WO2023210633A1 - 放射線検出装置及び放射線検出器 - Google Patents

放射線検出装置及び放射線検出器 Download PDF

Info

Publication number
WO2023210633A1
WO2023210633A1 PCT/JP2023/016267 JP2023016267W WO2023210633A1 WO 2023210633 A1 WO2023210633 A1 WO 2023210633A1 JP 2023016267 W JP2023016267 W JP 2023016267W WO 2023210633 A1 WO2023210633 A1 WO 2023210633A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation detection
detection element
magnetic field
radiation
sample
Prior art date
Application number
PCT/JP2023/016267
Other languages
English (en)
French (fr)
Inventor
大輔 松永
大輝 箕輪
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Publication of WO2023210633A1 publication Critical patent/WO2023210633A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors

Definitions

  • the present invention relates to a radiation detection device and a radiation detector for detecting fluorescent X-rays.
  • Fluorescent X-ray analysis is a method of irradiating a sample with X-rays, detecting the fluorescent X-rays generated from the sample, and analyzing the sample from the spectrum of the fluorescent X-rays.
  • a radiation detection element for detecting fluorescent X-rays is, for example, an element using a semiconductor.
  • a sample irradiated with X-rays generates photoelectrons in addition to fluorescent X-rays. When photoelectrons enter the radiation detection element, the sensitivity of fluorescent X-ray detection deteriorates. Therefore, countermeasures against photoelectrons are required.
  • Patent Document 1 discloses a technique for preventing secondary electrons from entering a radiation detection element for detecting X-rays in an electron microscope.
  • the sample In fluorescent X-ray analysis, the sample is illuminated and observed.
  • illumination light for illuminating a sample is incident on a radiation detection element, a current is generated in the radiation detection element, which may cause a malfunction in a radiation detection apparatus including the radiation detection element.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide a radiation detection device and a radiation detector that suppress the incidence of photoelectrons and illumination light on radiation detection elements. be.
  • a radiation detection device includes an illumination unit that illuminates a sample, an irradiation unit that irradiates the sample with X-rays, and a radiation detection element that detects X-rays generated from the sample.
  • the apparatus includes a magnetic field generation section that generates a magnetic field in a part of the space from the sample to the radiation detection element, and a block that holds the magnetic field generation section, and the block includes a magnetic field generation section that generates a magnetic field in a part of the space from the illumination section to the radiation detection element. It is characterized by being arranged so as to block light from entering.
  • a radiation detection device that detects fluorescent X-rays includes a magnetic field generation section that generates a magnetic field in a part of the space from the sample to the radiation detection element.
  • the moving direction of photoelectrons generated from the sample is bent by the magnetic field, making it difficult for the photoelectrons to enter the radiation detection element. Therefore, incidence of photoelectrons on the radiation detection element is suppressed.
  • the radiation detection device also includes a block that holds the magnetic field generation section. The block blocks light from the illumination section to the radiation detection element, making it difficult for the light to enter the radiation detection element. Therefore, the incidence of illumination light that illuminates the sample on the radiation detection element is suppressed.
  • a radiation detection device is characterized in that the magnetic field generating section and the block are subjected to antireflection processing.
  • the block and the magnetic field generating section are subjected to anti-reflection processing, so that light is difficult to be reflected by the block and the magnetic field generating section and difficult to reach the radiation detection element. Therefore, the incidence of light into the radiation detection element is further suppressed.
  • the magnetic field generating section includes a magnet, and the magnet is coated with a substance consisting of an element having a lower atomic number than an element contained in the magnet. It is characterized by
  • the magnetic field generating section includes a magnet, and the magnet is coated with a substance having an atomic number smaller than that of the substance forming the magnet.
  • X-rays generated from the magnet due to the incidence of X-rays or the collision of photoelectrons are absorbed by the material coating the magnet and are difficult to enter the radiation detection element.
  • Fluorescent X-rays emitted from the material coating the magnet have less energy and are less intense. Therefore, system peaks caused by fluorescent X-rays from the magnet are reduced.
  • the magnetic field generation section includes a plurality of magnets facing each other with a part of the space from the sample to the radiation detection element in between, and the plurality of magnets The interval between the two changes along the direction from the sample toward the radiation detection element, and is characterized by increasing as the distance approaches the radiation detection element.
  • the magnetic field generation section includes a plurality of opposing magnets, and the spacing between the plurality of magnets increases from the sample toward the radiation detection element. Fluorescent X-rays generated from the sample spread as they approach the radiation detection element. As the spacing between the multiple magnets becomes wider as they get closer to the radiation detection element, the probability that fluorescent X-rays will not enter the magnet but instead enter the radiation detection element increases, and the probability that fluorescent X-rays will be detected increases. becomes higher.
  • the block has a space inside, the magnetic field generating section is arranged inside the block, and the material of the block is a ferromagnetic material. characterized by something.
  • the magnetic field generating section is arranged inside the block, and the material of the block is a magnetic material.
  • the magnetic field generated from the magnetic field generator is shielded by the block. Since the magnetic field does not leak to the outside of the block, the magnetic field does not have an adverse effect on the outside of the block.
  • a radiation detection device is characterized in that a straight path from the sample to the radiation detection element is not blocked.
  • the straight path from the sample to the radiation detection element is not blocked by an object such as a window having a window material.
  • the fluorescent X-rays enter the radiation detection element without passing through the window material or the like and are detected.
  • the radiation detection device is capable of detecting radiation that cannot pass through the window material due to its low energy.
  • the radiation detection device further includes a spectrum generation unit that generates a spectrum of radiation detected using the radiation detection element, and a display unit that displays the spectrum generated by the spectrum generation unit. It is characterized by
  • a spectrum of fluorescent X-rays generated from a sample is generated, and the generated spectrum is displayed on a display section. The user can check the spectrum of fluorescent X-rays generated from the sample.
  • a radiation detector is a radiation detector for detecting fluorescent X-rays, which includes a block having a space inside, and an entrance hole formed in the block, through which the fluorescent X-rays enter. a radiation detection element facing the entrance port; and a magnetic field generating section that is disposed inside the block and generates a magnetic field in a space from the entrance port to the radiation detection element, the entrance port is The linear path from the entrance port to the radiation detection element is not blocked.
  • a radiation detector that detects fluorescent X-rays includes a block and a magnetic field generating section that generates a magnetic field in a part of the space from the entrance to the radiation detection element.
  • the moving direction of photoelectrons that have entered the inside of the radiation detector from the entrance port is bent by the magnetic field, thereby suppressing the photoelectrons from entering the radiation detection element.
  • the block blocks light from outside the radiation detector, making it difficult for light to enter the radiation detection element. Therefore, the incidence of illumination light that illuminates the sample on the radiation detection element is suppressed.
  • FIG. 2 is a schematic cross-sectional view showing an example of the internal configuration of a radiation detector.
  • FIG. 3 is a schematic cross-sectional view showing a radiation detection element and a collimator.
  • FIG. 1 is a block diagram showing an example of the functional configuration of the radiation detection device 10.
  • the radiation detection device 10 is, for example, a fluorescent X-ray analyzer. It includes a sample stage 61 on which the sample 6 is placed, an irradiation unit 41 that irradiates the sample 6 with X-rays, an X-ray optical element 42 that converges the X-rays, and a radiation detector 2.
  • the sample 6 may be held by a method other than mounting.
  • the irradiation unit 41 is, for example, an X-ray tube.
  • the X-ray optical element 42 is, for example, a monocapillary lens using an X-ray conduit that guides incident X-rays while internally reflecting them, or a polycapillary lens using a plurality of X-ray conduits.
  • the irradiation unit 41 emits X-rays
  • the X-ray optical element 42 receives the X-rays emitted by the irradiation unit 41, converges the X-rays, and directs the focused X-rays to the sample placed on the sample stage 61. Irradiate to 6.
  • the sample 6 irradiated with X-rays generates fluorescent X-rays
  • the radiation detector 2 detects the fluorescent X-rays generated from the sample 6.
  • X-rays and fluorescent X-rays are indicated by arrows. Note that the radiation detection device 10 may be configured to hold the sample 6 by a method other than placing it on the sample stage 61.
  • the radiation detection device 10 includes an illumination section 51 that illuminates the sample 6, a mirror 44, an imaging section 52, and a switching stage 43 that switches the positions of the X-ray optical element 42 and the mirror 44.
  • the lighting section 51 has a light source such as an LED (light-emitting diode), and can turn on and off the light source. When the light source is turned on, illumination light for illuminating the sample 6 is generated.
  • the illumination unit 51 illuminates the sample 6 placed on the sample stage 61.
  • the photographing section 52 photographs the sample 6 illuminated by the illumination section 51 .
  • the photographing unit 52 includes an optical system and an image sensor.
  • the switching stage 43 is attached with an X-ray optical element 42 and a mirror 44, and can change the positions of the X-ray optical element 42 and mirror 44 by moving.
  • a drive unit 32 that moves the switching stage 43 is connected to the switching stage 43 .
  • the drive unit 32 is configured using, for example, a motor.
  • the switching stage 43 is moved by the operation of the drive unit 32, and the positions of the X-ray optical element 42 and the mirror 44 are changed.
  • the switching stage 43 can position the X-ray optical element 42 at the irradiation position, as shown in FIG.
  • the irradiation position is a position where the X-rays from the irradiation section 41 are incident on the X-ray optical element 42, and the X-rays emitted from the X-ray optical element 42 are irradiated onto the sample 6.
  • the switching stage 43 can change the positions of the X-ray optical element 42 and the mirror 44, and position the mirror 44 at the imaging position.
  • the imaging position is a position where the optical axis of the mirror 44 at the imaging position and the optical axis of the X-ray optical element 42 at the irradiation position are substantially coaxial.
  • the mirror 44 at the imaging position is located on the X-ray irradiation axis.
  • the light from the illumination section 51 is reflected by the sample 6.
  • the mirror 44 located at the photographing position reflects the light from the sample 6 and makes it enter the photographing section 52 .
  • the photographing unit 52 photographs the sample 6 using the incident light.
  • the radiation detector 2 includes a radiation detection element 1 and a preamplifier 21. A part of the preamplifier 21 may be included inside the radiation detector 2 and another part may be arranged outside the radiation detector 2.
  • the radiation detector 2 is connected to a signal processing section 34 and a voltage application section 33 that applies a voltage necessary for radiation detection to the radiation detection element 1.
  • An analysis section 35 is connected to the signal processing section 34 .
  • the analysis section 35 is configured using a computer.
  • a display section 36 such as a liquid crystal display or an EL display (Electroluminescent Display) is connected to the analysis section 35 .
  • the drive section 32 , voltage application section 33 , signal processing section 34 , analysis section 35 , display section 36 , irradiation section 41 , illumination section 51 , and photographing section 52 are connected to the control section 31 .
  • the control section 31 controls the operations of the drive section 32, the voltage application section 33, the signal processing section 34, the analysis section 35, the display section 36, the irradiation section 41, the illumination section 51, and the photographing section 52.
  • the control section 31 is configured using a computer including a calculation section that executes calculations for controlling each section.
  • the control unit 31 may be configured to accept a user's operation and control each unit of the radiation detection device 10 according to the accepted operation.
  • the control section 31 and the analysis section 35 may be configured integrally.
  • the control unit 31 controls the drive unit 32 to move the switching stage 43 and position the mirror 44 at the photographing position. With the mirror 44 in the photographing position, the control section 31 turns on the illumination section 51. The sample 6 is illuminated with light from the illumination section 51, and the photographing section 52 photographs the sample 6. The photographing section 52 generates a photographed image of the sample 6 and transmits it to the control section 31 . The control section 31 causes the display section 36 to display the photographed image. The user observes the sample 6 by visually viewing the photographed image. The control unit 31 also controls the drive unit 32 to move the switching stage 43 and position the X-ray optical element 42 at the irradiation position.
  • the control section 31 causes the irradiation section 41 to generate X-rays.
  • X-rays from the irradiation unit 41 pass through the X-ray optical element 42 and are irradiated onto the sample 6.
  • FIG. 2 is a schematic cross-sectional view showing an example of the internal configuration of the radiation detector 2.
  • the radiation detector 2 is an SDD (Silicon Drift Detector).
  • the radiation detector 2 includes a cylindrical portion 291, a block 22 that covers and connects one end of the cylindrical portion 291, and a bottom plate portion 292 that closes the other end of the cylindrical portion 291.
  • the block 22, the cylindrical portion 291, and the bottom plate portion 292 constitute a housing of the radiation detector 2.
  • Other components of the radiation detector 2 are arranged inside the housing.
  • the block 22 is integrally made of a ferromagnetic material such as iron.
  • the shape of the block 22 is a prefix pyramid.
  • An entrance opening 221 is formed at the tip of the block 22 , through which fluorescent X-rays to be detected by the radiation detector 2 enter.
  • the entrance port 221 is an opening that extends from the outer surface of the block 22 to the interior space of the block 22 .
  • the entrance port 221 is not provided with a window having a window material, and the entrance port 221 is not blocked.
  • Block 22 is integrally formed. In the block 22, no gap connected to the internal space is formed except for the entrance port 221.
  • the radiation detection element 1, the magnetic field generation section 23, the collimator 24, the circuit board 25, the cooling section 26, the heat transfer section 27, and the lead pins 28 are arranged inside the housing composed of the block 22, the cylindrical section 291, and the bottom plate section 292. has been done.
  • the cooling unit 26 is, for example, a Peltier element.
  • the radiation detection element 1 is mounted on the surface of the circuit board 25 and is disposed at a position facing the entrance port 221.
  • the collimator 24 has a cylindrical shape with both ends open, and is made of a material that blocks X-rays.
  • the collimator 24 is arranged between the radiation detection element 1 and the entrance port 221. One end of the collimator 24 faces the entrance port 221, and the other end faces the surface of the radiation detection element 1.
  • Fluorescent X-rays pass through the entrance 221 and enter the block 22, and the collimator 24 blocks a portion of the fluorescent X-rays.
  • the radiation detection element 1 detects fluorescent X-rays that are incident without being blocked by the collimator 24 .
  • the straight path of fluorescent X-rays from the entrance port 221 to the radiation detection element 1 is not blocked. Further, the straight path of fluorescent X-rays from the sample 6 to the radiation detector 2 is not blocked. Therefore, the straight path of the fluorescent X-rays from the sample 6 to the radiation detection element 1 via the entrance port 221 is not blocked by an object such as a window having a window material.
  • a magnetic field generating section 23 is arranged between the entrance port 221 and the collimator 24.
  • a magnetic field generating section 23 is arranged in a space inside the block 22.
  • the magnetic field generating section 23 is attached to the block 22. Since the magnetic field generating section 23 is attached to the block 22, the block 22 holds the magnetic field generating section 23.
  • the magnetic field generating section 23 is configured by a plurality of magnets arranged in a space inside the block 22 so as to face each other.
  • the magnetic field generating section 23 generates a magnetic field in a part of the space inside the block 22 using the magnet.
  • the magnet used by the magnetic field generating section 23 may be a permanent magnet or an electromagnet.
  • the magnetic field generating section 23 is attached to the block 22 by magnetically attaching or adhering a magnet to the block 22.
  • the magnetic field generating section 23 is arranged so that an electric field is generated in at least a portion of the space from the entrance port 221 to the radiation detection element 1 .
  • the plurality of magnets included in the magnetic field generating section 23 face each other with the space from the entrance port 221 to the radiation detection element 1 interposed therebetween.
  • the magnetic field generator 23 generates a magnetic field in at least a portion of the space from the entrance 221 to the radiation detection element 1 . Therefore, a magnetic field is generated in a part of the space from the sample 6 to the radiation detection element 1.
  • a circuit is formed on the circuit board 25, and a preamplifier 21 is mounted thereon. In FIG. 2, the preamplifier 21 is omitted.
  • the circuit formed on the circuit board 25 is connected to the outside of the radiation detector 2. Application of a voltage to the radiation detection element 1 by the voltage application section 33 and output of a signal from the preamplifier 21 are performed through a circuit.
  • the back surface of the circuit board 25 is in thermal contact with the heat absorbing portion of the cooling section 26, either directly or via an intervening material.
  • a heat radiation portion of the cooling portion 26 is in thermal contact with the heat transfer portion 27.
  • the heat transfer portion 27 has a flat portion with which the heat radiation portion of the cooling portion 26 comes into thermal contact, and a portion that penetrates the bottom plate portion 292 .
  • Heat from the radiation detection element 1 is absorbed by the cooling section 26 through the circuit board 25, transmitted from the cooling section 26 to the heat transfer section 27, and radiated to the outside of the radiation detector 2 through the heat transfer section 27. In this way, the radiation detection element 1 is cooled.
  • the heat transfer section 27 may be connected to a heat dissipation mechanism such as a heat dissipation plate located outside the radiation detector 2.
  • the heat transfer section 27 may have a structure for heat radiation, such as a protrusion for connecting to a heat radiation mechanism.
  • the heat transfer section 27 may be integrated with the bottom plate section 292.
  • the radiation detector 2 may not include the heat transfer section 27 and the bottom plate section 292 may also serve as the heat transfer section 27. Note that the radiation detector 2 may further include other components.
  • FIG. 3 is a schematic cross-sectional view showing the radiation detection element 1 and the collimator 24.
  • the radiation detection element 1 is a silicon drift type radiation detection element.
  • the radiation detection element 1 has a flat plate shape as a whole.
  • the radiation detection element 1 is circular in plan view.
  • the radiation detection element 1 includes a plate-shaped semiconductor section 12 made of Si (silicon).
  • the component of the semiconductor portion 12 is n-type Si.
  • the radiation detection element 1 has an entrance surface 11 located on the entrance side where radiation to be detected is incident, and an electrode surface 16 located on the back side of the entrance surface 11. A part of the entrance surface 11 is covered with a collimator 24.
  • the radiation detection element 1 is arranged such that the electrode surface 16 faces the circuit board 25 and the entrance surface 11 faces the entrance port 221.
  • An electrode layer 13 is provided in a portion of the semiconductor portion 12 on the side of the entrance surface 11.
  • the electrode layer 13 is doped with a dopant that makes Si a different type of semiconductor than the components of the semiconductor portion 12 .
  • the component of the electrode layer 13 is p-type Si in which Si is doped with a specific dopant such as boron, for example, p+Si.
  • the electrode layer 13 is formed in most of the area along the entrance surface 11, including a portion corresponding to the center of the entrance surface 11 in plan view. For example, the shape of the electrode layer 13 is circular in plan view.
  • An electrode layer 13 is formed in all areas of the incident surface 11 that correspond to the portions not covered by the collimator 24 . At the periphery of the region along the incident surface 11, there is a portion where the electrode layer 13 is not formed.
  • the component of the signal output electrode 15 is the same type of Si as the semiconductor portion 12.
  • the component of the signal output electrode 15 is n+Si doped with a specific dopant such as phosphorus.
  • a plurality of curved electrodes 14 are provided in a portion of the semiconductor portion 12 on the side of the electrode surface 16, which has multiple annular shapes in a plan view.
  • the component of the curved electrode 14 is a semiconductor of a different type from the semiconductor portion 12, and is p-type Si in which Si is doped with a specific dopant such as boron.
  • the component of the curved electrode 14 is p+Si.
  • the plurality of curved electrodes 14 are substantially concentric, and the signal output electrode 15 is located approximately at the center of the plurality of curved electrodes 14. That is, the plurality of curved electrodes 14 surround the signal output electrode 15, and the distances between the signal output electrode 15 and each curved electrode 14 are different.
  • the shape of the curved electrode 14 may be a ring other than a circular ring, and the multiple curved electrodes 14 may not be concentric.
  • the shape of the curved electrode 14 may be a shape in which a part of the ring is missing.
  • the signal output electrode 15 may be arranged at a position other than the center of the multiple curved electrodes 14.
  • the radiation detection element 1 may have a plurality of sets of signal output electrodes 15, a plurality of curved electrodes 14, and electrode layers 13.
  • the innermost curved electrode 14 and the outermost curved electrode 14 are connected to the voltage application section 33.
  • a voltage is applied to the plurality of curved electrodes 14 from the voltage application unit 33 such that the innermost curved electrode 14 has the highest potential and the outermost curved electrode 14 has the lowest potential.
  • the radiation detection element 1 is configured such that a predetermined electrical resistance is generated between adjacent curved electrodes 14 that are different in distance from the signal output electrode 15 . For example, by adjusting the components of the portion located between adjacent curved electrodes 14, an electrical resistance channel to which two curved electrodes 14 are connected is formed. That is, the plurality of curved electrodes 14 are connected in a daisy chain via electrical resistance.
  • each curved electrode 14 has a potential that monotonically increases from the outer curved electrode 14 to the inner curved electrode 14. That is, the potential of the curved electrode 14 increases sequentially from the curved electrode 14 farther from the signal output electrode 15 to the curved electrode 14 closer to the signal output electrode 15.
  • the plurality of curved electrodes 14 may include a pair of adjacent curved electrodes 14 having the same potential.
  • an electric field (potential gradient) is generated in the semiconductor section 12 in which the potential is higher as the potential is closer to the signal output electrode 15 and lower as the potential is farther from the signal output electrode 15. .
  • the electrode layer 13 is connected to a voltage application section 33. A voltage is applied to the electrode layer 13 from the voltage application unit 33 so that the potential of the electrode layer 13 is between the innermost curved electrode 14 and the outermost curved electrode 14 . In this way, an electric field is generated inside the semiconductor section 12, the potential of which increases as it approaches the signal output electrode 15.
  • X-rays are irradiated from the irradiation unit 41 to the sample 6, and fluorescent X-rays are generated in the sample 6 and enter the radiation detector 2.
  • Radiation consisting of fluorescent X-rays mainly passes through the entrance 221 and enters the inside of the radiation detector 2 .
  • a part of the radiation that has entered the inside of the radiation detector 2 is blocked by the collimator 24.
  • Radiation that is not blocked by the collimator 24 enters the radiation detection element 1.
  • the radiation that has entered the radiation detection element 1 enters the semiconductor section 12 .
  • the radiation incident on the semiconductor section 12 is absorbed within the semiconductor section 12, and an amount of charge corresponding to the energy of the absorbed radiation is generated within the semiconductor section 12.
  • the charges generated are electrons and holes.
  • the generated charges are moved by the electric field inside the semiconductor section 12, and one type of charge flows into the signal output electrode 15 in a concentrated manner.
  • electrons generated by the incidence of radiation move and flow into the signal output electrode 15.
  • the charge flowing into the signal output electrode 15 is output as a current signal.
  • the signal output electrode 15 is connected to the preamplifier 21.
  • the signal output from the signal output electrode 15 is input to the preamplifier 21.
  • Preamplifier 21 converts the current signal into a voltage signal.
  • the preamplifier 21 outputs a signal whose intensity corresponds to the energy of the radiation.
  • Preamplifier 21 is connected to signal processing section 34 .
  • the radiation detector 2 When the preamplifier 21 outputs a signal, the radiation detector 2 outputs a signal with an intensity corresponding to the energy of the radiation.
  • the signal processing unit 34 receives the signal output from the radiation detector 2 and detects the signal value corresponding to the energy of the radiation detected by the radiation detector 2 by detecting the intensity of the signal.
  • the signal processing unit 34 counts signals by signal value and outputs data indicating the relationship between the signal value and the count number to the analysis unit 35.
  • the analysis unit 35 receives data indicating the relationship between the signal value and the count number output by the signal processing unit 34.
  • the analysis section 35 generates a spectrum of the radiation incident on the radiation detector 2 based on the data from the signal processing section 34 . Since the signal value corresponds to the energy of the radiation and the count number corresponds to the number of times the radiation was detected, the spectrum of the radiation can be obtained from the relationship between the signal value and the count number.
  • a spectrum shows the relationship between energy and intensity of radiation. Since the radiation incident on the radiation detector 2 is fluorescent X-rays generated from the sample 6, a spectrum of the fluorescent X-rays generated from the sample 6 can be obtained.
  • the process of counting the signals output by the radiation detector 2 by signal value may be performed by the analysis unit 35 instead of the signal processing unit 34.
  • the generation of the radiation spectrum may be performed by the signal processing unit 34.
  • the analysis unit 35 stores spectrum data representing the spectrum of fluorescent X-rays.
  • the signal processing section 34 and the analysis section 35 correspond to a spectrum generation section.
  • the display unit 36 displays the spectrum of fluorescent X-rays. The user can check the spectrum of fluorescent X-rays from the sample 6.
  • the analysis unit 35 may further perform information processing based on the spectrum of fluorescent X-rays. For example, the analysis unit 35 performs qualitative or quantitative analysis of elements contained in the sample 6 based on the spectrum of fluorescent X-rays from the sample 6.
  • the radiation detection element 1 detects fluorescent X-rays that have passed through the entrance port 221 that is not blocked by the window material.
  • the linear path of the fluorescent X-rays from the sample 6 to the radiation detection element 1 via the entrance port 221 is not blocked by an object such as a window material. Since the detected fluorescent X-rays do not need to pass through the window material, the radiation detection device 10 can detect fluorescent X-rays that cannot pass through the window material due to their low energy. Therefore, the radiation detection device 10 can detect low-energy fluorescent X-rays generated from the sample 6, and can analyze the sample 6 based on the low-energy fluorescent X-rays. For example, qualitative or quantitative analysis of light elements contained in the sample 6 is possible. On the other hand, photoelectrons can easily enter the radiation detector 2 through the entrance port 221 .
  • the radiation detector 2 includes a magnetic field generating section 23.
  • the magnetic field generator 23 generates a magnetic field in at least a portion of the space from the entrance 221 to the radiation detection element 1 .
  • Photoelectrons generated from the sample 6 enter the radiation detector 2 through the entrance port 221 and move in the space from the entrance port 221 to the radiation detection element 1 .
  • Charged particles moving in a magnetic field experience Lorentz forces.
  • the moving direction of photoelectrons moving in the space from the entrance port 221 to the radiation detection element 1 is bent by the Lorentz force.
  • the photoelectrons whose moving direction has been bent collide with the magnetic field generating section 23 or the collimator 24.
  • the magnet included in the magnetic field generating section 23 is coated with a substance made of an element having a smaller atomic number than the elements constituting the magnet. At least the mutually opposing surfaces of the plurality of magnets facing each other with a space between them from the entrance port 221 to the radiation detection element 1 are coated.
  • the magnet is a neodymium magnet
  • the surface of the neodymium magnet is coated with nickel
  • the nickel is coated with aluminum
  • the aluminum is coated with carbon.
  • the fluorescent X-rays from the sample 6 are incident on the magnet, another fluorescent X-ray is generated from the magnet. Further, the photoelectrons whose moving direction is bent collide with the magnet included in the magnetic field generating section 23. Characteristic X-rays are generated from the magnet that the photoelectrons collide with.
  • the spectrum of the fluorescent X-rays from the sample 6 includes a system peak resulting from the X-rays generated from the magnet. Since the surface of the magnet is coated, the X-rays generated from the magnet are absorbed by the material coating the magnet and are difficult to enter the radiation detection element 1 .
  • the material coating the magnet also generates fluorescent X-rays by absorbing the X-rays from the magnet. However, since the material coating the magnet has a lower atomic number, the generated fluorescent X-rays have less energy, less intensity, and a smaller system peak. Therefore, the coating reduces system peaks due to fluorescent X-rays from the magnet.
  • the distance between the plurality of magnets facing each other with a space between them from the entrance port 221 to the radiation detection element 1 changes along the direction from the entrance port 221 to the radiation detection element 1.
  • the intervals between the plurality of magnets become narrower as they approach the entrance port 221, and become wider as they approach the radiation detection element 1.
  • the plurality of magnets are arranged at an angle to each other so that the closer they are to the radiation detection element 1, the wider the distance between them.
  • the fluorescent X-rays When the fluorescent X-rays are incident on the magnet, they do not enter the radiation detection element 1 and are not detected. Fluorescent X-rays generated in the sample 6 are generated radially. That is, the fluorescent X-rays spread as they get farther from the sample 6, and spread as they get closer to the radiation detection element 1. Since the spacing between the plurality of magnets becomes wider as it approaches the radiation detection element 1, even if the fluorescent X-rays spread as they approach the radiation detection element 1, the fluorescent The probability of incidence increases. Therefore, the probability that fluorescent X-rays will be detected increases. Therefore, the radiation detection device 10 can detect fluorescent X-rays from the sample 6 with high efficiency. The angles at which the plurality of magnets are inclined to each other are determined according to the distance from the sample 6 placed on the sample stage 61 to the radiation detection element 1 so that the fluorescent X-rays can enter the radiation detection element 1 as much as possible. It may be.
  • the material of the block 22 is ferromagnetic. If the material of the block 22 is not ferromagnetic, the magnetic field generated by the magnetic field generator 23 will leak to the outside of the block 22 and have an adverse effect on the outside of the block 22. For example, when the sample 6 is a magnetic material, the sample 6 is attracted to the magnetic field generating section 23 by the magnetic field. In this embodiment, since the material of the block 22 is a ferromagnetic material, the magnetic field is shielded by the block 22 and does not leak to the outside of the block 22, so that the magnetic field does not have an adverse effect on the outside of the block 22. For example, the sample 6 is not attracted to the block 22, and a magnetic material can be used as the sample 6.
  • the block 22 has a shape that blocks the light from the illumination part 51 so that it is difficult for the light from the illumination part 51 to directly enter the radiation detection element 1 . More specifically, inside the radiation detection device 10, the shape and position of the block 22 are determined such that a part of the block 22 is located on a line connecting the entrance surface 11 of the radiation detection element 1 and the illumination section 51. ing.
  • the block 22 is arranged on the linear path of light from the illumination section 51 to the radiation detection element 1, and blocks the light linearly irradiated from the illumination section 51 to the radiation detection element 1. Therefore, light from the illumination section 51 is suppressed from entering the radiation detection element 1.
  • the block 22 prevents light from the illumination section 51 from entering the radiation detection element 1 . Therefore, the amount of current generated in the radiation detection element 1 due to the light from the illumination section 51 is small, and occurrence of problems due to an increase in the current signal is suppressed. Therefore, malfunctions of the radiation detection device 10 are suppressed.
  • the block 22 is integrally formed, there are fewer gaps in the housing of the radiation detector 2 than in conventional radiation detectors. Therefore, it is difficult for light to enter the inside of the radiation detector 2 from portions other than the entrance port 221. Since it is difficult for light to enter the inside of the radiation detector 2, the incidence of light into the radiation detection element 1 is further suppressed.
  • the block 22 and the magnetic field generating section 23 are subjected to anti-reflection processing to prevent reflection of illumination light for illuminating the sample 6.
  • the surface color of the block 22 and the magnetic field generating section 23 is black.
  • the surface of the ferromagnetic material is coated with nickel, the nickel is coated with aluminum, and the aluminum is coated with carbon, so that the surface color is black.
  • the surface of the magnetic field generating section 23 is also blackened by carbon.
  • the aluminum surface may be subjected to an alumite treatment to provide antireflection treatment.
  • the surfaces of the block 22 and the magnetic field generating section 23 are rough so that light is scattered.
  • the block 22 and the magnetic field generation section 23 are treated with anti-reflection treatment, so that the illumination light can be prevented. Light is difficult to reflect, and it is difficult for the illumination light to reach the radiation detection element 1. Therefore, the incidence of light into the radiation detection element 1 is further suppressed.
  • the incidence of photoelectrons and illumination light on the radiation detection element 1 is suppressed.
  • the incidence of photoelectrons on the radiation detection element 1 deterioration in the sensitivity with which the radiation detection device 10 detects fluorescent X-rays from the sample 6 is suppressed.
  • the incidence of illumination light on the radiation detection element 1 malfunctions of the radiation detection device 10 are suppressed. Therefore, the radiation detection device 10 can stably detect fluorescent X-rays.
  • the radiation detection element 1 may be polygonal in plan view.
  • the radiation detection element 1 is rectangular in plan view
  • the magnetic field generation section 23 includes two flat magnets arranged to face each other.
  • the two magnets are arranged substantially parallel to the long side of the radiation detection element 1, with the space from the entrance 221 to the radiation detection element 1 sandwiched therebetween. Due to the arrangement in which the two magnets are substantially parallel to the long side of the radiation detection element 1, compared to other arrangements, such as an arrangement in which the two magnets are substantially parallel to the short side of the radiation detection element 1,
  • the distance between the two magnets can be reduced without changing the area on which radiation is incident. The smaller the distance between the two magnets, the stronger the magnetic field.
  • the moving direction of the photoelectrons changes more greatly, making it more difficult for the photoelectrons to enter the radiation detection element 1. Therefore, the incidence of photoelectrons on the radiation detection element 1 is more reliably suppressed.
  • the block 22 and the magnetic field generation section 23 are included in the radiation detector 2, but the block 22 and the magnetic field generation section 23 may be arranged outside the radiation detector 2.
  • the radiation detector 2 includes a housing that does not include the block 22, and the housing has an opening that is not covered with a window material, and the fluorescent X-rays that have passed through the opening are transmitted to the radiation detection element 1.
  • Detected in The magnetic field generation section 23 is arranged at a position between the sample 6 and the radiation detector 2, and the block 22 is arranged at a position to block the light linearly irradiated from the illumination section 51 to the radiation detection element 1. has been done. In this form as well, the incidence of photoelectrons and illumination light on the radiation detection element 1 is suppressed.
  • the radiation detection element 1 may be made of a semiconductor other than Si.
  • the semiconductor portion 12 is made of an n-type semiconductor
  • the electrode layer 13 and the curved electrode 14 are made of a p-type semiconductor.
  • the electrode layer 13 and the curved electrode 14 may be made of an n-type semiconductor.
  • the radiation detection element 1 is a silicon drift type radiation detection element, but the radiation detection element 1 may be a semiconductor element other than a silicon drift type radiation detection element. Therefore, the radiation detector 2 may be a radiation detector other than the SDD.
  • the radiation detector 2 is provided with the collimator 24, but the radiation detector 2 may be provided without the collimator 24.
  • the radiation detection device 10 includes the X-ray optical element 42, but the radiation detection device 10 may not include the X-ray optical element 42.
  • the radiation detection device 10 may use a radiation detection element 1 other than a semiconductor element.
  • Radiation detection device 1 Radiation detection element 12 Semiconductor section 2 Radiation detector 22 Block 221 Incident port 23 Magnetic field generation section 41 Irradiation section 51 Illumination section 6 Sample

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

放射線検出素子への光電子及び照明光の入射を抑制した放射線検出装置及び放射線検出器を提供する。 試料を照明する照明部と、前記試料へX線を照射する照射部と、前記試料から発生したX線を検出する放射線検出素子とを備える放射線検出装置は、前記試料から前記放射線検出素子までの空間の一部に磁界を発生させる磁界発生部と、前記磁界発生部を保持するブロックとを備える。前記ブロックは、前記照明部から前記放射線検出素子への光を遮蔽する位置に配置されている。

Description

放射線検出装置及び放射線検出器
 本発明は、蛍光X線を検出するための放射線検出装置及び放射線検出器に関する。
 蛍光X線分析は、X線を試料へ照射し、試料から発生する蛍光X線を検出し、蛍光X線のスペクトルから試料を分析する手法である。蛍光X線を検出するための放射線検出素子は、例えば、半導体を用いた素子である。X線を照射された試料からは、蛍光X線以外に光電子が発生する。光電子が放射線検出素子へ入射した場合は、蛍光X線検出の感度が悪化する。そこで、光電子への対策が必要となる。特許文献1には、電子顕微鏡において、X線を検出するための放射線検出素子への二次電子の入射を防止する技術が開示されている。
特開2019-33080号公報
 蛍光X線分析では、試料を照明し、試料の観察を行う。試料を照明するための照明光が放射線検出素子へ入射した場合は、放射線検出素子に電流が発生し、放射線検出素子を備える放射線検出装置に不具合が発生することがある。
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、放射線検出素子への光電子及び照明光の入射を抑制した放射線検出装置及び放射線検出器を提供することにある。
 本発明の一形態に係る放射線検出装置は、試料を照明する照明部と、前記試料へX線を照射する照射部と、前記試料から発生したX線を検出する放射線検出素子とを備える放射線検出装置において、前記試料から前記放射線検出素子までの空間の一部に磁界を発生させる磁界発生部と、前記磁界発生部を保持するブロックとを備え、前記ブロックは、前記照明部から前記放射線検出素子への光を遮蔽するように配置されていることを特徴とする。
 本発明の一形態においては、蛍光X線を検出する放射線検出装置は、試料から放射線検出素子までの空間の一部に磁界を発生させる磁界発生部を備える。試料から発生した光電子の移動方向は、磁界によって曲げられ、光電子は放射線検出素子へ入射し難い。従って、放射線検出素子へ光電子が入射することが抑制される。また、放射線検出装置は、磁界発生部を保持するブロックを備える。ブロックは、照明部から放射線検出素子への光を遮蔽し、光が放射線検出素子へ入射し難い。このため、試料を照明する照明光の放射線検出素子への入射が抑制される。
 本発明の一形態に係る放射線検出装置では、前記磁界発生部及び前記ブロックは反射防止加工がなされていることを特徴とする。
 本発明の一形態においては、ブロック及び磁界発生部は反射防止加工がなされているので、光はブロック及び磁界発生部で反射し難く、放射線検出素子へ到達し難い。このため、光が放射線検出素子へ入射することがより抑制される。
 本発明の一形態に係る放射線検出装置では、前記磁界発生部は、磁石を含んでおり、前記磁石は、前記磁石に含まれる元素よりも原子番号が小さい元素からなる物質でコーティングされていることを特徴とする。
 本発明の一形態においては、磁界発生部は磁石を含んでおり、磁石は、磁石を構成する物質よりも原子番号が小さい物質でコーティングされている。X線の入射又は光電子の衝突により磁石から発生するX線は、磁石をコーティングしている物質に吸収され、放射線検出素子へ入射し難い。磁石をコーティングしている物質から発生する蛍光X線は、よりエネルギーが小さくなり、より強度も小さくなる。このため、磁石からの蛍光X線に起因するシステムピークが低減される。
 本発明の一形態に係る放射線検出装置では、前記磁界発生部は、前記試料から前記放射線検出素子までの空間の一部を間に挟んで対向する複数の磁石を含んでおり、前記複数の磁石の間の間隔は、前記試料から前記放射線検出素子へ向かう方向に沿って変化し、前記放射線検出素子に近づくほど広がっていることを特徴とする。
 本発明の一形態においては、磁界発生部は対向する複数の磁石を含んでおり、複数の磁石の間の間隔は、試料から放射線検出素子へ向かって広がっている。試料から発生した蛍光X線は、放射線検出素子へ近づくほど広がる。複数の磁石の間の間隔が放射線検出素子に近づくほど広くなっていることにより、蛍光X線が磁石へ入射せずに放射線検出素子へ入射する確率が高くなり、蛍光X線が検出される確率が高くなる。
 本発明の一形態に係る放射線検出装置では、前記ブロックは、内部に空間を有しており、前記磁界発生部は、前記ブロックの内部に配置されており、前記ブロックの材料は強磁性体であることを特徴とする。
 本発明の一形態においては、磁界発生部はブロックの内部に配置されており、ブロックの材料は磁性体である。磁界発生部から発生した磁界はブロックによって遮蔽される。磁界がブロックの外部へ漏洩することはないので、磁界がブロックの外部へ悪影響を及ぼすことはない。
 本発明の一形態に係る放射線検出装置は、前記試料から前記放射線検出素子までの直線経路が塞がれていないことを特徴とする。
 本発明の一形態においては、試料から放射線検出素子までの直線経路が、窓材を有する窓等の物体によって塞がれていない。蛍光X線は、窓材等を透過せずに放射線検出素子へ入射し、検出される。放射線検出装置は、エネルギーが低いために窓材を透過することができない放射線を検出することができる。
 本発明の一形態に係る放射線検出装置は、前記放射線検出素子を用いて検出した放射線のスペクトルを生成するスペクトル生成部と、前記スペクトル生成部が生成したスペクトルを表示する表示部とを更に備えることを特徴とする。
 本発明の一形態においては、試料から発生する蛍光X線のスペクトルを生成し、生成したスペクトルを表示部に表示する。使用者は、試料から発生した蛍光X線のスペクトルを確認することができる。
 本発明の一形態に係る放射線検出器は、蛍光X線を検出するための放射線検出器において、内部に空間を有するブロックと、前記ブロックに形成されており、前記蛍光X線が入射する入射口と、前記入射口に対向した放射線検出素子と、前記ブロックの内部に配置されており、前記入射口から前記放射線検出素子までの空間に磁界を発生させる磁界発生部とを備え、前記入射口は塞がれておらず、前記入射口から前記放射線検出素子までの直線経路が塞がれていないことを特徴とする。
 本発明の一形態においては、蛍光X線を検出する放射線検出器は、ブロックと、入射口から放射線検出素子までの空間の一部に磁界を発生させる磁界発生部を備える。入射口から放射線検出器の内部へ侵入した光電子の移動方向は、磁界によって曲げられ、放射線検出素子へ光電子が入射することが抑制される。また、ブロックは放射線検出器の外部からの光を遮蔽し、光が放射線検出素子へ入射し難い。このため、試料を照明する照明光の放射線検出素子への入射が抑制される。
 本発明にあっては、放射線検出素子への光電子及び照明光の入射が抑制されることによって、放射線検出の感度の悪化が抑制され、放射線検出装置の不具合が抑制される等、優れた効果を奏する。
放射線検出装置の機能構成例を示すブロック図である。 放射線検出器の内部の構成の例を示す模式的断面図である。 放射線検出素子及びコリメータを示す模式的断面図である。
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
 図1は、放射線検出装置10の機能構成例を示すブロック図である。放射線検出装置10は、例えば蛍光X線分析装置である。試料6が載置される試料台61と、試料6にX線を照射する照射部41と、X線を収束するX線光学素子42と、放射線検出器2とを備えている。試料6は、載置以外の方法で保持されてもよい。照射部41は、例えばX線管である。X線光学素子42は、例えば、入射されたX線を内部で反射させながら導光するX線導管を用いたモノキャピラリレンズ、又は複数のX線導管を用いたポリキャピラリレンズである。照射部41はX線を放射し、X線光学素子42は、照射部41が放射したX線を入射され、X線を収束し、集束したX線を、試料台61に載置された試料6へ照射する。X線を照射された試料6では、蛍光X線が発生し、放射線検出器2は試料6から発生した蛍光X線を検出する。図中には、X線及び蛍光X線を矢印で示している。なお、放射線検出装置10は、試料台61に載置させる方法以外の方法で試料6を保持する形態であってもよい。
 放射線検出装置10は、試料6を照明する照明部51と、ミラー44と、撮影部52と、X線光学素子42及びミラー44の位置を切り替える切替ステージ43とを備えている。照明部51は、LED(light-emitting diode)等の光源を有し、光源の点灯及び消灯を行うことが可能である。光源が点灯することによって、試料6を照明するための照明光が発生する。照明部51は、試料台61に載置された試料6を照明する。撮影部52は、照明部51によって照明された試料6を撮影する。例えば、撮影部52は、光学系と撮像素子とを有する。
 切替ステージ43は、X線光学素子42及びミラー44が取り付けられており、移動することによって、X線光学素子42及びミラー44の位置を変更することができる。切替ステージ43には、切替ステージ43を移動させる駆動部32が連結されている。駆動部32は、例えば、モータを用いて構成されている。駆動部32の動作により、切替ステージ43が移動し、X線光学素子42及びミラー44の位置が変更される。切替ステージ43は、図1に示す如く、X線光学素子42を、照射位置に位置決めすることができる。照射位置は、照射部41からのX線がX線光学素子42へ入射され、X線光学素子42から出射したX線が試料6へ照射されることになる位置である。
 切替ステージ43は、X線光学素子42及びミラー44の位置を変更し、ミラー44を撮影位置に位置決めすることができる。撮影位置は、撮影位置にあるときのミラー44の光軸と照射位置にあるときのX線光学素子42の光軸とがほぼ同軸になる位置である。撮影位置にあるときのミラー44は、X線の照射軸上に位置する。照明部51からの光は試料6で反射する。撮影位置にあるミラー44は、試料6からの光を反射し、撮影部52へ入射させる。撮影部52は、入射した光を利用して、試料6を撮影する。
 放射線検出器2には、放射線検出素子1及びプリアンプ21が含まれている。プリアンプ21は、一部が放射線検出器2の内部に含まれ他の部分が放射線検出器2の外部に配置されていてもよい。放射線検出器2には、信号処理部34と、放射線検出素子1に放射線検出のために必要な電圧を印加する電圧印加部33とが接続されている。信号処理部34には、分析部35が接続されている。分析部35はコンピュータを用いて構成されている。分析部35には、液晶ディスプレイ又はELディスプレイ(Electroluminescent Display)等の表示部36が接続されている。
 駆動部32、電圧印加部33、信号処理部34、分析部35、表示部36、照射部41、照明部51及び撮影部52は、制御部31に接続されている。制御部31は、駆動部32、電圧印加部33、信号処理部34、分析部35、表示部36、照射部41、照明部51及び撮影部52の動作を制御する。制御部31は、各部を制御するための演算を実行する演算部を含んだコンピュータを用いて構成されている。制御部31は、使用者の操作を受け付け、受け付けた操作に応じて放射線検出装置10の各部を制御する構成であってもよい。制御部31及び分析部35は、一体に構成されていてもよい。
 制御部31は、駆動部32を制御して、切替ステージ43を移動させ、ミラー44を撮影位置に位置決めする。ミラー44が撮影位置にある状態で、制御部31は、照明部51を点灯させる。試料6は照明部51からの光で照明され、撮影部52は、試料6を撮影する。撮影部52は、試料6の撮影画像を生成し、制御部31へ送信する。制御部31は、撮影画像を表示部36に表示させる。使用者は、撮影画像を目視することにより、試料6を観察する。また、制御部31は、駆動部32を制御して、切替ステージ43を移動させ、X線光学素子42を照射位置に位置決めする。X線光学素子42が照射位置にある状態で、制御部31は、照射部41にX線を発生させる。照射部41からのX線は、X線光学素子42を通り、試料6へ照射される。
 図2は、放射線検出器2の内部の構成の例を示す模式的断面図である。放射線検出器2は、SDD(Silicon Drift Detector)である。放射線検出器2は、円筒部291と、円筒部291の一端に被さって連結したブロック22と、円筒部291の他端を塞いだ底板部292とを備えている。ブロック22、円筒部291及び底板部292は、放射線検出器2のハウジングを構成している。放射線検出器2の他の構成部分はハウジングの内部に配置されている。ブロック22は、鉄等の強磁性体で一体に構成されている。ブロック22の形状は、接頭錐体である。ブロック22の先端には、放射線検出器2で検出されるための蛍光X線が入射する入射口221が形成されている。入射口221は、ブロック22の外側の表面からブロック22の内部の空間にまで繋がった開口部である。入射口221には窓材を有する窓は設けられておらず、入射口221は塞がれていない。ブロック22は、一体に形成されている。ブロック22には、内部の空間に繋がる隙間は、入射口221以外には形成されていない。
 ブロック22、円筒部291及び底板部292で構成されるハウジングの内部には、放射線検出素子1、磁界発生部23、コリメータ24、回路基板25、冷却部26、伝熱部27及びリードピン28が配置されている。冷却部26は例えばペルチェ素子である。放射線検出素子1は、回路基板25の表面に実装されており、入射口221に対向する位置に配置されている。コリメータ24は、両端が開口した筒状であり、X線を遮蔽する材料で構成されている。コリメータ24は、放射線検出素子1と入射口221との間に配置されている。コリメータ24の一端は入射口221に対向しており、他端は放射線検出素子1の表面に対向している。入射口221を通過して蛍光X線がブロック22の内部へ入射し、コリメータ24は、蛍光X線の一部を遮蔽する。放射線検出素子1は、コリメータ24で遮蔽されずに入射した蛍光X線を検出する。入射口221から放射線検出素子1までの蛍光X線の直線経路は、塞がれていない。また、試料6から放射線検出器2までの蛍光X線の直線経路は、塞がれていない。従って、試料6から入射口221を経由して放射線検出素子1までの蛍光X線の直線経路は、窓材を有する窓等の物体によって塞がれていない。
 入射口221とコリメータ24との間には、磁界発生部23が配置されている。磁界発生部23がブロック22の内部の空間に配置されている。磁界発生部23はブロック22に装着されている。磁界発生部23がブロック22に装着されていることによって、ブロック22は磁界発生部23を保持している。磁界発生部23は、ブロック22の内部の空間に、複数の磁石が互いに対向するように配置されることによって、構成されている。磁石によって、磁界発生部23は、ブロック22の内部の空間の一部に磁界を発生させる。磁界発生部23が用いている磁石は、永久磁石であってもよく、電磁石であってもよい。例えば、磁石がブロック22に磁着するか又は接着されることによって、磁界発生部23はブロック22に装着されている。磁界発生部23は、入射口221から放射線検出素子1までの空間の少なくとも一部に電界が発生するように、配置されている。具体的には、磁界発生部23に含まれる複数の磁石は、入射口221から放射線検出素子1までの空間を間に挟んで対向している。磁界発生部23によって、入射口221から放射線検出素子1までの空間の少なくとも一部に磁界が発生する。従って、試料6から放射線検出素子1までの空間の一部に磁界が発生する。
 回路基板25には、回路が形成されており、プリアンプ21が実装されている。図2では、プリアンプ21を省略している。回路基板25に形成された回路は、放射線検出器2の外部に接続されている。電圧印加部33による放射線検出素子1への電圧の印加と、プリアンプ21からの信号の出力とは、回路を通じて行われる。
 回路基板25の裏面は、直接に又は介在物を介して、冷却部26の吸熱部分に熱的に接触している。冷却部26の放熱部分は伝熱部27に熱的に接触している。伝熱部27は、冷却部26の放熱部分が熱的に接触する平板状の部分と、底板部292を貫通している部分とを有している。放射線検出素子1の熱は、回路基板25を通じて冷却部26に吸熱され、冷却部26から伝熱部27へ伝わり、伝熱部27を通じて放射線検出器2の外部へ放熱される。このようにして、放射線検出素子1は冷却される。伝熱部27は、放射線検出器2の外部にある放熱板等の放熱機構に連結されていてもよい。伝熱部27は、放熱機構に連結するための突出部等の放熱のための構造を有していてもよい。伝熱部27は底板部292と一体になっていてもよい。放射線検出器2は伝熱部27を供えずに底板部292が伝熱部27を兼ねていてもよい。なお、放射線検出器2は、その他の構成物を更に備えていてもよい。
 図3は、放射線検出素子1及びコリメータ24を示す模式的断面図である。放射線検出素子1は、シリコンドリフト型放射線検出素子である。放射線検出素子1は、全体的に平板状である。例えば、放射線検出素子1は、平面視で円形である。放射線検出素子1は、Si(シリコン)からなる板状の半導体部12を備えている。半導体部12の成分はn型のSiである。放射線検出素子1は、検出対象の放射線が入射する入射側に位置する入射面11と、入射面11の裏側に位置する電極面16とを有する。入射面11の一部は、コリメータ24で覆われている。放射線検出素子1は、電極面16が回路基板25に対向し、入射面11が入射口221に対向するように、配置されている。
 半導体部12の入射面11側にある部分には、電極層13が設けられている。電極層13は、Siを半導体部12の成分とは異なる型の半導体にするドーパントがドープされている。電極層13の成分は、ホウ素等の特定のドーパントがSiにドープされたp型のSiであり、例えば、p+Siである。電極層13は、平面視で入射面11の中央に対応する部分を含む、入射面11に沿った大半の領域に形成されている。例えば、電極層13の形状は平面視で円状である。入射面11の中でコリメータ24で覆われていない部分に対応する領域には全て電極層13が形成されている。入射面11に沿った領域の周縁には、電極層13が形成されていない部分が存在する。
 半導体部12の電極面16側にある部分には、放射線検出時に信号を出力する電極である信号出力電極15が設けられている。信号出力電極15の成分は、半導体部12と同じ型のSiである。例えば、信号出力電極15の成分は、リン等の特定のドーパントがSiにドープされたn+Siである。また、半導体部12の電極面16側にある部分には、平面視で多重の環状になった複数の曲線状電極14が設けられている。曲線状電極14の成分は、半導体部12とは異なる型の半導体であり、ホウ素等の特定のドーパントがSiにドープされたp型のSiである。例えば、曲線状電極14の成分は、p+Siである。複数の曲線状電極14はほぼ同心であり、複数の曲線状電極14のほぼ中心に信号出力電極15が位置している。即ち、複数の曲線状電極14は信号出力電極15を囲んでおり、信号出力電極15と夫々の曲線状電極14との間の距離は異なる。
 図3には四つの曲線状電極14を示しているが、実際にはより多くの曲線状電極14が設けられている。なお、曲線状電極14の形状は円環以外の環であってもよく、多重の曲線状電極14は同心でなくともよい。曲線状電極14の形状は環の一部が欠けた形状であってもよい。信号出力電極15は、多重の曲線状電極14の中心以外の位置に配置されていてもよい。放射線検出素子1は、信号出力電極15、複数の曲線状電極14及び電極層13の組を複数有する形態であってもよい。
 最も内側の曲線状電極14と、最も外側の曲線状電極14とは、電圧印加部33に接続されている。複数の曲線状電極14は、最も内側の曲線状電極14の電位が最も高く、最も外側の曲線状電極14の電位が最も低くなるように、電圧印加部33から電圧を印加される。また、放射線検出素子1は、信号出力電極15からの距離が互いに異なり隣接する曲線状電極14の間に、所定の電気抵抗が発生するように構成されている。例えば、隣接する曲線状電極14の間に位置する部分の成分を調整することで、二つの曲線状電極14が接続される電気抵抗チャネルが形成されている。即ち、複数の曲線状電極14は、電気抵抗を介して数珠つなぎに接続されている。電圧が印加されることによって、夫々の曲線状電極14は、外側の曲線状電極14から内側の曲線状電極14に向けて順々に単調に増加する電位を有する。即ち、曲線状電極14の電位は、信号出力電極15に遠い曲線状電極14から信号出力電極15に近い曲線状電極14へ向けて順々に増加する。なお、複数の曲線状電極14の中に、電位が同じ隣接する一対の曲線状電極14が含まれていてもよい。
 複数の曲線状電極14の電位によって、半導体部12内には、段階的に信号出力電極15に近いほど電位が高く信号出力電極15から遠いほど電位が低くなる電界(電位勾配)が生成される。また、電極層13は、電圧印加部33に接続されている。電極層13は、電極層13の電位が最も内側の曲線状電極14と最も外側の曲線状電極14との間の電位になるように、電圧印加部33から電圧が印加される。このように、半導体部12の内部には、信号出力電極15に近づくほど電位が高くなる電界が生成される。
 照射部41から試料6へX線が照射され、試料6では蛍光X線が発生し、放射線検出器2へ入射する。蛍光X線からなる放射線は、主に入射口221を通過し、放射線検出器2の内部へ入射する。放射線検出器2の内部へ入射した放射線の一部は、コリメータ24で遮蔽される。コリメータ24で遮蔽されなかった放射線は、放射線検出素子1へ入射する。放射線検出素子1へ入射した放射線は、半導体部12へ入射する。
 半導体部12へ入射した放射線は、半導体部12内で吸収され、吸収された放射線のエネルギーに応じた量の電荷が、半導体部12内に発生する。発生する電荷は電子及び正孔である。発生した電荷は、半導体部12の内部の電界によって移動し、一方の種類の電荷は、信号出力電極15へ集中して流入する。本実施形態では、放射線の入射によって発生した電子が移動し、信号出力電極15へ流入する。信号出力電極15へ流入した電荷は電流信号となって出力される。
 信号出力電極15はプリアンプ21に接続されている。信号出力電極15が出力した信号はプリアンプ21へ入力される。プリアンプ21は、電流信号を電圧信号へ変換する。プリアンプ21は、放射線のエネルギーに応じた強度の信号を出力する。プリアンプ21は信号処理部34に接続されている。プリアンプ21が信号を出力することにより、放射線検出器2は、放射線のエネルギーに応じた強度の信号を出力する。信号処理部34は、放射線検出器2が出力した信号を受け付け、信号の強度を検出することにより、放射線検出器2が検出した放射線のエネルギーに対応する信号値を検出する。信号処理部34は、信号値別に信号をカウントし、信号値とカウント数との関係を示すデータを分析部35へ出力する。
 分析部35は、信号処理部34が出力した信号値とカウント数との関係を示すデータを受け付ける。分析部35は、信号処理部34からのデータに基づいて、放射線検出器2へ入射した放射線のスペクトルを生成する。信号値は放射線のエネルギーに対応し、カウント数は放射線を検出した回数に対応するので、信号値とカウント数との関係から、放射線のスペクトルが得られる。スペクトルは、放射線のエネルギーと強度との関係を示す。放射線検出器2へ入射する放射線は試料6から発生した蛍光X線であるので、試料6から発生した蛍光X線のスペクトルが得られる。
 放射線検出器2が出力した信号を信号値別にカウントする処理は、信号処理部34ではなく分析部35で行ってもよい。放射線のスペクトルの生成は信号処理部34で行われてもよい。分析部35は、蛍光X線のスペクトルを表したスペクトルデータを記憶する。信号処理部34及び分析部35は、スペクトル生成部に対応する。表示部36は、蛍光X線のスペクトルを表示する。使用者は、試料6からの蛍光X線のスペクトルを確認することができる。分析部35は、更に、蛍光X線のスペクトルに基づいた情報処理を行ってもよい。例えば、分析部35は、試料6からの蛍光X線のスペクトルに基づいて、試料6に含まれる元素の定性分析又は定量分析を行う。
 照射部41からX線を照射された試料6では、蛍光X線が発生する以外に、光電子が発生する。光電子が放射線検出素子1へ入射した場合は、光電子に起因する信号が発生し、蛍光X線を検出する感度が悪化する。入射口が窓材で塞がれていた従来の放射線検出器では、光電子は、窓材で遮蔽され、放射線検出素子へ入射することは困難であった。
 本実施形態では、窓材で塞がれていない入射口221を通過した蛍光X線が放射線検出素子1で検出される。試料6から入射口221を経由して放射線検出素子1までの蛍光X線の直線経路は、窓材等の物体によって塞がれていない。検出される蛍光X線は窓材を透過する必要が無いので、放射線検出装置10は、エネルギーが低いために窓材を透過することができない蛍光X線を検出することができる。このため、放射線検出装置10は、試料6から発生した低エネルギーの蛍光X線を検出することが可能であり、低エネルギーの蛍光X線に基づいた試料6の分析が可能である。例えば、試料6に含まれる軽元素の定性分析又は定量分析が可能である。一方で、光電子は、入射口221を通り、放射線検出器2内へ容易に侵入し得る。
 図2に示したように、放射線検出器2は磁界発生部23を備えている。磁界発生部23によって、入射口221から放射線検出素子1までの空間の少なくとも一部に磁界が発生する。試料6から発生した光電子は、入射口221を通って放射線検出器2内へ侵入し、入射口221から放射線検出素子1までの空間を移動する。磁界の中を移動する荷電粒子には、ローレンツ力が発生する。入射口221から放射線検出素子1までの空間を移動する光電子の移動方向は、ローレンツ力によって曲げられる。移動方向が曲げられた光電子は、磁界発生部23又はコリメータ24に衝突する。このように、光電子は、放射線検出素子1へ向かう途中で移動方向が曲げられるので、放射線検出素子1へ入射し難くなる。従って、放射線検出素子1へ光電子が入射することが抑制され、光電子に起因する信号が低減し、蛍光X線を検出する感度の悪化が抑制される。
 磁界発生部23に含まれる磁石は、磁石を構成する元素よりも原子番号が小さい元素からなる物質でコーティングされている。入射口221から放射線検出素子1までの空間を間に挟んで対向している複数の磁石の、少なくとも互いに対向した表面が、コーティングされている。例えば、磁石はネオジム磁石であり、ネオジム磁石の表面がニッケルでコーティングされており、ニッケルがアルミニウムでコーティングされており、アルミニウムがカーボンでコーティングされている。
 試料6からの蛍光X線が磁石へ入射した場合、磁石からは別の蛍光X線が発生する。また、移動方向が曲げられた光電子は、磁界発生部23に含まれる磁石へ衝突する。光電子が衝突した磁石からは特性X線が発生する。磁石から発生したX線が放射線検出素子1へ入射した場合は、試料6からの蛍光X線のスペクトルに、磁石から発生したX線に起因するシステムピークが含まれるようになる。磁石の表面がコーティングされていることにより磁石から発生したX線は、磁石をコーティングしている物質に吸収され、放射線検出素子1へは入射し難い。磁石をコーティングしている物質は、磁石からのX線を吸収したことによって、自身も蛍光X線を発生させる。しかし、磁石をコーティングしている物質は、原子番号がより小さいので、発生する蛍光X線はよりエネルギーが小さくなり、より強度も小さくなり、システムピークも小さくなる。従って、コーティングによって、磁石からの蛍光X線に起因するシステムピークが低減される。
 磁界発生部23では、入射口221から放射線検出素子1までの空間を間に挟んで対向する複数の磁石の間の間隔は、入射口221から放射線検出素子1へ向かう方向に沿って変化する。複数の磁石の間の間隔は、入射口221に近づくほど狭く、放射線検出素子1に近づくほど広くなっている。例えば、複数の磁石は、放射線検出素子1に近づくほど間隔が広くなるように、互いに傾斜して配置されている。
 蛍光X線は、磁石へ入射した場合は、放射線検出素子1へ入射せず、検出されない。試料6で発生する蛍光X線は、放射状に発生する。即ち、蛍光X線は、試料6から遠ざかるほど広がり、放射線検出素子1へ近づくほど広がる。複数の磁石の間の間隔が放射線検出素子1に近づくほど広くなっていることにより、蛍光X線は、放射線検出素子1へ近づくほど広がったとしても、磁石へ入射せずに放射線検出素子1へ入射する確率が高くなる。このため、蛍光X線が検出される確率が高くなる。従って、放射線検出装置10は、試料6からの蛍光X線を高い効率で検出することができる。複数の磁石が互いに傾斜した角度は、蛍光X線が可及的に放射線検出素子1へ入射できるように、試料台61に載置される試料6から放射線検出素子1までの距離に応じて定められていてもよい。
 前述したように、ブロック22の材料は、強磁性体である。ブロック22の材料が強磁性体ではない場合は、磁界発生部23が発生させた磁界がブロック22の外部へ漏洩し、ブロック22の外部へ悪影響を及ぼす。例えば、試料6が磁性体である場合に、磁界によって試料6が磁界発生部23へ引き寄せられる。本実施形態では、ブロック22の材料は強磁性体であるので、磁界はブロック22によって遮蔽され、ブロック22の外部へ漏洩することはなく、磁界がブロック22の外部へ悪影響を及ぼすことはない。例えば、試料6がブロック22へ引き寄せられることはなく、磁性体を試料6として使用することができる。
 ブロック22は、照明部51からの光が放射線検出素子1へ直接に入射し難くなるように、照明部51からの光を遮蔽する形状になっている。より詳しくは、放射線検出装置10の内部で、放射線検出素子1の入射面11と照明部51とを結んだ線上にブロック22の一部が存在するように、ブロック22の形状及び位置が定められている。ブロック22は、照明部51から放射線検出素子1への光の直線経路上に配置されており、照明部51から放射線検出素子1へ直線的に照射される光を遮蔽する。このため、照明部51からの光が放射線検出素子1へ入射することが抑制される。
 照明部51からの光が放射線検出素子1へ入射した場合は、入射した光に応じて放射線検出素子1に電流が発生し、放射線検出素子1が出力する電流信号が増加する。電流信号の増加により、プリアンプ21の故障の発生、又は放射線検出の精度の悪化等、放射線検出装置10に不具合が発生することがある。本実施形態では、ブロック22によって、照明部51からの光が放射線検出素子1へ入射することが抑制されている。このため、照明部51からの光を原因として放射線検出素子1に発生する電流は少なく、電流信号の増加によって不具合が発生することが抑制される。従って、放射線検出装置10の不具合が抑制される。
 ブロック22が一体に形成されているので、放射線検出器2のハウジングには、従来の放射線検出器に比べて隙間が少ない。このため、入射口221以外の部分から放射線検出器2の内部へ光が浸入し難い。放射線検出器2の内部へ光が浸入し難いので、光が放射線検出素子1へ入射することがより抑制される。
 また、ブロック22及び磁界発生部23は、試料6を照明するための照明光の反射を防止するための反射防止加工がなされている。例えば、ブロック22及び磁界発生部23の表面の色は黒になっている。例えば、ブロック22では、強磁性体の表面がニッケルでコーティングされ、ニッケルがアルミニウムでコーティングされ、アルミニウムがカーボンでコーティングされていることによって、表面の色が黒になっている。磁界発生部23の表面も、カーボンによって黒くなっている。アルミニウムの表面がアルマイト処理されることによって、反射防止加工がなされてもよい。例えば、ブロック22及び磁界発生部23の表面は、光が散乱するように、粗い表面になっている。照明部51からの照明光が試料6の表面で反射して放射線検出器2の内部へ侵入した場合であっても、ブロック22及び磁界発生部23に反射防止加工がなされていることによって、照明光は反射し難く、放射線検出素子1まで照明光が到達することは難しい。このため、光が放射線検出素子1へ入射することがより抑制される。
 以上のように、本実施形態では、放射線検出素子1への光電子及び照明光の入射が抑制される。放射線検出素子1への光電子の入射が抑制されることによって、放射線検出装置10が試料6からの蛍光X線を検出する感度の悪化が抑制される。また、放射線検出素子1への照明光の入射が抑制されることによって、放射線検出装置10の不具合が抑制される。従って、放射線検出装置10は、安定的に蛍光X線の検出を行うことができる。
 なお、放射線検出素子1は、平面視で多角形であってもよい。例えば、放射線検出素子1は、平面視で長方形であり、磁界発生部23は、対向して配置された二つの平板状の磁石を有する。二つの磁石は、入射口221から放射線検出素子1までの空間を間に挟んだ状態で、夫々に、放射線検出素子1の長辺に略平行に配置されている。二つの磁石が放射線検出素子1の長辺に略平行である配置によって、他の配置、例えば二つの磁石が放射線検出素子1の短辺に略平行である配置に比べて、放射線検出素子1へ放射線が入射する面積を変えずに二つの磁石間の距離を小さくすることができる。二つの磁石間の距離が小さくなることによって、磁界が強くなる。光電子は、移動方向がより大きく変化し、より放射線検出素子1へ入射し難くなる。従って、放射線検出素子1への光電子の入射がより確実に抑制される。
 本実施形態においては、ブロック22及び磁界発生部23が放射線検出器2に含まれている形態を示したが、ブロック22及び磁界発生部23は、放射線検出器2の外部に配置されていてもよい。例えば、放射線検出器2は、ブロック22を含まないハウジングを備え、ハウジングには、窓材で塞がれていない開口部が形成されており、開口部を通過した蛍光X線が放射線検出素子1で検出される。磁界発生部23は、試料6と放射線検出器2との間の位置に配置されており、ブロック22は、照明部51から放射線検出素子1へ直線的に照射される光を遮蔽する位置に配置されている。この形態においても、放射線検出素子1への光電子及び照明光の入射が抑制される。
 本実施形態においては、放射線検出素子1を構成する半導体がSiである形態を示したが、放射線検出素子1はSi以外の半導体で構成された形態であってもよい。本実施形態においては、半導体部12がn型の半導体からなり、電極層13及び曲線状電極14がp型の半導体からなる形態を示したが、放射線検出素子1は、半導体部12がp型の半導体からなり、電極層13及び曲線状電極14がn型の半導体からなる形態であってもよい。本実施形態においては、放射線検出素子1がシリコンドリフト型放射線検出素子である形態を示したが、放射線検出素子1は、シリコンドリフト型放射線検出素子以外の半導体製の素子であってもよい。このため、放射線検出器2は、SDD以外の放射線検出器であってもよい。
 本実施形態においては、放射線検出器2がコリメータ24を備える形態を示したが、放射線検出器2はコリメータ24を備えていない形態であってもよい。本実施形態においては、放射線検出装置10がX線光学素子42を備えている形態を示したが、放射線検出装置10は、X線光学素子42を備えていない形態であってもよい。又は、放射線検出装置10は、半導体製の素子以外の放射線検出素子1を用いる形態であってもよい。
 本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
 各実施形態に記載した事項は相互に組み合わせることが可能である。また、請求の範囲に記載した独立請求項及び従属請求項は、引用形式に関わらず全てのあらゆる組み合わせにおいて、相互に組み合わせることが可能である。さらに、請求の範囲には他の2以上のクレームを引用するクレームを記載する形式(マルチクレーム形式)を用いているが、これに限るものではない。マルチクレームを少なくとも一つ引用するマルチクレーム(マルチマルチクレーム)を記載する形式を用いて記載してもよい。
 10 放射線検出装置
 1 放射線検出素子
 12 半導体部
 2 放射線検出器
 22 ブロック
 221 入射口
 23 磁界発生部
 41 照射部
 51 照明部
 6 試料
 

Claims (8)

  1.  試料を照明する照明部と、前記試料へX線を照射する照射部と、前記試料から発生したX線を検出する放射線検出素子とを備える放射線検出装置において、
     前記試料から前記放射線検出素子までの空間の一部に磁界を発生させる磁界発生部と、
     前記磁界発生部を保持するブロックとを備え、
     前記ブロックは、前記照明部から前記放射線検出素子への光を遮蔽するように配置されている
     ことを特徴とする放射線検出装置。
  2.  前記磁界発生部及び前記ブロックは反射防止加工がなされている
     ことを特徴とする請求項1に記載の放射線検出装置。
  3.  前記磁界発生部は、磁石を含んでおり、
     前記磁石は、前記磁石に含まれる元素よりも原子番号が小さい元素からなる物質でコーティングされている
     ことを特徴とする請求項1又は2に記載の放射線検出装置。
  4.  前記磁界発生部は、前記試料から前記放射線検出素子までの空間の一部を間に挟んで対向する複数の磁石を含んでおり、
     前記複数の磁石の間の間隔は、前記試料から前記放射線検出素子へ向かう方向に沿って変化し、前記放射線検出素子に近づくほど広がっている
     ことを特徴とする請求項1乃至3のいずれか一つに記載の放射線検出装置。
  5.  前記ブロックは、内部に空間を有しており、
     前記磁界発生部は、前記ブロックの内部に配置されており、
     前記ブロックの材料は強磁性体である
     ことを特徴とする請求項1乃至4のいずれか一つに記載の放射線検出装置。
  6.  前記試料から前記放射線検出素子までの直線経路が塞がれていない
     ことを特徴とする請求項1乃至5のいずれか一つに記載の放射線検出装置。
  7.  前記放射線検出素子を用いて検出した放射線のスペクトルを生成するスペクトル生成部と、
     前記スペクトル生成部が生成したスペクトルを表示する表示部と
     を更に備えることを特徴とする請求項1乃至6のいずれか一つに記載の放射線検出装置。
  8.  蛍光X線を検出するための放射線検出器において、
     内部に空間を有するブロックと、
     前記ブロックに形成されており、前記蛍光X線が入射する入射口と、
     前記入射口に対向した放射線検出素子と、
     前記ブロックの内部に配置されており、前記入射口から前記放射線検出素子までの空間に磁界を発生させる磁界発生部とを備え、
     前記入射口は塞がれておらず、前記入射口から前記放射線検出素子までの直線経路が塞がれていない
     ことを特徴とする放射線検出器。
     
PCT/JP2023/016267 2022-04-28 2023-04-25 放射線検出装置及び放射線検出器 WO2023210633A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022075250 2022-04-28
JP2022-075250 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210633A1 true WO2023210633A1 (ja) 2023-11-02

Family

ID=88518990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016267 WO2023210633A1 (ja) 2022-04-28 2023-04-25 放射線検出装置及び放射線検出器

Country Status (1)

Country Link
WO (1) WO2023210633A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141045A (ja) * 1983-01-31 1984-08-13 Shimadzu Corp X線分析装置
JPH0669869U (ja) * 1993-03-15 1994-09-30 セイコー電子工業株式会社 半導体x線検出器
JP2001116847A (ja) * 1999-10-20 2001-04-27 Hitachi Ltd X線検出装置、元素分析装置および半導体製造装置
JP2001208857A (ja) * 2000-01-27 2001-08-03 Ion Kasokuki Kk 元素分析装置用x線検出器の散乱陽子リムーバ
JP2009068955A (ja) * 2007-09-12 2009-04-02 Shimadzu Corp 蛍光x線分析装置及び蛍光x線分析方法
JP2012503769A (ja) * 2008-09-25 2012-02-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 検出システム及び方法
WO2018024813A1 (en) * 2016-08-05 2018-02-08 Universitätsklinikum Regensburg Imaging technologies
WO2022091749A1 (ja) * 2020-11-02 2022-05-05 株式会社堀場製作所 放射線検出モジュール、及び放射線検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141045A (ja) * 1983-01-31 1984-08-13 Shimadzu Corp X線分析装置
JPH0669869U (ja) * 1993-03-15 1994-09-30 セイコー電子工業株式会社 半導体x線検出器
JP2001116847A (ja) * 1999-10-20 2001-04-27 Hitachi Ltd X線検出装置、元素分析装置および半導体製造装置
JP2001208857A (ja) * 2000-01-27 2001-08-03 Ion Kasokuki Kk 元素分析装置用x線検出器の散乱陽子リムーバ
JP2009068955A (ja) * 2007-09-12 2009-04-02 Shimadzu Corp 蛍光x線分析装置及び蛍光x線分析方法
JP2012503769A (ja) * 2008-09-25 2012-02-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 検出システム及び方法
WO2018024813A1 (en) * 2016-08-05 2018-02-08 Universitätsklinikum Regensburg Imaging technologies
WO2022091749A1 (ja) * 2020-11-02 2022-05-05 株式会社堀場製作所 放射線検出モジュール、及び放射線検出装置

Similar Documents

Publication Publication Date Title
JP6215202B2 (ja) 密接に結合したシンチレータ−光電子増倍管の1又は複数の組合体を含む電子検出器及びそれを使用した電子顕微鏡
JP5801891B2 (ja) 電子イメージングを用いて試料の画像を作成する荷電粒子線装置及び方法
US3766381A (en) Apparatus and method of charge-particle spectroscopy for chemical analysis of a sample
KR100680700B1 (ko) 평판형 x선원을 이용한 디지털 x선 영상 시스템 및 이를이용한 x선 영상 검출방법
EP2144271B1 (en) X-ray imaging device and x-ray radiographic apparatus
JP2013541799A5 (ja)
US8476589B2 (en) Particle beam microscope
EP1227315A2 (en) X-Ray detector and charged-particle trap
WO2020162246A1 (ja) 放射線検出素子、放射線検出器及び放射線検出装置
US7659514B2 (en) Asymmetric annular detector
WO2023210633A1 (ja) 放射線検出装置及び放射線検出器
TWI746360B (zh) 相位對比成像方法
NL2012225C2 (en) Particle beam microscope.
JP5489412B2 (ja) 蛍光x線分析機能付き高分解能x線顕微装置
WO2022091749A1 (ja) 放射線検出モジュール、及び放射線検出装置
US6826255B2 (en) X-ray inspection system and method of operating
US4900930A (en) Alpha-ray image detecting apparatus
CN112689883A (zh) 保持件及带电粒子束装置
KR100382760B1 (ko) 엑스선 전자 분광 분석기
JP4341910B2 (ja) レーザープロファイルの測定方法および装置、粒子採取方法および装置
US20150144787A1 (en) Electron microscope
US11444213B2 (en) Radiation detector and radiation detection apparatus
WO2022224654A1 (ja) 放射線検出素子、放射線検出器及び放射線検出装置
JPH01217288A (ja) スピン偏極度検出器
KR100455644B1 (ko) 엑스선 발생장치 및 이를 구비한 엑스선 검사장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796373

Country of ref document: EP

Kind code of ref document: A1