WO2022009759A1 - 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品 - Google Patents

二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品 Download PDF

Info

Publication number
WO2022009759A1
WO2022009759A1 PCT/JP2021/024888 JP2021024888W WO2022009759A1 WO 2022009759 A1 WO2022009759 A1 WO 2022009759A1 JP 2021024888 W JP2021024888 W JP 2021024888W WO 2022009759 A1 WO2022009759 A1 WO 2022009759A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
agent
carbon atoms
component
room temperature
Prior art date
Application number
PCT/JP2021/024888
Other languages
English (en)
French (fr)
Inventor
貴大 山口
晃嗣 藤原
徳夫 佐藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP21836856.1A priority Critical patent/EP4180488A1/en
Priority to US18/013,311 priority patent/US20230250287A1/en
Priority to CN202180048327.4A priority patent/CN115867612A/zh
Priority to JP2022535269A priority patent/JPWO2022009759A1/ja
Publication of WO2022009759A1 publication Critical patent/WO2022009759A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups

Definitions

  • the present invention is a two-component room temperature fast-curing organopolysiloxane composition, in particular, two hydrolyzable silyl groups in one molecule and one in each of the two hydrolyzable silyl groups.
  • a room temperature curable organ that is crosslinked by a hydrolysis / condensation reaction when it comes into contact with moisture (moisture) in the air and is cured at room temperature (23 ° C ⁇ 15 ° C) to become an elastomer cured product (silicone rubber cured product).
  • moisture moisture
  • elastomer cured product silicon rubber cured product
  • Various types of polysiloxane compositions are known.
  • the de-alcohol type which releases alcohol and cures due to the condensation reaction during cross-linking, has no unpleasant odor and does not corrode metals, so it is suitable for sealing, bonding, and coating of electrical and electronic equipment. It is used in.
  • compositions include a composition composed of a silanol group-terminated linear organopolysiloxane, an alkoxysilane and an organic titanium compound, and an alkoxysilyl group-terminated linear organopolysiloxane, an alkoxysilane and an alkoxytitanium.
  • Composition a composition consisting of a linear organopolysiloxane whose terminal is closed with an alkoxysilyl group containing a silethylene group, an alkoxysilane and an alkoxytitanium, and a silanol group-terminated linear organopolysiloxane or an alkoxy group terminal.
  • Patent Documents 1 to 4 Japanese Patent Application Laid-Open No. 39-27643, Japanese Patent Application Laid-Open No. 55-43119, Special Fairness 7). -39547A, JP-A-7-331076).
  • linear organosiloxane polymers having a hydrolyzable (reactive) alkoxysilyl group at the end are conventionally known.
  • this composition containing a linear organosiloxane polymer as a main component the terminal group of the polymer is previously sealed with an alkoxysilyl group, so that the curability does not easily decrease over time and the storage stability is excellent. ..
  • workability viscosity, thixotropic property, etc.
  • the polymer reacts with moisture in the air and crosslinks to form an elastomer (cured product of organopolysiloxane composition).
  • This elastomer also has excellent properties (hardness, tensile strength, elongation during cutting).
  • the de-alcohol type room temperature curable organopolysiloxane composition is compared with other conventionally known curing types such as deoxime type, deacetic acid type, and deacetone type room temperature curable organopolysiloxane composition. Curability was insufficient due to its low reactivity with moisture in the air.
  • the two-component dealcohol type room temperature curable organopolysiloxane composition is a one-component dealcohol type room temperature curable organopolysiloxane.
  • the curability is excellent, but the curability in the deep part is slow, and sufficient curing in a short time has not been obtained.
  • the present inventors have an object of developing a room temperature curable organopolysiloxane composition capable of providing a cured product having excellent fast curing property and excellent moisture resistance (curing property after storage under moisture resistant conditions).
  • a linear organopolysiloxane polymer having an alkoxysilyl-binylene group (alkoxysilyl-ethenylene group) at the end of the molecular chain and a room temperature curable organopolysiloxane composition containing the polymer as a main component have been proposed (Patent).
  • Documents 5 and 6 Japanese Patent No. 5960843, Japanese Patent No. 5997778). These compositions are satisfactory in nature.
  • the present invention has been made in view of the above circumstances, and is a dealcohol-type room-temperature curable organopolysiloxane composition, which is a two-component type and has excellent fast-curing and deep-curing properties. It is an object of the present invention to provide a polysiloxane composition, various articles having the composition, an elastomer molded product (silicone rubber cured product) obtained by curing the room temperature fast-curing organopolysiloxane composition, and the like.
  • the present inventors consider that the linking group of the alkoxysilyl group is a vinylene group (ethenylene group). It has been found that a compound having a certain structure is remarkably excellent in the hydrolysis property of the alkoxy group in the alkoxysilyl group. In addition, based on this finding, the present inventors are organosilane compounds having two hydrolyzable silyl groups in one molecule represented by the formula (3) described later, and the two hydrolysiss thereof.
  • a group having a structure in which a carbon-carbon double bond is linked to a silicon atom existing in each of the sex silyl groups that is, an alkoxysilyl-vinylene group (alkoxysilyl-ethenylene group) is placed on the same silicon atom in one molecule.
  • an alkoxysilyl-vinylene group alkoxysilyl-ethenylene group
  • the fast-curing property is particularly excellent.
  • a dealcohol type room temperature curable organopolysiloxane composition that gives a cured product having good storage stability and durability can be obtained.
  • the two-component dealcohol type room temperature curable organopolysiloxane composition is superior in curability, but in the deep part.
  • the hydrolyzable organosilane represented by the formula (3) described later on the reactivity Hydrolysis represented by the formula (3) described later by using a compound and / or a partially hydrolyzed condensate thereof as the first agent and a curing catalyst as the second agent separately as a two-component material.
  • a two-component room temperature rapid curing that provides further rapid curing and deep curing by mixing a first agent containing a sex organosilane compound and / or a partially hydrolyzed condensate thereof with a second agent containing a curing catalyst. It has been found that a sex organopolysiloxane composition can be obtained, and the present invention has been made.
  • the present invention comprises the following two-component room temperature fast-curing organopolysiloxane composition, a sealant, a coating agent or an adhesive containing the two-component room temperature fast-curing organopolysiloxane composition, and the two components.
  • the present invention provides a molded product made of an elastomeric cured product (silicone rubber cured product) of a mold room temperature curable organopolysiloxane composition.
  • R 6 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 7 is an independently unsubstituted or substituted alkyl group having 1 to 20 carbon atoms.
  • the first agent containing (A) Organopolysiloxane represented by the following general formula (1) or (2): 10 to 100 parts by mass, (In the general formula (1), R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 10 or more.) (In the general formula (2), R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, R 3 is an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and R Reference numeral 4 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond having 1 to 20 carbon atoms, and R 5 is an alkyl group or alkoxyalkyl group independently having 1 to 4 carbon atoms.
  • Curing catalyst It is composed of a second agent containing 0.001 to 10 parts by mass with respect to a total of 100 parts by mass of the component (A) contained in the first agent and the second agent.
  • the filler (D) is contained in the first agent and the second agent in an amount of 0 to 1,000 parts by mass, respectively, with respect to a total of 100 parts by mass of the component (A) contained in the first agent and the second agent.
  • the (E) adhesion promoter is contained in the first agent and the second agent in an amount of 0 to 30 parts by mass, respectively, with respect to a total of 100 parts by mass of the component (A) contained in the first agent and the second agent.
  • at least one of the first agent and the second agent contains 0.001 part by mass or more
  • (F) the organopolysiloxane represented by the following general formula (4) is added to the first agent and the second agent with respect to a total of 100 parts by mass of the component (A) contained in the first agent and the second agent.
  • R 8 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond having 1 to 20 carbon atoms, and p is an integer of 1 to 2,000.
  • [5] The two-component room temperature fast-curing organopolysiloxane composition according to any one of [1] to [4], wherein the ratio of the first agent to the second agent is 1: 1 to 10: 1 in mass ratio.
  • An adhesive containing the two-component room temperature fast-curing organopolysiloxane composition according to any one of [1] to [5].
  • a molded product comprising a cured product of the two-component room temperature fast-curing organopolysiloxane composition according to [9].
  • the two-component type room temperature fast-curing organopolysiloxane composition of the present invention comprises a two-component type of a first agent and a second agent.
  • first agent and the second agent are mixed, they are excellent in quick curing property and deep curing property.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention is particularly excellent in quick-curing in air at room temperature and has good workability. Further, it has storage stability. Therefore, the two-component room temperature fast-curing organopolysiloxane composition of the present invention cures quickly when the first agent and the second agent are mixed and exposed to air even after storage for a long period of time, for example, 6 months. And show excellent physical properties. Therefore, the two-component room temperature fast-curing organopolysiloxane composition of the present invention is useful as a sealant, a coating agent, and an adhesive at places where heat resistance, water resistance, and moisture resistance are required. In particular, it can be effectively used as a building application requiring moisture resistance and water resistance, and an adhesive for electrical and electronic applications.
  • hydrolyzable organosilane compound having two alkoxysilyl-vinylene groups and / or a partially hydrolyzed condensate thereof represented by the above general formula (3), in other words, two hydrolytic properties in the molecule.
  • Ahydrolytic organosilane compounds such as atomic-ethenylene group-hydrolyzable silyl group), bis (hydrolyzable silyl) type organosilane and / or a partially hydrolyzed condensate thereof (hydrolyzable siloxane oligomer) are cured.
  • component (B) the present invention can provide a cured product which is particularly excellent in rapid curing property and deep curing property, and at the same time, has good storage stability and durability.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention can be used. It can be manufactured in an industrially advantageous manner. Further, as described above, by mixing the first agent and the second agent, a room temperature fast-curing organopolysiloxane composition having excellent fast-curing and deep-curing properties can be prepared.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention comprises a first agent containing a specific amount of a component (A) and a component (B), which will be described later, and a component (A) and a component (C). It consists of a second agent containing a specific amount of.
  • the first agent does not contain the component (C), and the second agent does not contain the component (B).
  • component (A) is an organopolysiloxane represented by the general formula (1) or (2) described later, and acts as a main agent (base polymer) in the two-component room temperature fast-curing organopolysiloxane composition of the present invention. It is a thing.
  • the organopolysiloxane represented by the following general formula (1) is sealed with a hydroxyl group (silanol group) or a diorganohydroxysiloxy group in which both ends of the molecular chain are bonded to a silicon atom, and the main chain is a diorganosiloxane unit ((R 1). ) 2 A linear diorganopolysiloxane having a repeating structure of SiO 2/2).
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 10 or more.
  • the unsubstituted or substituted monovalent hydrocarbon group of R 1 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 10 carbon atoms. It is 8. Specific examples of the unsubstituted monovalent hydrocarbon group of R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group and a hexyl group.
  • Alkyl groups such as heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group; cyclopentyl group, cyclohexyl Cycloalkyl groups such as groups and cycloheptyl groups; alkenyl groups such as vinyl groups, allyl groups, propenyl groups, isopropenyl groups, butenyl groups, pentenyl groups and hexenyl groups; phenyl groups, trill groups, xsilyl groups, ⁇ -, ⁇ -Aryl groups such as naphthyl group and biphenylyl group; aralkyl groups such as benzy
  • substituted monovalent hydrocarbon group of R 1 a part or all of the hydrogen atom of the unsubstituted monovalent hydrocarbon group was substituted with a halogen atom such as F, Cl, Br, a cyano group or the like.
  • a halogen atom such as F, Cl, Br, a cyano group or the like.
  • the group is mentioned. Examples of such a group include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group and the like.
  • R 1 among these unsubstituted or substituted monovalent hydrocarbon groups, a methyl group, an ethyl group and a phenyl group are preferable, and a methyl group and a phenyl group are particularly preferable from the viewpoint of availability, productivity and cost. preferable.
  • the plurality of R 1s may be the same as or different from each other.
  • the organopolysiloxane of the component (A) represented by the general formula (1) preferably has a viscosity at 23 ° C. of 20 to 1,000,000 mPa ⁇ s, more preferably 50 to 500,000 mPa ⁇ s. Those, particularly preferably those of 100 to 100,000 mPa ⁇ s, and more preferably those of 500 to 80,000 mPa ⁇ s.
  • the viscosity of the organopolysiloxane at 23 ° C. is 20 mPa ⁇ s or more, it is preferable because it is easy to obtain a coating film having excellent physical and mechanical strength.
  • the viscosity of the composition does not become too high and the workability at the time of use is good, which is preferable.
  • the viscosities are all numerical values measured by a rotational viscometer (hereinafter the same) unless otherwise specified.
  • the rotational viscometer include BL type, BH type, BS type, cone plate type and the like.
  • n in the above formula (1) is an integer of 10 or more, and is the number or degree of polymerization of bifunctional diorganosiloxane units ((R 1 ) 2 SiO 2/2) present in one molecule.
  • the organopolysiloxane of the component (A) can have a viscosity within the above-mentioned preferable range
  • the degree of polymerization is determined as the polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent (. same as below).
  • GPC gel permeation chromatography
  • the organopolysiloxane represented by the following general formula (2) is a linear organopolysiloxane having both ends of the molecular chain sealed with a hydrolyzable silyl group such as an alkoxysilyl group.
  • R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 3 is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • R Reference numeral 4 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond having 1 to 20 carbon atoms
  • R 5 is an alkyl group or alkoxyalkyl group independently having 1 to 4 carbon atoms. It is an alkenyl group or an acyl group, x is an integer of 0 to 2, and m is an integer of 10 or more.
  • R 2 is independently substituted or substituted with 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 1 to 3 carbon atoms.
  • It is a valent hydrocarbon group, and examples thereof include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, and an alkyl halide group.
  • linear alkyl group examples include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group and a heptadecyl group.
  • Examples include a group, an octadecyl group, a nonadecyl group, and an eikosyl group.
  • Examples of the branched chain alkyl group include an isopropyl group, an isobutyl group, a tert-butyl group and a 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • Examples of the alkenyl group include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a pentenyl group and a hexenyl group.
  • Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, an ⁇ -, ⁇ -naphthyl group, and a biphenylyl group.
  • Examples of the aralkyl group include a benzyl group, a 2-phenylethyl group, a 3-phenylpropyl group, a 2-methyl-2-phenylethyl group and a methylbenzyl group.
  • alkyl halide group examples include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
  • R 2 a methyl group and a phenyl group are preferable.
  • R 3 is an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and examples of the alkylene group having 1 to 4 carbon atoms of R 3 include a methylene group, an ethylene group, a propylene group and a butylene. The group etc. can be mentioned.
  • R 3 an oxygen atom and an ethylene group are preferable.
  • R 4 is independently substituted or not containing an aliphatic unsaturated bond having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 1 to 3 carbon atoms. It is a substituted monovalent hydrocarbon group.
  • R 4 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group.
  • a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group and the like can be exemplified.
  • R 4 a methyl group, an ethyl group and a phenyl group are preferable.
  • R 5 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group having 1 to 4 carbon atoms.
  • the alkyl group of R 5 include an alkyl group having 1 to 4 carbon atoms similar to those exemplified for R 2.
  • the alkoxyalkyl group of R 5 include those having 2 to 4 carbon atoms such as a methoxyethyl group and a methoxypropyl group.
  • Examples of the alkenyl group of R 5 include an alkenyl group having 2 to 4 carbon atoms similar to those exemplified for R 2.
  • acyl group of R 5 examples include those having 1 to 4 carbon atoms such as an acetyl group and a propionyl group.
  • R 5 is preferably an alkyl group, and particularly preferably a methyl group or an ethyl group.
  • x is an integer of 0 to 2 (0, 1 or 2), preferably 0 or 1, and more preferably 0.
  • the number of organooxy groups such as an alkoxy group bonded to a silicon atom represented by OR 5 which is a hydrolyzable group is 2 to 6, preferably 4 to 6, and more preferably 4 in one molecule. Or 6 pieces.
  • the organopolysiloxane of the component (A) represented by the general formula (2) preferably has a viscosity at 23 ° C. of 20 to 1,000,000 mPa ⁇ s, more preferably 50 to 500,000 mPa ⁇ s. Those, particularly preferably those of 100 to 200,000 mPa ⁇ s, and more preferably those of 500 to 100,000 mPa ⁇ s.
  • the viscosity of the organopolysiloxane at 23 ° C. is 20 mPa ⁇ s or more, it is preferable because it is easy to obtain a coating film having excellent physical and mechanical strength.
  • it is 1,000,000 mPa ⁇ s or less, the viscosity of the composition does not become too high and the workability at the time of use is good, which is preferable.
  • m in the above formula (2) is an integer of 10 or more, and is the number or degree of polymerization of bifunctional diorganosiloxane units ((R 2 ) 2 SiO 2/2) present in one molecule.
  • the bifunctional diorganosiloxane represented by m in the general formula (2) ((R 2 ) 2 SiO 2/2 ). ) Is an integer of 10 to 2,000, preferably 50 to 1,800, more preferably 100 to 1,700, and even more preferably 200 to 1,600. ..
  • the organopolysiloxane of the component (A) can be used alone or in combination of two or more.
  • Component (B) Hydrolytic organosilane compound and / or its partially hydrolyzed condensate-
  • the component (B) acts as a curing agent (crosslinking agent) in the two-component room temperature fast-curing organopolysiloxane composition of the present invention.
  • the component (B) is a hydrolyzable organosilane compound having two alkoxysilyl-binylene groups (alkoxysilyl-ethenylene groups) on the same silicon atom represented by the following general formula (3) and / or partial hydrolysis thereof. It is a condensate.
  • the partially hydrolyzable condensate is an organosiloxane oligomer having at least three residual hydrolyzable groups in one molecule, which is produced by partially hydrolyzing and condensing the hydrolyzable organosilane. means.
  • an organosiloxane oligomer having two residual hydrolyzable groups may be used in combination.
  • R 6 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 7 is an independently unsubstituted or substituted alkyl group having 1 to 20 carbon atoms.
  • a is an integer of 1 to 3 independently for each silicon atom.
  • the unsubstituted or substituted monovalent hydrocarbon group of each R 6 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 10 carbon atoms. It has 1 to 8 carbon atoms.
  • Examples of unsubstituted monovalent hydrocarbon groups of R 6 are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group and heptyl group.
  • Octyl group nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and other alkyl groups; cyclopentyl group, cyclohexyl group, Cycloalkyl group such as cycloheptyl group; alkenyl group such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group, hexenyl group; phenyl group, trill group, xsilyl group, ⁇ -, ⁇ -naphthyl An aryl group such as a group and a biphenylyl group; an aralkyl group such as a benzyl
  • the substituted monovalent hydrocarbon group of R 6 a part or all of the hydrogen atom of these unsubstituted monovalent hydrocarbon groups is substituted with a halogen atom such as F, Cl, Br or the like, a cyano group or the like. Examples thereof include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group and the like.
  • a methyl group, an ethyl group and a phenyl group are preferable, and a methyl group and a phenyl group are particularly preferable from the viewpoint of availability, productivity and cost. preferable.
  • the plurality of R 6s may be the same as or different from each other.
  • R 7 is an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, or an unsubstituted or substituted cycloalkyl group having 3 to 20 carbon atoms.
  • the unsubstituted or substituted alkyl group has 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • Examples of the unsubstituted alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group and a nonyl group.
  • Examples thereof include a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group and an eicosyl group.
  • the unsubstituted or substituted cycloalkyl group has 3 to 20 carbon atoms, preferably 4 to 8 carbon atoms, and more preferably 5 or 6 carbon atoms.
  • Examples of the unsubstituted cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and the like. Further, a part or all of hydrogen atoms of these unsubstituted alkyl groups and unsubstituted cycloalkyl groups may be substituted with halogen atoms such as F, Cl and Br, cyano groups and the like. Examples of the substituted alkyl group and the substituted cycloalkyl group include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group and the like. Among these, as R 7 , a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable, from the viewpoint of hydrolyzability and the like.
  • a is the number of alkoxy groups bonded to the silicon atom of the alkoxysilyl-vinylene group, and is an integer of 1 to 3 independently for each silicon atom, and may be 2 or 3. It is preferable from the viewpoint of curability.
  • those in which two alkoxysilyl-vinylene groups in one molecule each have three alkoxy groups such as a methoxy group, that is, those having a total of six alkoxy groups in one molecule are trifunctional. Since there are two alkoxysilane moieties in one molecule, it is useful as a curing agent (crosslinking agent) for the two-component room temperature fast-curing organopolysiloxane composition of the present invention.
  • hydrolyzable organosilane compound of the component (B) examples include, for example.
  • Hydrolytic organosilane compounds having (organo) dialkoxysilyl-vinylene groups such as two (organo) dimethoxysilyl-vinylene groups and (organo) diethoxysilyl-vinylene groups on the atom, and partial hydrolysis condensation thereof. Things can be mentioned.
  • component (B) general-purpose chlorosilane or hydrosilane (diorganodichlorosilane, monohydroalkoxysilane, etc.) can be used as a starting material. Specifically, it has a hydrolyzable silyl-vinylene group (hydrolytable silyl-ethenylene group) such as two alkoxysilyl-vinylene groups (alkoxysilyl-ethenylene group) on the same silicon atom of the component (B).
  • hydrolyzable silyl-vinylene group hydrolyzable silyl-vinylene group
  • silytable silyl-ethenylene group such as two alkoxysilyl-vinylene groups (alkoxysilyl-ethenylene group) on the same silicon atom of the component (B).
  • the hydrolyzable organosilane compound is, for example, a monohydroalkoxysilane that is twice as molar as that of an organosilane having two ethynyl groups on the same silicon atom, which is derived from an industrially general-purpose diorganodichlorosilane. It can be easily produced by a method such as hydrosilylation addition reaction of hydrosilane containing a hydrolyzable group such as.
  • This reaction formula is represented by, for example, the following formula (3-1). (In the formula, R 6 , R 7 , and a are as in the general formula (3).)
  • platinum group metal-based catalysts such as platinum-based, palladium-based, rhodium-based, and ruthenium-based catalysts are used.
  • platinum-based ones are particularly suitable. Examples of this platinum-based material include platinum black or a carrier such as alumina or silica on which solid platinum is supported, platinum chloride acid, alcohol-modified platinum chloride acid, a complex of platinum chloride acid and olefin, or platinum and vinyl siloxane. Can be exemplified with the above-mentioned complex and the like.
  • the amount of these platinums used may be a so-called catalytic amount, and is 0.1 to 1,000 ppm in terms of mass of the platinum group metal, particularly 0. It can be used at about 5 to 100 ppm.
  • This reaction is generally preferably carried out at a temperature of 50 to 120 ° C., particularly 60 to 100 ° C., for 0.5 to 12 hours, particularly 1 to 6 hours, and can be carried out without the use of a solvent. If necessary, an appropriate solvent such as toluene or xylene can be used as long as it does not adversely affect the hydrosilylation addition reaction or the like.
  • the hydrolyzable organosilane compound of the component (B) and / or a partially hydrolyzed condensate thereof may be used alone or in combination of two or more.
  • the blending amount of the component (B) is 0.1 to 30 parts by mass, preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of the total of the components (A) contained in the first agent and the second agent. It is a department. If the amount of the component (B) is too small, sufficient cross-linking cannot be obtained when the composition is cured, and if it is too large, the mechanical properties (rubber characteristics) of the obtained cured product (silicone rubber cured product) are also deteriorated. There may be a problem of financial disadvantage.
  • the curing catalyst of the component (C) is used to promote the hydrolysis-condensation reaction between the two-component room temperature fast-curing organopolysiloxane composition of the present invention and the moisture in the air, and is generally called a curing catalyst. It is a thing. As this, known ones usually used for room temperature curable silicone resin compositions that cure in the presence of moisture can be used.
  • the non-metallic organic catalyst is not particularly limited, but a known one as a curing accelerator for the condensation curing type organopolysiloxane composition can be used.
  • phosphazene-containing compounds such as N, N, N', N', N'', N''-hexamethyl-N'''-(trimethylsilylmethyl) -phosphorimidic triamide; hexylamine, dodecylamine phosphate.
  • Amine compounds such as or salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine; N, N, N', N'-tetramethylguanidylpropyltri
  • a guanidyl group such as methoxysilane, N, N, N', N'-tetramethylguanidylpropylmethyldimethoxysilane, N, N, N', N'-tetramethylguanidylpropyltris (trimethylsiloxy) silane Examples thereof include silanes and siloxanes contained therein.
  • the non-metal organic catalyst may be used alone or in combination of two or more.
  • the metal-based catalyst is not particularly limited, but known ones can be used as the curing catalyst of the condensation curing type organopolysiloxane.
  • alkyl tin ester compounds such as dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin dioctate, dimethyl tin dineodecanoate, dioctyl tin dineodecanoate, di-n-butyl-dimethoxystin; tetraisopropoxytitanium, Titanium esters or titanium chelate compounds such as tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, dipropoxybis (acetylacetonato) titanium, titaniumisopropoxyoctylene glycol; zinc naphthenate, zinc stearate, zinc -2-Ethyloctate;
  • the blending amount of the component (C) is 0.001 to 10 parts by mass, particularly 0.005 to 8 parts by mass, based on 100 parts by mass of the total of the components (A) contained in the first agent and the second agent. Further, 0.01 to 5 parts by mass is preferable. If it is less than 0.001 part by mass, good curability cannot be obtained, which causes a problem that the curing speed is delayed. On the contrary, if the amount exceeds 10 parts by mass, the curability of the composition is too fast, so that the allowable range of working time after coating the composition may be shortened or the mechanical properties of the obtained rubber may be deteriorated. be.
  • the component (D) is a filler (inorganic filler and / or organic resin filler), which is an optional component that can be blended as needed, and is formed from the two-component room temperature fast-curing organopolysiloxane composition of the present invention. It is used to give sufficient mechanical strength to the cured product.
  • Known fillers can be used, and for example, wet silica such as fine powder silica, fumigant silica, and sedimentary silica, and reinforcement such as silica whose surface is hydrophobicized with an organic silicon compound.
  • Metal oxides such as silica-based fillers, glass beads, glass balloons, transparent resin beads, silica aerogels, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, fuming metal oxides, quartz powder (crystalline silica fine powder) , Carbon black, talc, reinforcing agents such as zeolite and bentonite, metal carbonates such as asbestos, glass fiber, carbon fiber, calcium carbonate, magnesium carbonate, zinc carbonate, asbestos, glass wool, fine powder mica, molten silica powder (up to this point) Inorganic filler), synthetic resin powders such as polystyrene, polyvinyl chloride, and polypropylene are used.
  • inorganic fillers such as silica, calcium carbonate, and zeolite are preferable, and aerosol silica and calcium carbonate whose surface is hydrophobized are particularly preferable.
  • the blending amount thereof is 0 to 0 to 100 parts by mass of the component (A) contained in the first agent or the second agent, respectively. It is preferably 1,000 parts by mass (however, 0.1 part by mass or more is contained in at least one of the first agent and the second agent), and 0 to 500 parts by mass (however, at least the first agent). , 0.1 part by mass or more is contained in any one of the second agents). If it is used in a larger amount than 1,000 parts by mass, not only the viscosity of the composition increases and the workability deteriorates, but also the rubber strength after curing decreases and it becomes difficult to obtain rubber elasticity.
  • the total blending amount in the composition is 0.1 to 2,000 with respect to a total of 100 parts by mass of the component (A) contained in the first agent and the second agent. It is preferably parts by mass, particularly 0.1 to 1,000 parts by mass.
  • Adhesion promoter- The component (E) is an adhesion accelerator, which is an optional component that can be blended as needed, and imparts sufficient adhesiveness to a cured product formed from the two-component room temperature fast-curing organopolysiloxane composition of the present invention. Used for.
  • Known adhesion promoters are preferably used, and silane coupling agents such as functional group-containing hydrolyzable silanes, specifically, vinyl silane coupling agents, (meth) acrylic silane coupling agents, and epoxysilanes.
  • Coupling agents aminosilane coupling agents (excluding guanidyl group-containing hydrolyzable organosilane compounds), mercaptosilane coupling agents, isocyanatesilane coupling agents, etc. are exemplified, and specifically, vinyltris ( ⁇ -methoxy).
  • Ethoxy silane ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N - ⁇ - (Aminoethyl) ⁇ -Aminopropyltrimethoxysilane, ⁇ -Aminopropyltriethoxysilane, 3-2- (Aminoethylamino) propyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-Ixocyanatepropyltri Examples thereof include ethoxysilane.
  • aminosilanes such as ⁇ -aminopropyltriethoxysilane and N- ⁇ - (aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-) Epoxysilanes such as (epoxycyclohexyl) ethyltrimethoxysilane and isocyanate silanes such as 3-isocyandiapropyltriethoxysilane are preferred.
  • the blending amount thereof is 0 to 0 to 100 parts by mass of the component (A) contained in the first agent and the second agent, respectively. It is preferably 30 parts by mass (however, 0.001 part by mass or more is contained in at least one of the first agent and the second agent), and particularly preferably 0.1 to 20 parts by mass. That is, when the component (E) is blended, the total blending amount in the composition is 0.001 to 60 parts by mass with respect to 100 parts by mass of the total of the component (A) contained in the first agent and the second agent. In particular, it is preferably 0.1 to 40 parts by mass. It is not necessary to use the adhesive when adhering with the filler and the adherend without using the adhesion promoter.
  • organopolysiloxane- In the two-component room temperature fast-curing organopolysiloxane composition of the present invention, in addition to the above components (A) to (E), (F) a linear diorgano represented by the following general formula (4).
  • Polysiloxane (so-called non-functional silicone oil) may be contained as an optional component that can be blended as needed.
  • R 8 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond having 1 to 20 carbon atoms, and p is an integer of 1 to 2,000. be.
  • the unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond of R 8 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. , More preferably 1 to 8 carbon atoms.
  • the plurality of R 8s may be the same as or different from each other.
  • the unsubstituted monovalent hydrocarbon group of R 8 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group and an octyl group.
  • Alkyl group such as group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group, eicosyl group; cyclopentyl group, cyclohexyl group, cycloheptyl Cycloalkyl groups such as groups; phenyl groups, trill groups, xylyl groups, ⁇ -, ⁇ -naphthyl groups, aryl groups such as biphenylyl groups; benzyl groups, 2-phenylethyl groups, 3-phenylpropyl groups, 2-methyl- An aralkyl group such as a 2-phenylethyl group and a methylbenzyl group can be exemplified.
  • R 8 is preferably a methyl group, and is preferably a dimethylpolysiloxane in which both ends of the molecular chain are sealed with a trimethylsiloxy group.
  • p is a numerical value indicating the degree of polymerization of the component (F), and is an integer of 1 to 2,000, particularly preferably an integer of 2 to 2,000, and an integer of 20 to 2,000. More preferred.
  • the viscosity of the diorganopolysiloxane of the component (F) at 23 ° C. is 1.5 to 1,000,000 mPa ⁇ s, preferably 30 to 100,000 mPa ⁇ s. Will be.
  • the blending amount thereof is 0 to 0 to 100 parts by mass of the component (A) contained in the first agent and the second agent, respectively. It is preferably 100 parts by mass (however, at least one of the first agent and the second agent contains 0.01 parts by mass or more), and more preferably 10 to 80 parts by mass. That is, when the component (F) is blended, the total blending amount in the composition is 0.01 to 200 parts by mass with respect to a total of 100 parts by mass of the component (A) contained in the first agent and the second agent. In particular, it is preferably 10 to 160 parts by mass.
  • the amount of the component (F) is within the above range, it is preferable in that the mechanical properties and flame retardancy of the cured product (silicone rubber) of the two-component room temperature fast-curing organopolysiloxane composition of the present invention are not impaired.
  • the viscosity of the composition before curing can be adjusted to a viscosity that is easy to handle in construction.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention contains components (A), (B) and (C) as essential components, and further, (D), (E), (D), (E), ( F) It is preferable to mix the components.
  • known additives such as pigments, dyes, antioxidants, antioxidants, antistatic agents, antimony oxide, and flame retardants such as chlorinated paraffin can be blended as additives.
  • a polyether, an antifungal agent, and an antibacterial agent as a thixophilic improver can be blended.
  • an organic solvent may be used for the two-component room temperature fast-curing organopolysiloxane composition of the present invention, if necessary.
  • the organic solvent include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, isooctane, and isododecane; aromatic hydrocarbon compounds such as toluene and xylene; hexamethyldisiloxane, octamethyltrisiloxane, and decamethyltetra.
  • Chain siloxanes such as siloxane, dodecamethylpentasiloxane, 2- (trimethylsiloxy) -1,1,1,2,3,3,3-heptamethyltrisiloxane; octamethylcyclopentasiloxane, decamethylcyclopentasiloxane, etc. Cyclic siloxane and the like.
  • the amount of the organic solvent may be appropriately adjusted within a range that does not interfere with the effect of the present invention.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention comprises a part of the component (A) and the entire component (B), and the first agent containing no component (C) and ( It consists of a second agent containing the rest of the A) component and the entire component (C) and not containing the component (B).
  • the first agent comprises a part of the component (A), all of the component (B), and if necessary, a part or all of the components (D), (E), (F) and other components according to a conventional method. It can be prepared by mixing.
  • the second agent comprises the balance of the component (A), all of the component (C), and if necessary, the balance of the components (D), (E), (F) and other components, or all of them according to a conventional method. It can be prepared by mixing.
  • the component (A) is blended in the first agent and the second agent, and the ratio of the first agent and the second agent is 100: 10 to 100: 100, particularly 100: 25 to 100: 100: It is preferable to mix the mixture so as to be 100 in terms of workability and uniformity (easiness of mixing) of the composition when the first agent and the second agent are mixed.
  • the optional components (D), (E), (F) and other components may be blended in either the first agent or the second agent, or may be blended in either one or both. Although they may be blended, it is particularly preferable to blend the components (D), (E) and (F) in the first agent and the components (D) and (F) in the second agent.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention can store the first agent and the second agent produced as described above in an atmosphere away from moisture.
  • the ratio of the first agent to the second agent is 1: 1 to 10: 1 in mass ratio, particularly.
  • 1: 1 to 4: 1 it usually cures at room temperature in 10 minutes to 5 days.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention has fast-curing properties, and usually takes 3 to 5 days to cure in a short time of 10 minutes to 3 days. It is a thing.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention has deep curability, and is usually 2 hours, but is cured to a deep part in a short time of 30 minutes. be.
  • an organopolysiloxane cured product layer (silicone rubber layer) that is cured on the surface of various substrates and well adhered to the substrate is formed.
  • the base material is not particularly limited, but may be metal (aluminum, iron, SUS, copper, etc.), organic resin (polycarbonate resin, acrylic resin, epoxy glass (galaepo) resin, etc.), glass, or the like.
  • Various substrates can be applied.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention is particularly excellent in quick-curing and deep-curing in air at room temperature, and has good workability. Further, it has storage stability. Therefore, the two-component room temperature fast-curing organopolysiloxane composition of the present invention cures quickly when the first agent and the second agent are mixed and exposed to air even after storage for a long period of time, for example, 6 months. And show excellent physical properties. That is, the two-component room temperature fast-curing organopolysiloxane composition of the present invention is a cured product having excellent heat resistance, water resistance, and moisture resistance.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention is useful as a sealant, a coating agent, and an adhesive at places where heat resistance, water resistance, and moisture resistance are required. In particular, it can be effectively used as a building application requiring moisture resistance and water resistance, and an adhesive for electrical and electronic applications.
  • the two-component room temperature fast-curing organopolysiloxane composition of the present invention may be cured to obtain a cured product having heat resistance, water resistance, and moisture resistance.
  • the method of using the two-component room temperature fast-curing organopolysiloxane composition of the present invention as a sealant, a coating agent or an adhesive may follow a conventionally known method.
  • Viscosity is a value measured by a rotational viscometer.
  • Example 1 Preparation of the first agent a 75 parts by mass of dimethylpolysiloxane having both ends of the molecular chain having a viscosity of 5,000 mPa ⁇ s at 23 ° C. sealed with a silanol group (a hydroxyl group bonded to a silicon atom) and a viscosity of 700 mPa at 23 ° C. 15 parts by mass of dimethylpolysiloxane in which both ends of the molecular chain of s are sealed with silanol groups, 8 parts by mass of dry silica (focal silica) having a BET specific surface area of 130 m 2 / g, and bis (trimethoxysilylethenyl).
  • the first agent a was prepared.
  • Preparation of the second agent b 75 parts by mass of dimethylpolysiloxane having both ends of the molecular chain having a viscosity of 5,000 mPa ⁇ s at 23 ° C sealed with silanol groups, and both ends of the molecular chain having a viscosity of 700 mPa ⁇ s at 23 ° C. Under reduced pressure, 15 parts by mass of dimethylpolysiloxane sealed with a silanol group, 8 parts by mass of dry silica (focal silica) having a BET specific surface area of 130 m 2 / g, and 0.1 part by mass of dimethylstin dineodecanoate.
  • the second agent b was prepared by mixing uniformly with.
  • composition 1 After the composition 1 is produced by uniformly mixing the first agent a and the second agent b at a mixing ratio (mass ratio) of 1: 1, the composition 1 is based on a thickness of 2.5 mm. It was applied on the material. Then, under the conditions of 23 ° C. and 50% RH, the mixture was allowed to stand for 1 day and 3 days to be cured to obtain cured products 1-1 and 1-2.
  • Example 2 The composition 2 was prepared in the same manner as in Example 1 except that 4.8 parts by mass of bis (methyldimethoxysilylethenyl) dimethylsilane was used instead of the bis (trimethoxysilylethenyl) dimethylsilane of the first agent a. It was manufactured and cured products 2-1 and 2-2 were obtained in the same manner.
  • Example 3 In the same manner as in Example 1 except that 1 part by mass of N, N, N', N'-tetramethylguanidylpropyltrimethoxysilane was used instead of dimethyltindineodecanoate of the second agent b.
  • the compositions 3-1 and 3-2 were produced, and the cured product 3 was obtained in the same manner.
  • compositions 4-1 and 4-2 were prepared in the same manner as in Example 1 except that 2.7 parts by mass of methyltrimethoxysilane was used instead of the bis (trimethoxysilylethenyl) dimethylsilane of the first agent a. It was produced, and the cured product 4 was obtained in the same manner.
  • composition 5 was produced in the same manner as in Example 1 except that 2.9 parts by mass of vinyltrimethoxysilane was used instead of the bis (trimethoxysilylethenyl) dimethylsilane of the first agent a. Hardened products 5-1 and 5-2 were obtained.
  • Table 1 shows the test results of Examples 1 to 3
  • Table 2 shows the test results of Comparative Examples 1 and 2.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

Abstract

二成分型の脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物であって、硬化剤として下記式(3)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物を含む第一剤と、硬化触媒を含む第二剤とからなる二成分型室温速硬化性オルガノポリシロキサン組成物が、とりわけ速硬化性、深部硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与える。(R6は炭素数1~20の非置換又は置換の1価炭化水素基、R7は炭素数1~20の非置換若しくは置換のアルキル基、又は炭素数3~20の非置換若しくは置換のシクロアルキル基、aは1~3。)

Description

二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
 本発明は、二成分型室温速硬化性オルガノポリシロキサン組成物、特には1分子中に2個の加水分解性シリル基と、該2個の加水分解性シリル基中にそれぞれ1個ずつ存在するケイ素原子に炭素-炭素二重結合が連結した構造の基、即ち、アルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を1分子中に2個(同一のケイ素原子上に)有するビスシリル型の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(加水分解性オルガノシロキサンオリゴマー)を、硬化剤(架橋剤)として含む二成分型室温硬化性オルガノポリシロキサン組成物、該組成物を有する各種物品、及び該二成分型室温硬化性オルガノポリシロキサン組成物を硬化して得られるエラストマーの成形物(シリコーンゴム硬化物)等に関するものである。
 従来、空気中の水分(湿気)と接触することによって加水分解・縮合反応により架橋し、室温(23℃±15℃)で硬化してエラストマー硬化物(シリコーンゴム硬化物)になる室温硬化性オルガノポリシロキサン組成物は、種々のタイプのものが公知である。とりわけ架橋時の縮合反応によりアルコールを放出して硬化する脱アルコールタイプのものは不快臭がない、金属類を腐食しないという特徴により、電気・電子機器等のシーリング用、接着用、コーティング用に好んで使用されている。
 かかる組成物の代表例としては、シラノール基末端封鎖直鎖状オルガノポリシロキサンとアルコキシシランと有機チタン化合物からなる組成物、アルコキシシリル基末端封鎖直鎖状オルガノポリシロキサンとアルコキシシランとアルコキシチタンからなる組成物、シルエチレン基を含むアルコキシシリル基で末端が封鎖された直鎖状オルガノポリシロキサンとアルコキシシランとアルコキシチタンからなる組成物、更に、シラノール基末端封鎖直鎖状オルガノポリシロキサン又はアルコキシ基末端封鎖直鎖状オルガノポリシロキサンとアルコキシ-α-シリルエステル化合物からなる組成物などが挙げられる(特許文献1~4:特公昭39-27643号公報、特開昭55-43119号公報、特公平7-39547号公報、特開平7-331076号公報)。
 これらの組成物は、ある程度の保存安定性、耐水性、耐湿性が得られているが、これらの物性を完全に満足するには至っていない。更に、速硬化性に関しても、まだ不十分であった。
 上述した通り、加水分解性(反応性)アルコキシシリル基を末端に有する直鎖状オルガノシロキサンポリマーは、従来公知である。この直鎖状オルガノシロキサンポリマーを主成分とする組成物は、予め、ポリマーの末端基がアルコキシシリル基で封鎖されているため、経時的に硬化性が低下し難く、保存安定性に優れている。また、作業性(粘度、チキソ性等)を任意に調整可能である。更にポリマーが空気中の水分と反応し、架橋することで、エラストマー(オルガノポリシロキサン組成物の硬化物)を形成する。このエラストマーは、優れた特性(硬度、引張り強さ、切断時伸び)も有している。
 しかしながら、脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物は、従来公知の他の硬化タイプである脱オキシムタイプ、脱酢酸タイプ、脱アセトンタイプの室温硬化性オルガノポリシロキサン組成物等と比較すると、空気中の水分との反応性が低いため、硬化性が不十分であった。
 一方で、脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物の中でも、二成分型の脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物は、1成分系の脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物に比べ、硬化性に優れるが、深部での硬化性が遅く、短時間での十分な硬化は得られていなかった。
特公昭39-27643号公報 特開昭55-43119号公報 特公平7-39547号公報 特開平7-331076号公報 特許第5960843号公報 特許第5997778号公報 国際公開第2015/194340号
 本発明者らは、速硬化性に優れ、かつ耐湿性(耐湿条件下での保存後の硬化性)に優れた硬化物を与えることが可能な室温硬化性オルガノポリシロキサン組成物の開発を目的として、アルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を分子鎖末端に有する直鎖状オルガノポリシロキサンポリマー並びにそのポリマーを主成分とする室温硬化性オルガノポリシロキサン組成物を提案している(特許文献5、6:特許第5960843号公報、特許第5997778号公報)。これらの組成物は、特性上は、申し分ない。しかし、各種分子量、置換基構造を有するポリマーを新たに合成する必要があるため、工業的に有利に製造できるものではない。そのため、アルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)の末端構造を有したケイ素化合物及びこのケイ素化合物からなる1成分系のオルガノポリシロキサン組成物を提案した(特許文献7:国際公開第2015/194340号)。しかしながら、さらなる速硬化性の向上が生産効率の向上につながると期待されるため、例えば二成分型での速硬化性を向上させた二成分型室温硬化性オルガノポリシロキサン組成物が望まれる。
 本発明は、上記事情に鑑みなされたもので、脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物であって、二成分型で速硬化性、深部硬化性に優れる二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物を有する各種物品、及び該室温速硬化性オルガノポリシロキサン組成物を硬化して得られるエラストマーの成形物(シリコーンゴム硬化物)等を提供することを目的とする。
 上述したような従来の脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物の硬化性が不十分であるという問題に関して、本発明者らは、アルコキシシリル基の連結基がビニレン基(エテニレン基)である構造を有する化合物が、該アルコキシシリル基中のアルコキシ基の加水分解性が顕著に優れることを見出した。加えて、この知見に基づき、本発明者らは、後述する式(3)で示される1分子中に2個の加水分解性シリル基を有するオルガノシラン化合物であって、該2個の加水分解性シリル基中にそれぞれ1個ずつ存在するケイ素原子に炭素-炭素二重結合が連結した構造の基、即ちアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を1分子中の同一のケイ素原子上に2個有するビスシリル型の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(加水分解性オルガノシロキサンオリゴマー)を架橋剤(硬化剤)として使用することにより、とりわけ速硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与える脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物が得られることを見出した。
 そして、従来1成分系の脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物に比べ、二成分型の脱アルコールタイプの室温硬化性オルガノポリシロキサン組成物の方が硬化性に優れるが、深部での硬化性が遅く短時間での十分な硬化が得られなかった問題に関して、本発明者らは、更なる検討を行った結果、反応性の後述する式(3)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物を第一剤に、硬化触媒を第二剤に、それぞれ別々に配合した二成分型の材料とすることで、後述する式(3)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物を含む第一剤と、硬化触媒を含む第二剤を混合することによって、更なる速硬化性、深部硬化性を与える二成分型室温速硬化性オルガノポリシロキサン組成物が得られることを見出し、本発明をなすに至った。
 即ち、本発明は、下記の二成分型室温速硬化性オルガノポリシロキサン組成物、該二成分型室温速硬化性オルガノポリシロキサン組成物を含有するシール剤、コーティング剤又は接着剤、及び該二成分型室温硬化性オルガノポリシロキサン組成物のエラストマー状硬化物(シリコーンゴム硬化物)からなる成形物等を提供するものである。
[1]
 (A)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:100質量部、
Figure JPOXMLDOC01-appb-C000007
(一般式(1)中、R1は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、nは10以上の整数である。)
Figure JPOXMLDOC01-appb-C000008
(一般式(2)中、R2は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R3は酸素原子又は炭素数1~4のアルキレン基であり、R4は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R5は独立に炭素数1~4の、アルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、xは0~2の整数であり、mは10以上の整数である。)
(B)下記一般式(3)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.1~30質量部
Figure JPOXMLDOC01-appb-C000009
(一般式(3)中、R6は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R7は独立に炭素数1~20の非置換若しくは置換のアルキル基、又は炭素数3~20の非置換若しくは置換のシクロアルキル基であり、aはケイ素原子毎に独立に1~3の整数である。)
を含有してなる第一剤と、
(A)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:10~100質量部、
Figure JPOXMLDOC01-appb-C000010
(一般式(1)中、R1は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、nは10以上の整数である。)
Figure JPOXMLDOC01-appb-C000011
(一般式(2)中、R2は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R3は酸素原子又は炭素数1~4のアルキレン基であり、R4は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R5は独立に炭素数1~4の、アルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、xは0~2の整数であり、mは10以上の整数である。)
(C)硬化触媒:第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.001~10質量部
を含有してなる第二剤と
からなるものである二成分型室温速硬化性オルガノポリシロキサン組成物。
[2]
 更に、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して(D)充填剤を、第一剤及び第二剤中にそれぞれ0~1,000質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである[1]に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[3]
 更に、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して(E)接着促進剤を、第一剤及び第二剤中にそれぞれ0~30質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.001質量部以上含有する)ものである[1]又は[2]に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[4]
 更に、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して(F)下記一般式(4)で示されるオルガノポリシロキサンを、第一剤及び第二剤中にそれぞれ0~100質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方が0.01質量部以上含有する)ものである[1]~[3]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
Figure JPOXMLDOC01-appb-C000012
(一般式(4)中、R8は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、pは1~2,000の整数である。)
[5]
 第一剤と第二剤との割合が質量比で1:1~10:1である[1]~[4]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[6]
 [1]~[5]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するシール剤。
[7]
 [1]~[5]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するコーティング剤。
[8]
 [1]~[5]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有する接着剤。
[9]
 [1]~[5]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物。
[10]
 [9]に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物からなる成形物。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、第一剤と第二剤の二成分型からなる。これにより、第一剤と第二剤を混合した際に、速硬化性、深部硬化性に優れる。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、特に、室温における空気中での速硬化性に優れ、作業性も良好である。更に保存安定性を備える。そのため本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、長期間、例えば6か月間の貯蔵後でも、第一剤と第二剤とを混合し、空気中に曝すと速やかに硬化して、優れた物性を示す。従って、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、耐熱性、耐水性、耐湿性が必要な個所のシール剤、コーティング剤、接着剤として有用である。とりわけ、耐湿性、耐水性が必要な建築用途、電気電子用接着剤用途として有効に使用することができる。
 更に、上記一般式(3)で示される、2つのアルコキシシリル-ビニレン基を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、別言すれば、分子内の2つの加水分解性シリル基中に1つずつ存在する2個のケイ素原子同士を、それぞれエテニレン基(炭素-炭素二重結合)を介して同一のケイ素原子に結合させた(加水分解性シリル基-エテニレン基-ケイ素原子-エテニレン基-加水分解性シリル基)、ビス(加水分解性シリル)型のオルガノシラン等の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(加水分解性シロキサンオリゴマー)を、硬化剤((B)成分)として使用することにより、本発明は、とりわけ速硬化性、深部硬化性に優れ、同時に保存安定性、耐久性も良好な硬化物を与えることができる。
 (B)成分の出発原料としては汎用品のクロロシランやヒドロシラン(ジオルガノジクロロシランやモノヒドロアルコキシシラン等)を用いることができるため、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物を工業的に有利に製造することができる。更に上記の通り、第一剤と第二剤とを混合することにより速硬化性、深部硬化性に優れた室温速硬化性オルガノポリシロキサン組成物を調製することができる。
 以下、本発明を更に詳細に説明する。
<二成分型室温速硬化性オルガノポリシロキサン組成物>
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、後述する(A)成分及び(B)成分の特定量を含有してなる第一剤と、(A)成分及び(C)成分の特定量を含有してなる第二剤とからなるものである。なお、第一剤には(C)成分を含まないものであり、第二剤には(B)成分を含まないものである。
 以下に、各成分について詳述する。
-(A)成分:オルガノポリシロキサン-
 (A)成分は、後述する一般式(1)又は(2)で示されるオルガノポリシロキサンであり、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物において主剤(ベースポリマー)として作用するものである。
 下記一般式(1)で示されるオルガノポリシロキサンは、分子鎖両末端がケイ素原子に結合した水酸基(シラノール基)あるいはジオルガノヒドロキシシロキシ基で封鎖され、主鎖がジオルガノシロキサン単位((R12SiO2/2)の繰り返し構造からなる直鎖状ジオルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000013
(一般式(1)中、R1は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、nは10以上の整数である。)
 上記式(1)中、R1の非置換又は置換の1価炭化水素基としては、その炭素数が1~20であり、好ましくは炭素数1~10であり、より好ましくは炭素数1~8である。R1の非置換の1価炭化水素基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基、ビフェニリル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基、2-メチル-2-フェニルエチル基、メチルベンジル基等のアラルキル基が挙げられる。また、R1の置換の1価炭化水素基としては、非置換の1価炭化水素基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基が挙げられる。このような基としては、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。R1としては、これらの非置換又は置換の1価炭化水素基の中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基が特に好ましい。複数のR1は互いに同一であっても、異なっていてもよい。
 また、一般式(1)で示される(A)成分のオルガノポリシロキサンは、23℃における粘度が20~1,000,000mPa・sのものが好ましく、より好ましくは50~500,000mPa・sのもの、特に好ましくは100~100,000mPa・sのもの、更に好ましくは500~80,000mPa・sのものである。23℃における前記オルガノポリシロキサンの粘度が20mPa・s以上であれば、物理的・機械的強度に優れたコーティング塗膜を得ることが容易であるため好ましい。1,000,000mPa・s以下であれば、組成物の粘度が高くなり過ぎず使用時における作業性が良いので好ましい。本発明において、粘度は、特に明示しない限り、いずれも回転粘度計で測定された数値である(以下、同じ)。回転粘度計としては、例えば、BL型、BH型、BS型、コーンプレート型等のものが挙げられる。
 上記式(1)におけるnの値は、10以上の整数であり、1分子中に存在する2官能性ジオルガノシロキサン単位((R12SiO2/2)の数又は重合度である。(A)成分のオルガノポリシロキサンが上記の好ましい範囲内の粘度を取り得る態様では、一般式(1)中、nで表される2官能性ジオルガノシロキサン((R12SiO2/2)の単位数又は重合度は、10~2,000の整数であり、好ましくは30~1,500であり、より好ましくは50~1,200であり、更に好ましくは100~1,000である。なお、本発明において、重合度(又は分子量)は、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めたものである(以下、同じ)。
 また、下記一般式(2)で示されるオルガノポリシロキサンは、分子鎖両末端がアルコキシシリル基等の加水分解性シリル基で封鎖された直鎖状オルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000014
(一般式(2)中、R2は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R3は酸素原子又は炭素数1~4のアルキレン基であり、R4は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R5は独立に炭素数1~4の、アルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、xは0~2の整数であり、mは10以上の整数である。)
 上記式(2)中、R2は独立に炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~6、更に好ましくは炭素数1~3の非置換又は置換の1価炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基、キシリル基、α-,β-ナフチル基、ビフェニリル基が挙げられる。アラルキル基としては、例えば、ベンジル基、2-フェニルエチル基、3-フェニルプロピル基、2-メチル-2-フェニルエチル基、メチルベンジル基が挙げられる。ハロゲン化アルキル基としては、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が挙げられる。R2としては、メチル基、フェニル基が好ましい。
 上記式(2)中、R3は酸素原子又は炭素数1~4のアルキレン基であり、R3の炭素数1~4のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。R3としては、酸素原子、エチレン基が好ましい。
 また、R4は独立に炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~6、更に好ましくは炭素数1~3の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基である。R4としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、α-,β-ナフチル基、ビフェニリル基等のアリール基、ベンジル基、2-フェニルエチル基、3-フェニルプロピル基、2-メチル-2-フェニルエチル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基等が挙げられ、このような基としては、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。R4としては、メチル基、エチル基、フェニル基が好ましい。
 上記式(2)中、R5は独立に炭素数1~4の、アルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。上記R5のアルキル基としては、例えば、R2について例示したものと同様の、炭素数1~4のアルキル基等が挙げられる。R5のアルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等の炭素数2~4のものが挙げられる。R5のアルケニル基としては、例えば、R2について例示したものと同様の、炭素数2~4のアルケニル基が挙げられる。上記R5のアシル基としては、例えば、アセチル基、プロピオニル基等の炭素数1~4のものが挙げられる。R5はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
 上記式(2)中、xは0~2の整数(0、1又は2)であり、好ましくは0又は1であり、より好ましくは0である。なお、加水分解性基であるOR5で示されるケイ素原子に結合したアルコキシ基等のオルガノオキシ基の数は、1分子中に2~6個、好ましくは4~6個、より好ましくは4個又は6個である。
 また、一般式(2)で示される(A)成分のオルガノポリシロキサンは、23℃における粘度が20~1,000,000mPa・sのものが好ましく、より好ましくは50~500,000mPa・sのもの、特に好ましくは100~200,000mPa・sのもの、更に好ましくは500~100,000mPa・sのものである。23℃における前記オルガノポリシロキサンの粘度が20mPa・s以上であれば、物理的・機械的強度に優れたコーティング塗膜を得ることが容易であるため好ましい。1,000,000mPa・s以下であれば、組成物の粘度が高くなり過ぎず使用時における作業性が良いので好ましい。
 上記式(2)におけるmの値は、10以上の整数であり、1分子中に存在する2官能性ジオルガノシロキサン単位((R22SiO2/2)の数又は重合度である。(A)成分のオルガノポリシロキサンが上記の好ましい範囲内の粘度を取り得る態様では、一般式(2)中、mで表される2官能性ジオルガノシロキサン((R22SiO2/2)の単位数又は重合度は、10~2,000の整数であり、好ましくは50~1,800であり、より好ましくは100~1,700であり、更に好ましくは200~1,600である。
 (A)成分のオルガノポリシロキサンは1種又は2種以上を併用することができる。
-(B)成分:加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物-
 本発明に係る(B)成分は、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物において硬化剤(架橋剤)として作用するものである。(B)成分は、下記一般式(3)で示される同一ケイ素原子上に2個のアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である。
 なお、本発明において部分加水分解縮合物とは、上記加水分解性オルガノシランを部分的に加水分解縮合して生成する、1分子中に少なくとも3個の残存加水分解性基を有するオルガノシロキサンオリゴマーを意味する。本発明では、残存加水分解性基を2個有するオルガノシロキサンオリゴマーを併用してもよい。
Figure JPOXMLDOC01-appb-C000015
(一般式(3)中、R6は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R7は独立に炭素数1~20の非置換若しくは置換のアルキル基、又は炭素数3~20の非置換若しくは置換のシクロアルキル基であり、aはケイ素原子毎に独立に1~3の整数である。)
 ここで、上記式(3)中、各R6の非置換又は置換の1価炭化水素基としては、その炭素数が1~20であり、好ましくは炭素数1~10であり、より好ましくは炭素数1~8である。R6の非置換の1価炭化水素基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基、ビフェニリル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基、2-メチル-2-フェニルエチル基、メチルベンジル基等のアラルキル基が挙げられる。また、R6の置換の1価炭化水素基としては、これらの非置換の1価炭化水素基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。R6の非置換又は置換の1価炭化水素基としては、これらの中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基が特に好ましい。複数のR6は、互いに同一であっても、異なっていてもよい。
 式(3)において、R7は炭素数1~20の非置換若しくは置換のアルキル基、又は炭素数3~20の非置換若しくは置換のシクロアルキル基である。非置換若しくは置換のアルキル基の炭素数は1~20であり、好ましくは炭素数1~6であり、より好ましくは炭素数1~4である。該非置換アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。非置換若しくは置換のシクロアルキル基の炭素数は3~20であり、好ましくは炭素数4~8であり、より好ましくは炭素数5又は6である。非置換シクロアルキル基の例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。また、これら非置換アルキル基や非置換シクロアルキル基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換されていてもよい。置換アルキル基や置換シクロアルキル基としては、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等が挙げられる。R7としては、これらの中でも、加水分解性などの点から、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 上記式(3)において、aは、アルコキシシリル-ビニレン基のケイ素原子にそれぞれ結合するアルコキシ基の数であり、ケイ素原子毎に独立に1~3の整数であり、2又は3であることが硬化性の点から好ましい。特に、1分子中、2つのアルコキシシリル-ビニレン基が、それぞれ、メトキシ基等の3個のアルコキシ基を有するもの、即ち、1分子中に合計6個のアルコキシ基を有するものは、3官能のアルコキシシラン部位が1分子中に2個あるため、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化剤(架橋剤)として有用である。
 (B)成分の加水分解性オルガノシラン化合物としては、例えば、
ビス(トリメトキシシリルエテニル)ジメチルシラン、
ビス(トリメトキシシリルエテニル)ジエチルシラン、
ビス(トリメトキシシリルエテニル)メチルエチルシラン、
ビス(トリメトキシシリルエテニル)メチルフェニルシラン、
ビス(トリエトキシシリルエテニル)ジメチルシラン、
ビス(トリエトキシシリルエテニル)ジエチルシラン、
ビス(トリエトキシシリルエテニル)メチルエチルシラン、
ビス(トリエトキシシリルエテニル)メチルフェニルシラン、
ビス(メチルジメトキシシリルエテニル)ジメチルシラン、
ビス(メチルジメトキシシリルエテニル)ジエチルシラン、
ビス(メチルジメトキシシリルエテニル)メチルエチルシラン、
ビス(メチルジメトキシシリルエテニル)メチルフェニルシラン、
ビス(エチルジメトキシシリルエテニル)ジメチルシラン、
ビス(エチルジメトキシシリルエテニル)ジエチルシラン、
ビス(エチルジメトキシシリルエテニル)メチルエチルシラン、
ビス(エチルジメトキシシリルエテニル)メチルフェニルシラン、
ビス(メチルジエトキシシリルエテニル)ジメチルシラン、
ビス(メチルジエトキシシリルエテニル)ジエチルシラン、
ビス(メチルジエトキシシリルエテニル)メチルエチルシラン、
ビス(メチルジエトキシシリルエテニル)メチルフェニルシラン、
などのような、1分子中の同一ケイ素原子上に2個のトリメトキシシリル-ビニレン基やトリエトキシシリル-ビニレン基等のトリアルコキシシリル-ビニレン基を有するか、又は、1分子中の同一ケイ素原子上に2個の(オルガノ)ジメトキシシリル-ビニレン基や(オルガノ)ジエトキシシリル-ビニレン基等の(オルガノ)ジアルコキシシリル-ビニレン基を有する加水分解性オルガノシラン化合物や、その部分加水分解縮合物が挙げられる。
 (B)成分は、出発原料として汎用品のクロロシランやヒドロシラン(ジオルガノジクロロシランやモノヒドロアルコキシシラン等)を用いることができる。
 具体的には、(B)成分の同一ケイ素原子上に2個のアルコキシシリル-ビニレン基(アルコキシシリル-エテニレン基)等の加水分解性シリル-ビニレン基(加水分解性シリル-エテニレン基)を有する加水分解性オルガノシラン化合物は、例えば、工業的に汎用品であるジオルガノジクロロシランから誘導される、同一ケイ素原子上にエチニル基を2個有するオルガノシランに対して2倍モルのモノヒドロアルコキシシラン等の加水分解性基含有ヒドロシランをヒドロシリル化付加反応させる等の方法によって容易に製造することができる。この反応式は、例えば、下記式(3-1)で表される。
Figure JPOXMLDOC01-appb-C000016
(式中、R6、R7、aは前記一般式(3)の通りである。)
 ここで、モノヒドロアルコキシシラン等の加水分解性基含有ヒドロシランを付加させる際に用いるヒドロシリル化付加反応触媒としては、白金族金属系触媒、例えば白金系、パラジウム系、ロジウム系、ルテニウム系のものがあるが、白金系のものが特に好適である。この白金系のものとしては、白金黒あるいはアルミナ、シリカ等の担体に固体白金を担持させたもの、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィンとの錯体あるいは白金とビニルシロキサンとの錯体等を例示することができる。これらの白金の使用量は、所謂触媒量でよく、例えばモノヒドロアルコキシシラン等の加水分解性基含有ヒドロシラン類に対して、白金族金属の質量換算で0.1~1,000ppm、特に0.5~100ppm程度で使用できる。
 この反応は、一般に50~120℃、特に60~100℃の温度で、0.5~12時間、特に1~6時間行うことが望ましく、また溶媒を使用せずに行うことができるが、上記ヒドロシリル化付加反応等に悪影響を与えない限りにおいて、必要によりトルエン、キシレン等の適当な溶剤を使用することができる。
 (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物は、1種単独で使用しても、2種以上を併用してもよい。
 (B)成分の配合量は、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.1~30質量部であり、好ましくは0.5~25質量部である。(B)成分の配合量が少なすぎると組成物を硬化させる際に十分な架橋が得られず、多すぎると得られる硬化物(シリコーンゴム硬化物)の機械特性(ゴム物性)も低下し、経済的に不利となるという問題が発生する場合がある。
-(C)成分-
 (C)成分の硬化触媒は、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物と空気中の水分との加水分解縮合反応を促進させるために使用され、一般的に硬化触媒と呼ばれるものである。これは湿分の存在下で硬化する室温硬化性シリコーン樹脂組成物に通常使用されている公知のものを使用することができる。
 (C)成分の硬化触媒のうち、非金属系有機触媒は特に制限されないが、縮合硬化型オルガノポリシロキサン組成物の硬化促進剤として公知のものを使用することができる。例えば、N,N,N’,N’,N'',N''-ヘキサメチル-N'''-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物;ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物又はその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;N,N,N’,N’-テトラメチルグアニジルプロピルトリメトキシシラン、N,N,N’,N’-テトラメチルグアニジルプロピルメチルジメトキシシラン、N,N,N’,N’-テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン及びシロキサン等が挙げられる。また、非金属系有機触媒は1種単独で使用してもよく、2種以上混合して使用してもよい。
 (C)成分の硬化触媒のうち、金属系触媒は特に制限されないが、縮合硬化型オルガノポリシロキサンの硬化触媒として公知のものを使用することができる。例えば、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクトエート、ジメチルスズジネオデカノエート、ジオクチルスズジネオデカノエート、ジ-n-ブチル-ジメトキシスズ等のアルキルスズエステル化合物;テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート;アルミニウムイソプロピレート、アルミニウムセカンダリーブチレートなどのアルコレートアルミニウム化合物;アルミニウムアルキルアセテート・ジイソプロピレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート等のアルミニウムキレート化合物;ネオデカン酸ビスマス(III)、2-エチルヘキサン酸ビスマス(III)、クエン酸ビスマス(III)、オクチル酸ビスマス、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト等の有機金属化合物;酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩が挙げられる。金属系触媒はこれらに限定されない。金属系触媒は、1種単独で使用してもよく、2種以上混合して使用してもよい。
 (C)成分の配合量は、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.001~10質量部であり、特に0.005~8質量部、更に0.01~5質量部が好ましい。0.001質量部未満であると良好な硬化性を得ることができないため、硬化速度が遅れる不具合を生じる。逆に、10質量部を超える量になると、組成物の硬化性が速すぎるため、組成物塗布後の作業時間の許容範囲が短くなったり、得られるゴムの機械特性が低下したりする虞がある。
-(D)成分:充填剤-
 (D)成分は充填剤(無機質充填剤及び/又は有機樹脂充填剤)であり、必要に応じて配合できる任意成分であり、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物から形成される硬化物に十分な機械的強度を与えるために使用される。この充填剤としては公知のものを使用することができ、例えば、微粉末シリカ、煙霧質シリカ、沈降性シリカなどの湿式シリカ、これらのシリカ表面を有機ケイ素化合物で疎水化処理したシリカなどの補強性シリカ系充填剤、ガラスビーズ、ガラスバルーン、透明樹脂ビーズ、シリカエアロゲル、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、煙霧状金属酸化物などの金属酸化物、石英粉末(結晶性シリカ微粉末)、カーボンブラック、タルク、ゼオライト及びベントナイト等の補強剤、アスベスト、ガラス繊維、炭素繊維、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩、アスベスト、ガラスウール、微粉マイカ、溶融シリカ粉末(ここまで無機質充填剤)、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。これらの充填剤のうち、シリカ、炭酸カルシウム、ゼオライトなどの無機質充填剤が好ましく、特に表面を疎水化処理した煙霧質シリカ、炭酸カルシウムが好ましい。
 (D)成分を配合する場合、その配合量は、第一剤又は第二剤中に含まれる(A)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~1,000質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことが好ましく、0~500質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことがより好ましい。1,000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる。即ち、(D)成分を配合する場合の組成物中における総配合量は、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.1~2,000質量部、特に0.1~1,000質量部であることが好ましい。
-(E)成分:接着促進剤-
 (E)成分は接着促進剤であり、必要に応じて配合できる任意成分であり、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物から形成される硬化物に十分な接着性を与えるために使用される。接着促進剤としては公知のものが好適に使用され、官能性基含有加水分解性シラン等のシランカップリング剤、具体的には、ビニルシランカップリング剤、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、アミノシランカップリング剤(但し、グアニジル基含有加水分解性オルガノシラン化合物を除く)、メルカプトシランカップリング剤、イソシアネートシランカップリング剤などが例示され、具体的には、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が例示される。
 これらの中でも、特にγ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノシラン類、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン類が好ましい。
 (E)成分を配合する場合、その配合量は、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~30質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.001質量部以上含有する)ことが好ましく、特に0.1~20質量部とすることが好ましい。即ち、(E)成分を配合する場合の組成物中における総配合量は、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.001~60質量部、特に0.1~40質量部であることが好ましい。充填剤及び被着体により接着促進剤を使用しなくても接着するときは、これを使用しなくてもよい。
-(F)成分:オルガノポリシロキサン-
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、上記(A)~(E)成分に加えて、更に(F)下記一般式(4)で表される直鎖状のジオルガノポリシロキサン(いわゆる無官能性シリコーンオイル)を必要に応じて配合できる任意成分として含有してもよい。
Figure JPOXMLDOC01-appb-C000017
(一般式(4)中、R8は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、pは1~2,000の整数である。)
 上記式(4)中、R8の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、その炭素数が1~20であり、好ましくは炭素数1~10であり、より好ましくは炭素数1~8である。複数のR8は互いに同一であっても異なっていてもよい。R8の非置換の1価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基、ビフェニリル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基、2-メチル-2-フェニルエチル基、メチルベンジル基等のアラルキル基を例示することができる。また、置換の1価炭化水素基としては、これらの非置換炭化水素基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基がより好ましい。特に、R8はいずれもメチル基であることが好ましく、分子鎖の両末端がトリメチルシロキシ基で封鎖されたジメチルポリシロキサンであることが好ましい。
 式(4)中、pは、(F)成分の重合度を示す数値で、1~2,000の整数であり、特に2~2,000の整数が好ましく、20~2,000の整数がより好ましい。pが、上記の範囲内の数値である場合、(F)成分のジオルガノポリシロキサンの23℃における粘度は、1.5~1,000,000mPa・s、好ましくは30~100,000mPa・sとなる。
 (F)成分を配合する場合、その配合量は、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~100質量部である(ただし、少なくとも第一剤、第二剤のいずれか一方が0.01質量部以上含有する)ことが好ましく、より好ましくは10~80質量部である。即ち、(F)成分を配合する場合の組成物中における総配合量は、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.01~200質量部、特に10~160質量部であることが好ましい。(F)成分の量が上記範囲内にあると本発明の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物(シリコーンゴム)の機械特性や難燃性を損なわない点で好ましい。また硬化前の組成物を施工上取り扱い易い粘度に調整することができる。
-その他の成分-
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、(A)、(B)及び(C)成分を必須成分とし、更に必要に応じて(D)、(E)、(F)成分を配合することが好ましい。その他、添加剤として、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を配合することができる。更に、チクソ性向上剤としてのポリエーテル、防かび剤、抗菌剤を配合することもできる。
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物には、必要に応じて有機溶剤を用いてもよい。有機溶剤としては、n-ヘキサン、n-ヘプタン、イソオクタン、イソドデカンなどの脂肪族炭化水素系化合物;トルエン、キシレンなどの芳香族炭化水素系化合物;ヘキサメチルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ドデカメチルペンタシロキサン、2-(トリメチルシロキシ)-1,1,1,2,3,3,3-ヘプタメチルトリシロキサンなどの鎖状シロキサン;オクタメチルシクロペンタシロキサン、デカメチルシクロペンタシロキサンなどの環状シロキサンなどが挙げられる。有機溶剤の量は本発明の効果を妨げない範囲で適宜調製すればよい。
[室温速硬化性オルガノポリシロキサン組成物の調製]
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、(A)成分の一部及び(B)成分の全部を含有してなり、(C)成分を含有しない第一剤と、(A)成分の残部及び(C)成分の全部を含有してなり、(B)成分を含有しない第二剤とからなるものである。
 第一剤は、(A)成分の一部と、(B)成分の全部と、必要により(D)、(E)、(F)成分及びその他の成分の一部又は全部とを常法に従い混合することによって調製できる。また、第二剤は、(A)成分の残部と、(C)成分の全部と、必要により(D)、(E)、(F)成分及びその他の成分の残部又は全部とを常法に従い混合することによって調製できる。
 なお、(A)成分は第一剤と第二剤に配合するが、この割合としては、第一剤と第二剤を質量比で100:10~100:100、特に100:25~100:100となるように配合することが作業性や第一剤と第二剤を混合する際の組成物の均一性(混ざり易さ)の点から好ましい。また、任意成分である(D)、(E)、(F)成分及びその他の成分は、第一剤と第二剤のどちらに配合してもよく、どちらか一方に配合しても両方に配合してもよいが、特には、第一剤に(D)、(E)、(F)成分を配合し、第二剤に(D)、(F)成分を配合することが好ましい。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、上記のようにして製造された第一剤及び第二剤を、湿分を避けた雰囲気下で保存することができる。
[室温速硬化性オルガノポリシロキサン組成物の硬化方法]
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、これらを適する比率、具体的には第一剤と第二剤との割合が質量比で1:1~10:1、特には1:1~4:1で混合することにより、通常、室温にて10分~5日で硬化する。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、速硬化性を有するものであって、通常は3日~5日であるものが、10分~3日と短時間で硬化するものである。
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、深部硬化性を有するものであって、通常は2時間であるものが、30分と短時間で深部まで硬化するものである。
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、各種の基材表面上で硬化させて該基材上に良好に接着したオルガノポリシロキサン硬化物層(シリコーンゴム層)を形成することができる。ここで、基材としては、特に制限されるものではないが、金属(アルミニウム、鉄、SUS、銅等)、有機樹脂(ポリカーボネート樹脂、アクリル樹脂、エポキシガラス(ガラエポ)樹脂等)、ガラスなどの種々の基材が適用できる。
[室温速硬化性オルガノポリシロキサン組成物の用途]
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、特に、室温における空気中での速硬化性、深部硬化性に優れ、作業性も良好である。更に保存安定性を備える。そのため本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、長期間、例えば6か月間の貯蔵後でも、第一剤と第二剤とを混合し、空気中に曝すと速やかに硬化して、優れた物性を示す。即ち、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、耐熱性、耐水性、耐湿性に優れた硬化物となる。従って、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、耐熱性、耐水性、耐湿性が必要な個所のシール剤、コーティング剤、接着剤として有用である。とりわけ、耐湿性、耐水性が必要な建築用途、電気電子用接着剤用途として有効に使用することができる。あるいは、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物を硬化させて、耐熱性、耐水性、耐湿性を有する硬化物からなる成形物としてもよい。
 なお、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物をシール剤、コーティング剤又は接着剤として使用する方法は、従来公知の方法に従えばよい。
 以下、本発明を具体的に説明する実施例及び比較例を示すが、本発明は下記実施例に制限されるものではない。粘度は回転粘度計による測定値である。
[実施例1]
第一剤aの調製
 23℃における粘度が5,000mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖されたジメチルポリシロキサン75質量部と、23℃における粘度が700mPa・sの分子鎖両末端がシラノール基で封鎖されたジメチルポリシロキサン15質量部と、BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)8質量部と、ビス(トリメトキシシリルエテニル)ジメチルシラン3.5質量部と、γ-アミノプロピルトリエトキシシラン2質量部と、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン2質量部とを減圧下にて均一に混合して第一剤aを調製した。
第二剤bの調製
 23℃における粘度が5,000mPa・sの分子鎖両末端がシラノール基で封鎖されたジメチルポリシロキサン75質量部と、23℃における粘度が700mPa・sの分子鎖両末端がシラノール基で封鎖されたジメチルポリシロキサン15質量部と、BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)8質量部と、ジメチルスズジネオデカノエート0.1質量部を減圧下にて均一に混合して第二剤bを調製した。
 上記第一剤aと第二剤bを混合比(質量比)1:1で均一に混合して組成物1を製造した後、該組成物1を厚さが2.5mmになるように基材上に塗布した。その後、23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させ、硬化物1-1、1-2を得た。
[実施例2]
 第一剤aのビス(トリメトキシシリルエテニル)ジメチルシランの代わりに、ビス(メチルジメトキシシリルエテニル)ジメチルシラン4.8質量部を用いた以外は実施例1と同様にして組成物2を製造し、同様にして硬化物2-1、2-2を得た。
[実施例3]
 第二剤bのジメチルスズジネオデカノエートの代わりに、N,N,N’,N’-テトラメチルグアニジルプロピルトリメトキシシラン1質量部を用いた以外は実施例1と同様にして組成物3-1、3-2を製造し、同様にして硬化物3を得た。
[比較例1]
 第一剤aのビス(トリメトキシシリルエテニル)ジメチルシランの代わりに、メチルトリメトキシシラン2.7質量部を用いた以外は実施例1と同様にして組成物4-1、4-2を製造し、同様にして硬化物4を得た。
[比較例2]
 第一剤aのビス(トリメトキシシリルエテニル)ジメチルシランの代わりに、ビニルトリメトキシシラン2.9質量部を用いた以外は実施例1と同様にして組成物5を製造し、同様にして硬化物5-1、5-2を得た。
[試験方法]
 上記実施例1~3及び比較例1、2で調製した各組成物を用いて、下記に示す方法により、硬化性、ゴム物性、接着性を評価した。
[硬化性]
 実施例1~3及び比較例1、2で調製した各組成物を用いて、JIS A-5758に規定する方法に準じてタックフリータイム(指触乾燥時間)を測定した。
 また、内径が10mmのガラスシャーレに実施例1~3及び比較例1、2で調製した各組成物を充填し、23℃,50%RHで20分後に空気に触れた表面部分から硬化した部分までの厚さを測定し、深部硬化性を評価した。
[ゴム物性]
 実施例1~3及び比較例1、2で調製した調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に1日間又は3日間放置して得た硬化物のゴム物性(硬さ、切断時伸び、引張強さ)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
[接着性]
 実施例1~3及び比較例1,2で調製した組成物より、幅25mm、長さ100mmのアルミニウム又はガラス被着体として、それぞれ同材の被着体同士を、上記組成物を用いて、各試験片の接着面積2.5mm2、接着厚さ1mmで接着したせん断(シア)接着試験体を作製し、23℃,50%RHで1日間又は3日間養生した後、これらの試験体を用いてアルミニウム又はガラスに対するせん断接着力をJIS K-6249に規定する方法に準じて測定した。
 実施例1~3の試験結果を表1に、比較例1、2の試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  (A)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:100質量部、
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R1は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、nは10以上の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R2は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R3は酸素原子又は炭素数1~4のアルキレン基であり、R4は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R5は独立に炭素数1~4の、アルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、xは0~2の整数であり、mは10以上の整数である。)
    (B)下記一般式(3)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.1~30質量部
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、R6は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R7は独立に炭素数1~20の非置換若しくは置換のアルキル基、又は炭素数3~20の非置換若しくは置換のシクロアルキル基であり、aはケイ素原子毎に独立に1~3の整数である。)
    を含有してなる第一剤と、
    (A)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:10~100質量部、
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)中、R1は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、nは10以上の整数である。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(2)中、R2は独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、R3は酸素原子又は炭素数1~4のアルキレン基であり、R4は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R5は独立に炭素数1~4の、アルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、xは0~2の整数であり、mは10以上の整数である。)
    (C)硬化触媒:第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して0.001~10質量部
    を含有してなる第二剤と
    からなるものである二成分型室温速硬化性オルガノポリシロキサン組成物。
  2.  更に、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して(D)充填剤を、第一剤及び第二剤中にそれぞれ0~1,000質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである請求項1に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  3.  更に、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して(E)接着促進剤を、第一剤及び第二剤中にそれぞれ0~30質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.001質量部以上含有する)ものである請求項1又は2に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  4.  更に、第一剤及び第二剤中に含まれる(A)成分の合計100質量部に対して(F)下記一般式(4)で示されるオルガノポリシロキサンを、第一剤及び第二剤中にそれぞれ0~100質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方が0.01質量部以上含有する)ものである請求項1~3のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(4)中、R8は独立に炭素数1~20の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、pは1~2,000の整数である。)
  5.  第一剤と第二剤との割合が質量比で1:1~10:1である請求項1~4のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  6.  請求項1~5のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するシール剤。
  7.  請求項1~5のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するコーティング剤。
  8.  請求項1~5のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有する接着剤。
  9.  請求項1~5のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物。
  10.  請求項9に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物からなる成形物。
PCT/JP2021/024888 2020-07-07 2021-07-01 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品 WO2022009759A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21836856.1A EP4180488A1 (en) 2020-07-07 2021-07-01 Two-component type room temperature fast-curing organopolysiloxane composition, cured product thereof and article
US18/013,311 US20230250287A1 (en) 2020-07-07 2021-07-01 Two-component type room temperature fast-curing organopolysiloxane composition, cured product thereof and article
CN202180048327.4A CN115867612A (zh) 2020-07-07 2021-07-01 双组分型室温快速固化性有机聚硅氧烷组合物、该组合物的固化物和物品
JP2022535269A JPWO2022009759A1 (ja) 2020-07-07 2021-07-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116786 2020-07-07
JP2020-116786 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022009759A1 true WO2022009759A1 (ja) 2022-01-13

Family

ID=79552488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024888 WO2022009759A1 (ja) 2020-07-07 2021-07-01 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品

Country Status (5)

Country Link
US (1) US20230250287A1 (ja)
EP (1) EP4180488A1 (ja)
JP (1) JPWO2022009759A1 (ja)
CN (1) CN115867612A (ja)
WO (1) WO2022009759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068094A1 (ja) * 2021-10-19 2023-04-27 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤
WO2023234084A1 (ja) * 2022-05-30 2023-12-07 信越化学工業株式会社 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH07331076A (ja) 1994-06-03 1995-12-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
WO2015162962A1 (ja) * 2014-04-25 2015-10-29 信越化学工業株式会社 新規ビス(アルコキシシリル-ビニレン)基含有ケイ素化合物及びその製造方法
WO2015194340A1 (ja) 2014-06-16 2015-12-23 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
JP5960843B2 (ja) 2012-12-20 2016-08-02 信越化学工業株式会社 アルコキシシリル−エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
JP5997778B2 (ja) 2012-12-20 2016-09-28 信越化学工業株式会社 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
JP2017002213A (ja) * 2015-06-12 2017-01-05 信越化学工業株式会社 難燃性室温硬化型オルガノポリシロキサン組成物及び電気電子部品
WO2017187762A1 (ja) * 2016-04-26 2017-11-02 信越化学工業株式会社 末端シラノール基含有ポリオキシアルキレン系化合物及びその製造方法、室温硬化性組成物、シーリング材並びに物品
JP2018503725A (ja) * 2015-01-28 2018-02-08 ダウ コーニング コーポレーションDow Corning Corporation エラストマー組成物及びその使用
JP2018087348A (ja) * 2018-02-19 2018-06-07 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品
JP2019019241A (ja) * 2017-07-19 2019-02-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
WO2019077942A1 (ja) * 2017-10-17 2019-04-25 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品
WO2019116892A1 (ja) * 2017-12-15 2019-06-20 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP2019123772A (ja) * 2018-01-12 2019-07-25 信越化学工業株式会社 難燃性室温硬化型オルガノポリシロキサン組成物、電気又は電子部品並びに電気又は電子部品における耐熱接着性の向上方法
JP2019524933A (ja) * 2016-08-03 2019-09-05 ダウ シリコーンズ コーポレーション エラストマー系組成物及びその用途

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543119A (en) 1978-09-20 1980-03-26 Sws Silicones Corp Titanium ester contained vulcanizable organopolysiloxane composition and its manufacture
JPH0739547B2 (ja) 1992-01-10 1995-05-01 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH07331076A (ja) 1994-06-03 1995-12-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP5960843B2 (ja) 2012-12-20 2016-08-02 信越化学工業株式会社 アルコキシシリル−エチレン基末端オルガノシロキサンポリマーの製造方法、室温硬化性組成物及びその硬化物である成形物
JP5997778B2 (ja) 2012-12-20 2016-09-28 信越化学工業株式会社 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
WO2015162962A1 (ja) * 2014-04-25 2015-10-29 信越化学工業株式会社 新規ビス(アルコキシシリル-ビニレン)基含有ケイ素化合物及びその製造方法
WO2015194340A1 (ja) 2014-06-16 2015-12-23 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該室温硬化性オルガノポリシロキサン組成物の硬化物である成形物
JP2018503725A (ja) * 2015-01-28 2018-02-08 ダウ コーニング コーポレーションDow Corning Corporation エラストマー組成物及びその使用
JP2017002213A (ja) * 2015-06-12 2017-01-05 信越化学工業株式会社 難燃性室温硬化型オルガノポリシロキサン組成物及び電気電子部品
WO2017187762A1 (ja) * 2016-04-26 2017-11-02 信越化学工業株式会社 末端シラノール基含有ポリオキシアルキレン系化合物及びその製造方法、室温硬化性組成物、シーリング材並びに物品
JP2019524933A (ja) * 2016-08-03 2019-09-05 ダウ シリコーンズ コーポレーション エラストマー系組成物及びその用途
JP2019019241A (ja) * 2017-07-19 2019-02-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
WO2019077942A1 (ja) * 2017-10-17 2019-04-25 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品
WO2019116892A1 (ja) * 2017-12-15 2019-06-20 信越化学工業株式会社 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP2019123772A (ja) * 2018-01-12 2019-07-25 信越化学工業株式会社 難燃性室温硬化型オルガノポリシロキサン組成物、電気又は電子部品並びに電気又は電子部品における耐熱接着性の向上方法
JP2018087348A (ja) * 2018-02-19 2018-06-07 信越化学工業株式会社 室温硬化性組成物、シーリング材及び物品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068094A1 (ja) * 2021-10-19 2023-04-27 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤
WO2023234084A1 (ja) * 2022-05-30 2023-12-07 信越化学工業株式会社 二成分型室温硬化性オルガノポリシロキサン組成物及び該組成物を含有する各種物品

Also Published As

Publication number Publication date
US20230250287A1 (en) 2023-08-10
CN115867612A (zh) 2023-03-28
JPWO2022009759A1 (ja) 2022-01-13
EP4180488A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
KR102326223B1 (ko) 실온 경화성 오르가노폴리실록산 조성물 및 해당 실온 경화성 오르가노폴리실록산 조성물의 경화물인 성형물
JP5997778B2 (ja) 新規アルコキシシリル−エチレン基末端ケイ素含有化合物、室温硬化性オルガノポリシロキサン組成物、及び該組成物を硬化して得られる成形物
KR102207422B1 (ko) 다성분계 실온 경화성 오르가노폴리실록산 조성물, 해당 조성물의 경화물 및 해당 경화물을 포함하는 성형물
JP6747507B2 (ja) 室温硬化性組成物、シーリング材並びに物品
JP6922917B2 (ja) 脱アルコール型室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でシールされた物品
CN107429061B (zh) 室温固化性有机聚硅氧烷组合物和为该组合物的固化物的成型物
KR20200125578A (ko) 수분 경화성 실리콘 중합체 및 그의 용도
WO2022009759A1 (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
JP2018087348A (ja) 室温硬化性組成物、シーリング材及び物品
WO2020209083A1 (ja) オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品
JP6760223B2 (ja) 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
KR20230008080A (ko) 실온 경화성 오르가노폴리실록산 조성물 및 물품
WO2023068094A1 (ja) 室温硬化性オルガノポリシロキサン組成物、接着剤、シール剤及びコーティング剤
WO2020226076A1 (ja) 室温硬化性オルガノポリシロキサン組成物、シリコーンゴム及び物品
JP2005213487A (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2023118149A (ja) 室温硬化性オルガノポリシロキサン組成物の製造方法
WO2015052859A1 (ja) 室温硬化性樹脂組成物
JP5915599B2 (ja) 室温硬化性樹脂組成物
JP2023059348A (ja) ノンサグ性室温硬化性オルガノポリシロキサン組成物の製造方法及び物品
JP5545981B2 (ja) 室温硬化性ポリオルガノシロキサン組成物
JP2023114223A (ja) 室温硬化性オルガノポリシロキサン組成物の製造方法、室温硬化性オルガノポリシロキサン組成物及び物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021836856

Country of ref document: EP

Effective date: 20230207