WO2023234084A1 - 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品 - Google Patents

二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品 Download PDF

Info

Publication number
WO2023234084A1
WO2023234084A1 PCT/JP2023/018853 JP2023018853W WO2023234084A1 WO 2023234084 A1 WO2023234084 A1 WO 2023234084A1 JP 2023018853 W JP2023018853 W JP 2023018853W WO 2023234084 A1 WO2023234084 A1 WO 2023234084A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
groups
room temperature
mass
Prior art date
Application number
PCT/JP2023/018853
Other languages
English (en)
French (fr)
Inventor
晃嗣 藤原
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2023234084A1 publication Critical patent/WO2023234084A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention provides a room-temperature-curable organopolysiloxane composition (room-temperature-curable silicone rubber) that is cured at room temperature (23°C ⁇ 15°C) by atmospheric humidity (moisture) to give a cured silicone rubber product (silicone elastomer elastomer).
  • the composition relates to a hydrolyzed polysiloxane having two hydrolyzable silyl-vinylene groups on the same silicon atom, using as a base polymer an organopolysiloxane in which both ends of the molecular chain are capped with hydrolyzable silyl groups.
  • the first agent is a degradable organosilane compound as a crosslinking agent (curing agent)
  • the base polymer is an organopolysiloxane in which both ends of the molecular chain are blocked with hydroxyl groups to produce a specific hydrolyzable organosilane containing an amino functional group.
  • a two-component room temperature curable organopolysiloxane composition that has good curability (fast curability) and excellent adhesiveness, and is capable of providing a cured silicone rubber product that is highly durable even under moist heat conditions;
  • the present invention also relates to adhesives, sealants, and coatings containing the composition.
  • Room-temperature-curing (RTV) silicone rubber compositions room-temperature-curing organopolysiloxane compositions that crosslink and harden when exposed to moisture are easy to handle and have excellent weather resistance and electrical properties, so they are used as sealants for building materials. It is suitable for a variety of uses such as materials, adhesives and coating agents (sealants) in the electrical and electronic fields.
  • a typical room-temperature curable organopolysiloxane composition consists of a diorganopolysiloxane (base polymer) having a silanol group (a hydroxyl group bonded to a silicon atom) or an alkoxysilyl group at the end of the molecular chain, a curing agent, an alkoxysiloxane group containing an aminoalkyl group, etc. It contains silane and a curing catalyst, and various fillers are added as necessary to impart flame retardancy, thermal conductivity, tensile strength, etc.
  • Oxime-free room-temperature-curable organopolysiloxane compositions known as general architectural and structural sealants, are widely used due to their curability, durability, and adhesion to various adherends.
  • acetic acid-depleted room-temperature-curable organopolysiloxane compositions are commonly used as sealants for buildings and structures, and are known to have excellent curability and adhesive properties, and to show slight discoloration when exposed to UV irradiation.
  • workability is poor due to acetic acid generated during curing.
  • a dealcoholization type room temperature curable organopolysiloxane composition is not easy to prepare compared to the above-mentioned oxime removal type or acetic acid removal type room temperature curable organopolysiloxane composition.
  • an organopolysiloxane having silanol groups at both ends of the molecular chain is used as a base polymer, it is necessary to alkoxysilylate the silanol groups (terminate them with an alkoxysilyl group), but the reaction rate is slower than that of the above-mentioned deoxime type.
  • An organic tin compound or an organic titanium compound is generally known as a curing catalyst for a dealcoholization type room temperature curable organopolysiloxane composition.
  • organic tin compounds there are concerns about their adverse effects on the environment and the human body due to their toxicity.
  • organic titanium compounds although no toxicity problems have been confirmed yet, there are still problems such as the prepared room-temperature-curable organopolysiloxanes turning yellow over time.
  • Typical examples of dealcoholization-type room-temperature-curable organopolysiloxanes include compositions containing a silanol group-terminated polyorganosiloxane, an alkoxysilane, and an organic titanium compound, and an alkoxysilyl group-terminated polyorganosiloxane, an alkoxysilane, and an alkoxytitanium compound.
  • a composition comprising a linear polyorganosiloxane terminal-capped with an alkoxysilyl group via a silethylene group, an alkoxysilane, and an alkoxytitanium, further comprising a silanol-terminated polyorganosiloxane or Examples include compositions containing an alkoxysilyl end-capped polyorganosiloxane and an alkoxy- ⁇ -silyl ester compound (Patent Documents 1 to 4).
  • the room-temperature-curable organopolysiloxanes described in these patent documents have a certain degree of storage stability, water resistance, and humidity resistance, but do not yet satisfy all of these required properties. Furthermore, the fast curing properties were still insufficient.
  • Patent Document 5 discloses a dealcoholization-type room-temperature-curable organosiloxane composition, which uses an organosilane compound having a hydrolyzable silyl-vinylene group as a crosslinking agent, and is a two-component type with excellent fast curing properties.
  • organosiloxane composition that cures quickly at mold room temperature. Although there is discussion about quick curing properties, there is no discussion about durability to cured rubber.
  • the purpose of the present invention is to provide excellent fast curing and adhesive properties as well as good durability without adding metal condensation catalysts that have a large environmental impact and are commonly used in conventional room temperature curable organopolysiloxane compositions.
  • An object of the present invention is to provide a two-component room-temperature-curable organopolysiloxane composition, an adhesive, a sealing agent, and a coating agent that can provide a cured product having (heat resistance, moisture resistance).
  • the main material is an organopolysiloxane in which both ends of the molecular chain are capped with hydrolyzable silyl groups with or without sylalkylene groups.
  • the first agent is a hydrolyzable organosilane compound having two hydrolyzable silyl-vinylene groups on the same silicon atom as a crosslinking agent (curing agent), and the organosilane compound has two hydrolyzable silyl-vinylene groups on the same silicon atom.
  • Polysiloxane is used as the main agent (base polymer), a specific amino-functional group-containing hydrolyzable organosilane compound is blended as a condensation catalyst, and a second component is further blended with an organic compound having a ketone group in a specific compounding ratio.
  • RTV room temperature curable
  • the present invention provides the following two-component room temperature curable organopolysiloxane composition, adhesive, sealant, and coating agent.
  • R 1 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • n is a number of 10 or more
  • X is independently an oxygen atom or a halogen-substituted monovalent hydrocarbon group having 1 to 4 carbon atoms.
  • R 2 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and a is independently 0 or 1 for each bonded silicon atom.
  • B 0.1 to 10 parts by mass of a hydrolyzable organosilane compound having two hydrolyzable silyl-vinylene groups on the same silicon atom represented by the following general formula (2), (In the formula, R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 4 is independently an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, or an unsubstituted or substituted alkyl group having 3 to 20 carbon atoms.
  • Y represents a monovalent or divalent hydrocarbon group having 1 to 15 carbon atoms containing two or more nitrogen atoms in its structure
  • Z represents a monovalent or divalent hydrocarbon group having 1 to 15 carbon atoms that may contain a hetero atom.
  • R is one or more selected from a hydrolyzable group having 1 to 6 carbon atoms and a monovalent hydrocarbon group having 1 to 6 carbon atoms. It is a monovalent group, and among the three R's bonded to the silicon atom, at least two R's are hydrolyzable groups.
  • the present invention aims to provide a cured product with durability (heat resistance, moisture resistance) without adding a metal condensation catalyst that has a large environmental impact and is commonly used in conventional room temperature curable organopolysiloxane compositions. It is possible to provide a two-component room temperature curable (RTV) silicone rubber composition with excellent fast curing properties and adhesive properties. Accordingly, the compositions of the present invention are useful as adhesives, sealants, and coatings.
  • Component (A) of the organopolysiloxane composition of the present invention acts as a main agent (base polymer) in the composition of the present invention, and is represented by the following general formula (1), and has both ends of the molecular chain silyl.
  • Hydrolysis that has an organooxy group bonded to two or three silicon atoms as a hydrolyzable group through an alkylene group (when X is an alkylene group) or without (when X is an oxygen atom) It is a linear organopolysiloxane blocked with silyl groups.
  • R 1 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • n is a number of 10 or more
  • X is independently an oxygen atom or a halogen-substituted monovalent hydrocarbon group having 1 to 4 carbon atoms.
  • It is an alkylene group
  • R 2 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms
  • a is independently 0 or 1 for each bonded silicon atom.
  • R 1 is an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, such as a methyl group, ethyl group, propyl group, isopropyl group.
  • alkyl groups such as butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group; cyclopentyl group , cycloalkyl groups such as cyclohexyl group; alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group, hexenyl group, cyclohexenyl group; phenyl group, tolyl group, xylyl group, ⁇ - , ⁇ -naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group, 3-phenylpropyl group, and groups in which the hydrogen
  • n in the above formula (1) is a number of 10 or more, preferably a number of 10 to 2,000, more preferably a number of 20 to 1,500, even more preferably a number of 30 to 1,000, and a number of 50 to 1,000. A number of 800 is particularly preferred.
  • the value of n is a number such that the viscosity of the diorganopolysiloxane of component (A) at 23°C is in the range of 25 to 500,000 mPa ⁇ s, preferably in the range of 500 to 100,000 mPa ⁇ s. It is preferable.
  • n( which is the repeating number of bifunctional diorganosiloxane units represented by ((R 1 ) 2 SiO 2/2 ) constituting the main chain of the diorganopolysiloxane of component (A)
  • the degree of polymerization can usually be determined as the number average degree of polymerization (or number average molecular weight) in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. Further, the viscosity can usually be measured at 23° C. using a rotational viscometer (eg, BL type, BH type, BS type, cone plate type, rheometer, etc.).
  • X is independently an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and examples of the alkylene group having 1 to 4 carbon atoms include a methylene group, an ethylene group, a trimethylene group, and a tetramethylene group.
  • Straight-chain alkylene groups such as, and isomers thereof, such as branched alkylene groups such as propylene group (methylethylene group) and 2-methyl-trimethylene group, etc. are applicable.
  • X an ethylene group is particularly preferable.
  • ethylene group In the case of an ethylene group, it is very versatile because it can be easily produced by subjecting an ⁇ , ⁇ -divinyl-terminated organopolysiloxane to a hydrosilylation addition reaction of the corresponding hydrosilane in the presence of a metal catalyst.
  • R 2 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group.
  • a is independently 0 or 1 for each bonded silicon atom, preferably 0.
  • the linear organopolysiloxane having hydrolyzable silyl groups endblocked at both molecular chain ends of component (A) may be used alone or in combination of two or more.
  • Component (B) of the organopolysiloxane composition of the present invention is a hydrolyzable organosilane compound having two hydrolyzable silyl-vinylene groups on the same silicon atom (i.e., Two silicon atoms of the hydrolyzable silyl group (-Si(R 3 ) b (OR 4 ) 3-b ) exist in the molecule, and the silicon atoms of the diorganosilylene group (-Si(R 3 )
  • a hydrolyzable organotrisilane compound in which the silicon atom of 2- ) is linked with a vinylene group (-CH CH-), which acts as a crosslinking agent (curing agent) in the composition of the present invention. It is something.
  • R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 4 is independently an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, or an unsubstituted or substituted alkyl group having 3 to 20 carbon atoms. is an unsubstituted or substituted cycloalkyl group.
  • b is an integer from 0 to 2.
  • the substituted or unsubstituted monovalent hydrocarbon group of R 3 has about 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and is the same. or may be different, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group Alkyl groups such as 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group,
  • Examples include groups substituted with halogen atoms, cyano groups, etc., such as 3-chloropropyl group, 3,3,3-trifluoropropyl group, and 2-cyanoethyl group.
  • groups substituted with halogen atoms, cyano groups, etc. such as 3-chloropropyl group, 3,3,3-trifluoropropyl group, and 2-cyanoethyl group.
  • methyl group, ethyl group, and phenyl group are preferable, and methyl group and phenyl group are particularly preferable from the viewpoint of availability, productivity, and cost.
  • the unsubstituted or substituted alkyl group of R 4 has about 1 to 20 carbon atoms, preferably about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms, and is, for example, a methyl group, an ethyl group, Propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group , dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, and is, for example,
  • the unsubstituted or substituted cycloalkyl group has about 3 to 20 carbon atoms, preferably about 4 to 8 carbon atoms, more preferably about 5 to 6 carbon atoms, and includes, for example, a cyclopentyl group and a cyclohexyl group. Further, some or all of the hydrogen atoms of these alkyl groups and cycloalkyl groups may be substituted with halogen atoms such as F, Cl, Br, etc., cyano groups, etc. Examples include propyl group, 3,3,3-trifluoropropyl group, and 2-cyanoethyl group. Among these, from the viewpoint of hydrolyzability, R 4 is preferably a methyl group or an ethyl group, and a methyl group is particularly preferable.
  • b is each independently an integer of 0 to 2, but preferably 0 or 1 from the viewpoint of curability.
  • component (B) is shown below.
  • the hydrolyzable organosilane compound having two hydrolyzable silyl-vinylene groups on the same silicon atom as component (B) is, for example, a silane having two ethynyl groups on the same silicon atom, and twice the mole of alkoxyhydrosilane.
  • Hydrolyzable group-containing hydrosilanes such as the following can be easily produced by an addition reaction using a hydrosilylation reaction. This reaction formula is expressed, for example, by the following formula [1].
  • the addition reaction catalyst used in adding the alkoxyhydrosilane includes platinum group metal catalysts, such as platinum-based, palladium-based, rhodium-based, and ruthenium-based catalysts, with platinum-based catalysts being particularly preferred.
  • platinum-based materials include platinum black, solid platinum supported on a carrier such as alumina or silica, chloroplatinic acid, alcohol-modified chloroplatinic acid, a complex of chloroplatinic acid and an olefin, or a complex of platinum and vinylsiloxane. Examples include complexes of.
  • the amount of platinum to be used may be a so-called catalytic amount, and for example, it can be used in a mass of 0.1 to 1,000 ppm, particularly 0.5 to 100 ppm in terms of platinum group metal, relative to the alkoxyhydrosilane.
  • This reaction is generally carried out at a temperature of 50 to 120°C, particularly 60 to 100°C, for 0.5 to 12 hours, particularly 1 to 6 hours, and can be carried out without using a solvent, but as mentioned above.
  • An appropriate solvent such as toluene or xylene may be used as necessary, as long as it does not adversely affect the addition reaction.
  • component (B) used in the present invention also has Z-form (cis-form), which does not adversely affect its properties, so these can be separated. It can be used without.
  • hydrolyzable organosilane compounds having two hydrolyzable silyl-vinylene groups such as alkoxysilyl-vinylene groups on the same silicon atom in the general formula (2) are, for example, those represented by the following structural formula:
  • component (B) one type of these can be used alone or two or more types can be used in combination.
  • the hydrolyzable organosilane compound as component (B) is used in an amount of 0.1 to 10 parts by mass, preferably 1 to 10 parts by mass, based on 100 parts by mass of organopolysiloxane as component (A). If it is less than 0.1 parts by mass, sufficient crosslinking will not be obtained and the composition will not have the desired fast-curing properties, and if it exceeds 10 parts by mass, the mechanical properties of the resulting rubber will deteriorate, Problems such as being economically disadvantaged may occur. Note that the hydrolyzable organosilane compound as the component (B) may be used alone or in combination of two or more.
  • the total amount of component (A) and component (B) in the first agent may be 100% by mass, but is preferably 20 to 95% by mass, more preferably 30 to 90% by mass. .
  • Component (C) is a linear diorganopolysiloxane whose molecular chain ends are blocked with silanol groups (hydroxyl groups bonded to silicon atoms), and is the main component (base polymer) of the second component of the composition of the present invention. It acts as a.
  • R 1 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and specific examples are those exemplified for R 1 in general formula (1) of component (A). It is similar to n is a number of 10 or more, preferably a number of 10 to 2,000, more preferably a number of 50 to 1,500, and still more preferably a number of 100 to 1,000, particularly when the diorganopolysiloxane is heated at 23°C.
  • the viscosity is 25 to 500,000 mPa ⁇ s, preferably 50 to 100,000 mPa ⁇ s, more preferably 100 to 50,000 mPa ⁇ s.
  • the viscosity is a value measured at 23°C using a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, rheometer), etc.
  • Component (C) may be used alone or in combination of two or more.
  • Component (D) is an important compound that acts as a condensation catalyst in the present room temperature curable organopolysiloxane composition, and specifically contains 3 or more nitrogen atoms, preferably 3 to 6 nitrogen atoms in one molecule, More preferably a hydrolyzable organosilane compound containing 3 to 5 amino functional groups and/or a partially hydrolyzed condensate thereof, particularly a catalyst represented by the following general formula (4) or (4)'. Hydrolyzable organosilane compounds containing an amino functional group and/or partially hydrolyzed condensates thereof having a monovalent or divalent basic moiety (Y) that exhibits a function are preferred.
  • Y represents a monovalent or divalent hydrocarbon group having 1 to 15 carbon atoms containing two or more nitrogen atoms in its structure, and Z does not contain a heteroatom.
  • Z represents an unsubstituted or substituted divalent hydrocarbon group having 1 to 10 carbon atoms, which may be substituted or unsubstituted.
  • R is one or more monovalent groups selected from a hydrolyzable group having 1 to 6 carbon atoms and a monovalent hydrocarbon group having 1 to 6 carbon atoms; At least two of R are hydrolyzable groups.
  • the monovalent or divalent basic moiety (Y) that exhibits a catalytic function has 2 or more nitrogen atoms, preferably 2 to 5, or more, in its structure. It preferably represents a monovalent or divalent hydrocarbon group having 2 to 4 carbon atoms and having 1 to 15 carbon atoms, and among the basic moieties (Y), the monovalent group is, for example, represented by the following formula (5).
  • divalent groups such as groups derived from 1,5,7-triazabicyclo[4.4.0]dec-5-ene include N-substituted or non-substituted groups represented by the following formula (6). Examples include substituted guanidyl groups. Note that in the following formulas (5) and (6), the wavy line portion indicates a bonding site with the nitrogen atom of formula (4) or formula (4)'.
  • R 5 to R 8 each independently represent a hydrogen atom or a linear, branched, or cyclic alkyl group having 1 to 10 carbon atoms, an alkenyl group, or an aryl group, such as a methyl group
  • examples include alkyl groups such as ethyl group and propyl group; cyclic alkyl groups such as cyclohexyl group; alkenyl groups such as vinyl group and allyl group; and aryl groups such as phenyl group and tolyl group.
  • methyl group, ethyl group, and phenyl group are preferred, and methyl group is particularly preferred.
  • R 5 to R 8 may be the same or different.
  • R is an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a vinyloxy group, an allyloxy group.
  • an alkenyloxy group such as a propenoxy group, an isopropenoxy group, a ketoxime group such as a dimethylketoxime group, a diethylketoxime group, a methylethylketoxime group, an acyloxy group such as an acetoxy group, etc. having 1 to 6 carbon atoms, preferably 1 to 6 carbon atoms.
  • hydrolyzable groups that is, groups that can bond to silicon atoms to form Si-O-C bonds
  • alkyl groups such as methyl groups and ethyl groups
  • alkenyl groups such as vinyl groups
  • phenyl groups etc.
  • at least two, preferably three R's are hydrolyzable groups.
  • the hydrolyzable silyl group (-SiR 3 ) is, for example, trimethoxysilyl group, methyldimethoxysilyl group, vinyldimethoxysilyl group, phenyldimethoxysilyl group, trimethoxysilyl group, Alkoxysilyl group such as ethoxysilyl group; Penoxysilyl group: Ketoxime silyl groups such as tris(dimethylketoxime)silyl group, tris(diethylketoxime)silyl group, tris(ethylmethylketoxime)silyl group, and the like.
  • Z is a straight chain, branched, carbon atom having 1 to 10 carbon atoms, particularly 3 to 6 carbon atoms, which may contain a hetero atom such as an oxygen atom or a nitrogen atom.
  • it represents an unsubstituted or substituted divalent hydrocarbon group such as a cyclic alkylene group, alkenylene group, arylene group, or a combination thereof.
  • Z examples include alkylene groups such as methylene group, ethylene group, trimethylene group, propylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, and 2-methylpropylene group; arylene groups such as phenylene group; Examples include groups in which these alkylene groups and arylene groups are bonded, and the above-mentioned alkylene groups with intervening ketones, esters, amide, etc., but preferred are methylene groups, ethylene groups, trimethylene groups, propylene groups, and propylene groups via amide bonds. etc., and trimethylene group is particularly preferred.
  • amino-functional group-containing hydrolyzable organosilane represented by general formula (4) or general formula (4)' include those shown by general formulas (7) to (12) below. can. Note that Me, Et, and Ph represent a methyl group, an ethyl group, and a phenyl group, respectively.
  • the blending amount of component (D) is 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass, and more preferably 0.5 to 5 parts by mass, per 100 parts by mass of component (C). . If it is less than 0.1 part by mass, it may not function as the intended curing catalyst. If it exceeds 10 parts by mass, it is not preferable because it is disadvantageous in terms of cost and curability decreases.
  • Component (E) is an organic compound (ketones) having a ketone group, and specific examples include linear ketone compounds such as acetone, 2-butanone, 3-pentanone, and 2-heptanone; methyl isobutyl ketone, 4- Branched ketone compounds such as methylhexan-2-one, 4-methylheptan-3-one, 6-methylheptan-3-one; cyclopentanone, cyclohexanone, cycloheptanone, 3-methylcyclopentan-1-one , 3,3-dimethylcyclopentan-1-one, 2-ethylcyclopentan-1-one, 3-methylcyclohexan-1-one, 4-methylcyclohexan-1-one, 2,5-dimethylcyclohexan-1-one Cyclic ketone compounds such as cyclopentane-1,3-dione, cyclopentane-1,2-dione, 3-methylcyclopentane-1,2-dione
  • the blending amount of component (E) is 0.1 to 5 parts by mass, preferably 0.1 to 3 parts by mass, and more preferably 0.5 to 2 parts by mass, per 100 parts by mass of component (C). . If the amount is less than 0.1 part by mass, the desired curability may not be achieved. If it exceeds 5 parts by mass, it is not preferable because it is not only disadvantageous in terms of cost, but also causes strong bleeding and odor from the cured rubber.
  • the total amount of component (C), component (D), and component (E) in the second agent may be 100% by mass, but preferably 20 to 95% by mass, and 30 to 90% by mass. It is more preferable that there be.
  • a silane coupling agent from nitrogen, sulfur, and oxygen in one molecule
  • a hydrolyzable silane compound such as an alkoxysilane having a monovalent hydrocarbon group having a functional group containing a selected heteroatom (however, excluding a guanidyl group), or a so-called carbon functional silane compound) is used as an adhesion imparting agent.
  • silane coupling agent examples include silane compounds having an alkoxysilyl group or an alkenoxysilyl group as a hydrolyzable group, such as vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ⁇ -(aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, 3-(N-aminomethylbenzylamino)propyltrimethoxysilane, N,N'-bis[3-(trimethoxysilyl)propyl]ethylenediamine, N,N-bis[3-
  • a silane coupling agent When blending a silane coupling agent, it may be blended in either the first part or the second part, but it is preferably blended in the first part, and the blending amount is per 100 parts by mass of component (A). It is usually 0.1 to 20 parts by weight, preferably 0.1 to 15 parts by weight, particularly preferably 0.1 to 10 parts by weight. If it is less than 0.1 parts by mass, sufficient adhesiveness may not be obtained, and if it exceeds 20 parts by mass, good mechanical properties may not be obtained or it may be disadvantageous in terms of price.
  • an inorganic filler may be added to the composition as an optional component.
  • These inorganic fillers may not be surface-treated or may be surface-treated with a known treatment agent.
  • a hydrolyzable group-containing polysiloxane described in JP-A No. 2000-256558 is preferred, but the treatment agent is not limited thereto.
  • silica-based fillers such as ground silica, fumed silica, wet silica, and crystalline silica, or calcium carbonate are preferred.
  • the blending amount is 1 to 400 parts by mass per 100 parts by mass of components (A) to (C). Parts by weight are preferred, more preferably 1 to 350 parts by weight, particularly preferably 1 to 300 parts by weight. If the amount is less than 1 part by mass, it may be difficult to obtain a cured product having the desired rubber strength and rubber elasticity. If the amount exceeds 400 parts by mass, it becomes difficult to knead with the components (A) to (C), and it may be difficult to prepare a good room-temperature-curable organopolysiloxane composition.
  • the two-component room-temperature-curable organopolysiloxane composition of the present invention may contain various additives as optional components.
  • additives known additives may be added within a range that does not impair the purpose of the present invention.
  • polyether compounds as wetters and thixotropy improvers
  • non-reactive dimethyl silicone oil dimethyl polysiloxane blocked with trialkylsilyl groups at both ends of the molecular chain
  • isoparaffins trimethylsiloxy units as crosslinking density improvers [ (CH 3 ) 3 SiO 1/2 units]
  • organopolysiloxane resin having a three-dimensional network structure consisting of SiO 2 units.
  • colorants such as pigments, dyes, and optical brighteners; fungicides; antibacterial agents; non-reactive phenyl silicone oil (methylphenyl polysiloxane blocked with trialkylsilyl groups at both molecular chain ends), Bleed oil such as silicone oil (methyl (3,3,3-trifluoropropyl)polysiloxane blocked with trialkylsilyl groups at both ends of the molecular chain); Surface modifier such as organic liquid that is incompatible with silicone; and toluene Solvents such as , xylene, solvent volatile oils, cyclohexane, methylcyclohexane, and low boiling isoparaffins may also be added.
  • phenyl silicone oil methylphenyl polysiloxane blocked with trialkylsilyl groups at both molecular chain ends
  • Bleed oil such as silicone oil (methyl (3,3,3-trifluoropropyl)polysiloxane blocked with trialkylsilyl groups at
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention comprises a first part containing component (A) and component (B), component (C), component (D) and ( and a second agent containing component E). Both the first part and the second part can be prepared by mixing the respective components according to a conventional method. The mixing method may be a conventional method, and the respective components may be mixed under reduced pressure.
  • the two-component room-temperature-curable organopolysiloxane composition of the present invention allows the first and second parts to be stored in an atmosphere that avoids moisture, and the first and second parts can be mixed in any desired combination.
  • the optional component may be blended in either the first part or the second part, or may be blended in either one or both.
  • the viscosity is a value measured by a rotational viscometer at 23° C.
  • the degree of polymerization indicates the number average degree of polymerization in terms of polystyrene in gel permeation chromatography analysis using toluene as a developing solvent.
  • compositions 1 to 6 were prepared by uniformly mixing the first agent and the second agent at a mixing ratio (volume ratio) of 1:1 using the combinations shown in Table 1 below.
  • the mixing method used a 250 ml x 250 ml cartridge manufactured by Mixpac.
  • compositions 1 to 6 were left to cure in a 23°C/50% RH environment for 3 days to a thickness of 3 mm to form a silicone rubber cured product (3 mm thick). ) was prepared, and a No. 2 dumbbell test piece was prepared according to JIS K 6249, and the hardness, elongation at cutting, and tensile strength were measured. In addition, the hardness was taken as the value of durometer A.
  • the composition was sandwiched and left in an environment of 23° C./50% RH for 3 days to cure the composition. Thereafter, each of the two aluminum substrates was pulled in the shear direction at a speed of 500 mm/min to determine the shear adhesive strength. The results are shown in Table 2.
  • compositions 1 to 4 all showed good adhesion.
  • compositions 5 and 6 showed higher values for hardness and tensile strength than compositions 1 to 4, but had low shear adhesive strength and poor adhesion.
  • compositions 1 to 4 had similar curability when compared with Compositions 5 and 6, both of which contained conventional organic tin.
  • compositions 1 to 4 tend to have a slight decrease in hardness, but the elongation and tensile strength at cutting tend to decrease slightly. There was no major change in strength, and it can be judged that the moisture resistance is good. The rate of change in physical properties was within 50% in all items. On the other hand, in compositions 5 and 6 containing organic tin, although the change in hardness was small compared to compositions 1 to 4, the elongation at break and tensile strength decreased significantly, and the rate of change was It became more than 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

環境負荷の大きな金属系縮合触媒を添加することなしに、速硬化性、接着性に優れると共に、良好な耐久性(耐熱性、耐湿性)を有する硬化物を与えることのできる二成分型室温硬化性オルガノポリシロキサン組成物の提供。 (A)分子鎖両末端がオルガノオキシ基で封鎖されたオルガノポリシロキサン 及び (B)同一ケイ素原子上に加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物 を含有する第一剤と、 (C)分子鎖両末端がシラノール基で封鎖されたオルガノポリシロキサン (D)1分子中に窒素原子を3個以上有するアミノ官能性基含有加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物 及び (E)ケトン基を有する有機化合物0.1~5質量部、 を含有する第二剤と からなる二成分型室温硬化性オルガノポリシロキサン組成物。

Description

二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品
 本発明は、大気中の湿気(水分)により室温(23℃±15℃)において硬化してシリコーンゴム硬化物(シリコーンエラストマー弾性体)を与える室温硬化性オルガノポリシロキサン組成物(室温硬化性シリコーンゴム組成物)に関するものであり、特には、分子鎖両末端が加水分解性シリル基で封鎖されたオルガノポリシロキサンをベースポリマーとして、同一ケイ素原子上に加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物を架橋剤(硬化剤)とした第一剤と、分子鎖両末端がヒドロキシル基で封鎖されたオルガノポリシロキサンをベースポリマーとして、特定のアミノ官能性基含有加水分解性オルガノシラン化合物を縮合触媒として配合した第二剤とを、任意の割合で混合することで従来の室温硬化性オルガノポリシロキサン組成物において常用されていた環境負荷の大きな金属系縮合触媒を添加することなしに、良好な硬化性(速硬化性)と優れた接着性を有すると共に、湿熱条件下においても耐久性に優れたシリコーンゴム硬化物を与えることのできる二成分型室温硬化性オルガノポリシロキサン組成物、並びに該組成物を含有する接着剤、シール剤及びコーティング剤に関する。
 湿気により架橋・硬化する室温硬化性(RTV)シリコーンゴム組成物(室温硬化性オルガノポリシロキサン組成物)は、その取り扱いが容易な上、耐候性や電気特性に優れているため、建材用のシーリング材、電気・電子分野での接着剤やコーティング剤(封止剤)などの様々な用途に適している。一般的な室温硬化性オルガノポリシロキサン組成物は、分子鎖末端にシラノール基(ケイ素原子に結合した水酸基)やアルコキシシリル基を有するジオルガノポリシロキサン(ベースポリマー)、硬化剤、アミノアルキル基含有アルコキシシラン及び硬化触媒を含み、難燃性や熱伝導性、引張り強度等を付与するため、必要に応じて各種フィラーが添加される。
 一般的な建築、構造用シーリング材として知られる脱オキシム型の室温硬化性オルガノポリシロキサン組成物は、硬化性、耐久性、各種被着体に対する接着性を有することで汎用的に用いられているが、得られる硬化物が高温高湿環境に置かれた際のゴム物性変化が大きく、耐久性に劣ることが知られている。また、建築、構造用シーリング材としては脱酢酸型の室温硬化性オルガノポリシロキサン組成物も汎用的に使用されており、硬化性、接着性に優れ、かつUV照射に対する変色も僅かであることが知られているが、硬化中に発生する酢酸のため作業性が悪い。
 一方、脱アルコール型の室温硬化性オルガノポリシロキサン組成物は、上記脱オキシム型や脱酢酸型の室温硬化性オルガノポリシロキサン組成物と比べると調製方法が容易ではない。ベースポリマーとして分子鎖両末端にシラノール基を有するオルガノポリシロキサンを使用した場合、シラノール基をアルコキシシリル化する(アルコキシシリル基で末端封鎖する)必要が有るが、その反応速度は上記脱オキシム型や脱酢酸型の室温硬化性オルガノポリシロキサン組成物と比べて遅いことが、脱アルコール型の室温硬化性オルガノポリシロキサン組成物の調製方法が容易ではない理由として挙げられる。この問題を回避するためベースポリマーとして予め分子鎖両末端がアルコキシシリル化されたオルガノポリシロキサンを使用する方法が知られている。
 脱アルコール型の室温硬化性オルガノポリシロキサン組成物の硬化触媒としては、有機スズ化合物あるいは有機チタン化合物が一般的に知られている。しかし、有機スズ化合物に関しては、その毒性の問題から環境ないし人体への悪影響が懸念されている。一方、有機チタン化合物に関しては、いまだ毒性の問題は確認されていないものの、調製された室温硬化性オルガノポリシロキサンが経時で黄変する等の課題も残されている。
 脱アルコール型の室温硬化性オルガノポリシロキサンの代表例としては、シラノール基末端封鎖ポリオルガノシロキサンとアルコキシシランと有機チタン化合物とを含む組成物、アルコキシシリル基末端封鎖ポリオルガノシロキサンとアルコキシシランとアルコキシチタンとを含む組成物、末端がシルエチレン基を介してアルコキシシリル基で封鎖された直鎖状のポリオルガノシロキサンとアルコキシシランとアルコキシチタンとを含む組成物、更に、シラノール基末端封鎖ポリオルガノシロキサン又はアルコキシシリル基末端封鎖ポリオルガノシロキサンとアルコキシ-α-シリルエステル化合物とを含む組成物が挙げられる(特許文献1~4)。
 これらの特許文献に記載された室温硬化性オルガノポリシロキサンは、ある程度の保存安定性、耐水性、耐湿性が得られているが、これらの要求特性を全て満足するには至っていない。さらに、速硬化性に関しては、まだ不十分であった。
 特許文献5には、脱アルコールタイプの室温硬化性オルガノシロキサン組成物であって、加水分解性シリル-ビニレン基を有するオルガノシラン化合物を架橋剤として用い、二成分型で速硬化性に優れる二成分型室温速硬化性オルガノシロキサン組成物の記載がある。速硬化性については議論されているが、硬化したゴムに対する耐久性については議論されていない。
特公昭39-27643号公報 特開昭55-43119号公報 特公平7-39547号公報 特開平7-331076号公報 国際公開第2022/009759号
 本発明の目的は、従来の室温硬化性オルガノポリシロキサン組成物において常用されていた環境負荷の大きな金属系縮合触媒を添加することなしに、速硬化性、接着性に優れると共に、良好な耐久性(耐熱性、耐湿性)を有する硬化物を与えることのできる二成分型室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤を提供することにある。
 本発明者は、上記目的を達成するため、鋭意研究の結果、分子鎖両末端がシルアルキレン基を介して又は介さずに加水分解性シリル基で封鎖されたオルガノポリシロキサンを主剤(ベースポリマー)とし、同一ケイ素原子上に加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物を架橋剤(硬化剤)とした第一剤と、分子鎖両末端がヒドロキシル基で封鎖されたオルガノポリシロキサンを主剤(ベースポリマー)とし、特定のアミノ官能性基含有加水分解性オルガノシラン化合物を縮合触媒として配合し、ケトン基を有する有機化合物をさらに配合した第二剤とを、特定の配合比で混合して得られる室温硬化性(RTV)シリコーンゴム組成物及びその硬化物が、上記目的を達成することができることを見出し、本発明をなすに至った。
 即ち、本発明は下記の二成分型室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤を提供するものである。
[1]
(A)下記一般式(1)で示されるオルガノポリシロキサン100質量部、
Figure JPOXMLDOC01-appb-C000005
(式中、R1は独立に炭素数1~10の非置換又はハロゲン置換1価炭化水素基であり、nは10以上の数であり、Xは独立に酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に炭素数1~6の置換又は非置換1価炭化水素基であり、aは結合するケイ素原子毎に独立に0又は1である。)
及び
(B)下記一般式(2)で示される同一ケイ素原子上に加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物0.1~10質量部、
Figure JPOXMLDOC01-appb-C000006
(式中、R3は独立に炭素数1~20の非置換又は置換1価炭化水素基であり、R4は独立に炭素数1~20の非置換若しくは置換アルキル基又は炭素数3~20の非置換若しくは置換シクロアルキル基である。bは0~2の整数である。)
を含有する第一剤と

(C)下記一般式(3)で示されるオルガノポリシロキサン100質量部、
Figure JPOXMLDOC01-appb-C000007
(式中、R1は独立に炭素数1~10の非置換又はハロゲン置換1価炭化水素基であり、nは10以上の数である。)
(D)1分子中に窒素原子を3個以上有するアミノ官能性基含有加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物0.1~5質量部、
及び
(E)ケトン基を有する有機化合物0.1~5質量部、
を含有する第二剤と
からなる二成分型室温硬化性オルガノポリシロキサン組成物。

[2]
 (D)成分が、下記一般式(4)又は(4)’で表されるアミノ官能性基含有加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である[1]に記載の二成分型室温硬化性オルガノポリシロキサン組成物。
Figure JPOXMLDOC01-appb-C000008
(各式中、Yは、その構造中に窒素原子を2個以上含有する炭素数1~15の1価又は2価炭化水素基を示し、Zは、ヘテロ原子を含んでもよい炭素数1~10の非置換又は置換の2価炭化水素基を示す。Rは、炭素数1~6の加水分解性基及び炭素数1~6の1価炭化水素基から選ばれる1種又は2種以上の1価の基であり、ケイ素原子に結合する3個のRのうち、少なくとも2個のRは加水分解性基である。

[3]
 有機金属化合物を含有しないものである[1]又は[2]に記載の二成分型室温硬化性オルガノポリシロキサン組成物。

[4]
 第一剤と第二剤の混合割合が体積比で第一剤:第二剤=1:1~10:1である[1]~[3]のいずれかに記載の二成分型室温硬化性オルガノポリシロキサン組成物。

[5]
 第一剤と第二剤を混合して成型されたオルガノポリシロキサン組成物を85℃/85%RH環境下に1,000時間放置した時の物性変化率が、放置前の物性と比較して50%以内である硬化物を与えるものである[1]~[4]のいずれかに記載の二成分型室温硬化性オルガノポリシロキサン組成物

[6]
 [1]~[4]のいずれかに記載の二成分型室温硬化性オルガノポリシロキサン組成物を含有する接着剤。

[7]
 [1]~[4]のいずれかに記載の二成分型室温硬化性オルガノポリシロキサン組成物を含有するシール剤。

[8]
 [1]~[4]のいずれかに記載の二成分型室温硬化性オルガノポリシロキサン組成物を含有するコーティング剤。
 本発明は、従来の室温硬化性オルガノポリシロキサン組成物において常用されていた環境負荷の大きな金属系縮合触媒を添加することなしに、耐久性(耐熱性、耐湿性)を有する硬化物を与えることのできる速硬化性、接着性に優れた二成分型室温硬化性(RTV)シリコーンゴム組成物を提供することができる。したがって、本発明の組成物は、接着剤、シール剤及びコーティング剤として有用である。
 以下、本発明について詳しく説明する。
[(A)成分]
 本発明のオルガノポリシロキサン組成物の(A)成分は、本発明の組成物において主剤(ベースポリマー)として作用するものであって、下記一般式(1)で示される、分子鎖両末端がシルアルキレン基を介して(Xがアルキレン基の場合)又は介さずに(Xが酸素原子の場合)、それぞれ2個又は3個のケイ素原子に結合したオルガノオキシ基を加水分解性基として有する加水分解性シリル基で封鎖された直鎖状のオルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000009
(式中、R1は独立に炭素数1~10の非置換又はハロゲン置換1価炭化水素基であり、nは10以上の数であり、Xは独立に酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に炭素数1~6の置換又は非置換1価炭化水素基であり、aは結合するケイ素原子毎に独立に0又は1である。)
 上記式(1)中、R1は炭素数1~10、好ましくは炭素数1~6の非置換又はハロゲン置換1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基などのアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基などのアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基、及びこれらの基の水素原子が部分的にハロゲン原子で置換された基、例えば3,3,3-トリフルオロプロピル基等である。これらの中では、特にメチル基が好ましい。また、複数のR1は同一の基であっても異種の基であってもよい。
 上記式(1)中のnは10以上の数であり、10~2,000の数が好ましく、20~1,500の数がより好ましく、30~1,000の数が更に好ましく、50~800の数が特に好ましい。また、このnの値は、特に(A)成分のジオルガノポリシロキサンの23℃における粘度が25~500,000mPa・sの範囲、好ましくは500~100,000mPa・sの範囲となる数であることが好ましい。
 なお、本発明において、(A)成分のジオルガノポリシロキサンの主鎖を構成する((R12SiO2/2)で示される2官能性のジオルガノシロキサン単位の繰り返し数であるn(又は重合度)は、通常、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。また、粘度は通常、23℃において回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型、レオメータ等)により測定することができる。
 上記式(1)中、Xは独立に酸素原子又は炭素数1~4のアルキレン基であり、炭素数1~4のアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基などの直鎖アルキレン基、及びこれらの異性体、例えば、プロピレン基(メチルエチレン基)、2-メチル-トリメチレン基などの分岐アルキレン基等が該当する。Xとしては、特に、エチレン基が好ましい。エチレン基の場合、α、ω-ジビニル末端オルガノポリシロキサンに対し、対応するヒドロシランを金属触媒存在化でヒドロシリル化付加反応させることにより容易に製造できることから、非常に汎用性がある。
 また上記式(1)中、R2は独立に炭素数1~6の置換又は非置換1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などのアルキル基;メトキシメチル基、メトキシエチル基、メトキシエチル基、エトキシエチル基などのアルコキシ置換アルキル基;シクロヘキシル基などのシクロアルキル基;ビニル基、アリル基、プロペニル基などのアルケニル基;フェニル基等が挙げられるが、特にメチル基、エチル基が好ましい。
 上記式(1)中、aは、結合するケイ素原子毎に独立に0又は1であり、好ましくは0である。
 なお、(A)成分の分子鎖両末端加水分解性シリル基封鎖直鎖状オルガノポリシロキサンは、1種を単独で使用しても、2種以上を併用してもよい。
[(B)成分]
 本発明のオルガノポリシロキサン組成物の(B)成分は、下記一般式(2)で示される、同一ケイ素原子上に加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物(即ち、分子中に2個存在する加水分解性シリル基(-Si(R3b(OR43-b)のケイ素原子が、それぞれ分子中に1個存在するジオルガノシリレン基(-Si(R32-)のケイ素原子とビニレン基(―CH=CH―)で連結された、加水分解性オルガノトリシラン化合物)であって、本発明の組成物において架橋剤(硬化剤)として作用するものである。
Figure JPOXMLDOC01-appb-C000010
(式中、R3は独立に炭素数1~20の非置換又は置換1価炭化水素基であり、R4は独立に炭素数1~20の非置換若しくは置換アルキル基又は炭素数3~20の非置換若しくは置換シクロアルキル基である。bは0~2の整数である。)
 ここで、上記一般式(2)中、R3の置換又は非置換の1価炭化水素基は、炭素数が1~20、好ましくは1~10、より好ましくは1~8程度であり、同一または異なっていてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基が特に好ましい。
 上記一般式(2)中、R4の非置換又は置換アルキル基は、炭素数が1~20、好ましくは1~6、より好ましくは1~4程度であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。非置換又は置換シクロアルキル基は、炭素数が3~20、好ましくは4~8、より好ましくは5~6程度であり、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。また、これらのアルキル基やシクロアルキル基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換されていてもよく、これには、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等が挙げられる。R4としては、これらの中でも、加水分解性などの点から、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 上記一般式(2)のbは、それぞれ独立に、0~2の整数であるが、0又は1であることが硬化性の点から好ましい。
 ここで(B)成分の製造例を以下に示す。
<同一ケイ素原子上に加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物の製造方法>
 (B)成分の同一ケイ素原子上に加水分解性シリル-ビニレンを2個有する加水分解性オルガノシラン化合物は、例えば、同一ケイ素原子上にエチニル基を2個有するシランと、2倍モルのアルコキシヒドロシラン等の加水分解性基含有ヒドロシランをヒドロシリル化反応による、付加反応で容易に製造することができる。この反応式は、例えば下記式[1]で表される。
Figure JPOXMLDOC01-appb-C000011
(式中、R3、R4、bは前記一般式(2)と同一のものである。)
 アルコキシヒドロシランを付加する際に用いる付加反応触媒としては、白金族金属系触媒、例えば白金系、パラジウム系、ロジウム系、ルテニウム系のものがあるが、白金系のものが特に好適である。この白金系のものとしては、白金黒あるいはアルミナ、シリカ等の担体に固体白金を担持させたもの、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィンとの錯体あるいは白金とビニルシロキサンとの錯体等を例示することができる。これらの白金の使用量は、所謂触媒量でよく、例えばアルコキシヒドロシラン類に対して、白金族金属換算で0.1~1,000ppm、特に0.5~100ppmの質量で使用できる。
 この反応は、一般に50~120℃、特に60~100℃の温度で、0.5~12時間、特に1~6時間行うことが望ましく、また溶媒を使用せずに行うことができるが、上記付加反応等に悪影響を与えない限りにおいて、必要によりトルエン、キシレン等の適当な溶剤を使用することができる。
 アルコキシヒドロシラン等の加水分解性基含有ヒドロシランのアセチレニル基(エチニル基)に対する付加反応では、幾何異性体が生成される。E体(trans体)の生成が高選択的であるが、本発明で使用する(B)成分は、Z体(cis体)も、その特性に悪影響を与えないことから、これらを分離することなく使用することができる。
 前記一般式(2)の同一ケイ素原子上にアルコキシシリル-ビニレン基等の加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物の具体例としては、例えば、下記構造式で表されるものが挙げられ、(B)成分としては、これら1種を単独で又は2種以上を併用して使用することができる。
Figure JPOXMLDOC01-appb-C000012
 上記(B)成分の加水分解性オルガノシラン化合物は、(A)成分のオルガノポリシロキサン100質量部に対して、0.1~10質量部、好ましくは1~10質量部の範囲で使用されるものであり、0.1質量部未満では十分な架橋が得られず、目的とする速硬化性を有する組成物とならず、10質量部を超えると得られるゴム物性の機械特性も低下し、経済的に不利となるという問題が発生する場合がある。
 なお、(B)成分の加水分解性オルガノシラン化合物は、1種を単独で使用しても、2種以上を併用してもよい。
 第一剤中の(A)成分及び(B)成分の合計量は100質量%であってもよいが、20~95質量%であることが好ましく、30~90質量%であることがより好ましい。
[(C)成分]
 (C)成分は、分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖された直鎖状のジオルガノポリシロキサンであり、本発明組成物の第二剤の主剤(ベースポリマー)として作用するものである。
Figure JPOXMLDOC01-appb-C000013
 式中、R1は独立に炭素数1~10の非置換又はハロゲン置換1価炭化水素基であり、具体的なものは(A)成分の一般式(1)中のR1で例示したものと同様である。nは10以上の数、好ましくは10~2,000の数、より好ましくは50~1,500の数、更に好ましくは100~1,000の数であり、特に該ジオルガノポリシロキサンの23℃における粘度が25~500,000mPa・s、好ましくは50~100,000mPa・s、より好ましくは100~50,000mPa・sとなる数である。なお、本発明において、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型、レオメータ)等による23℃での測定値であり、ジオルガノポリシロキサン中の主鎖を構成する繰り返し単位((R12SiO2/2)の繰り返し数nの値(又は重合度)は、例えば、トルエン等を展開溶媒としたゲルパーミエーションクロマトグラフィ分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めた値である。(C)成分は1種単独でも又は2種以上を併用してもよい。
[(D)成分]
 (D)成分は、本室温硬化性オルガノポリシロキサン組成物において、縮合触媒として働く重要な化合物であり、具体的には、1分子中に窒素原子を3個以上、好ましくは3~6個、より好ましくは3~5個有するアミノ官能性基含有加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物であり、特に、下記一般式(4)又は(4)’で表される、触媒機能を発現する1価又は2価の塩基性部位(Y)を有するアミノ官能性基含有加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物が好ましいものとして挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式(4)又は(4)’中、Yは、その構造中に窒素原子を2個以上含有する炭素数1~15の1価又は2価炭化水素基を示し、Zは、ヘテロ原子を含んでもよい炭素数1~10の非置換又は置換の2価炭化水素基を示す。Rは、炭素数1~6の加水分解性基及び炭素数1~6の1価炭化水素基から選ばれる1種又は2種以上の1価の基であり、ケイ素原子に結合する3個のRのうち、少なくとも2個のRは加水分解性基である。
 一般式(4)又は(4)’において、触媒機能を発現する1価又は2価の塩基性部位(Y)は、その構造中に窒素原子を2個以上、好ましくは2~5個、より好ましくは2~4個有する炭素数1~15の1価又は2価炭化水素基を示し、塩基性部位(Y)のうち、1価の基としては、例えば、下記式(5)で示される1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンから誘導される基など、2価の基としては、例えば、下記式(6)で示されるN-置換又は非置換のグアニジル基等が挙げられる。なお、下記式(5)及び(6)において、波線部は、式(4)又は式(4)’の窒素原子との結合部位を示す。
Figure JPOXMLDOC01-appb-C000015
 式(6)中のR5~R8はそれぞれ独立に、水素原子又は炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基、アルケニル基、アリール基を示し、例えば、メチル基、エチル基、プロピル基等のアルキル基;シクロヘキシル基等の環状アルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基などが挙げられる。これらの中では、メチル基、エチル基、フェニル基が好ましく、特にメチル基が好ましい。また、R5~R8は同じであっても、異なっていてもよい。
 また、上記式(4)又は(4)’において、Rは、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基等のアルコキシ基、ビニロキシ基、アリロキシ基、プロペノキシ基、イソプロペノキシ基等のアルケニルオキシ基、ジメチルケトオキシム基、ジエチルケトオキシム基、メチルエチルケトオキシム基等のケトオキシム基、アセトキシ基等のアシルオキシ基などの炭素数1~6、好ましくは炭素数1~4の加水分解性基(即ち、ケイ素原子に結合してSi-O-C結合を形成し得る基)、及び、メチル基、エチル基等のアルキル基、ビニル基等のアルケニル基、フェニル基等のアリール基などの炭素数1~6、好ましくは炭素数1~4の1価炭化水素基から選ばれる1種又は2種以上の1価の基であり、ケイ素原子に結合する3個のRのうち、少なくとも2個、好ましくは3個のRは加水分解性基である。
 また、上記式(4)又は(4)’において、加水分解性シリル基(-SiR3)としては、例えば、トリメトキシシリル基、メチルジメトキシシリル基、ビニルジメトキシシリル基、フェニルジメトキシシリル基、トリエトキシシリル基等のアルコキシシリル基;トリイソプロペノキシシリル基、メチルジイソプロペノキシシリル基、エチルジイソプロペノキシシリル基、ビニルジイソプロペノキシシリル基、フェニルジイソプロペノキシシリル基等のイソプロペノキシシリル基;トリス(ジメチルケトオキシム)シリル基、トリス(ジエチルケトオキシム)シリル基、トリス(エチルメチルケトオキシム)シリル基等のケトオキシムシリル基などが挙げられる。
 上記式(4)又は(4)’において、Zは、酸素原子、窒素原子等のヘテロ原子を含んでもよい、炭素数1~10、特には炭素数3~6の、直鎖状、分岐状もしくは環状のアルキレン基、アルケニレン基、アリーレン基等又はこれらが組み合わされた基などの非置換又は置換の2価炭化水素基を示す。Zとしては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、2-メチルプロピレン基等のアルキレン基;フェニレン基等のアリーレン基、これらアルキレン基とアリーレン基が結合した基、ケトン、エステル、アミド等が介在した上記アルキレン基などが挙げられるが、好ましくはメチレン基、エチレン基、トリメチレン基、プロピレン基、アミド結合を介したプロピレン基等であり、特に好ましくはトリメチレン基である。
 一般式(4)又は一般式(4)’で示されるアミノ官能性基含有加水分解性オルガノシランの具体例としては、下記一般式(7)~(12)に示されるもの等を挙げることができる。なお、Me、Et、Phはそれぞれ、メチル基、エチル基、フェニル基を示す。
Figure JPOXMLDOC01-appb-C000016
 上記一般式(7)~(12)のうち、式(7)、式(8)又は式(9)で示される、特には、式(9)で示される、N-メチル置換のグアニジル基含有トリメトキシシラン(例えば、γ-(N,N’-ジメチルグアニジル)プロピルトリメトキシシラン)等の、N-メチル置換グアニジル基含有トリアルコキシシランが好ましい。
 (D)成分の配合量は、(C)成分100質量部に対して、0.1~10質量部であり、0.1~5質量部が好ましく、0.5~5質量部がより好ましい。0.1質量部未満では、目的とする硬化触媒としての機能を果たさない場合がある。10質量部を超えると、コスト的に不利となり硬化性も低下するため好ましくない。
[(E)成分]
 (E)成分は、ケトン基を有する有機化合物(ケトン類)であり、具体例としてはアセトン、2-ブタノン、3-ペンタノン、2-ヘプタノンなどの直鎖状ケトン化合物;メチルイソブチルケトン、4-メチルヘキサン-2-オン、4-メチルヘプタン-3-オン、6-メチルヘプタン-3-オンなどの分岐状ケトン化合物;シクロペンタノン、シクロヘキサノン、シクロヘプタノン、3-メチルシクロペンタン-1-オン、3,3-ジメチルシクロペンタン-1-オン、2-エチルシクロペンタン-1-オン、3-メチルシクロヘキサン-1-オン、4-メチルシクロヘキサン-1-オン、2,5-ジメチルシクロヘキサン-1-オンなどの環状ケトン化合物;シクロペンタン-1,3-ジオン、シクロペンタン-1,2-ジオン、3-メチルシクロペンタン-1,2-ジオン、シクロヘキサン-1,2-ジオン、3-メチルシクロヘキサン-1,2-ジオンなどのジケトン類;アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸イソプロピル、アセト酢酸ブチル、アセト酢酸イソブチル、プロピオニル酢酸メチル、プロピオニル酢酸エチル等のβ-ケトエステル類などが挙げられる。
 (E)成分の配合量は、(C)成分100質量部に対して、0.1~5質量部であり、0.1~3質量部が好ましく、0.5~2質量部がより好ましい。0.1質量部未満では、目的とする硬化性が発現しない場合がある。5質量部を超えると、コスト的に不利となるばかりか、硬化したゴムからのブリードや臭気が強くなるため好ましくない。
 第二剤中の(C)成分、(D)成分及び(E)成分の合計量は100質量%であってもよいが、20~95質量%であることが好ましく、30~90質量%であることがより好ましい。
[その他の成分]
 本発明の組成物の硬化物の各種被着体への接着性をさらに向上させるために、必要に応じて配合できる任意成分として、シランカップリング剤(1分子中に、窒素、硫黄及び酸素から選ばれるヘテロ原子を含有する官能性基(但し、グアニジル基を除く)を有する1価炭化水素基を有するアルコキシシラン等の加水分解性シラン化合物、又はいわゆるカーボンファンクショナルシラン化合物)を接着性付与剤として組成物に配合してもよい。シランカップリング剤としては、加水分解性基として、アルコキシシリル基又はアルケノキシシリル基を有するシラン化合物が挙げられ、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-(N-アミノメチルベンジルアミノ)プロピルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N,N-ビス[3-(トリメトキシシリル)プロピル]アミン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリイソプロペノキシシラン、(メタ)アクリルシランとアミノシランの反応物、エポキシシランとアミノシランの反応物等、アミノシランとハロゲン化アルキル基含有シランとの反応物などが例示される。特にはアミノ基を1分子内に少なくとも1つ有するシランカップリング剤の使用が好ましい。
 シランカップリング剤を配合する場合、第一剤及び第二剤のいずれに配合してもよいが、第一剤に配合することが好ましく、その配合量は、(A)成分100質量部当たり、通常、0.1~20質量部、好ましくは0.1~15質量部、特に好ましくは0.1~10質量部である。0.1質量部未満では十分な接着性が得られない場合があり、20質量部を超えると良好な機械特性が得られなかったり、また価格的に不利となる場合がある。
 また、本発明の組成物を硬化して得られるシリコーンゴム硬化物の機械的強度等の物性を向上させるため、任意成分として無機充填剤を組成物に配合してもよい。例えば、粉砕シリカ、煙霧質シリカ(ヒュームドシリカ)、湿式シリカ、結晶性シリカ、水酸化アルミニウム、アルミナ、ベーマイト、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、炭酸亜鉛、塩基性炭酸亜鉛、酸化亜鉛、酸化チタン、カーボンブラック、ガラスビーズ、ガラスバルーンなどが挙げられ、単独で使用してもよく、また2種類以上を組み合わせてもよい。これらの無機充填剤は、表面処理されていなくても、公知の処理剤で表面処理されていてもよい。公知の処理剤としては例えば、特開2000-256558号公報に記載の加水分解性基含有ポリシロキサンが好ましいが、これに限定されるものではない。これらの中では、粉砕シリカ、煙霧質シリカ、湿式シリカ、結晶性シリカ等のシリカ系充填剤、あるいは炭酸カルシウムが好ましい。
 無機充填剤を配合する場合、第一剤及び第二剤のいずれに配合してもよく、その配合量は、(A)成分ないし(C)成分の配合量100質量部に対して1~400質量部が好ましく、より好ましくは1~350質量部、特に好ましくは1~300質量部である。1質量部未満では、目的とするゴム強度やゴム弾性を有する硬化物が得難い場合がある。また400質量部を超えると、前記(A)成分ないし(C)成分との混練が困難となり、良好な室温硬化性オルガノポリシロキサン組成物を調製するのが難しい場合がある。
 また、本発明の二成分型室温硬化性オルガノポリシロキサン組成物は上記成分以外に、各種の添加剤を任意成分として配合してもよい。添加剤としては、公知の添加剤を本発明の目的を損なわない範囲で添加してもよい。例えば、ウェッターやチキソトロピー向上剤としてのポリエーテル化合物、可塑剤としての非反応性ジメチルシリコーンオイル(分子鎖両末端トリアルキルシリル基封鎖ジメチルポリシロキサン)、イソパラフィン、架橋密度向上剤としてのトリメチルシロキシ単位〔(CH33SiO1/2単位〕とSiO2単位とからなる三次元網状構造のオルガノポリシロキサンレジン等が挙げられる。
 更に、必要に応じて、顔料、染料、蛍光増白剤等の着色剤;防かび剤;抗菌剤;非反応性フェニルシリコーンオイル(分子鎖両末端トリアルキルシリル基封鎖メチルフェニルポリシロキサン)、フルオロシリコーンオイル(分子鎖両末端トリアルキルシリル基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン)等のブリードオイル;シリコーンと非相溶性である有機液体等の表面改質剤;及びトルエン、キシレン、溶剤揮発油、シクロヘキサン、メチルシクロヘキサン、低沸点イソパラフィン等の溶剤も添加してよい。
組成物の製造方法
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、(A)成分及び(B)成分を含有する第一剤と、(C)成分、(D)成分及び(E)成分を含有する第二剤とからなるものである。第一剤、第二剤ともに各成分を常法に従い混合することによって調製でき、混合方法は、従来の方法でよく、各成分は減圧下で混合されてもよい。
 本発明の二成分型室温硬化性オルガノポリシロキサン組成物は、第一剤及び第二剤を、湿分を避けた雰囲気下で保存することができ、第一剤と第二剤を任意の配合比で混合し、これを室温(23℃±15℃)で空気雰囲気下に放置すると、従来の室温硬化性オルガノポリシロキサン組成物において常用されていた環境負荷の大きな金属系縮合触媒を添加せずとも、空気中の水分(湿気)により通常5分~3日で硬化する。
 第一剤と第二剤の混合比は、体積比で好ましくは第一剤:第二剤=1:1~10:1、特に好ましくは第一剤:第二剤=1:1~5:1となるように配合することが作業性や第一剤と第二剤を混合する際の均一性(混ざり易さ)の点から好ましい。また、任意成分は第一剤と第二剤のどちらに配合してもよく、どちらか一方に配合しても両方に配合してもよい。
 以下、本発明を具体的に説明する実施例及び比較例を示すが、本発明は下記の実施例に制限されるものではない。なお、実施例において、粘度は23℃における回転粘度計による測定値であり、重合度は、トルエンを展開溶媒としたゲルパーミエーションクロマトグラフィ分析におけるポリスチレン換算の数平均重合度を示す。
<第一剤の調製>
1.第一剤A-1
 分子鎖両末端がトリメトキシシロキシ基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン(即ち、前記式(1)において、X=酸素原子、R1=R2=メチル基、a=0、n=約620に該当する、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン)50質量部と分子鎖両末端がトリメトキシシロキシ基で封鎖され、粘度が900mPa・sのジメチルポリシロキサン(即ち、前記式(1)において、X=酸素原子、R1=R2=メチル基、a=0、n=約270に該当する、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン)50質量部、BET比表面積130m2/gの煙霧質シリカ8質量部及び炭酸カルシウム80質量部を減圧条件下で30分間均一に混合した。その後、ビス(ジメトキシメチルシリル-ビニレン)ジメチルシラン(即ち、前記式(2)において、R3=R4=メチル基、b=1に該当する。以下、同様)2.5質量部、γ-アミノプロピルトリエトキシシラン1.0質量部を加え、減圧条件下15分間均一に混合して第一剤A-1を調製した。
2.第一剤A-2
 分子鎖両末端がトリメトキシシロキシ基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン(即ち、前記式(1)において、X=酸素原子、R1=R2=メチル基、a=0、n=約620に該当する、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン)50質量部と分子鎖両末端がトリメトキシシロキシ基で封鎖され、粘度が900mPa・sのジメチルポリシロキサン(即ち、前記式(1)において、X=酸素原子、R1=R2=メチル基、a=0、n=約270に該当する、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン)50質量部、BET比表面積130m2/gの煙霧質シリカ8質量部及び炭酸カルシウム80質量部を減圧条件下で30分間均一に混合した。その後、ビス(ジメトキシメチルシリル-ビニレン)ジメチルシラン(即ち、前記式(2)において、R3=R4=メチル基、b=1に該当する。以下、同様)2.5質量部、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン1.0質量部を加え、減圧条件下15分間均一に混合して第一剤A-2を調製した。
<第二剤の調製>
1.第二剤B-1
 分子鎖両末端がシラノール基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン(即ち、前記式(3)において、R1=メチル基、n=約620に該当する、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン)100質量部とBET比表面積130m2/gの煙霧質シリカ4質量部及び炭酸カルシウム90質量部を減圧条件下で30分間均一に混合した。その後、シクロヘキサノン1質量部、γ-(N,N’-ジメチルグアニジル)プロピルトリメトキシシラン3質量部を加え、減圧条件下15分間均一に混合して第二剤B-1を調製した。
2.第二剤B-2
 分子鎖両末端がシラノール基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン(即ち、前記式(3)において、R1=メチル基、n=約620に該当する、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン)100質量部とBET比表面積130m2/gの煙霧質シリカ4質量部及び炭酸カルシウム90質量部を減圧条件下で30分間均一に混合した。その後、シクロヘキサノン1質量部、γ-(N,N’-ジメチルグアニジル)プロピルトリメトキシシラン5質量部を加え、減圧条件下15分間均一に混合して第二剤B-2を調製した。
3.第二剤B-3
 分子鎖両末端がシラノール基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン(即ち、前記式(3)において、R1=メチル基、n=約620に該当する、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン)100質量部とBET比表面積130m2/gの煙霧質シリカ4質量部及び炭酸カルシウム90質量部を減圧条件下で30分間均一に混合した。その後、シクロヘキサノン1質量部、ジオクチル錫ジネオデカノエート0.4質量部を加え、減圧条件下15分間均一に混合して第二剤B-3を調製した。
<第一剤と第二剤の混合>
 下記表1の組み合わせで、上記第一剤と第二剤を混合比(体積比)1:1で均一に混合し組成物1~6を調製した。混合する方法は、Mixpac製の250ml×250mlのカートリッジを使用した。
Figure JPOXMLDOC01-appb-T000017
 調製した組成物1~6を用いて、以下の特性を測定した。
・硬化性、接着性
 調製した組成物1~6のそれぞれを、23℃/50%RH環境下にて厚さが3mmになるように3日放置し硬化させてシリコーンゴム硬化物(厚さ3mm)の測定用サンプルを作製し、JIS K 6249に従い2号ダンベル試験片を作製し、硬さ、切断時伸び、引張り強度を測定した。なお、硬さはデュロメーターAの値とした。接着性に関しては、トルエンで洗浄したアルミニウム基板(A1050P、t=0.3mm)を用い、組成物1~6がそれぞれ接着面積25mm×10mmで厚み2mmになるようにそれぞれ2枚の上記アルミニウム基板で挟み込み23℃/50%RH環境下にて3日放置し、上記組成物を硬化させた。その後、500mm/minのスピードでそれぞれ2枚のアルミニウム基板をせん断方向に引張り、せん断接着強度を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000018
 組成物1~4は、いずれも良好な接着性を示した。一方組成物5と組成物6においては、組成物1~4と比べて硬さ、引張り強度が高い数値を示したが、せん断接着強度が低く接着性は悪い結果であった。
・短時間硬化性の評価
 上記組成物1~6のそれぞれを、23℃/50%RH環境下にて厚さが3mmになるように1日又は2日放置し硬化させてシリコーンゴム硬化物(厚さ3mm)の測定用サンプルを作製し、JIS K 6249に従い2号ダンベル試験片を作製し、硬さ、切断時伸び、引張り強度を測定した。3日放置して硬化させた結果(表2)と比較した。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000019
 いずれの組成物も23℃/50%RH環境下 2日放置で硬化が完了していることが分かった。組成物1~4においては、従来の有機スズを配合した組成物5と組成物6と比較しても硬化性は同等である結果であった。
・耐湿性の評価
 上記組成物1~6のそれぞれを、23℃/50%RH環境下にて厚さが3mmになるように3日放置し硬化させてシリコーンゴム硬化物(厚さ3mm)の測定用サンプルを作製し、JIS K 6249に従い、2号ダンベル試験片を作製した。それを85℃/85%RHのチャンバーにそれぞれ500時間又は1,000時間放置し、硬さ、切断時伸び、引張り強度の変化を測定した。得られた結果を表4に示す。なお、各チャンバーで500時間又は1,000時間放置する前のもので測定した値を初期値とした。
Figure JPOXMLDOC01-appb-T000020
 85℃/85%RHのチャンバーで500時間又は1,000時間放置後の結果を初期値と比較すると、組成物1~4では、硬さが若干低下する傾向にあるが、切断時伸び及び引張り強度の大きな変化は無く、耐湿性良好と判断できる。いずれの項目においても物性変化率は50%以内であった。
 一方、有機スズを配合した組成物5と組成物6においては、組成物1~4と比較して硬さの変化は小さいものの、切断時伸び並びに引張り強度が大きく低下する結果となり、変化率は50%以上となった。

Claims (8)

  1. (A)下記一般式(1)で示されるオルガノポリシロキサン100質量部、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は独立に炭素数1~10の非置換又はハロゲン置換1価炭化水素基であり、nは10以上の数であり、Xは独立に酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に炭素数1~6の置換又は非置換1価炭化水素基であり、aは結合するケイ素原子毎に独立に0又は1である。)
    及び
    (B)下記一般式(2)で示される同一ケイ素原子上に加水分解性シリル-ビニレン基を2個有する加水分解性オルガノシラン化合物0.1~10質量部、
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は独立に炭素数1~20の非置換又は置換1価炭化水素基であり、R4は独立に炭素数1~20の非置換若しくは置換アルキル基又は炭素数3~20の非置換若しくは置換シクロアルキル基である。bは0~2の整数である。)
    を含有する第一剤と

    (C)下記一般式(3)で示されるオルガノポリシロキサン100質量部、
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は独立に炭素数1~10の非置換又はハロゲン置換1価炭化水素基であり、nは10以上の数である。)
    (D)1分子中に窒素原子を3個以上有するアミノ官能性基含有加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物0.1~10質量部、
    及び
    (E)ケトン基を有する有機化合物0.1~5質量部、
    を含有する第二剤と
    からなる二成分型室温硬化性オルガノポリシロキサン組成物。
  2.  (D)成分が、下記一般式(4)又は(4)’で表されるアミノ官能性基含有加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である請求項1に記載の二成分型室温硬化性オルガノポリシロキサン組成物。
    Figure JPOXMLDOC01-appb-C000004
    (各式中、Yは、その構造中に窒素原子を2個以上含有する炭素数1~15の1価又は2価炭化水素基を示し、Zは、ヘテロ原子を含んでもよい炭素数1~10の非置換又は置換の2価炭化水素基を示す。Rは、炭素数1~6の加水分解性基及び炭素数1~6の1価炭化水素基から選ばれる1種又は2種以上の1価の基であり、ケイ素原子に結合する3個のRのうち、少なくとも2個のRは加水分解性基である。)
  3.  有機金属化合物を含有しないものである請求項1に記載の二成分型室温硬化性オルガノポリシロキサン組成物。
  4.  第一剤と第二剤の混合割合が体積比で第一剤:第二剤=1:1~10:1である請求項1に記載の二成分型室温硬化性オルガノポリシロキサン組成物。
  5.  第一剤と第二剤を混合して成型されたオルガノポリシロキサン組成物を85℃/85%RH環境下に1,000時間放置した時の物性変化率が、放置前の物性と比較して50%以内である硬化物を与えるものである請求項1に記載の二成分型室温硬化性オルガノポリシロキサン組成物。
  6.  請求項1~4のいずれか1項に記載の二成分型室温硬化性オルガノポリシロキサン組成物を含有する接着剤。
  7.  請求項1~4のいずれか1項に記載の二成分型室温硬化性オルガノポリシロキサン組成物を含有するシール剤。
  8.  請求項1~4のいずれか1項に記載の二成分型室温硬化性オルガノポリシロキサン組成物を含有するコーティング剤。
PCT/JP2023/018853 2022-05-30 2023-05-22 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品 WO2023234084A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087309 2022-05-30
JP2022087309 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023234084A1 true WO2023234084A1 (ja) 2023-12-07

Family

ID=89024752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018853 WO2023234084A1 (ja) 2022-05-30 2023-05-22 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品

Country Status (1)

Country Link
WO (1) WO2023234084A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649363A (ja) * 1992-08-04 1994-02-22 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2000234057A (ja) * 1998-12-14 2000-08-29 Shin Etsu Chem Co Ltd 室温速硬化性組成物
JP2001107023A (ja) * 1999-07-30 2001-04-17 Three Bond Co Ltd 自動車用室温硬化性シール材組成物
JP2002226708A (ja) * 2001-01-30 2002-08-14 Three Bond Co Ltd 自動車用室温硬化性シール材組成物
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
WO2022009759A1 (ja) * 2020-07-07 2022-01-13 信越化学工業株式会社 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
WO2023068094A1 (ja) * 2021-10-19 2023-04-27 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649363A (ja) * 1992-08-04 1994-02-22 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2000234057A (ja) * 1998-12-14 2000-08-29 Shin Etsu Chem Co Ltd 室温速硬化性組成物
JP2001107023A (ja) * 1999-07-30 2001-04-17 Three Bond Co Ltd 自動車用室温硬化性シール材組成物
JP2002226708A (ja) * 2001-01-30 2002-08-14 Three Bond Co Ltd 自動車用室温硬化性シール材組成物
WO2015093139A1 (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
WO2022009759A1 (ja) * 2020-07-07 2022-01-13 信越化学工業株式会社 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
WO2023068094A1 (ja) * 2021-10-19 2023-04-27 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤

Similar Documents

Publication Publication Date Title
KR102326223B1 (ko) 실온 경화성 오르가노폴리실록산 조성물 및 해당 실온 경화성 오르가노폴리실록산 조성물의 경화물인 성형물
JP5997778B2 (ja) 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
JP6314993B2 (ja) 多成分系室温硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び該硬化物からなる成型物
JP2738235B2 (ja) 紫外線及び湿気硬化性オルガノポリシロキサン組成物、その硬化物及びその製造方法
JP6747507B2 (ja) 室温硬化性組成物、シーリング材並びに物品
CN107429061B (zh) 室温固化性有机聚硅氧烷组合物和为该组合物的固化物的成型物
KR101954055B1 (ko) 다성분 실온-경화성 실리콘 탄성중합체 조성물
WO2014097573A1 (ja) 新規エチニル基含有オルガノポリシロキサン化合物、分子鎖両末端エチニル基含有直鎖状オルガノポリシロキサン化合物の製造方法、アルコキシシリル-エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
JP6760223B2 (ja) 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
EP1323782B1 (en) Room temperature curable organopolysiloxane compositions
WO2020209083A1 (ja) オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
JPS62252456A (ja) 室温硬化性オルガノポリシロキサン組成物
WO2022009759A1 (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
JP2006131824A (ja) 室温硬化性オルガノポリシロキサン組成物
WO2023068094A1 (ja) 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤
WO2014185276A1 (ja) アルミニウムキレート化合物及びこれを含有する室温硬化性樹脂組成物
EP3967730B1 (en) Room-temperature-vulcanizing organopolysiloxane composition, silicone rubber, and article
WO2023234084A1 (ja) 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品
JPH11323132A (ja) 室温硬化性ポリオルガノシロキサン組成物
JPH09241509A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2005213487A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP6690737B2 (ja) 新規アリーレン基含有オルガノポリシロキサン及びこれを用いた硬化性オルガノポリシロキサン組成物
KR20240089740A (ko) 실온 경화성 오르가노폴리실록산 조성물, 접착제, 시일제 및 코팅제
KR20240000527A (ko) 실온경화성 실리콘 코팅제 조성물 및 물품
JP2022190755A (ja) 室温硬化性オルガノポリシロキサン組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815843

Country of ref document: EP

Kind code of ref document: A1