WO2023206828A1 - 电池箱箱体结构、电芯和电池包 - Google Patents

电池箱箱体结构、电芯和电池包 Download PDF

Info

Publication number
WO2023206828A1
WO2023206828A1 PCT/CN2022/106292 CN2022106292W WO2023206828A1 WO 2023206828 A1 WO2023206828 A1 WO 2023206828A1 CN 2022106292 W CN2022106292 W CN 2022106292W WO 2023206828 A1 WO2023206828 A1 WO 2023206828A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
battery
explosion
box structure
battery core
Prior art date
Application number
PCT/CN2022/106292
Other languages
English (en)
French (fr)
Inventor
刘勇
Original Assignee
上海兰钧新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海兰钧新能源科技有限公司 filed Critical 上海兰钧新能源科技有限公司
Publication of WO2023206828A1 publication Critical patent/WO2023206828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of secondary batteries, and specifically, to a battery box structure, cells and battery packs.
  • Existing battery packs include multiple cells.
  • the cells include explosion-proof valves, cell poles, and insulation layers. If a battery core experiences thermal runaway, the explosion-proof valve of the battery core opens, and high-temperature airflow and high-temperature liquid sprayed from the explosion-proof valve will destroy the battery. The cell poles and insulation layer will spread to adjacent cells, causing heat diffusion.
  • the objectives of the present disclosure include, for example, providing a battery box structure, battery cells and battery packs that can prevent high-temperature airflow and high-temperature liquid from damaging the insulation layer and battery of the battery cells when some of the battery cells undergo thermal runaway.
  • the core pole avoids affecting other cells and alleviates heat diffusion.
  • the present disclosure provides a battery box structure configured to accommodate batteries.
  • the battery box structure includes a box and a partition.
  • the box has an accommodation space.
  • the partition is provided with In the accommodation space, the partition divides the accommodation space into a first area and a second area, and a ventilation hole is provided on the partition, and the ventilation hole separates the first area and the second area.
  • the second area is connected, the first area is configured to install the battery core, and the ventilation hole is configured to correspond to the explosion-proof valve of the battery core, so that when the explosion-proof valve of the battery core is opened, the ventilation hole will be removed from the battery core.
  • the gas and liquid flowing out of the explosion-proof valve are directed to the second area.
  • the first area is located above the second area.
  • the battery box body structure further includes a sealing and heat insulating component, which is disposed on one side of the partition in the first area and disposed on the passage.
  • the sealing and heat insulating member is configured to seal and heat insulate between the separator and the battery core.
  • the thickness of the sealing and heat insulating member is greater than the gap between the separator and the battery core.
  • the battery box structure further includes an explosion-proof balance component, the explosion-proof balance component is disposed on the box, and the explosion-proof balance component is connected to the second area, and the explosion-proof balance component
  • the balancing component is configured to balance the pressure in the second region.
  • the first area is located above the second area, the side wall of the box is provided with an airflow channel connected to the second area, and the explosion-proof balance assembly passes through the The air flow channel is connected with the second area;
  • the explosion-proof balance component is arranged on the side wall of the box corresponding to the second area; and/or the explosion-proof balance component is arranged on the side wall of the box corresponding to the first area.
  • a groove is recessed on a side of the partition close to the first area toward the second area, and the ventilation hole is provided at the bottom of the groove; or, the A boss is protruding from a side of the partition close to the first area, and the ventilation hole is opened on the top wall of the boss.
  • the battery box structure further includes a first cold plate, the first cold plate is disposed on a side of the partition close to the second area, and the first cold plate Configured to cool the first area and the second area, the first cold plate is provided with through holes corresponding to the ventilation holes.
  • the first cold plate is provided with a flow channel groove, and the first cold plate is partially attached to the partition plate so that the flow channel groove forms a cooling flow path.
  • the first cold plate and/or the partition are provided with a water inlet and a water outlet connected to the cooling flow path.
  • the first cold plate and the partition plate are integrally formed.
  • the surface of the first cold plate is provided with a fireproof coating.
  • the box includes a bottom guard plate, the bottom guard plate is arranged opposite to the partition plate, and the second area is formed between the bottom guard plate and the partition plate;
  • the surface of the bottom guard plate is provided with a fire-retardant coating.
  • an insulating and heat-conducting member is provided between the separator and the battery core.
  • the battery box structure further includes a second cold plate, the second cold plate is disposed in the first area, and the second cold plate is configured to be far away from the battery core. One side of the partition is cooled.
  • a thermal conductive member is provided between the second cold plate and the battery core.
  • the present disclosure provides an electric core, which is applied to the battery box structure according to any one of the preceding embodiments.
  • the electric core includes a electric core body and an explosion-proof valve.
  • the electric core body is provided with an installation device. part, the explosion-proof valve is installed on the installation part, the installation part and/or the explosion-proof valve protrudes from the battery core body, the installation part and/or the explosion-proof valve protrudes from the battery core body
  • the part is configured to be plugged into the vent hole.
  • the present disclosure provides a battery pack, including the battery box structure described in any one of the foregoing embodiments and/or the battery core described in the foregoing embodiments.
  • the beneficial effects of the battery box structure, battery cells and battery pack provided by the embodiments of the present disclosure include, for example:
  • a partition is provided in the accommodation space of the box, and the partition is used to divide the accommodation space into two independent first and second areas, and ventilation holes are provided on the partition.
  • the explosion-proof valve of the battery core corresponds to the vent hole, so that when the battery core undergoes thermal runaway and the explosion-proof valve of the battery core is opened, the gas and liquid flow flowing out of the explosion-proof valve will be directed through the vent hole.
  • the high-temperature airflow and high-temperature liquid are isolated from the first area, thereby improving or avoiding damage to the battery cores provided in the first area and the insulation design in the first area by the high-temperature airflow and high-temperature liquid. and impact.
  • Figure 1 is a schematic structural diagram of a battery pack provided by an embodiment of the present disclosure
  • Figure 2 is a schematic cross-sectional view of a battery pack provided by an embodiment of the present disclosure
  • Figure 3 is an enlarged schematic diagram of point A in Figure 2;
  • Figure 4 is an exploded schematic diagram of the structure of the battery pack provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of the partition installation of the battery box structure provided by the embodiment of the present disclosure.
  • Figure 6 is a partial exploded schematic diagram of the sealing and insulating parts and partitions of the battery box structure provided by the embodiment of the present disclosure
  • Figure 7 is a schematic structural diagram of a partition of a battery box structure provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic exploded view of the battery box structure provided by an embodiment of the present disclosure.
  • Figure 9 is another structural schematic diagram of the partition of the battery box structure according to the embodiment of the present disclosure.
  • Figure 10 is a partial structural schematic diagram of the second region of the battery box structure according to the embodiment of the present disclosure.
  • Figure 11 is a structure of battery cells that can be used in the battery box structure provided by the embodiment of the present disclosure.
  • Figure 12 is a second structure of battery cells that can be used in the battery box structure provided by the embodiment of the present disclosure.
  • Figure 13 is a third structure of battery cells that can be used in the battery box structure provided by the embodiment of the present disclosure.
  • Figure 14 is a fourth structure of battery cells that can be used in the battery box structure provided by the embodiment of the present disclosure.
  • Figure 15 is a fifth structure of battery cells that can be used in the battery box structure provided by the embodiment of the present disclosure.
  • Figure 16 is a sixth structure of battery cells that can be used in the battery box structure provided by the embodiment of the present disclosure.
  • Icon 100-Battery box structure; 110-Box; 101-Side wall; 111-Accommodation space; 113-First area; 115-Second area; 116-Air flow channel; 117-Frame; 118-Sealing parts; 119-bottom guard plate; 120-fixing plate; 121-mounting hole; 123-fixing piece; 130-partition plate; 131-ventilation hole; 133-groove; 135-boss; 136-top wall; 150- Sealing and heat insulation parts; 151-via hole; 170-explosion-proof balance component; 180-first cold plate; 181-through hole; 183-fireproof coating; 184-runner groove; 185-cooling flow path; 186-insulation heat conduction parts; 187-water inlet; 188-water outlet; 189-box joint; 190-second cold plate; 191-liquid cooling runner; 192-liquid outlet; 193-liquid inlet; 194-sealing strip;
  • the battery pack 300 includes a battery box structure 100, a plurality of battery cells 200 and a busbar ( (not shown in figure).
  • the plurality of battery cells 200 are installed in the battery box structure 100 and are electrically connected through busbars.
  • the battery box structure 100 can conduct away the hot air flow and liquid ejected from the explosion-proof valve 230 of the battery cell 200 when one or more battery cells 200 undergo thermal runaway, thereby reducing the risk of one or more battery cells 200 being damaged.
  • the thermal runaway of the core 200 may lead to the risk of thermal runaway of the entire battery pack 300 .
  • the battery box structure 100 includes a box 110 and a partition 130 .
  • the box 110 has an accommodation space 111 .
  • the partition 130 is disposed in the accommodation space 111 .
  • the partition 130 is configured to separate the accommodation space 111 into a first area 113 and a second area 115 .
  • the partition 130 is provided with a ventilation hole 131 , and the ventilation hole 131 is configured to communicate with the first area 113 and the second area 115 .
  • the first area 113 is configured to mount the battery cell 200 .
  • the vent hole 131 is configured to correspond to the explosion-proof valve 230 of the battery core 200 installed in the first area 113, so as to guide the flow of gas and liquid flowing out of the explosion-proof valve 230 when the explosion-proof valve 230 of the battery core 200 is opened. to the second area 115.
  • a partition 130 is provided in the accommodation space 111 of the box 110 , and the partition 130 is used to divide the accommodation space 111 into two independent first areas 113 and a second area 115 .
  • a vent hole 131 is provided on the partition 130 , and the battery core 200 is installed in the first area 113 .
  • the explosion-proof valve 230 of the battery core 200 is arranged corresponding to the vent hole 131 , so that in the event of thermal runaway of the battery core 200 , the battery core 200 will be
  • the explosion-proof valve 230 of 200 is opened, the gas and liquid flows flowing out of the explosion-proof valve 230 are directed to the second area 115 through the vent hole 131, and the high-temperature gas flow and high-temperature liquid are discharged from the first area 113 in a timely manner. , thereby improving or avoiding the damage and influence of high-temperature airflow and high-temperature liquid on the battery core 200 disposed in the first area 113 and the insulation design in the first area 113 .
  • the insulation design includes but is not limited to the insulation layer for high-voltage connections, the insulation layer for low-voltage sampling, and the insulation partitions configured to ensure insulation gaps between the positive and negative poles.
  • the box 110 is also provided with a fixing plate 120.
  • the fixing plate is provided with mounting holes 121.
  • the mounting holes 121 are configured to install bolts, pins, screws and other fasteners to fix the box 110 to the frame or other components. superior.
  • the first area 113 is located above the second area 115 .
  • the first area 113 is arranged above the second area 115, so that when the battery core 200 undergoes thermal runaway, the liquid and gas discharged from the explosion-proof valve 230 of the battery core 200 can be easily discharged through the vent hole 131 into the second area below.
  • area 115 it can also prevent the high-temperature liquid flowing into the second area 115 from flowing back to the first area 113 to cause secondary damage to the battery core 200 in the first area 113 .
  • the number of ventilation holes 131 is the same as the number of battery cores 200 disposed in the first area 113 .
  • the position of the ventilation hole 131 corresponds to the arrangement position of the battery cores 200 in the first area 113 . It is sufficient to ensure that the explosion-proof valve 230 of each or part of the battery core 200 can communicate with the second area 115 through the vent hole 131 .
  • the first area 113 and the second area 115 may also be arranged left and right.
  • the second area 115 is arranged above the first area 113 .
  • the first area 113 is located at the upper left, and the second area 115 is located at the lower right.
  • the first area 113 is located at the lower left, the second area 115 is located at the upper right, etc., which are not specifically limited here.
  • the box 110 includes a frame 117 , a seal 118 and a bottom guard 119 .
  • the frame 117 has a rectangular frame structure.
  • the sealing member 118 and the bottom guard plate 119 are installed on the bottom of the frame 117 in sequence to form a seal on the bottom of the frame 117 .
  • the partition 130 is arranged in the frame 117, and the partition 130 is arranged parallel to the bottom guard plate 119.
  • the area enclosed between the partition 130 , the bottom guard 119 and the frame 117 is the second area 115 .
  • the upper area of the partition 130 is the first area 113 , that is, the side of the partition 130 away from the second area 115 forms the first area 113 .
  • the structure of the frame 117 may also be in other shapes.
  • the frame 117 may be a cube, an ellipse, a cylinder, or a special-shaped structure.
  • the battery box structure 100 further includes a sealing and heat insulating member 150 .
  • the sealing and heat insulating member 150 is disposed on one side of the separator 130 in the first region 113 and on the outer periphery of the ventilation hole 131 .
  • the sealing and heat insulating member 150 is configured to seal and insulate heat between the separator 130 and the battery core 200 .
  • the sealing and heat insulating member 150 is arranged in such a way that after the battery core 200 is installed in the first area 113, one end surface of the battery core 200 with the explosion-proof valve 230 is in contact with the sealing and heat insulating member 150, so that the explosion-proof valve of the battery core 200 can be installed.
  • the thickness of the sealing and heat insulating member 150 is greater than the gap between the separator 130 and the battery core 200, that is, the sealing and heat insulating member 150 has a certain compressibility.
  • the sealing performance can be further improved, and when a thermal runaway occurs, the thermal runaway gas can be blocked from flowing to the first area 113 above, and the gas can be easily flowed to the second area 115 at the bottom.
  • the sealing and heat insulating member 150 is made of fireproof material and has the characteristics of high temperature resistance.
  • the sealing and heat insulating member 150 may be made of one or more of heat insulating cotton, heat insulating rubber, heat insulating glue, and other materials. If the sealed heat insulation component 150 is made of fireproof heat insulation film cotton, it needs to be able to withstand temperatures exceeding 500°C and with a thermal conductivity of ⁇ 0.05w/(mk).
  • the battery core 200 includes a battery core body 210 , an explosion-proof valve 230 , a positive pole 250 and a negative pole 270 .
  • the explosion-proof valve 230 is installed on the battery core body 210.
  • the explosion-proof valve 230 can be opened when the battery core 200 experiences thermal runaway, thereby preventing explosion due to internal pressure of the battery core 200 or other reasons.
  • the positive pole 250 and the negative pole 270 are also installed on the cell body 210.
  • the positive pole 250 and the negative pole 270 are configured to connect the bus or provide power to electrical equipment.
  • the explosion-proof valve 230 , the positive pole 250 and the negative pole 270 are disposed on the same side of the cell body 210 .
  • the explosion-proof valve 230, the positive pole 250 and the negative pole 270 are arranged on the top of the battery core body 210, and the positive pole 250 and the negative pole 270 are located on both sides of the explosion-proof valve 230.
  • the positive pole 250 , the negative pole 270 and the explosion-proof valve 230 on the battery core body 210 can also be disposed on different sides of the battery core 200 .
  • the positive pole 250 and the negative pole 270 of the battery core 200 are arranged on the top of the battery core 200, and the explosion-proof valve 230 is arranged on the bottom of the battery core 200; for another example, the positive pole 250 and the negative pole 270 are respectively arranged on two opposite sides of the battery core 200.
  • the explosion-proof valve 230 is provided at the top or bottom of the battery core 200 .
  • the battery core 200 may be cylindrical, square or other shaped.
  • the explosion-proof valve 230, the positive pole 250 and the negative pole 270 are not on the same plane, when installing the battery core 200, it is only necessary to install the side of the battery core 200 with the explosion-proof valve 230 toward the partition 130, so that the battery core 200 The side where the explosion-proof valve 230 is installed is in contact with the sealing and insulating member 150 , and the explosion-proof valve 230 is aligned with the vent hole 131 .
  • the embodiment of the present disclosure does not limit the type of the battery core 200 , as long as it has an explosion-proof valve 230 , and after the battery core 200 is installed, the explosion-proof valve 230 is connected to the vent hole 131 correspondingly. It should also be noted that the corresponding settings or alignment settings of the vent hole 131 and the explosion-proof valve 230 can be aligned or slightly deviated between the explosion-proof valve 230 and the vent hole 131 during actual setting, as long as the liquid and gas flowing out of the explosion-proof valve 230 are ensured. It is sufficient that the flow can be directed to the second area 115 through the vent hole 131. It is not limited that the vent hole 131 and the explosion-proof valve 230 must be aligned.
  • the size of the vent hole 131 is slightly larger than the size of the explosion-proof valve 230 of the battery core 200, thereby reducing the installation accuracy of the battery core 200, making the installation of the battery core 200 more convenient, and improving the installation efficiency.
  • the ventilation hole 131 and the explosion-proof valve 230 of the battery core 200 can also be indirectly connected through a pipeline, etc., so that the gas or liquid discharged from the explosion-proof valve 230 of the battery core 200 can be discharged through the pipeline.
  • the ventilation holes 131 further guide the flow from the first area 113 to the second area 115 .
  • the battery core body 210 is provided with a mounting part 220, and the explosion-proof valve 230 is installed on the mounting part 220.
  • the mounting portion 220 and/or the explosion-proof valve 230 protrudes from the battery core body 210 , and the portion of the mounting portion 220 and/or the explosion-proof valve 230 that protrudes from the battery core body 210 is configured to be plugged into the ventilation hole 131 .
  • the explosion-proof valve 230 and the vent hole 131 of the battery core 200 can be more conveniently aligned and installed during installation, and liquid leakage can also be avoided. Enter the first area 113.
  • the mounting part 220 may be protruding from the battery core body 210
  • the explosion-proof valve 230 may be protruding from the battery core body 210
  • both the mounting part 220 and the explosion-proof valve 230 may be protruding from the battery core body 210 .
  • the battery box structure 100 also includes an explosion-proof balance component 170 .
  • the explosion-proof balance component 170 is disposed on the box 110 , and is connected to the second area 115 .
  • the explosion-proof balance component 170 is configured to balance the pressure of the second area 115 .
  • the explosion-proof balance component 170 By providing the explosion-proof balance component 170 to the box 110 , when the battery core 200 undergoes thermal runaway, the battery core 200 can be exhausted or drained to reduce the pressure in the second area 115 , thereby preventing the battery box structure 100 from being damaged. explosion occurs.
  • the explosion-proof balance component 170 can be a one-way valve with an explosion-proof exhaust function or a two-way valve with a two-way balanced pressure.
  • the two-way valve can exhaust to one of the two sides according to the pressure, thereby allowing the gas in the second area 115 or The liquid is discharged.
  • the two-way valve can also be opened to allow external air to enter the second area 115, thereby ensuring the balance of the internal and external pressure differences.
  • the explosion-proof balance assembly 170 may also be a disposable explosion-proof valve plate.
  • the explosion-proof balancing component 170 may use a two-way valve with two-way balancing pressure.
  • the side wall 101 of the box 110 is provided with an airflow channel 116 that communicates with the second area 115.
  • the explosion-proof balance component 170 is connected with the second area 115 through the airflow channel 116.
  • the explosion-proof balance component 170 is disposed in the first area.
  • 113 corresponds to the side wall 101 of the box 110.
  • the height of the explosion-proof balance component 170 is set on the side wall 101 of the box 110 corresponding to the first area 113, so that the liquid or gas flowing into the second area 115 due to thermal runaway of the battery core 200 can be stored in the second area 115, so that the second area 115 can be stored in the second area 115.
  • the storage capacity of the second area 115 is increased to avoid corrosion of other parts after being discharged by the explosion-proof balance assembly 170, such as corrosion of the chassis and frame of the electric vehicle. Secondly, it can also prevent the explosion-proof balance component 170 from being damaged by flying stones and the like.
  • the number of explosion-proof balance assemblies 170 includes two, and the two explosion-proof balance assemblies 170 are disposed on two opposite side walls 101 of the box 110 .
  • the two opposite side walls 101 of the box 110 are both provided with air flow channels 116 , and the air flow channels 116 are configured to communicate the explosion-proof balance assembly 170 with the second area 115 .
  • the explosion-proof balance component 170 can be disposed on the side wall 101 of the box 110 corresponding to the second area 115 or on the bottom wall of the box 110 .
  • the number of explosion-proof balancing components 170 can be flexibly adjusted according to actual conditions, such as 1, 3, 4, 5 or more.
  • the frame 117 of the box 110 can be made of aluminum alloy or other materials with good thermal conductivity, so that the airflow channel 116 can be formed by an aluminum alloy, and the high-temperature airflow and liquid flow pass from the second area 115 through the airflow channel 116 and During the discharge process of the explosion-proof balance component 170, the aluminum alloy can cool down the high-temperature air flow and liquid flow, so that the air flow or liquid flow discharged outside the box 110 will not burn adjacent vehicles or pedestrians.
  • the box 110 is also provided with an air pressure balance valve (not shown) connected to the first area 113 .
  • the air pressure balance valve is configured to balance the pressure outside the first area 113 and the battery pack 300 .
  • the side of the partition 130 close to the first region 113 is provided with a groove 133 recessed toward the second region 115 , and the notch of the groove 133 faces toward the first region 115 .
  • the ventilation hole 131 is provided at the bottom of the groove 133.
  • Sealing insulation 150 is disposed within groove 133 .
  • the sealing and heat insulating member 150 is provided with through holes 151 corresponding to the ventilation holes 131 .
  • the groove 133 plays a positioning and limiting role for the sealing and heat insulating piece 150, improving the installation accuracy and efficiency of the sealing and heat insulating piece 150, so that the sealing and heat insulating piece 150 and the partition plate fit better, and the two resist each other. Tighter and better sealed, it is helpful to prevent high-temperature liquid or gas from flowing from the space between the battery core 200 and the separator 130 to other battery cores 200, and avoid aggravation of thermal diffusion.
  • the boss 135 may also be protrudingly provided on the side of the partition 130 close to the first region 113 .
  • the ventilation hole 131 is opened in the boss 135 and penetrates the boss 135 .
  • the sealing and heat insulating member 150 is disposed on the top wall 136 of the boss 135 , that is, the sealing and heat insulating member 150 is disposed on the side of the boss 135 away from the partition 130 .
  • an escape space with a height difference can be formed on both sides of the explosion-proof valve 230, thereby facilitating the installation and insulation design of the busbar.
  • the battery box structure 100 further includes a first cold plate 180 .
  • the first cold plate 180 is disposed on a side of the partition 130 close to the second area 115.
  • the first cold plate 180 is configured to cool the first area 113 and the second area 115.
  • the first cold plate 180 is provided with a ventilation hole 131. Corresponding through hole 181.
  • the first cold plate 180 by arranging the first cold plate 180 and disposing the first cold plate 180 on the side of the partition 130 close to the second area 115, according to the rising principle of hot air flow, the gas flowing in from the through hole 181 and the vent hole 131 rises. Then it will come into contact with the first cold plate 180, so that the temperature of the second area 115 can be realized.
  • the first cold plate 180 can also use the partition 130 to cool down the electronic components such as the battery core 200 and the busbar arranged in the first area 113. The device cools down to maintain the normal operation of the battery pack 300 .
  • flow channels 184 are provided on both the first cold plate 180 and the partition 130 , and the first cold plate 180 and the partition 130 are partially attached so that the flow channels 184 form a closed cooling flow path 185 . That is, heat is dissipated by liquid flow taking away heat, which can realize simultaneous heat dissipation of the first area 113 and the second area 115 and has good heat dissipation performance.
  • the flow channel groove 184, the ventilation hole 131 and the through hole 181 on the first cold plate 180 and the partition plate 130 can be formed by stamping. After the stamping is formed, the two are welded together, thereby making the flow
  • the groove 184 forms a cooling flow path 185.
  • a water inlet 187 and a water outlet 188 connected to the cooling flow path 185 are provided on the first cold plate 180 or the partition 130.
  • the cooling medium is circulated and cooled in the cooling flow path 185 using a water pump or other means.
  • the first cold plate 180 is provided on the partition 130, so that the heat exchange between the battery core 200 and the cooling medium in the cooling flow path 185 can be better realized, and secondly, it can also be enhanced.
  • the structural strength of the partition 130 improves the load-bearing capacity of the partition 130 and saves materials.
  • an insulating and heat-conducting member 186 is provided between the separator 130 and the battery core 200.
  • the insulating and heat-conducting member 186 may be a thermally conductive adhesive. By providing the thermally conductive adhesive, the separator 130 can be connected to the electrical conductor.
  • the busbar of the core 200 performs heat exchange, so that the cooling medium can be used to cool down the battery core 200 and other components and parts of the battery pack 300 at the same time.
  • the water inlet 187 and the water outlet 188 are respectively connected to box-through joints 189 to facilitate the filling of cooling medium outside the box 110 and to facilitate the circulation of the cooling medium.
  • the first cold plate 180 may also be integrally formed with the partition 130 and have a cooling flow path 185 formed therebetween. Such as casting, 3D printing or extrusion molding.
  • the first cold plate 180 may also be other types of cooling components, such as semiconductor refrigeration components.
  • the partition 130 and the first cold plate 180 are independent of each other, and the first cold plate 180 itself can realize heat exchange with the partition 130 and the second area 115 .
  • the partition 130 is made of a refrigeration element, which eliminates the need for an additional first cold plate 180 .
  • a thermally conductive adhesive is attached to the side of the partition 130 close to the first area 113.
  • the thermally conductive adhesive can improve the heat exchange efficiency between the battery core 200 and the partition 130, so that the battery core 200, busbar and other components The accessories can better realize heat exchange with the partition 130 and improve the heat exchange efficiency.
  • part of the liquid can also be injected into the second area 115.
  • the liquid can be water or a liquid chemical agent. After the battery core 200 experiences thermal runaway and flows into the second area 115 with high-temperature liquid, the high-temperature liquid will The liquid directly falls into the low-temperature liquid in the second area 115, so that the high-temperature liquid can be cooled and the high-temperature liquid can avoid damaging the bottom guard 119.
  • the chemical agent can be determined based on the liquid flowing out of the explosion-proof valve 230 of the battery core 200. For example, the liquid flowing out of the explosion-proof valve 230 of the battery core 200 can be the same as the liquid chemical agent.
  • the reaction proceeds endothermally to achieve cooling.
  • the liquid flowing out of the explosion-proof valve 230 of the battery core 200 can react with the liquid chemical agent to form a non-corrosive and environmentally friendly product, thereby avoiding corrosion of the bottom guard 119 or the side wall 101 of the box 110 while cooling down, so as to improve
  • the battery pack has a service life of 300 years.
  • the chemical reagent or the cooling fire-extinguishing agent may also be packaged in a sealed container, and the sealed container containing the chemical reagent or the cooling fire-extinguishing agent is disposed in the second area 115, and in the first A detection sensor is provided in the second area 115.
  • the sealed container containing chemical reagents or cooling fire extinguishing agents can be opened, thereby enabling control of the second area.
  • the sensor can be a temperature sensor or a pressure sensor, a harmful gas sensor, or a combination of multiple sensors.
  • the surface of the bottom protection plate 119 close to the partition 130 is coated with a fireproof and heat-insulating material.
  • the surface of the bottom guard plate 119 is provided with a fire-retardant coating 183, which has the characteristics of fire prevention and high temperature resistance;
  • the surface of the first cold plate 180 is provided with a fire-retardant coating 183, and the portion of the frame 117 corresponding to the second area 115 is also provided with a fire-retardant coating 183.
  • There is a fireproof coating 183 which can improve the fireproof and heat insulation performance of the second area 115 and reduce the risk of heat diffusion.
  • the bottom guard 119 is provided with a fixing piece 123 , and the fixing piece 123 is configured to connect the bottom guard 119 and the frame 117 to improve the structural strength.
  • the sealing member 118 is provided between the bottom guard 119 and the frame 117.
  • the fixing member 123 passes through the bottom guard 119, the sealing member 118 and the frame 117 in sequence to achieve a fixed connection between the three.
  • the fixing member 123 may be a screw. or bolts etc.
  • the battery box structure 100 further includes a second cold plate 190 , which is disposed in the first area 113 and opposite to the first cold plate 180 .
  • the second cold plate 190 is configured to cool the side of the battery core 200 away from the first cold plate 180 .
  • the second cold plate 190 is a liquid-cooled cold plate, which is provided with a liquid cooling channel 191 and a liquid outlet 192 and a liquid inlet 193 connected with the liquid cooling channel 191. Through the liquid inlet 193 and The liquid outlet 192 and the liquid cooling channel 191 realize the flow and heat exchange of the cooling medium.
  • the second cold plate 190 is installed on the top of the box 110 and is also configured as a cover of the box 110 to seal the first area 113 , that is, the second cold plate 190 , the partition 130 and the frame 117 collectively enclose combined to form the first region 113.
  • a sealing strip 194 configured to seal is also provided between the second cold plate 190 and the frame 117 of the box 110 .
  • a thermal conductive member 195 is provided on the side of the second cold plate 190 that abuts the battery core 200 .
  • the thermal conductive member 195 may be thermally conductive glue or other thermal conductive elements, so that the second cold plate 190 can better exchange heat with the battery core 200 .
  • the second cold plate 190 is provided with a fixing part 123, and the fixing part 123 is configured to connect the second cold plate 190 and the frame 117 to improve the structural strength.
  • the sealing strip 194 is provided between the second cold plate 190 and the frame 117, and the fixing piece 123 passes through the second cold plate 190, the sealing strip 194 and the frame 117 in sequence to achieve a fixed connection between the three.
  • the fixing piece 123 can Is it a screw or bolt, etc.
  • the working principles and beneficial effects of the battery box structure 100, the battery core 200 and the battery pack 300 provided by the embodiments of the present disclosure include:
  • a partition 130 is provided in the accommodation space 111 of the box 110, and the accommodation space 111 is divided into two independent first areas 113 and second areas 115 by the partition 130.
  • a ventilation hole 131 is provided on the plate 130.
  • the battery box structure, battery cells and battery pack disclosed in the present disclosure can reduce the impact of high-temperature liquid flow and airflow flowing out of the explosion-proof valve on the battery poles and insulation design in the battery pack when some of the battery cells undergo thermal runaway. Cause damage, reduce the risk of thermal runaway spreading to other cells, slow down heat diffusion or reduce the destructiveness of thermal runaway.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本公开实施例提供一种电池箱箱体结构、电芯和电池包,属于电池技术领域。电池箱箱体结构包括箱体和隔板,箱体具有容置空间,隔板设置于容置空间,隔板配置成分隔容置空间为第一区域和第二区域,隔板上设置有通气孔,通气孔配置成连通第一区域和第二区域,第一区域配置成安装电芯,通气孔配置成与电芯的防爆阀对应以在电芯的防爆阀打开的情况下将防爆阀流出的气体和液体流导流至第二区域。本实施例可以延缓或者改善电池包发生热扩散。

Description

电池箱箱体结构、电芯和电池包
相关申请的交叉引用
本公开要求于2022年04月28日提交中国专利局的申请号为2022104712423、名称为“电池箱箱体结构、电芯和电池包”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及二次电池技术领域,具体而言,涉及一种电池箱箱体结构、电芯和电池包。
背景技术
现有的电池包包括多个电芯,电芯包括防爆阀、电芯极柱和绝缘层,若电芯发生热失控,电芯的防爆阀开启,从防爆阀喷射高温气流和高温液体会破坏电芯极柱和绝缘层,并波及相邻的电芯,从而引发热扩散。
发明内容
本公开的目的包括,例如,提供了一种电池箱箱体结构、电芯和电池包,其能够在部分电芯发生热失控的情况下避免高温气流和高温液体破坏电芯的绝缘层和电芯极柱,避免影响其他电芯,缓解热扩散。
本公开的实施例可以这样实现:
第一方面,本公开提供一种电池箱箱体结构,配置成容置电芯,所述电池箱箱体结构包括箱体和隔板,所述箱体具有容置空间,所述隔板设置于所述容置空间,所述隔板将所述容置空间分隔为第一区域和第二区域,所述隔板上设置有通气孔,所述通气孔将所述第一区域和所述第二区域连通,所述第一区域配置成安装所述电芯,所述通气孔配置成与所述电芯的防爆阀对应,以在所述电芯的防爆阀打开的情况下将从所述防爆阀流出的气体和液体导流至所述第二区域。
在可选的实施方式中,所述第一区域位于所述第二区域的上方。
在可选的实施方式中,所述电池箱箱体结构还包括密封隔热件,所述密封隔热件设置于所述隔板位于所述第一区域的一侧,且设置于所述通气孔的外周缘,所述密封隔热件配置成所述隔板与所述电芯之间密封和隔热。
在可选的实施方式中,所述密封隔热件的厚度大于所述隔板与所述电芯之间的间隙。
在可选的实施方式中,所述电池箱箱体结构还包括防爆平衡组件,所述防爆平衡组件设置于所述箱体,且所述防爆平衡组件与所述第二区域连通,所述防爆平衡组件配置成平衡所述第二区域的压力。
在可选的实施方式中,所述第一区域位于所述第二区域的上方,所述箱体的侧壁设置有与所述第二区域连通的气流通道,所述防爆平衡组件通过所述气流通道与所述第二区域连通;
所述防爆平衡组件设置于所述第二区域对应的所述箱体侧壁;和/或,所述防爆平衡组件设置于所述第一区域对应的所述箱体侧壁。
在可选的实施方式中,所述隔板靠近所述第一区域的一侧向着第二区域的方向凹设有凹槽,所述通气孔设置于所述凹槽的槽底;或者,所述隔板靠近所述第一区域的一侧凸设有凸台,所述通气孔开设于所述凸台的顶壁。
在可选的实施方式中,所述电池箱箱体结构还包括第一冷板,所述第一冷板设置于所述隔板靠近所述第二区域的一侧,所述第一冷板配置成对所述第一区域和第二区域降温,所述第一冷板上设置有与所述通气孔对应的贯穿孔。
在可选的实施方式中,所述第一冷板设置有流道槽,且所述第一冷板与所述隔板部分贴合以使所述流道槽形成冷却流路。
在可选的实施方式中,所述第一冷板和/或所述隔板上设有与所述冷却流路连通的进水口和出水口。
在可选的实施方式中,所述第一冷板与所述隔板一体成型。
在可选的实施方式中,所述第一冷板的表面设有防火涂层。
在可选的实施方式中,所述箱体包括底护板,所述底护板与所述隔板相对设置,所述底护板与所述隔板之间形成所述第二区域;所述底护板的表面设有防火涂层。
在可选的实施方式中,所述隔板与所述电芯之间设有绝缘导热件。
在可选的实施方式中,所述电池箱箱体结构还包括第二冷板,所述第二冷板设置于所述第一区域,所述第二冷板配置成对所述电芯远离所述隔板的一侧降温。
在可选的实施方式中,所述第二冷板和所述电芯之间设有导热件。
第二方面,本公开提供一种电芯,应用于前述实施方式中任一项所述的电池箱箱体结构,所述电芯包括电芯本体和防爆阀,所述电芯本体设置有安装部,所述防爆阀安装于所述安装部,所述安装部和/或所述防爆阀凸出所述电芯本体,所述安装部和/或所述防爆阀凸出所述电芯本体的部分配置成插接于所述通气孔。
第三方面,本公开提供一种电池包,包括前述实施方式中任一项所述的电池箱箱体结构和或包括前述实施方式所述的电芯。
本公开实施例的提供的电池箱箱体结构、电芯和电池包的有益效果包括,例如:
本公开通过在箱体的容置空间设置隔板,利用隔板将容置空间分隔成两个独立的第一区域和第二区域,并在隔板上设置通气孔,在电芯安装在第一区域后,电芯的防爆阀与通气孔对应,从而会在电芯发生热失控的情况下电芯的防爆阀打开的情况下通过通气孔将所述防爆阀流出的气体和液体流导流至第二区域,将高温的气流和高温的液体均与第一区域隔离,从而改善或避免高温气流和高温液体对设置在第一区域内的电芯及其第一区域内的绝缘设计的损坏和影响。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的电池包结构示意图;
图2为本公开实施例提供的电池包的剖视示意图;
图3为图2中A处放大示意图;
图4为本公开实施例提供的电池包的结构***示意图;
图5为本公开实施例提供的电池箱箱体结构的隔板安装示意图;
图6为本公开实施例提供的电池箱箱体结构的密封隔热件与隔板的局部***示意图;
图7为本公开实施例提供的电池箱箱体结构的隔板的结构示意图;
图8为本公开实施例提供的电池箱箱体结构的分解结构示意图;
图9为本公开实施例的电池箱箱体结构的隔板的另一结构示意图;
图10为本公开实施例的电池箱箱体结构的第二区域的局部结构示意图;
图11为本公开实施例提供的电池箱箱体结构可使用的电芯的一种结构;
图12为本公开实施例提供的电池箱箱体结构可使用的电芯的第二种结构;
图13为本公开实施例提供的电池箱箱体结构可使用的电芯的第三种结构;
图14为本公开实施例提供的电池箱箱体结构可使用的电芯的第四种结构;
图15为本公开实施例提供的电池箱箱体结构可使用的电芯的第五种结构;
图16为本公开实施例提供的电池箱箱体结构可使用的电芯的第六种结构。
图标:100-电池箱箱体结构;110-箱体;101-侧壁;111-容置空间;113-第一区域;115-第二区域;116-气流通道;117-框架;118-密封件;119-底护板;120-固定板;121-安装孔;123-固定件;130-隔板;131-通气孔;133-凹槽;135-凸台;136-顶壁;150-密封隔热件;151-过孔;170-防爆平衡组件;180-第一冷板;181-贯穿孔;183-防火涂层;184-流道槽;185-冷却流路;186-绝缘导热件;187-进水口;188-出水口;189-穿箱接头;190-第二冷板;191-液冷流道;192-出液口;193-进液口;194-密封条;195-导热件;200-电芯;210-电芯本体;220-安装部;230-防爆阀;250-正极柱;270-负极柱;300-电池包。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在不冲突的情况下,本公开的实施例中的特征可以相互结合。
请参考图1、图2和图3,本实施例提供了一种电池包300,该电池包300包括电池箱箱体结构100、多个电芯200和连接多个电芯200的汇流排(图未视)。多个电芯200均安装在电池箱箱体结构100内,且通过汇流排电连接。电池箱箱体结构100可在一个或多个电芯200发生热失控时,将电芯200的防爆阀230喷出的热气流和液体导走,从而可以降低由于一个电芯200或多个电芯200发生热失控致使整个电池包300发生热失控的风险。
在本实施例中,电池箱箱体结构100包括箱体110和隔板130。箱体110具有容置空间111。隔板130设置于容置空间111内。隔板130配置成分隔容置空间111为第一区域113和第二区域115。隔板130上设置有通气孔131,通气孔131配置成连通第一区域113和第二区域115。第一区域113配置成安装电芯200。通气孔131配置成与安装在第一区域113内的电芯200的防爆阀230对应设置,以在电芯200的防爆阀230打开的情况下将从防爆阀230流出的气体和液体流导流至所述第二区域115。
本实施例通过在箱体110的容置空间111设置隔板130,利用隔板130将容置空间111分隔成两个独立的第一区域113和第二区域115。在隔板130上设置通气孔131,电芯200安装在第一区域113,电芯200的防爆阀230与通气孔131对应设置,从而会在电芯200发生热失控的情况下,且电芯200的防爆阀230打开的情况下,通过通气孔131将从所述防爆阀230流出的气体和液体流导流至第二区域115,将高温的气流和高温的液体及时从第一区域113排出,从而可以改善或避免高温气流和高温液体对设置在第一区域113内的电芯200及第一区域113内的绝缘设计的损坏和影响。
需要说明的是,绝缘设计包括但不限于高压连接的绝缘层、低压采样的绝缘层、正负极柱之间的配置成保证绝缘间隙的绝缘隔板等。
结合图1,箱体110还设有固定板120,固定板上设有安装孔121,安装孔121配置成安装螺栓、销钉或螺钉等固定件,以将箱体110固定在车架或其它部件上。
在本实施例中,第一区域113位于第二区域115的上方。将第一区域113设置在第二区域115的上方,从而在电芯200发生热失控的情况下,电芯200防爆阀230排出的液体和气体可以方便的由通气孔131排入下方的第二区域115,同时也可以避免流入第二区域115的高温液体回流至第一区域113,以对第一区域113内的电芯200造成二次伤害。
需要说明的是,通气孔131的数量和设置在第一区域113内的电芯200数量相同。通气孔131的设置位置与设置在第一区域113内的电芯200的排布位置相对应。只要保证每个或者部分电芯200的防爆阀230能通过通气孔131与第二区域115连通即可。
当然,在本公开的另外一些实施例中,第一区域113和第二区域115也可以呈左右排布。或者,第二区域115布设在第一区域113的上方。或者第一区域113位于左上方,第二区域115位于右下方。或者,第一区域113位于左下方,第二区域115位于右上方等,这里不作具体限定。
请参照图4和图5,在本实施例中,箱体110包括框架117、密封件118和底护板119。框架117呈矩形框架结构。密封件118和底护板119依次安装在框架117的底部,形成对框架117底部的密封。隔板130设置在框架117内,且隔板130与底护板119平行设置。隔板130、底护板119和框架117之间围合形成的区域为第二区域115。隔板130上部的区域为第一区域113,即隔板130远离第二区域115的一侧形成第一区域113。
当然,在本公开的另外一些实施例中,框架117的结构也可以是其他的形状,例如框架117为正方体、椭圆状、圆筒状或者异形结构。
请参照图4和图6,在本实施例中,电池箱箱体结构100还包括密封隔热件150。密封隔热件150设置于隔板130位于第一区域113的一侧,且设置于通气孔131的外周缘,密封隔热件150配置成隔板130与电芯200之间密封和隔热。密封隔热件150的设置方式为,电芯200安装在第一区域113后,电芯200设置有防爆阀230的一端端面与密封隔热件150抵接,从而可以在电芯200的防爆阀230打开的情况下,避免高温液体或气体由电芯200和隔板130之间的空间流向其他电芯200。可选地,密封隔热件150的厚度大于隔板130 与电芯200之间的间隙,即密封隔热件150具有一定的压缩性,在装配至隔板130与电芯200之间后,可进一步提升密封性,在发生热失控的状态下,能阻隔热失控的气体流向上方的第一区域113,方便气体汇流到底部的第二区域115。密封隔热件150采用防火材料,具有耐高温的特点。密封隔热件150可以是隔热棉、隔热橡胶、隔热胶等材质中的一种或者几种形成。若密封隔热件150采用防火隔热膜棉,需要具备能够耐温超过500℃以上、导热系数≤0.05w/(mk)的性能。
请参照图3、图11至图16,电芯200包括电芯本体210、防爆阀230、正极柱250和负极柱270。防爆阀230安装在电芯本体210上,防爆阀230在电芯200发生热失控的情况下可以打开,从而可以避免电芯200内部压强等原因发生***。正极柱250和负极柱270也安装在电芯本体210上,正极柱250和负极柱270配置成连接汇流排或给用电设备供电。
在本公开的一些实施例中,防爆阀230、正极柱250和负极柱270设置在电芯本体210的同一侧。例如,防爆阀230、正极柱250和负极柱270设置在电芯本体210的顶部,且正极柱250和负极柱270位于防爆阀230的两侧,在安装该电芯200时将电芯200倒装在第一区域113内,使得电芯200的顶部与密封隔热件150抵接,防爆阀230与通气孔131对准。
需要说明的是,在本公开的一些实施例中,电芯本体210上的正极柱250、负极柱270与防爆阀230三者也可以设置在电芯200的不同侧。例如电芯200的正极柱250和负极柱270设置在电芯200的顶部,防爆阀230设置在电芯200的底部;又例如,正极柱250和负极柱270分别设置在电芯200相对的两侧,防爆阀230设置在电芯200的顶部或底部。当然,电芯200可以采用圆柱形、方形或其它形状的电芯200。在防爆阀230、正极柱250和负极柱270不在同一平面的情况下,在安装电芯200时,仅需将电芯200设置有防爆阀230的一侧向着隔板130设置,使电芯200设置防爆阀230的一侧与密封隔热件150抵接,且使防爆阀230与通气孔131对准即可。
需要说明的是,本公开实施例不限定电芯200的类型,只要其具有防爆阀230,且在电芯200安装后,防爆阀230与通气孔131对应连通即可。还需要说明的,通气孔131与防爆阀230的对应设置或对准设置,在实际设置时可以是防爆阀230与通气孔131对准或者略有偏差,只要保证防爆阀230流出的液体和气体能够通过通气孔131导流至第二区域115即可,这里并不限定通气孔131和防爆阀230一定要对中。
在本公开的一些实施例中,通气孔131的尺寸略大于电芯200的防爆阀230的尺寸, 从而可以降低电芯200的安装精度,且能够使电芯200安装更加方便,提高安装效率。
当然,在本公开的另外一些实施例中,通气孔131和电芯200的防爆阀230也可以通过管道等方式间接连通,从而使电芯200的防爆阀230排出的气体或液体通过管道排向通气孔131,进而从第一区域113导流至第二区域115。
在本公开的一些实施例中,电芯本体210上设置有安装部220,防爆阀230安装于安装部220。安装部220和/或防爆阀230凸出电芯本体210,安装部220和/或防爆阀230凸出电芯本体210的部分配置成插接于通气孔131。通过使凸设在电芯本体210上的安装部220和/或防爆阀230,从而可以使电芯200的防爆阀230与通气孔131在安装时更方便对中和安装,也可以避免液体漏入第一区域113。可以理解,可以是安装部220凸设于电芯本体210,也可以是防爆阀230凸设于电芯本体210,还可以是安装部220和防爆阀230均凸设于电芯本体210。
请继续参照图3至图10,由于电芯200的防爆阀230与第二区域115连通,从而在电芯200发生热失控的情况下,可能会短时间内导致第二区域115的温度和压力急剧增大,从而可能会导致电池箱箱体结构100发生***。在本实施例中,电池箱箱体结构100还包括防爆平衡组件170。所述防爆平衡组件170设置于所述箱体110,且所述防爆平衡组件170与所述第二区域115连通,所述防爆平衡组件170配置成平衡所述第二区域115的压力。通过给箱体110设置防爆平衡组件170,从而在电芯200发生热失控的情况下可以向外排气或排液以达到降低第二区域115的压力的目的,从而避免电池箱箱体结构100发生***。
防爆平衡组件170可以是具有防爆排气功能的单向阀或者具有双向平衡压力的双向阀,该双向阀可以根据压力向两侧中的一侧排气,从而可以让第二区域115的气体或液体排出,在一些情况下,该双向阀也可打开使得外部空气进入第二区域115,从而保证内外压差平衡。当然,在本公开的另外一些实施例中,防爆平衡组件170也可以是一次性使用的防爆阀片。在本实施例中,防爆平衡组件170可采用具有双向平衡压力的双向阀。
在本实施例中,箱体110的侧壁101设置有与第二区域115连通的气流通道116,防爆平衡组件170通过气流通道116与第二区域115连通,防爆平衡组件170设置于第一区域113对应的箱体110的侧壁101。将防爆平衡组件170的高度设置在第一区域113对应的箱体110的侧壁101,从而可以让电芯200热失控流入第二区域115的液体或气体存储在第二区域115内,使得第二区域115的存储量增大,避免由防爆平衡组件170排出后腐 蚀其他零部件,例如腐蚀电动汽车的底盘和车架。其次,也可以避免防爆平衡组件170被飞石等损坏。
在本实施例中,防爆平衡组件170的数量包括两个,两个防爆平衡组件170设置在箱体110的相对的两个侧壁101。箱体110相对的两个侧壁101均设置有气流通道116,气流通道116配置成将防爆平衡组件170与第二区域115连通。
当然,在本公开的另外一些实施例中,防爆平衡组件170可设置于第二区域115对应的箱体110的侧壁101,或设于箱体110的底壁。防爆平衡组件170的数量可根据实际情况灵活调整,比如1个、3个、4个、5个或更多。可选地,箱体110的框架117可采用铝合金材质或其它导热性好的材质,这样气流通道116可由铝合金围合形成,高温的气流和液流从第二区域115经气流通道116和防爆平衡组件170排出过程中,铝合金可以对高温气流和液流降温,这样排出箱体110外的气流或液流不会灼烧到相邻的车辆或者行人。
在本实施例中,箱体110上还设置有与第一区域113连通的气压平衡阀(图未示),该气压平衡阀配置成平衡第一区域113和电池包300外部的压力。
请参照图5至图7,在本实施例中,隔板130靠近第一区域113的一侧设置有向着第二区域115的方向凹设的凹槽133,凹槽133的槽口朝向第一区域113,通气孔131设置于凹槽133的槽底。密封隔热件150设置在凹槽133内。密封隔热件150上设置有与通气孔131一一对应的过孔151。凹槽133对密封隔热件150起着定位和限位作用,提高密封隔热件150的安装精度和安装效率,使得密封隔热件150与隔板之间贴合更好,两者抵持更紧密,密封性更好,有利于避免高温液体或气体由电芯200和隔板130之间的空间流向其他电芯200,避免热扩散的加剧。
当然,在本公开的其他一些实施例中,也可以在隔板130靠近第一区域113的一侧凸设凸台135。通气孔131开设于所述凸台135,且贯通凸台135。密封隔热件150设置在凸台135的顶壁136,即密封隔热件150设置在凸台135远离隔板130的一侧。
本实施例通过设置凹槽133或者凸台135从而可以在防爆阀230的两侧形成具有高度差的避让空间,从而便于汇流排的安装和绝缘设计。
由于排入第二区域115的热气流或者液体可能会通过热传递的方式将热量传递给第一区域113内的电芯200,且随着快充技术的发展电芯200和汇流排在充放电过程中也会产生热量。在本实施例中,电池箱箱体结构100还包括第一冷板180。第一冷板180设置于 隔板130靠近第二区域115的一侧,第一冷板180配置成对第一区域113和第二区域115降温,第一冷板180上设置有与通气孔131对应的贯穿孔181。
本实施例通过设置第一冷板180,且将第一冷板180设置在隔板130靠近第二区域115的一侧,根据热气流上升原理,从贯穿孔181和通气孔131流入的气体上升后会与第一冷板180接触,从而可以实现第二区域115的降温,其次,第一冷板180也可以通过隔板130给设置在第一区域113的电芯200、汇流排等电子元器件降温,以维持电池包300的正常运行。
在本实施例中,第一冷板180和隔板130上均设置有流道槽184,且第一冷板180与隔板130部分贴合以使流道槽184形成封闭的冷却流路185。即通过液体流动带走热量的方式散热,可以实现第一区域113和第二区域115的同时散热,散热性好。
本实施例中,第一冷板180和隔板130上的流道槽184、通气孔131和贯穿孔181可采用冲压的方式形成的,在冲压形成后再将两者焊接一起,从而使得流道槽184形成冷却流路185,其次,会在第一冷板180或隔板130上设置与冷却流路185连通的进水口187和出水口188。利用水泵等方式实现冷却介质在冷却流路185中循环降温。电芯200安装在第一区域113的情况下,在隔板130上设置第一冷板180,从而可以更好的实现电芯200与冷却流路185中冷却介质的换热,其次也可以增强隔板130的结构强度,提高隔板130的承载能力,更加节约材料。当然,在本公开的一些实施例中,隔板130与电芯200之间设有绝缘导热件186,绝缘导热件186可以是导热胶,通过设置导热胶的方式使得隔板130可以与连接电芯200的汇流排进行热交换,从而利用冷却介质在给电芯200降温的同时,也可以给电池包300的其他元器件和零件降温。可选地,进水口187和出水口188分别连接有穿箱接头189,便于在箱体110外加注冷却介质,有利于实现冷却介质的循环流动。
在本公开的一些实施例中,第一冷板180也可以和隔板130一体成型,并使其中间形成有冷却流路185。例如铸造、3D打印或挤出成型等方式。
当然,在本公开的另外一些实施例中,第一冷板180也可以是其他类型的降温元件,例如半导体制冷件等。或者隔板130和第一冷板180两者相互独立,第一冷板180自己就可实现与隔板130和第二区域115的热交换。还可以是隔板130是由制冷元件制成的,其不再需要额外设置第一冷板180。
在本实施例中,隔板130靠近第一区域113的一侧贴附有导热胶,导热胶可以提高电芯200与隔板130之间的换热效率,使得电芯200、汇流排等零配件能够更好的实现与隔 板130之间的换热,提高换热效率。
在本公开的一些实施例中,也可以向第二区域115内注入部分液体,该液体可以是水或者液态的化学制剂,在电芯200发生热失控向第二区域115流入高温液体后,高温液体直接落入第二区域115内的低温液体内,从而可以实现对高温液体的降温,避免高温液体损坏底护板119。在第二区域115内填充的是液态的化学制剂的情况下,该化学制剂可以根据电芯200防爆阀230流出的液体确定,例如,电芯200防爆阀230流出的液体可以与该液态化学制剂反应进行吸热,以实现降温。或者电芯200的防爆阀230流出的液体可以与该液体化学制剂反应后形成无腐蚀和环保的产物,从而在降温的同时可以避免腐蚀底护板119或箱体110的侧壁101,以提搞电池包300的使用寿命。
另外,在本公开的一些实施例中,也可以将化学试剂或者降温灭火剂封装在密封容器内,并将该装有化学试剂或者降温灭火剂密封容器设置在第二区域115内,并且在第二区域115内设置检测传感器,在该传感器检测到第二区域115的温度超过预设的温度或预设条件时可以将装有化学试剂或者降温灭火剂密封容器打开,从而可以实现对第二区域115和电芯的降温,可以避免或缓减电池包300发生热扩散。该传感器可以是温度传感器或压力传感器,也可以是有害气体传感器,或者多种传感器的结合。
在本实施例中,底护板119靠近隔板130的一侧的表面涂覆有防火隔热材料。可选地,底护板119的表面设有防火涂层183,具有防火和耐高温的特点;第一冷板180的表面设有防火涂层183,框架117对应第二区域115的部分也设有防火涂层183,这样可提升第二区域115的防火隔热性能,降低热扩散的风险。
结合图8,底护板119上设有固定件123,固定件123配置成连接底护板119和框架117,提高结构强度。可选地,密封件118设于底护板119和框架117之间,固定件123依次穿过底护板119、密封件118和框架117,实现三者的固定连接,固定件123可以是螺钉或螺栓等。
在本实施例中,电池箱箱体结构100还包括第二冷板190,第二冷板190设置在第一区域113,且与第一冷板180相对设置。第二冷板190配置成对电芯200远离第一冷板180的一侧降温。
可选的,第二冷板190为液冷式冷板,其内部设置有液冷流道191以及与液冷流道191连通的出液口192和进液口193,通过进液口193、出液口192和液冷流道191实现冷却介质的流动换热。
在本实施例中,第二冷板190安装在箱体110的顶部,还被配置为箱体110的盖子以密封第一区域113,即第二冷板190、隔板130和框架117共同围合形成第一区域113。第二冷板190和箱体110的框架117之间还设置有配置成密封的密封条194。第二冷板190与电芯200抵接的一侧设置导热件195,该导热件195可以是导热胶或其它导热元件,使得第二冷板190能够更好的与电芯200进行换热。
可选地,第二冷板190上设有固定件123,固定件123配置成连接第二冷板190和框架117,提高结构强度。可选地,密封条194设于第二冷板190和框架117之间,固定件123依次穿过第二冷板190、密封条194和框架117,实现三者的固定连接,固定件123可以是螺钉或螺栓等。
综上所述,本公开实施例提供的电池箱箱体结构100、电芯200和电池包300的工作原理和有益效果包括:
本公开公开的实施例通过在箱体110的容置空间111内设置隔板130,利用隔板130将容置空间111分隔成两个独立的第一区域113和第二区域115,并在隔板130上设置通气孔131,电芯200安装在第一区域113后,电芯200的防爆阀230与通气孔131对应,从而会在电芯200发生热失控的情况下电芯200的防爆阀230打开,将所述防爆阀230流出的气体和液体流通过通气孔131导流至第二区域115,从而将高温的气流和高温的液体均与第一区域113隔离,避免高温气流和高温液体对设置在第一区域113内的电芯200及其第一区域113内的绝缘设计的损坏和影响。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
工业实用性
本公开的电池箱箱体结构、电芯和电池包,能够在部分电芯发生热失控的状态下,降低防爆阀流出的高温液流和气流对电池包内的电芯极柱和绝缘设计等造成破坏,降低热失控波及其他电芯的风险,缓减热扩散或减轻热失控的破坏性。

Claims (18)

  1. 一种电池箱箱体结构,其特征在于,配置成容置电芯,所述电池箱箱体结构包括箱体和隔板,所述箱体具有容置空间,所述隔板设置于所述容置空间,所述隔板配置成分隔所述容置空间为第一区域和第二区域,所述隔板上设置有通气孔,所述通气孔配置成连通所述第一区域和所述第二区域,所述第一区域配置成安装所述电芯,所述通气孔配置成与所述电芯的防爆阀对应设置,以在所述电芯的防爆阀打开的情况下将从所述防爆阀流出的气体和液体流导流至所述第二区域。
  2. 根据权利要求1所述的电池箱箱体结构,其特征在于,所述第一区域位于所述第二区域的上方。
  3. 根据权利要求1或2所述的电池箱箱体结构,其特征在于,所述电池箱箱体结构还包括密封隔热件,所述密封隔热件设置于所述隔板位于所述第一区域的一侧,且设置于所述通气孔的外周缘,所述密封隔热件配置成所述隔板与所述电芯之间密封和隔热。
  4. 根据权利要求3所述的电池箱箱体结构,其特征在于,所述密封隔热件的厚度大于所述隔板与所述电芯之间的间隙。
  5. 根据权利要求1至4任一项所述的电池箱箱体结构,其特征在于,所述电池箱箱体结构还包括防爆平衡组件,所述防爆平衡组件设置于所述箱体,且所述防爆平衡组件与所述第二区域连通,所述防爆平衡组件配置成平衡所述第二区域的压力。
  6. 根据权利要求5所述的电池箱箱体结构,其特征在于,所述第一区域位于所述第二区域的上方,所述箱体的侧壁设置有与所述第二区域连通的气流通道,所述防爆平衡组件通过所述气流通道与所述第二区域连通;
    所述防爆平衡组件设置于所述第二区域对应的所述箱体侧壁;和/或,
    所述防爆平衡组件设置于所述第一区域对应的所述箱体侧壁。
  7. 根据权利要求1至6任一项所述的电池箱箱体结构,其特征在于,所述隔板靠近所述第一区域的一侧向着第二区域的方向凹设有凹槽,所述通气孔设置于所述凹槽的槽底;或者,
    所述隔板靠近所述第一区域的一侧凸设有凸台,所述通气孔开设于所述凸台的顶壁。
  8. 根据权利要求1至7任一项所述的电池箱箱体结构,其特征在于,所述电池箱箱体结构还包括第一冷板,所述第一冷板设置于所述隔板靠近所述第二区域的一侧,所述第一冷板配置成对所述第一区域和第二区域降温,所述第一冷板上设置有与所述通气孔对应的贯穿孔。
  9. 根据权利要求8所述的电池箱箱体结构,其特征在于,所述第一冷板设置有流道槽,且所述第一冷板与所述隔板部分贴合以使所述流道槽形成冷却流路。
  10. 根据权利要求9所述的电池箱箱体结构,其特征在于,所述第一冷板和/或所述隔板上设有与所述冷却流路连通的进水口和出水口。
  11. 根据权利要求8至10任一项所述的电池箱箱体结构,其特征在于,所述第一冷板与所述隔板一体成型。
  12. 根据权利要求8至11任一项所述的电池箱箱体结构,其特征在于,所述第一冷板的表面设有防火涂层。
  13. 根据权利要求1至12任一项所述的电池箱箱体结构,其特征在于,所述箱体包括底护板,所述底护板与所述隔板相对设置,所述底护板与所述隔板之间形成所述第二区域;所述底护板的表面设有防火涂层。
  14. 根据权利要求1至13任一项所述的电池箱箱体结构,其特征在于,所述隔板与所述电芯之间设有绝缘导热件。
  15. 根据权利要求1至14任一项所述的电池箱箱体结构,其特征在于,所述电池箱箱体结构还包括第二冷板,所述第二冷板设置于所述第一区域,所述第二冷板配置成对所述电芯远离所述隔板的一侧降温。
  16. 根据权利要求15所述的电池箱箱体结构,其特征在于,所述第二冷板和所述电芯之间设有导热件。
  17. 一种电芯,其特征在于,应用于权利要求1-16任一项所述的电池箱箱体结构,所述电芯包括电芯本体和防爆阀,所述电芯本体设置有安装部,所述防爆阀安装于所述安装部,所述安装部和/或所述防爆阀凸出所述电芯本体,所述安装部和/或所述防爆阀凸出所述电芯本体的部分配置成插接于所述通气孔。
  18. 一种电池包,其特征在于,包括权利要求1-16任一项所述的电池箱箱体结构和/或包括权利要求17所述的电芯。
PCT/CN2022/106292 2022-04-28 2022-07-18 电池箱箱体结构、电芯和电池包 WO2023206828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210471242.3 2022-04-28
CN202210471242.3A CN114937853A (zh) 2022-04-28 2022-04-28 电池箱箱体结构、电芯和电池包

Publications (1)

Publication Number Publication Date
WO2023206828A1 true WO2023206828A1 (zh) 2023-11-02

Family

ID=82862323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106292 WO2023206828A1 (zh) 2022-04-28 2022-07-18 电池箱箱体结构、电芯和电池包

Country Status (2)

Country Link
CN (1) CN114937853A (zh)
WO (1) WO2023206828A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055258A1 (zh) * 2022-09-15 2024-03-21 宁德时代新能源科技股份有限公司 箱体、电池及用电装置
WO2024082285A1 (zh) * 2022-10-21 2024-04-25 宁德时代新能源科技股份有限公司 换热组件、电池模块、电池以及用电设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038520A1 (ja) * 2011-09-14 2013-03-21 日立ビークルエナジー株式会社 組電池
US20150125720A1 (en) * 2012-08-09 2015-05-07 Sanyo Electric Co., Ltd. Power source device, electric vehicle provided with same, and electricity storage device
CN112038528A (zh) * 2020-09-08 2020-12-04 北京未来智酷汽车科技有限公司 一种电池箱
CN113113707A (zh) * 2018-12-29 2021-07-13 宁德时代新能源科技股份有限公司 电池包
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN113228382A (zh) * 2018-12-21 2021-08-06 阿波制纸株式会社 电源装置及电源装置用隔热片
CN113422138A (zh) * 2021-06-16 2021-09-21 广州小鹏智慧充电科技有限公司 电池包及电动汽车
CN114142136A (zh) * 2021-11-23 2022-03-04 天津市捷威动力工业有限公司 一种电池模组及电池包
CN216288578U (zh) * 2021-11-15 2022-04-12 蜂巢能源科技有限公司 电芯模组和电池包

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038520A1 (ja) * 2011-09-14 2013-03-21 日立ビークルエナジー株式会社 組電池
US20150125720A1 (en) * 2012-08-09 2015-05-07 Sanyo Electric Co., Ltd. Power source device, electric vehicle provided with same, and electricity storage device
CN113228382A (zh) * 2018-12-21 2021-08-06 阿波制纸株式会社 电源装置及电源装置用隔热片
CN113113707A (zh) * 2018-12-29 2021-07-13 宁德时代新能源科技股份有限公司 电池包
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN112038528A (zh) * 2020-09-08 2020-12-04 北京未来智酷汽车科技有限公司 一种电池箱
CN113422138A (zh) * 2021-06-16 2021-09-21 广州小鹏智慧充电科技有限公司 电池包及电动汽车
CN216288578U (zh) * 2021-11-15 2022-04-12 蜂巢能源科技有限公司 电芯模组和电池包
CN114142136A (zh) * 2021-11-23 2022-03-04 天津市捷威动力工业有限公司 一种电池模组及电池包

Also Published As

Publication number Publication date
CN114937853A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2023206828A1 (zh) 电池箱箱体结构、电芯和电池包
JP5334420B2 (ja) バッテリシステム
KR20120139970A (ko) 안전장치가 구비된 배터리
WO2023164997A1 (zh) 端盖组件、电池单体、电池及用电装置
CN112018322B (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023044764A1 (zh) 压力平衡机构、电池、用电装置、制备电池的方法和装置
WO2022082393A1 (zh) 用于电池的箱体、电池、用电装置、制备电池的方法和设备
US20230282903A1 (en) Battery device
CN219350374U (zh) 单体电池及电动车辆
CN111864307A (zh) 一种电池组
CN219106299U (zh) 一种电池包及用电装置
CN113036276B (zh) 电池包和电动车
CN216213826U (zh) 一种分体式防爆锂电池组
WO2022135169A1 (zh) 电池模组、电池包及车辆
JP7395232B2 (ja) 電池パックおよびこれを含むデバイス
KR101834846B1 (ko) 배터리 모듈
CN115692900A (zh) 大容量电池
CN217641669U (zh) 电池箱箱体结构、电芯和电池包
CN113964422A (zh) 一种电池壳体和方壳电池
CN220753555U (zh) 一种电池、电池包及用电设备
CN216980808U (zh) 用于固定电池巴片的隔离板组件和电池包
WO2022237907A1 (en) Battery post and high-capacity battery
CN219716992U (zh) 一种电池包及电动汽车
CN216793827U (zh) 一种电池壳体和方壳电池
CN221041476U (zh) 一种大容量电池的绝缘防护罩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939656

Country of ref document: EP

Kind code of ref document: A1