つに記載の非水電解質二次電池用正極活物質。
構成6:
 前記単粒子が、前記非水電解質二次電池用正極活物質の総量に対して、10質量%以上含まれている、構成1~5のいずれか1つに記載の非水電解質二次電池用正極活物質。
構成7:
 構成1~6のいずれか1に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 外装体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 溝入部、22 フィルタ、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a 開口部、27 ガスケット、30 作用極(正極)、31 対極(負極)、32 参照極、34 セパレータ、35 外装体、36 電解液、38 電極タブ

Claims (7)

  1.  Liを除く金属元素の総モル量に対して、Ni及びMnを70モル%以上含有するリチウム遷移金属複合酸化物を含み、
     前記リチウム遷移金属複合酸化物が、単粒子で構成され、
     前記単粒子の平均粒径が、0.65μm~4μmであり、
     前記単粒子の結晶子サイズが、380Å~750Åである、非水電解質二次電池用正極活物質。
  2.  前記リチウム遷移金属複合酸化物のBET比表面積をA(m/g)とし、前記リチウム遷移金属複合酸化物の平均粒径をB(μm)としたとき、
     AとBとの積ABが、1.5≦AB≦6を満たす、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記単粒子の表面には、ホウ素化合物を含む表面修飾層が形成されている、請求項1に記載の非水電解質二次電池用正極活物質。
  4.  前記リチウム遷移金属複合酸化物は、さらに、Ca、Sr、W、S、及びPからなる群より選択される少なくとも1種の金属元素を含む、請求項1に記載の非水電解質二次電池用正極活物質。
  5.  前記単粒子以外に、前記単粒子が凝集して形成された二次粒子を含む、請求項1に記載の非水電解質二次電池用正極活物質。
  6.  前記単粒子が、前記非水電解質二次電池用正極活物質の総量に対して、10質量%以上含まれている、請求項1に記載の非水電解質二次電池用正極活物質。
  7.  請求項1~6のいずれか1項に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2023/022391 2022-06-30 2023-06-16 非水電解質二次電池用正極活物質及び非水電解質二次電池 WO2024004709A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-105943 2022-06-30
JP2022105943 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004709A1 true WO2024004709A1 (ja) 2024-01-04

Family

ID=89382147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022391 WO2024004709A1 (ja) 2022-06-30 2023-06-16 非水電解質二次電池用正極活物質及び非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2024004709A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335278A (ja) * 2003-05-08 2004-11-25 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
WO2016060105A1 (ja) * 2014-10-15 2016-04-21 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2017188443A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2018532236A (ja) * 2015-11-30 2018-11-01 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含む二次電池
JP2021516424A (ja) * 2018-05-17 2021-07-01 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法及びこれを含むリチウム二次電池
JP2022507671A (ja) * 2018-11-20 2022-01-18 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びこの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335278A (ja) * 2003-05-08 2004-11-25 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
WO2016060105A1 (ja) * 2014-10-15 2016-04-21 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018532236A (ja) * 2015-11-30 2018-11-01 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含む二次電池
JP2017188443A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2021516424A (ja) * 2018-05-17 2021-07-01 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法及びこれを含むリチウム二次電池
JP2022507671A (ja) * 2018-11-20 2022-01-18 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びこの製造方法

Similar Documents

Publication Publication Date Title
CN107112499B (zh) 非水电解质二次电池用负极和非水电解质二次电池
EP4067310A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary battery, method for producing positive-electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2022130982A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021241075A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2019163483A1 (ja) 非水電解質二次電池
CN111656578B (zh) 非水电解质二次电池用正极和非水电解质二次电池
WO2022070649A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021152996A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
US20230187653A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7300658B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7325050B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2024004709A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2023162694A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2023127425A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004710A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024029241A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023145507A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023162709A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2024004686A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2023162698A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023100535A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2024004626A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2023100532A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2024004720A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004687A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831155

Country of ref document: EP

Kind code of ref document: A1