WO2023157699A1 - Method and apparatus for supporting operation of multitubular reactor or preparation action thereof - Google Patents

Method and apparatus for supporting operation of multitubular reactor or preparation action thereof Download PDF

Info

Publication number
WO2023157699A1
WO2023157699A1 PCT/JP2023/003847 JP2023003847W WO2023157699A1 WO 2023157699 A1 WO2023157699 A1 WO 2023157699A1 JP 2023003847 W JP2023003847 W JP 2023003847W WO 2023157699 A1 WO2023157699 A1 WO 2023157699A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reaction
tube
reactor
temperature
Prior art date
Application number
PCT/JP2023/003847
Other languages
French (fr)
Japanese (ja)
Inventor
成喜 奥村
智志 河村
佑太 中澤
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2023532783A priority Critical patent/JP7316482B1/en
Priority to JP2023115545A priority patent/JP2023133352A/en
Publication of WO2023157699A1 publication Critical patent/WO2023157699A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/04Dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/08Formation or introduction of functional groups containing oxygen of carboxyl groups or salts, halides or anhydrides thereof

Definitions

  • the present invention relates to a method and apparatus for supporting the operation of a shell-and-tube reactor or its preparatory actions.
  • Patent Document 1 discloses a life prediction method and a life prediction program for a fixed bed catalyst. As described above, the temperature distribution in a catalyst packed bed using a fixed bed catalyst has been conventionally used to predict, for example, the service life of the catalyst.
  • thermocouple hereinafter sometimes referred to as a temperature sensor
  • the present invention provides an appropriate temperature during operation of a multi-tubular reactor comprising a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by oxidation reaction using a catalyst, or during preparatory actions thereof. It is an object of the present invention to provide a method and apparatus for supporting state maintenance.
  • a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor
  • a method of supporting, computer equipment an acquiring step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor; an output step of statistically processing the reaction tube information to output support information for supporting the operation of the multi-tubular reactor or its preparatory action; a method comprising causing to execute
  • the reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment.
  • the support information includes comparison information between the actual machine temperature information and tube internal temperature information of a reactor different from the multi-tubular reactor, A method for supporting the operation or preparatory actions of a shell and tube reactor. 2)
  • the support information includes temperature distribution information, which is information about the temperature distribution in the reaction tube, The temperature distribution information is obtained by statistically processing the actual machine temperature information, A method for supporting the operation of the shell-and-tube reactor described in 1) above or its preparatory actions.
  • a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor
  • a method of supporting, computer equipment an acquiring step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor; an output step of statistically processing the reaction tube information to output support information for supporting the operation of the multi-tubular reactor or its preparatory action; a method comprising causing to execute
  • the reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment.
  • the support information includes comparison information between the actual machine temperature information at one point in time and the actual machine temperature information at another point in time, A method for supporting the operation or preparatory actions of a shell and tube reactor. 5) Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A device that supports The device has an acquisition unit and an output unit, The acquisition unit is configured to acquire reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor, The output unit is configured to output support information for supporting the operation of the multi-tubular reactor or its preparatory action by statistically processing the reaction tube information, The reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady
  • the present invention in the operation of a multi-tubular reactor (hereinafter sometimes referred to as an actual machine) or its preparatory action, by efficiently and quickly visualizing the temperature distribution in the reactor, an appropriate temperature state can be obtained.
  • an appropriate temperature state can be obtained.
  • the reaction bath temperature conditions can be determined efficiently without going through complicated steps.
  • FIG. 4 is a schematic plan view showing a multi-tubular reactor according to an embodiment, and a diagram showing an example in which the multi-tubular reactor is spatially divided into three sections.
  • FIG. 3 is a schematic diagram showing layers of catalyst packed in one reaction tube.
  • Fig. 3 shows a flow chart of a method according to an embodiment; Thermocouples were inserted into five reaction tubes in the reactor, and the temperature distribution was measured at regular intervals in the depth direction at a certain point during the reaction. It is a figure which shows the table
  • FIG. 5 is a diagram in which thermocouple data of five reaction tubes in FIG. 4 are graphed into temperature distribution.
  • FIG. 5 is a diagram showing a temperature distribution generated through statistical processing after rejecting some of the data in FIG. 4;
  • FIG. 4 shows the temperature distribution at a certain point during the reaction in a previously conducted test reactor.
  • FIG. 3 shows the temperature profile at a point in time during the reaction in the reactor of the plant;
  • the method of this embodiment supports the operation or preparatory action of a shell-and-tube reactor comprising multiple reactor tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by catalytic oxidation reactions.
  • the method includes an acquiring step of acquiring reaction tube information including tube internal temperature information regarding some of a plurality of reaction tubes included in a multi-tubular reactor, and statistically processing the reaction tube information in a computer device. and an outputting step of outputting support information to support the operation of the shell-and-tube reactor or its preparatory actions.
  • the tube internal temperature information is temperature information obtained by a temperature sensor installed in each reaction tube.
  • the computer device used in this embodiment is a computer device comprising a microprocessor such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a memory such as a flash memory, and a bus.
  • the computer device may execute at least part of the method according to the present embodiment by means of a program recorded in a memory included in the computer device or in a recording medium readable by the computer device.
  • the present embodiment also presents a program for causing a computer device to execute at least part of a method described later, and a recording medium recording the program.
  • the computer device that can be used in this embodiment is not limited to this aspect.
  • a cloud computing system in which computer resources are connected via a network may be used as the computer device used in the method of the present disclosure.
  • FIG. 1 is a schematic plan view showing a multi-tubular reactor 10 to be subjected to the method according to this embodiment.
  • the shell-and-tube reactor 10 shown in FIG. 1 is cylindrical.
  • FIG. 1 shows three compartments A, B, and C that are divided every 120° with respect to the center of the multi-tubular reactor 10 in plan view.
  • a portion of the plurality of reaction tubes 20 included in section A is shown surrounded by a dashed line.
  • a plurality of reaction tubes 20 are also provided outside the dashed line in section A and in sections B and C, but illustration of these reaction tubes 20 is omitted.
  • the multitubular reactor 10 produces at least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene depending on the catalyst to be filled, the raw material to be supplied, and the like.
  • unsaturated aldehydes and unsaturated carboxylic acids to be produced include acrolein and acrylic acid, methacrolein and methacrylic acid, and examples of conjugated dienes include 1,3-butadiene and isoprene.
  • Each of the plurality of reaction tubes 20 included in the multitubular reactor 10 is filled with a catalyst.
  • the sections are divided in the direction of the rotation axis in the plane of the multi-tubular reactor 10, but other arbitrary division methods, such as the radial direction, the radial direction and the direction of the rotation axis, and further A method of partitioning with arbitrary polygons is also included in the present invention.
  • FIG. 2 is a schematic diagram showing a catalyst layer packed in one reaction tube 20. As shown in FIG. In the example shown in FIG. 2, four layers of catalyst layers 22, 24, 26, 28 packed on the support ring 30 are shown. The activity of the plurality of layers is different from each other. For example, the activity of the fourth catalyst layer 28 is low in the order of filling on the inlet side where the raw material is supplied, and the activity increases toward the outlet side (support ring 30 side).
  • activity of the fourth catalyst layer 28 ⁇ activity of the third catalyst layer 26 ⁇ activity of the second catalyst layer 24 ⁇ activity of the first catalyst layer 22 may be At least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene is produced by supplying raw materials to a reaction tube 20 filled with a catalyst so as to form a plurality of layers and controlling operating conditions such as temperature. manufactured.
  • thermocouple is inserted in this reaction tube, and temperature information of the catalyst layer filled with catalyst and/or the inert layer filled with inert carrier can be obtained from the inserted thermocouple.
  • the temperature information obtained here is the in-pipe temperature information obtained in the obtaining step.
  • the method of inserting the thermocouple is not limited as long as it is a method known to those skilled in the art, and examples thereof include the following.
  • the direction in which the thermocouple is inserted is the depth direction of the reaction tube and/or the direction perpendicular to the depth direction of the reaction tube.
  • the method of inserting the thermocouple is a method of directly inserting the thermocouple in parallel with the reaction tube, and/or a method of inserting a case (thermowell) in which the thermocouple is inserted and inserting the thermocouple inside it (i.e., The reaction tube has a double tube structure).
  • the mode of change in the position of the thermocouple over time is a fixed type that does not move at all and/or a type that moves to an arbitrary position within the reaction tube over time.
  • the thermocouples are of a fixed type, and the thermocouples are inserted at regular intervals in the depth direction of the reaction tube.
  • reaction tubes into which the thermocouples are inserted are not all the reaction tubes in the reactor, but some of the reaction tubes.
  • the reaction tubes into which the thermocouples are inserted may be selected from only a portion of, for example, three divided sections in FIG. 1, or may be selected from all sections without bias.
  • the section in which at least one reaction tube is selected occupies 40% or more of the total section, more preferably 60% or more, and further.
  • it is a mode that accounts for 75% or more. For example, in FIG.
  • the number of compartments is usually 3 or more, preferably 4 or more, more preferably 5 or more, and particularly preferably 6 or more.
  • the partitioning method is not particularly limited, and can be appropriately determined when selecting reaction tubes. In addition to the selection of the section, it is also important to grasp the temperature information evenly in the radial direction within the plane of the multi-tubular reactor 10 as shown in FIG. In the present invention, unless otherwise specified, a reaction tube into which a thermocouple is inserted is simply referred to as a reaction tube.
  • the positions of the thermocouples in the depth direction are not particularly limited, but a method of arranging them at substantially equal intervals or a method of changing the intervals as necessary are exemplified.
  • the temperature changes sharply in the depth direction in the catalyst packed layer on the gas inlet side. Therefore, by narrowing the distance between the thermocouples on the gas inlet side, the temperature distribution can be accurately measured.
  • the temperature change in the depth direction is gentle in the catalyst-filled layer on the gas outlet side, even if the distance between the thermocouples is widened, there is no problem in measuring the temperature distribution.
  • thermocouples on the gas outlet side the number of thermocouples can be reduced without interfering with the measurement of the temperature distribution.
  • TE-1 to TE-5 reaction tubes TE-1, TE-3, and TE-5 are measured at 6 points at 50 cm intervals, starting from a depth position of 25 cm.
  • TE-2 and TE-4 there is an aspect in which measurements are performed at 6 points at intervals of 50 cm starting from a depth position of 50 cm.
  • the operation of the multitubular reactor 10 in the present embodiment means supplying raw materials to the reaction tube 20 filled with a catalyst to produce at least one of unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene. .
  • the act of preparing for the operation of the multi-tubular reactor 10 in the present embodiment includes work for starting the operation of the multi-tubular reactor 10, maintenance work such as cleaning the reaction tubes 20, and multi-tubular reaction. It includes a test run using a part of the reactor 10 or a reactor different from the multi-tubular reactor 10 (however, the reaction tube diameter, the length of the reaction tube, etc. are the same as those of the multi-tubular reactor 10).
  • FIG. 3 is a diagram showing a flow chart of the method according to this embodiment.
  • the method according to the present embodiment comprises, in a computer device, an acquisition step S1 of acquiring reaction tube information including tube internal temperature information regarding some of the plurality of reaction tubes 20 included in the multi-tubular reactor 10; and an output step S2 of outputting support information for supporting the operation of the multi-tubular reactor 10 or its preparatory action by statistically processing the tube information.
  • visualization processing such as graphing, processing of comparing with reaction tube information at a time other than the reaction or reaction tube information in a different reactor, and the like can be performed.
  • the method according to this embodiment optionally further comprises a providing step S3 of providing assistance information to the user of the shell-and-tube reactor 10 .
  • the providing step S3 may be performed by a computer device, or may be performed by providing the support information output by the computer device to the user of the multi-tubular reactor 10 by telephone or FAX. Also, the support information may be provided to the user's terminal via the network. The provision of the support information via the network may be performed by a computer device that outputs the support information, or may be performed by a device separate from the computer device.
  • the computer device acquires the reaction tube information including the tube internal temperature information by input from the terminal of the user of the multi-tubular reactor 10 or input from the administrator of the computer device using an input device such as a keyboard.
  • Reaction tube information may be obtained by automatically inputting from a temperature sensor (thermocouple) provided in the multi-tubular reactor 10 at regular time intervals. Further, the reaction tube information may be configured to be acquired from a user's terminal connected via a network.
  • the user of the multitubular reactor 10 and the administrator of the computer may be the same person, but it is preferable that they are not the same person.
  • the reaction tube information acquired in the acquisition step S ⁇ b>1 includes temperature information related to temperature data of a temperature sensor provided in a part of the reaction tube 20 .
  • a multitubular reactor 10 containing tens of thousands of reaction tubes 20 is divided into three compartments A, B, and C as shown in FIG. including causing the computer device to execute an acquisition step S1 of acquiring reaction tube information including in-tube temperature information for a part of .
  • the number of partitions is not limited to three, and any number of partitions of two or more may be used.
  • the multi-tubular reactor 10 may not be compartmentalized in the method of the present invention.
  • FIG. 4 is a table showing temperature information obtained from the temperature sensors when temperature sensors are arranged for five reaction tubes (TE-1 to TE-5) and the operation is performed.
  • the measurement positions are shifted in the depth direction.
  • the maximum value represents the highest temperature among the measured temperatures at the same position in the depth direction. 4 and 5, the pipe temperature information, which is clearly considered to be an abnormal value like TE-3, is considered to be caused by the abnormality of the temperature sensor, etc., so the data of TE-3 is rejected. The details of this processing will be described later.
  • the temperature distribution data of each reaction tube, with the data of TE-3 discarded, is statistically processed and graphed to obtain visualization information as shown in FIG. In the example of FIG. 6, the maximum measured value of each reaction tube at the same depth position is adopted as one temperature distribution.
  • FIG. 7 shows a computer device that processes preliminary temperature information including information on the temperature inside the reaction tubes in a test reactor different from the multi-tubular reactor 10, and shows the type and filling position of the catalyst packed in the reaction tubes. It is a graph associated with catalyst information, which is information.
  • one test reaction tube was used as a test reactor.
  • the layer of catalyst A has one temperature peak (the position of about 75 cm in the depth direction, hereinafter referred to as peak A temperature)
  • the layer of catalyst B has one temperature peak.
  • peak B temperature Part in the depth direction of 175 cm
  • the temperature information acquisition using the test reactor is performed several times in advance and prepared as preliminary data. Comparison of information obtained in advance (preliminary temperature information) and information obtained during the operation of the multi-tubular reactor 10 (actual temperature information) enables early detection of problems and solutions in the operation of the actual reactor, It is useful in that it can be dealt with.
  • the computer device acquires the reaction tube information including the tube internal temperature information in the operation of the actual machine, processes it by the computer device, and determines the type of catalyst filled in the reaction tube and
  • FIG. 8 is a graph obtained by plotting the information obtained by the processing in association with the catalyst information, which is information about the filling position, over the graph of FIG. 7 and output in an output step (step S2).
  • the graph shown in FIG. 8 is an example of comparison information between actual machine temperature information and tube internal temperature information (preliminary temperature information) of a reactor different from the multi-tubular reactor 10 .
  • the tube internal temperature information in the actual operation is quickly statistically processed, the unnecessary tube internal temperature information is discarded, the tube internal temperature information at each depth position in a plurality of reaction tubes is statistically processed, and graphs and tables are obtained. It is possible to shorten the time and save the labor for a series of tasks of visualizing as and comparing and evaluating.
  • the preliminary temperature information is pipe internal temperature information that is acquired prior to operation in the actual machine and compared with the actual machine temperature information.
  • Pre-temperature information is, for example, tube temperature information obtained in one and / or several reaction tubes for testing in a reactor different from the actual reactor, or operated under reaction conditions similar to the operation in the actual reactor.
  • FIG. 10 is tube internal temperature information of a plurality of reaction tubes in another actual plant.
  • Preliminary temperature information is also processed according to the same flow as the flow of FIG. 3 and output as support information.
  • the reaction tube from which preliminary temperature information is acquired may differ from the actual machine in the reaction tube diameter, thermocouple diameter, and thermowell size, but differences to the extent that those skilled in the art will judge them to be equivalent are allowed.
  • the time to acquire the preliminary temperature information is the same as the operation of the actual equipment to be compared. load down, recycle gas switching, and air treatment. It should be noted that these processes correspond to driving or preparatory actions targeted by the present invention. Although the details will be described later, by comparing the preliminary temperature information with the actual temperature information described later, it is possible to grasp the reaction state and lead to stable and high-yield operation.
  • pipe internal temperature information (actual machine temperature information) during operation in the actual machine is acquired.
  • In-tube temperature information is acquired from multiple reaction tubes in the reactor, and the user of the actual machine inputs the in-tube temperature information into the computer device using an input device, or the in-tube temperature information is automatically sent to the computer device at regular time intervals. get it.
  • the acquired in-pipe temperature information is first put together in a tabular format as shown in FIG. 4, for example. At this time, if possible, compare the temperature information in the tubes at the same depth position in multiple reaction tubes, perform statistical processing such as averaging, judge whether there is any data that should be rejected, and reject it if necessary.
  • Rejection criteria include (1) statistically known methods such as Q-test, 4d rule, Dixon's method, Grubbs' method, and (2) tube temperature at the same depth position in multiple reaction tubes. Judging whether the standard deviation is within the range of parameters obtained by multiplying the analytical accuracy of thermocouples and various instruments by an appropriate coefficient (if not, discard questionable data). Objects to be rejected may be reaction tubes containing specific thermocouples, specific compartments, specific measurement points of specific thermocouples, and combinations thereof.
  • a method of evaluating the difference between the average value of the data empirically regarded as an abnormal value and the measured data at the same depth position of the other reaction tubes is also used.
  • the difference in average values between TE-3 and other thermocouples is 88° C., 53° C., and 38° C. at depth positions of 75 cm, 125 cm, and 175 cm, respectively.
  • the coefficient Y is originally 1, it is appropriately set depending on the short range ordering effect of the K thermocouple, how the thermocouple contacts the catalyst, and the like.
  • the factor Y is for example 2, 3, 4, 5, 8, 10, 13, 15, 18, 20, preferably 5, 8, 10, 13.
  • the reaction tube showing the abnormal values There is a case where all data are rejected, and it is appropriately set depending on the number of reaction tubes into which thermocouples are inserted.
  • the temperature information of each reaction tube is judged to be discarded in consideration of the thickness of the reaction tube, the thickness of the thermocouple and the thermowell. For example, if only one of a plurality of reaction tubes is different from the others and has a thicker thermocouple, the data may be rejected on the grounds that it cannot be compared with other reaction tubes in the same line.
  • the actual machine temperature information is statistically processed.
  • This statistical processing includes a method of using the average value, minimum value, maximum value, median value, and mode of data at the same depth position in a plurality of reaction tubes. In the case of an exothermic reaction, it is required to be able to appropriately grasp the runaway of the reaction and to judge it quickly. Therefore, the method of obtaining the maximum value is most preferable.
  • the actual machine temperature information thus statistically processed is visualized (plotted on a graph). A scatter diagram in which the horizontal axis is the distance from the inlet of the reaction tube and the vertical axis is the statistically processed actual temperature information at each depth position is most preferable, but any visualization known to those skilled in the art may be used.
  • the visualization information obtained by this processing is also called the temperature distribution of the catalyst layer in the present invention.
  • the time to acquire the actual temperature information is, for example, load-up and recycle gas switching at reaction startup, change of set values (inlet gas molar ratio, load) from steady reaction, load-down and recycle gas switching at reaction shutdown, and air treatment. (Operation of the present invention or its preparatory act) It is time.
  • a part of the effect of the method of the present invention is that part or all of the acquisition and processing of the above-mentioned actual machine temperature information is automatically or semi-automatically processed by a computer device.
  • the point is that it speeds up the work and saves labor.
  • it was possible to display the temperature distribution of the reaction tubes in real time in the central control room of the plant, and it was known to those skilled in the art.
  • the point of enabling comparison with information and the point of using a computer device so as to semi-automatically process this series of operations are disclosed for the first time in the present invention.
  • the catalyst peak temperature of the catalyst layer on the inlet side is higher than the peak temperature on the outlet side.
  • a phenomenon occurs in which the peak temperature of the catalyst layer on the outlet side is higher than that of the catalyst layer on the inlet side in actual operation, and the difference between the two temperatures exceeds the measurement error of the thermocouple. If so, it can be determined that there is a clearly abnormal state (for example, a difference in catalyst peak temperature of 20° C. or more, or a difference in peak position of 20 cm or more).
  • Possible countermeasures in this case include (1) a method of investigating and comparing past similar data, (2) a method of investigating a specific reaction tube that causes an abnormal value, and (3) the temperature information of the actual machine is abnormal. A method of judging that it is not, and moving to actual machine control.
  • the order in which the above measures (1) to (3) should be implemented depends on the situation, but it is preferable to implement them in order from the viewpoint of specific factors rather than implementing them at the same time. It is preferable to take all measures.
  • Measurement (1) above identifies data that is close to the actual machine temperature information from past similar data, and infers the state of the actual machine from the comparison between the identified data and the actual machine temperature information.
  • this countermeasure (1) it is important to collect as much pipe internal temperature information as possible under similar reaction conditions or air treatment conditions that we have as past knowledge and add it as preliminary temperature information. By increasing the pre-temperature information, variations in pipe temperature information under operating conditions are also taken into account.
  • the number of data to be added should be as large as possible, it is preferable to have at least three, preferably five or more pieces of in-pipe temperature information in order to accurately judge the statistical variation of the in-pipe temperature information.
  • the above countermeasure (2) is a method of discarding the data of the reaction tube showing an abnormal value and statistically processing the reaction tube information of the remaining reaction tubes again to calculate the actual machine temperature information.
  • the inventors of the present invention have found that a reaction tube showing an abnormal value is likely to occur due to an initial abnormality of a thermocouple, an abnormality at the time of installation in the reactor, an abnormality in the processing of electrical signals, an abnormality at the time of data collection, etc. found empirically. Therefore, by implementing countermeasure (2), it may be possible to obtain information that is more in line with the actual conditions of the actual machine.
  • the actual machine temperature information is obtained by statistically processing the in-tube temperature information of a plurality of reaction tubes, and the in-tube temperature information of a specific reaction tube is compared with the in-tube temperature information of other reaction tubes, Executed when the value is clearly abnormal. Specifically, it is carried out when the catalyst peak temperature differs by 20° C. or more, or when the peak position differs by 20 cm or more. If the actual temperature information obtained by rejecting the specific reaction tube and performing statistical processing is equivalent to the preliminary temperature information (for example, the catalyst peak temperature difference is less than 20 ° C., or the peak position matches at a position of less than 20 cm), this It can be said that the countermeasures are effective.
  • Specific methods for controlling the actual equipment include, for example, changing the composition ratio of the inlet gas to increase the activity, raising the reaction bath temperature to increase the activity of the upper catalyst, and conversely, lowering the reaction bath temperature to increase the activity of the lower catalyst. a method of lowering the load on the catalyst to increase its activity; a method of increasing the catalyst inlet pressure to increase the activity of the upper catalyst; a method of stopping the reaction and performing air treatment to reactivate the catalyst methods known to the public.
  • a method of automatically displaying an alarm message or the like in the above visualization information to explicitly inform the user of the multi-tubular reactor of the abnormality also includes a method of judging and outputting measures to be taken according to predetermined judgment criteria and presenting them to the user.
  • the actual machine temperature information is also analyzed from the viewpoint of whether the peak temperature has reached the use limit temperature of the catalyst, whether there are any problems with changes and trends over time, and so on.
  • a method according to another embodiment supports the operation or preparatory action of a multi-tube reactor comprising a plurality of reactor tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by catalytic oxidation reactions. It is a way to The method comprises a step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in a multi-tube reactor, and statistically processing the reaction tube information to obtain the multi-tube information. and an outputting step of outputting support information to support operation of the tubular reactor or preparatory actions thereof.
  • the support information output in the output step S2 includes actual machine temperature information at a certain point in time (hereinafter referred to as first actual machine temperature information) and actual machine temperature information at another point in time (hereinafter referred to as second actual machine temperature information). (referred to as temperature information of two actual machines).
  • first actual machine temperature information is actual temperature information obtained from some of the reaction tubes of the multi-tubular reactor 10 at the start-up of the reaction
  • second actual temperature information is the multi-tube temperature information during steady operation after startup.
  • the reaction tube from which the first actual temperature information is obtained and the reaction tube from which the second actual temperature information is obtained may be different, but are preferably the same.
  • An example of the comparison information is a temperature distribution obtained by statistically processing the first actual machine temperature information and a temperature distribution obtained by statistically processing the second actual machine temperature information plotted on one graph. According to the comparison information output through such visualization processing, the user of the multi-tubular reactor 10 can easily confirm the change in the state of the reaction tubes over time. The user can decide whether to change the operating conditions or terminate the operation based on the changes over time, and also efficiently consider the conditions for the next start-up.
  • the present invention is applied during load-up during reaction start-up.
  • the method of the present invention can also be applied to the operation of actual equipment during load down during shutdown, switching of recycled gas, and air treatment.
  • the temperature distribution of the catalyst layer is mainly described, but the present invention can be similarly applied to the comparison and judgment of the temperature distribution in the inert layer containing an inert carrier or support ring. It is possible.
  • confirmation of the temperature rise rate in the inlet gas preheating layer in front of the reactor inlet side catalyst layer and/or confirmation of the temperature drop rate in the outlet gas heat dissipation layer confirmation of the gas temperature in the reactor inlet and/or outlet side catalyst layer, reaction Confirmation of the temperature drop rate in the inert layer and/or support ring on the outlet side of the vessel, automatic detection of precipitation of reaction deposits on the outlet side based on the confirmed temperature drop rate, confirmation of the temperature rise/cool rate of each inert layer, and This includes the understanding of the heat transfer coefficient of the reaction tube and the contamination inside the reaction tube based on the confirmed heating/cooling rate, and the processing shown in FIG.
  • the set parameters in the multi-tubular reactor (raw material It is preferable to change at least part of the gas flow rate, outlet pressure, reaction bath temperature, and inlet gas composition ratio.
  • a method of validating the setting parameters of the shell-and-tube reactor can be taken. In this case, which setting parameter to check is determined from the details of the actual machine temperature information. For example, if the temperature distribution in the actual temperature information is higher than the temperature distribution in the preliminary temperature information, the measured data from the thermocouple may simply be abnormal. Check for anomalies. Also, if the peak temperature is low or high, confirm whether the gas flow rate of the raw material, the outlet pressure, the filling amount of the catalyst, and the activity of the packed catalyst are appropriate.
  • the present invention achieves sufficient effects at the time of reaction start-up, that is, in preparatory actions for operation.
  • the present invention is more efficient during the operation or preparatory action of a shell-and-tube reactor comprising a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids or conjugated dienes by catalytic oxidation reactions. And it can provide a stable manufacturing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

This method for supporting operation of a multitubular reactor or a preparation action thereof including a plurality of reaction tubes configured to produce at least one of unsaturated aldehyde and unsaturated carboxylic acid by oxidation reaction using a catalyst, or a conjugated diene by oxidative dehydrogenation reaction includes making a computer device execute: an acquisition step for acquiring reaction tube information regarding a part of a plurality of reaction tubes included in the multitubular reactor; and an output step for outputting supporting information for supporting operation of the multitubular reactor or a preparation action thereof by performing statistical processing of the reaction tube information. The reaction tube information includes real machine temperature information related to the temperature in the reaction tube at the start of the oxidation reaction or the oxidative dehydrogenation reaction, at the end thereof, during steady-state operation, at a setting change of control factors, or during air treatment. The supporting information includes comparison information between the real machine temperature information and intra-tube temperature information in a reactor different from the multitubular reactor.

Description

多管式反応器の運転またはその準備行為をサポートする方法および装置Methods and apparatus for supporting the operation or preparatory actions of a multitubular reactor
 本発明は、多管式反応器の運転またはその準備行為をサポートする方法および装置に関する。 The present invention relates to a method and apparatus for supporting the operation of a shell-and-tube reactor or its preparatory actions.
 特許文献1は、固定床触媒の寿命予測方法及び寿命予測プログラムを開示する。このように、従来から固定床触媒を用いた触媒充填層内の温度分布を用いて、例えば触媒寿命を予測する等は行われている。 Patent Document 1 discloses a life prediction method and a life prediction program for a fixed bed catalyst. As described above, the temperature distribution in a catalyst packed bed using a fixed bed catalyst has been conventionally used to predict, for example, the service life of the catalyst.
日本国特開2002-372507号公報Japanese Patent Application Laid-Open No. 2002-372507
 数千~数万本の反応管を備える反応器において、全ての反応管情報を取得することは現実的ではなく、1~数本の情報を、特に加工することなく反応器全体の情報とみなしているのが通常である。しかし、実際には部分的に反応管の状態が異なることがあり、この部分的な差異を考慮してデータ処理して情報を把握することは、多管式反応器の運転時のみならず準備行為時(たとえば、触媒の充填作業)においても重要である。
 不飽和アルデヒドや不飽和カルボン酸、および共役ジエンを製造する触媒反応等は一般に発熱反応であり、反応のスタートアップにおけるロードアップ時やリサイクルガス切り替え時、定常反応からの設定値(入口ガスモル比、負荷)の変更時、反応のシャットダウンにおけるロードダウン時やリサイクルガス切り替え時、空気処理時において触媒層中の温度を確認しながら反応浴温度条件を適宜調整することが一般的である。しかしながら、従来は反応管内の触媒層に挿入した熱電対(以下温度センサーと記載する場合もある)から得られる複雑かつ数多くの温度情報に対して、現場での作業従事者の経験に依って条件設定がなされる場合が多く、解析結果及び条件設定の方針が安定しないことや、解析および設定に時間を要する場合が多かった。
 本発明は、触媒を用いた酸化反応により不飽和アルデヒド、不飽和カルボン酸、又は共役ジエンを製造する複数の反応管を含む多管式反応器の運転時またはその準備行為時において、適切な温度状態の維持をサポートする方法および装置を提供することを課題とする。
In a reactor with thousands to tens of thousands of reaction tubes, it is not realistic to obtain information on all of the reaction tubes, and information on one to several tubes is regarded as information on the entire reactor without special processing. It is normal to have However, in reality, the state of the reaction tubes may differ partially, and it is important to understand the information by processing data in consideration of this partial difference, not only during the operation of the multi-tube reactor, but also during preparations. It is also important during operation (for example, catalyst filling operations).
Catalytic reactions that produce unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes are generally exothermic reactions. ), during shutdown of the reaction, during load down, during recycle gas switching, and during air treatment, it is common to appropriately adjust the reaction bath temperature conditions while checking the temperature in the catalyst layer. However, conventionally, for complicated and numerous temperature information obtained from a thermocouple (hereinafter sometimes referred to as a temperature sensor) inserted in the catalyst layer in the reaction tube, conditions depending on the experience of workers in the field In many cases, settings are made, and there are many cases in which the policy of analysis results and condition settings is not stable, and analysis and settings take time.
The present invention provides an appropriate temperature during operation of a multi-tubular reactor comprising a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by oxidation reaction using a catalyst, or during preparatory actions thereof. It is an object of the present invention to provide a method and apparatus for supporting state maintenance.
 以下、上記課題を解決するための手段を列記する。
1)
 触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法であって、
 コンピュータ装置に、
 前記多管式反応器に含まれる複数の反応管のうちの一部の反応管に関して反応管情報を取得する取得ステップと、
 前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、
 を実行させることを含む方法であり、
 前記反応管情報は、前記酸化反応または前記酸化的脱水素反応の開始時、終了時、定常運転時、制御因子の設定変更時、または空気処理時における、反応管内の温度に関する実機温度情報を含み、
 前記支援情報は、前記実機温度情報と、前記多管式反応器とは異なる反応器の管内温度情報との比較情報を含む、
 多管式反応器の運転またはその準備行為をサポートする方法。
2)
 前記支援情報は、反応管内の温度分布に関する情報である温度分布情報を含み、
 前記温度分布情報は、前記実機温度情報を統計処理することにより得られたものである、
 上記1)に記載の多管式反応器の運転またはその準備行為をサポートする方法。
3)
 前記支援情報は、前記実機温度情報と、反応管内に充填された触媒の種類と充填位置に関する情報である触媒情報とを対応づけた情報を含む、上記2)に記載の多管式反応器の運転またはその準備行為をサポートする方法。
4)
 触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法であって、
 コンピュータ装置に、
 前記多管式反応器に含まれる複数の反応管のうちの一部の反応管に関して反応管情報を取得する取得ステップと、
 前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、
 を実行させることを含む方法であり、
 前記反応管情報は、前記酸化反応または前記酸化的脱水素反応の開始時、終了時、定常運転時、制御因子の設定変更時、または空気処理時における、反応管内の温度に関する実機温度情報を含み、
 前記支援情報は、ある時点での前記実機温度情報と、別の時点での前記実機温度情報との比較情報を含む、
 多管式反応器の運転またはその準備行為をサポートする方法。
5)
 触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする装置であって、
 前記装置は、取得部と、出力部とを有し、
 前記取得部は、前記多管式反応器に含まれる複数の反応管のうちの一部の反応管に関して反応管情報を取得するように構成され、
 前記出力部は、前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力するように構成され、
 前記反応管情報は、前記酸化反応または前記酸化的脱水素反応の開始時、終了時、定常運転時、制御因子の設定変更時、または空気処理時における、反応管内の温度に関する実機温度情報を含み、
 前記支援情報は、前記実機温度情報と、前記多管式反応器とは異なる反応器の管内温度情報との比較情報を含む、
 多管式反応器の運転またはその準備行為をサポートする装置。
Means for solving the above problems are listed below.
1)
Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A method of supporting,
computer equipment,
an acquiring step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor;
an output step of statistically processing the reaction tube information to output support information for supporting the operation of the multi-tubular reactor or its preparatory action;
a method comprising causing to execute
The reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment. ,
The support information includes comparison information between the actual machine temperature information and tube internal temperature information of a reactor different from the multi-tubular reactor,
A method for supporting the operation or preparatory actions of a shell and tube reactor.
2)
The support information includes temperature distribution information, which is information about the temperature distribution in the reaction tube,
The temperature distribution information is obtained by statistically processing the actual machine temperature information,
A method for supporting the operation of the shell-and-tube reactor described in 1) above or its preparatory actions.
3)
The multi-tubular reactor according to 2) above, wherein the support information includes information that associates the actual machine temperature information with catalyst information that is information about the type and filling position of the catalyst filled in the reaction tubes. How to support driving or preparatory actions.
4)
Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A method of supporting,
computer equipment,
an acquiring step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor;
an output step of statistically processing the reaction tube information to output support information for supporting the operation of the multi-tubular reactor or its preparatory action;
a method comprising causing to execute
The reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment. ,
The support information includes comparison information between the actual machine temperature information at one point in time and the actual machine temperature information at another point in time,
A method for supporting the operation or preparatory actions of a shell and tube reactor.
5)
Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A device that supports
The device has an acquisition unit and an output unit,
The acquisition unit is configured to acquire reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor,
The output unit is configured to output support information for supporting the operation of the multi-tubular reactor or its preparatory action by statistically processing the reaction tube information,
The reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment. ,
The support information includes comparison information between the actual machine temperature information and tube internal temperature information of a reactor different from the multi-tubular reactor,
A device that supports the operation of a shell and tube reactor or its preparatory actions.
 本発明によれば、多管式反応器(以下実機と記載する場合がある)の運転またはその準備行為において、反応器内の温度分布を効率的かつ迅速に可視化することで、適切な温度状態の維持をサポートできる。特に反応のスタートアップ時においては、複雑な工程を経ることなく効率的に反応浴温度条件を決定することができる。 According to the present invention, in the operation of a multi-tubular reactor (hereinafter sometimes referred to as an actual machine) or its preparatory action, by efficiently and quickly visualizing the temperature distribution in the reactor, an appropriate temperature state can be obtained. can support the maintenance of Particularly at the start-up of the reaction, the reaction bath temperature conditions can be determined efficiently without going through complicated steps.
実施形態に係る多管式反応器を示す平面模式図であり、かつ当該多管式反応器を空間的に3区画に分割した例を示す図である。FIG. 4 is a schematic plan view showing a multi-tubular reactor according to an embodiment, and a diagram showing an example in which the multi-tubular reactor is spatially divided into three sections. 1つの反応管に充填された触媒の層を示す模式図である。FIG. 3 is a schematic diagram showing layers of catalyst packed in one reaction tube. 実施形態に係る方法のフローチャートを示す図である。Fig. 3 shows a flow chart of a method according to an embodiment; 反応器中に存在する反応管5本に対して熱電対を挿入し、反応中のある時点において、深さ方向に対して一定の間隔で温度分布を測定した表と、一部のデータを棄却した表を示す図である。Thermocouples were inserted into five reaction tubes in the reactor, and the temperature distribution was measured at regular intervals in the depth direction at a certain point during the reaction. It is a figure which shows the table|surface which carried out. 図4の5本の反応管の熱電対データを温度分布にグラフ化した図である。FIG. 5 is a diagram in which thermocouple data of five reaction tubes in FIG. 4 are graphed into temperature distribution. 図4における一部のデータの棄却後、統計処理を経て生成した温度分布を示す図である。FIG. 5 is a diagram showing a temperature distribution generated through statistical processing after rejecting some of the data in FIG. 4; 事前に行った試験用反応器における反応中のある時点での温度分布を示す図である。FIG. 4 shows the temperature distribution at a certain point during the reaction in a previously conducted test reactor. プラントの反応器での反応中のある時点での温度分布を示した図である。FIG. 3 shows the temperature profile at a point in time during the reaction in the reactor of the plant;
 以下、図面を参照しつつ本発明の実施形態について説明する。本実施形態に係る方法は、触媒を用いた酸化反応により不飽和アルデヒド、不飽和カルボン酸、または共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法である。当該方法は、コンピュータ装置に、多管式反応器に含まれる複数の反応管のうちの一部に関して管内温度情報を含む反応管情報を取得する取得ステップと、反応管情報を統計処理することにより多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、を実行させることを含む。なお管内温度情報とは、各反応管に設置された温度センサーによって得られる温度情報である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The method of this embodiment supports the operation or preparatory action of a shell-and-tube reactor comprising multiple reactor tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by catalytic oxidation reactions. The method. The method includes an acquiring step of acquiring reaction tube information including tube internal temperature information regarding some of a plurality of reaction tubes included in a multi-tubular reactor, and statistically processing the reaction tube information in a computer device. and an outputting step of outputting support information to support the operation of the shell-and-tube reactor or its preparatory actions. Note that the tube internal temperature information is temperature information obtained by a temperature sensor installed in each reaction tube.
 本実施形態において用いられるコンピュータ装置は、CPU(Central Processing Unit)などのマイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなどのメモリ、およびバスを備えるコンピュータ装置である。コンピュータ装置は、コンピュータ装置が備えるメモリやコンピュータ装置が読み取り可能な記録媒体に記録されたプログラムによって、本実施形態に係る方法の少なくとも一部を実行してもよい。本実施形態では、後述する方法の少なくとも一部をコンピュータ装置に実行させるためのプログラム、および当該プログラムを記録した記録媒体も提示される。なお、本実施形態において用いることのできるコンピュータ装置はこの態様に限定されない。例えば、コンピュータ資源をネットワークを介して接続したクラウドコンピューティングシステムなどを、本開示の方法に用いるコンピュータ装置としてもよい。 The computer device used in this embodiment is a computer device comprising a microprocessor such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a memory such as a flash memory, and a bus. The computer device may execute at least part of the method according to the present embodiment by means of a program recorded in a memory included in the computer device or in a recording medium readable by the computer device. The present embodiment also presents a program for causing a computer device to execute at least part of a method described later, and a recording medium recording the program. Note that the computer device that can be used in this embodiment is not limited to this aspect. For example, a cloud computing system in which computer resources are connected via a network may be used as the computer device used in the method of the present disclosure.
 図1は、本実施形態に係る方法の対象となる多管式反応器10を示す平面模式図である。図1に示される多管式反応器10は筒状である。図1では、多管式反応器10を平面視した時の中心を基準として120°毎に分けられた3つの区画A,B,Cが示されている。区画Aに含まれる複数の反応管20の一部が一点鎖線で囲まれて示されている。区画Aにおける一点鎖線の外側、並びに区画B及びCにも複数の反応管20が備えられているが、それらの反応管20については図示を省略する。多管式反応器10は、充填する触媒、供給する原料などに応じて、目的とする不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種を製造する。製造される不飽和アルデヒドおよび不飽和カルボン酸としては、アクロレインおよびアクリル酸、メタクロレインおよびメタクリル酸、などが例示され、共役ジエンとしては、1,3-ブタジエン、イソプレン、などが例示される。多管式反応器10が含む複数の反応管20のそれぞれに触媒が充填される。また、図1では例として多管式反応器10を平面視した面内で回転軸方向に区画を区切っているが、他の任意の区切り方、例えば半径方向や半径方向および回転軸方向、更に任意の多角形で区切る方法も本発明に含まれるものとする。 FIG. 1 is a schematic plan view showing a multi-tubular reactor 10 to be subjected to the method according to this embodiment. The shell-and-tube reactor 10 shown in FIG. 1 is cylindrical. FIG. 1 shows three compartments A, B, and C that are divided every 120° with respect to the center of the multi-tubular reactor 10 in plan view. A portion of the plurality of reaction tubes 20 included in section A is shown surrounded by a dashed line. A plurality of reaction tubes 20 are also provided outside the dashed line in section A and in sections B and C, but illustration of these reaction tubes 20 is omitted. The multitubular reactor 10 produces at least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene depending on the catalyst to be filled, the raw material to be supplied, and the like. Examples of unsaturated aldehydes and unsaturated carboxylic acids to be produced include acrolein and acrylic acid, methacrolein and methacrylic acid, and examples of conjugated dienes include 1,3-butadiene and isoprene. Each of the plurality of reaction tubes 20 included in the multitubular reactor 10 is filled with a catalyst. In addition, in FIG. 1, as an example, the sections are divided in the direction of the rotation axis in the plane of the multi-tubular reactor 10, but other arbitrary division methods, such as the radial direction, the radial direction and the direction of the rotation axis, and further A method of partitioning with arbitrary polygons is also included in the present invention.
 触媒は、一般に多管式反応器に互いに異なる触媒種が2以上の層をなすようにして反応管20に充填される。図2は1つの反応管20に充填された触媒の層を示す模式図である。図2に示す例では、サポートリング30の上に充填された4層の触媒層22,24,26,28が示されている。複数の層はそれぞれ互いに活性が異なり、例えば原料が供給される入口側、充填される順番で第4の触媒層28は活性が低く、出口側(サポートリング30側)に向かうにつれて活性が大きくなるように(入口側から数えて第4の触媒層28の活性<第3の触媒層26の活性<第2の触媒層24の活性<第1の触媒層22の活性、となるように)充填されてもよい。複数の層をなすように触媒が充填された反応管20に原料を供給し、温度等の運転条件を制御することで目的とする不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種が製造される。 The catalyst is generally packed in the reaction tube 20 in a shell-and-tube reactor so that different catalyst species form two or more layers. FIG. 2 is a schematic diagram showing a catalyst layer packed in one reaction tube 20. As shown in FIG. In the example shown in FIG. 2, four layers of catalyst layers 22, 24, 26, 28 packed on the support ring 30 are shown. The activity of the plurality of layers is different from each other. For example, the activity of the fourth catalyst layer 28 is low in the order of filling on the inlet side where the raw material is supplied, and the activity increases toward the outlet side (support ring 30 side). (Counting from the inlet side, activity of the fourth catalyst layer 28<activity of the third catalyst layer 26<activity of the second catalyst layer 24<activity of the first catalyst layer 22) may be At least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene is produced by supplying raw materials to a reaction tube 20 filled with a catalyst so as to form a plurality of layers and controlling operating conditions such as temperature. manufactured.
 そしてこの反応管には熱電対が挿入されており、挿入された熱電対により、触媒が充填された触媒層および/または不活性担体が充填されたイナート層の温度情報を得ることができる。ここで得られる温度情報が、上記取得ステップで取得される管内温度情報である。熱電対の挿入のされ方は、当業者にとって公知な方法であれば限定されないが、例えば、以下が挙げられる。熱電対を挿入する方向は、反応管の深さ方向および/または反応管の深さ方向に垂直な方向である。熱電対の挿入方法は、反応管と平行に熱電対を直接挿入する方法、および/または熱電対が挿入されるケース(サーモウェル)を挿入し、その内部に熱電対を挿入する方法(すなわち、反応管は二重管構造となる)である。熱電対の位置の経時的変化の態様は、まったく移動しない固定タイプおよび/または経時的に反応管内の任意の位置に移動するタイプである。以下の実施形態の説明では、熱電対が固定タイプであり、反応管の深さ方向に一定の間隔で熱電対が挿入されている場合について述べる。 A thermocouple is inserted in this reaction tube, and temperature information of the catalyst layer filled with catalyst and/or the inert layer filled with inert carrier can be obtained from the inserted thermocouple. The temperature information obtained here is the in-pipe temperature information obtained in the obtaining step. The method of inserting the thermocouple is not limited as long as it is a method known to those skilled in the art, and examples thereof include the following. The direction in which the thermocouple is inserted is the depth direction of the reaction tube and/or the direction perpendicular to the depth direction of the reaction tube. The method of inserting the thermocouple is a method of directly inserting the thermocouple in parallel with the reaction tube, and/or a method of inserting a case (thermowell) in which the thermocouple is inserted and inserting the thermocouple inside it (i.e., The reaction tube has a double tube structure). The mode of change in the position of the thermocouple over time is a fixed type that does not move at all and/or a type that moves to an arbitrary position within the reaction tube over time. In the following description of the embodiments, the thermocouples are of a fixed type, and the thermocouples are inserted at regular intervals in the depth direction of the reaction tube.
 なお、熱電対が挿入される反応管は反応器中の全ての反応管ではなく、一部の反応管である。例えば数千~数万本の反応管の内、5以上100本以下、好ましくは6以上50本以下、さらに好ましくは7以上40本以下、特に好ましくは8以上16本以下の反応管に熱電対を挿入する。また、熱電対を挿入する反応管は、例えば図1において3分割された区画について、一部の区画のみから選択しても良いし、全ての区画から偏り無く選択しても良い。ただし反応器全体の温度を把握する為には、少なくとも1本の反応管が選択された区画が全区画の40%以上を占める態様が好ましく、より好ましくは60%以上を占める態様であり、さらに好ましくは75%以上を占める態様である。例えば、図1において区画Aから1本、区画Bから1本、区画Cから0本の反応管が選択された場合、少なくとも1本の反応管が選択された区画が全区画の67%を占める。区画数は多いほど正確であり、したがって区画数は通常3区画以上、好ましくは4区画以上、更に好ましくは5区画以上、特に好ましくは6区画以上である。そして、区画分けの方法は特に制限されず、反応管選択時に適宜決定できる。また、区画の選択のほか図1のように多管式反応器10を平面視した面内で、半径方向に万遍無く温度情報を把握することも重要である。なお、本発明において特に断りがない限り、熱電対が挿入された反応管も単に反応管と記載する。 Note that the reaction tubes into which the thermocouples are inserted are not all the reaction tubes in the reactor, but some of the reaction tubes. For example, among thousands to tens of thousands of reaction tubes, 5 to 100, preferably 6 to 50, more preferably 7 to 40, particularly preferably 8 to 16, thermocouples insert Further, the reaction tubes into which the thermocouples are inserted may be selected from only a portion of, for example, three divided sections in FIG. 1, or may be selected from all sections without bias. However, in order to grasp the temperature of the entire reactor, it is preferable that the section in which at least one reaction tube is selected occupies 40% or more of the total section, more preferably 60% or more, and further. Preferably, it is a mode that accounts for 75% or more. For example, in FIG. 1, when one reaction tube is selected from section A, one from section B, and zero reaction tube from section C, sections in which at least one reaction tube is selected account for 67% of all sections. . The greater the number of compartments, the more accurate the analysis. Therefore, the number of compartments is usually 3 or more, preferably 4 or more, more preferably 5 or more, and particularly preferably 6 or more. The partitioning method is not particularly limited, and can be appropriately determined when selecting reaction tubes. In addition to the selection of the section, it is also important to grasp the temperature information evenly in the radial direction within the plane of the multi-tubular reactor 10 as shown in FIG. In the present invention, unless otherwise specified, a reaction tube into which a thermocouple is inserted is simply referred to as a reaction tube.
 また、深さ方向の熱電対の位置については、特に制限されるものではないが、略等間隔に配置する方法、または必要に応じ間隔を変える方法が例示される。後者において、特に本発明が対象とする反応のような発熱反応では、ガス入口側の触媒充填層において深さ方向に温度が急峻に変化する。したがって、ガス入口側では熱電対の間隔を狭くすることで、温度分布を正確に測定することができる。また、ガス出口側の触媒充填層では深さ方向の温度変化がなだらかであるため、熱電対の間隔を広くしても温度分布の測定に支障がない。したがって、ガス出口側では熱電対の間隔を広くすることで温度分布の測定に支障をきたすことなく熱電対の本数を低減できる。また、選択された複数の反応管全てについて同じ深さ方向の位置で温度情報を測定するよりも、各々の反応管において測定位置を深さ方向にずらした方が、反応器全体の温度分布を把握しやすく好適である。具体的には図4のようにTE-1~5の反応管について、TE-1、TE-3、TE-5では25cmの深さ位置を始点として、50cm間隔で6点の測定を行い、TE-2、TE-4では50cmの深さ位置を始点として、50cm間隔で6点の測定を行うといった態様が挙げられる。
 上記のように熱電対が挿入された反応管の区画や本数、測定点の深さを設定することにより、効率的かつ少ない熱電対の本数で反応管内温度情報を取得できる。
Further, the positions of the thermocouples in the depth direction are not particularly limited, but a method of arranging them at substantially equal intervals or a method of changing the intervals as necessary are exemplified. In the latter case, especially in an exothermic reaction, such as the reaction targeted by the present invention, the temperature changes sharply in the depth direction in the catalyst packed layer on the gas inlet side. Therefore, by narrowing the distance between the thermocouples on the gas inlet side, the temperature distribution can be accurately measured. In addition, since the temperature change in the depth direction is gentle in the catalyst-filled layer on the gas outlet side, even if the distance between the thermocouples is widened, there is no problem in measuring the temperature distribution. Therefore, by widening the distance between the thermocouples on the gas outlet side, the number of thermocouples can be reduced without interfering with the measurement of the temperature distribution. In addition, rather than measuring the temperature information at the same position in the depth direction for all of the selected reaction tubes, it is better to shift the measurement position in the depth direction in each reaction tube to obtain the temperature distribution of the entire reactor. It is easy to grasp and suitable. Specifically, as shown in FIG. 4, for TE-1 to TE-5 reaction tubes, TE-1, TE-3, and TE-5 are measured at 6 points at 50 cm intervals, starting from a depth position of 25 cm. In TE-2 and TE-4, there is an aspect in which measurements are performed at 6 points at intervals of 50 cm starting from a depth position of 50 cm.
By setting the section and the number of reaction tubes into which thermocouples are inserted, and the depth of the measurement points as described above, it is possible to efficiently acquire the temperature information in the reaction tube with a small number of thermocouples.
 本実施形態における多管式反応器10の運転とは、触媒が充填された反応管20に原料を供給して不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種を製造することを表す。また、本実施形態における多管式反応器10の運転の準備行為とは、多管式反応器10の運転を開始するための作業、反応管20の清掃などのメンテナンス作業、および多管式反応器10の一部または多管式反応器10とは別の反応器(ただし、反応管径や反応管の長さ等は多管式反応器10と同等)を用いた試運転、を含む。 The operation of the multitubular reactor 10 in the present embodiment means supplying raw materials to the reaction tube 20 filled with a catalyst to produce at least one of unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene. . In addition, the act of preparing for the operation of the multi-tubular reactor 10 in the present embodiment includes work for starting the operation of the multi-tubular reactor 10, maintenance work such as cleaning the reaction tubes 20, and multi-tubular reaction. It includes a test run using a part of the reactor 10 or a reactor different from the multi-tubular reactor 10 (however, the reaction tube diameter, the length of the reaction tube, etc. are the same as those of the multi-tubular reactor 10).
 図3は、本実施形態に係る方法のフローチャートを示す図である。本実施形態に係る方法は、コンピュータ装置に、多管式反応器10に含まれる複数の反応管20のうちの一部に関して管内温度情報を含む反応管情報を取得する取得ステップS1と、当該反応管情報を統計処理することにより多管式反応器10の運転またはその準備行為を支援する支援情報を出力する出力ステップS2と、を実行させることを含む。出力ステップS2において、具体的にはグラフ化などの視覚化処理や、当該反応とは別の時点の反応管情報もしくは異なる反応器での反応管情報と比較する処理等を行うことができる。本実施形態に係る方法は、支援情報を多管式反応器10のユーザーに提供する提供ステップS3を任意にさらに含む。提供ステップS3は、コンピュータ装置により実行されてもよいし、コンピュータ装置により出力された支援情報を電話やFAXで多管式反応器10のユーザーに提供することにより実行されてもよい。また、ネットワークを介してユーザーの端末に支援情報を提供してもよい。ネットワークを介した支援情報の提供は、支援情報を出力するコンピュータ装置によって行われてもよいし、当該コンピュータ装置とは別の装置によって行われてもよい。 FIG. 3 is a diagram showing a flow chart of the method according to this embodiment. The method according to the present embodiment comprises, in a computer device, an acquisition step S1 of acquiring reaction tube information including tube internal temperature information regarding some of the plurality of reaction tubes 20 included in the multi-tubular reactor 10; and an output step S2 of outputting support information for supporting the operation of the multi-tubular reactor 10 or its preparatory action by statistically processing the tube information. Specifically, in the output step S2, visualization processing such as graphing, processing of comparing with reaction tube information at a time other than the reaction or reaction tube information in a different reactor, and the like can be performed. The method according to this embodiment optionally further comprises a providing step S3 of providing assistance information to the user of the shell-and-tube reactor 10 . The providing step S3 may be performed by a computer device, or may be performed by providing the support information output by the computer device to the user of the multi-tubular reactor 10 by telephone or FAX. Also, the support information may be provided to the user's terminal via the network. The provision of the support information via the network may be performed by a computer device that outputs the support information, or may be performed by a device separate from the computer device.
 取得ステップS1において、コンピュータ装置は多管式反応器10のユーザーの端末からの入力またはコンピュータ装置の管理者からキーボードなどの入力装置などによる入力により管内温度情報を含む反応管情報を取得してもよく、多管式反応器10に設けられた温度センサー(熱電対)から自動的かつ一定の時間間隔をもって入力されることにより反応管情報を取得してもよい。また反応管情報は、ネットワークを介して接続されたユーザーの端末から取得するように構成されていてもよい。なお、多管式反応器10のユーザーと、コンピュータ装置の管理者は同一であってもよいが、同一でない場合が好ましい。取得ステップS1において取得される反応管情報は反応管20の一部に設けられた温度センサーの温度データに関する温度情報を含んでいる。以下、図を参照して、本実施形態に係る方法の具体的態様を説明する。ただし本願発明はこの具体的実施態様に限定されるものではなく、請求の範囲によって示された技術的範囲内におけるすべての変更が含まれることが意図される。 In the acquisition step S1, the computer device acquires the reaction tube information including the tube internal temperature information by input from the terminal of the user of the multi-tubular reactor 10 or input from the administrator of the computer device using an input device such as a keyboard. Reaction tube information may be obtained by automatically inputting from a temperature sensor (thermocouple) provided in the multi-tubular reactor 10 at regular time intervals. Further, the reaction tube information may be configured to be acquired from a user's terminal connected via a network. The user of the multitubular reactor 10 and the administrator of the computer may be the same person, but it is preferable that they are not the same person. The reaction tube information acquired in the acquisition step S<b>1 includes temperature information related to temperature data of a temperature sensor provided in a part of the reaction tube 20 . Specific aspects of the method according to this embodiment will be described below with reference to the drawings. However, the present invention is not limited to this specific embodiment, and is intended to include all modifications within the technical scope indicated by the claims.
 具体的態様における方法は、数万本の反応管20を含む多管式反応器10を図1に示すように3つの区画A,B,Cに分けて、それぞれの区画に含まれる反応管20の一部について管内温度情報を含む反応管情報を取得する取得ステップS1をコンピュータ装置に実行させることを含む。なお、区画数は3に限定されず、2以上の任意の区画としてもよい。あるいは、本具体的態様における方法とは異なり、本発明の方法においては、多管式反応器10を区画分けせずともよい。図4は、反応管5本(TE-1~5)に対して温度センサーを配置し、運転を行った時の温度センサーから得られる温度情報を示す表である。すでに説明したとおり、TE-1~5では、深さ方向に測定位置をずらしている。表中、最大値とは深さ方向に同じ位置での測定温度中、最高の温度を表している。図4、図5よりTE-3のように明らかに異常値と考えられる管内温度情報は、温度センサーの異常等が原因となり生じていると考えられる為、TE-3のデータを棄却する。この処理の詳細は後述する。
 次に、TE-3のデータを棄却した各反応管の温度分布のデータを統計処理してグラフ化し、図6のように視覚化情報を得る。図6の例では、同じ深さ位置での各反応管の最大の測定値を採用し、一つの温度分布としている。
In a specific embodiment, a multitubular reactor 10 containing tens of thousands of reaction tubes 20 is divided into three compartments A, B, and C as shown in FIG. including causing the computer device to execute an acquisition step S1 of acquiring reaction tube information including in-tube temperature information for a part of . Note that the number of partitions is not limited to three, and any number of partitions of two or more may be used. Alternatively, unlike the method in this embodiment, the multi-tubular reactor 10 may not be compartmentalized in the method of the present invention. FIG. 4 is a table showing temperature information obtained from the temperature sensors when temperature sensors are arranged for five reaction tubes (TE-1 to TE-5) and the operation is performed. As already explained, in TE-1 to TE-5, the measurement positions are shifted in the depth direction. In the table, the maximum value represents the highest temperature among the measured temperatures at the same position in the depth direction. 4 and 5, the pipe temperature information, which is clearly considered to be an abnormal value like TE-3, is considered to be caused by the abnormality of the temperature sensor, etc., so the data of TE-3 is rejected. The details of this processing will be described later.
Next, the temperature distribution data of each reaction tube, with the data of TE-3 discarded, is statistically processed and graphed to obtain visualization information as shown in FIG. In the example of FIG. 6, the maximum measured value of each reaction tube at the same depth position is adopted as one temperature distribution.
 図7は、多管式反応器10とは異なる試験用の反応器における反応管内の温度に関する情報を含む事前温度情報をコンピュータ装置に処理させ、反応管内に充填された触媒の種類および充填位置に関する情報である触媒情報と対応づけたグラフである。なお、試験用の反応器として試験用反応管1本を用いた。グラフから明らかである通り、この反応系においては触媒Aの層に1つの温度ピーク(深さ方向約75cmの位置 以下ピークA温度と記載)を有し、また触媒Bの層に1つの温度ピーク(深さ方向175cmの位置 以下ピークB温度と記載)を有することが確認される。また(ピークA温度)-(ピークB温度)は約50℃であることも確認される。試験用の反応器を用いた温度情報取得は、事前に複数回行い予備データとして準備しておくことが好ましい。事前に得られる情報(事前温度情報)と多管式反応器10の運転の際に取得される情報(実機温度情報)の比較は、当該実機の運転における問題点や解決手段に早期に気づき、対処が可能である点で有用である。 FIG. 7 shows a computer device that processes preliminary temperature information including information on the temperature inside the reaction tubes in a test reactor different from the multi-tubular reactor 10, and shows the type and filling position of the catalyst packed in the reaction tubes. It is a graph associated with catalyst information, which is information. In addition, one test reaction tube was used as a test reactor. As is clear from the graph, in this reaction system, the layer of catalyst A has one temperature peak (the position of about 75 cm in the depth direction, hereinafter referred to as peak A temperature), and the layer of catalyst B has one temperature peak. (Position in the depth direction of 175 cm, hereinafter referred to as peak B temperature). It is also confirmed that (Peak A temperature) - (Peak B temperature) is about 50°C. It is preferable that the temperature information acquisition using the test reactor is performed several times in advance and prepared as preliminary data. Comparison of information obtained in advance (preliminary temperature information) and information obtained during the operation of the multi-tubular reactor 10 (actual temperature information) enables early detection of problems and solutions in the operation of the actual reactor, It is useful in that it can be dealt with.
 次に、図8は、実機での運転における管内温度情報を含む反応管情報を取得ステップ(ステップS1)においてコンピュータ装置に取得させ、コンピュータ装置により処理し、反応管内に充填された触媒の種類および充填位置に関する情報である触媒情報と対応づけ、当該処理により得られた情報を図7のグラフに重ねてプロットして出力ステップ(ステップS2)において出力させたグラフである。図8に示すグラフは、実機温度情報と、多管式反応器10とは異なる反応器の管内温度情報(事前温度情報)との比較情報の一例である。
 図8のような視覚的な比較によって、異常な反応が進行していることが現場においても直ちに確認でき、例えば所定のフローチャートを用いることにより対応策の決定を迅速に行うことができる。さらに図8では実機温度情報と触媒情報が対応づけられており、触媒Bの層におけるピーク温度が高いことを確認できるため、より適切な対応策を実施することができる。本発明により、実機での運転における管内温度情報を迅速に統計処理し、不要な管内温度情報を破棄し、複数本の反応管における各深さ位置の管内温度情報を統計処理し、グラフや表として視覚化し、さらに比較評価する一連の作業を、短時間化および省力化することが可能となる。
Next, in FIG. 8, in the acquisition step (step S1), the computer device acquires the reaction tube information including the tube internal temperature information in the operation of the actual machine, processes it by the computer device, and determines the type of catalyst filled in the reaction tube and FIG. 8 is a graph obtained by plotting the information obtained by the processing in association with the catalyst information, which is information about the filling position, over the graph of FIG. 7 and output in an output step (step S2). The graph shown in FIG. 8 is an example of comparison information between actual machine temperature information and tube internal temperature information (preliminary temperature information) of a reactor different from the multi-tubular reactor 10 .
By visual comparison as shown in FIG. 8, it is possible to immediately confirm that an abnormal reaction is progressing even at the site, and for example, by using a predetermined flow chart, it is possible to quickly determine countermeasures. Furthermore, in FIG. 8, the actual machine temperature information and the catalyst information are associated, and it can be confirmed that the peak temperature in the catalyst B layer is high, so that more appropriate countermeasures can be taken. According to the present invention, the tube internal temperature information in the actual operation is quickly statistically processed, the unnecessary tube internal temperature information is discarded, the tube internal temperature information at each depth position in a plurality of reaction tubes is statistically processed, and graphs and tables are obtained. It is possible to shorten the time and save the labor for a series of tasks of visualizing as and comparing and evaluating.
(事前温度情報の取得と処理)
 事前温度情報とは、実機での運転の前に取得され、実機温度情報と比較される管内温度情報である。事前温度情報は、たとえば、実機とは異なる反応器における試験用の1本および/または数本の反応管で取得された管内温度情報、または当該実機での運転に類似した反応条件で運転された別の実機プラントにおける複数本の反応管の管内温度情報である。事前温度情報も、図3のフローと同様のフローに従って処理され支援情報として出力される。事前温度情報が取得される反応管は、反応管径や熱電対径、サーモウェルサイズが実機と異なり得るが、当業者が同等と判断する程度の差異は許容される。
 事前温度情報を取得する時期は、比較する実機での運転と同じとし、例えば反応のスタートアップにおけるロードアップやリサイクルガス切り替え、定常反応からの設定値(入口ガスモル比、負荷)の変更、反応のシャットダウンにおけるロードダウンやリサイクルガス切り替え、空気処理である。なお、これらの処理は本発明が対象とする運転またはその準備行為に該当する。
 詳細は後述するが、事前温度情報と後述の実機温度情報とを比較することで、反応状態を把握でき、安定かつ高収率な操業へつなげることが可能となる。
(Acquisition and processing of pre-temperature information)
The preliminary temperature information is pipe internal temperature information that is acquired prior to operation in the actual machine and compared with the actual machine temperature information. Pre-temperature information is, for example, tube temperature information obtained in one and / or several reaction tubes for testing in a reactor different from the actual reactor, or operated under reaction conditions similar to the operation in the actual reactor. FIG. 10 is tube internal temperature information of a plurality of reaction tubes in another actual plant. FIG. Preliminary temperature information is also processed according to the same flow as the flow of FIG. 3 and output as support information. The reaction tube from which preliminary temperature information is acquired may differ from the actual machine in the reaction tube diameter, thermocouple diameter, and thermowell size, but differences to the extent that those skilled in the art will judge them to be equivalent are allowed.
The time to acquire the preliminary temperature information is the same as the operation of the actual equipment to be compared. load down, recycle gas switching, and air treatment. It should be noted that these processes correspond to driving or preparatory actions targeted by the present invention.
Although the details will be described later, by comparing the preliminary temperature information with the actual temperature information described later, it is possible to grasp the reaction state and lead to stable and high-yield operation.
(実機温度情報の取得と処理)
 次に、実機での運転の際の管内温度情報(実機温度情報)を取得する。反応器内の複数本の反応管から管内温度情報を取得し、実機のユーザーが入力装置によりコンピュータ装置に管内温度情報を入力するか、管内温度情報を自動的かつ一定の時間間隔でコンピュータ装置に取得させる。取得された管内温度情報は、例えば図4に示すようにまず表形式にまとめられる。この際、可能であれば複数本の反応管で同じ深さ位置での管内温度情報を比較、平均化等の統計処理を行い、棄却すべきデータがあるかどうかを判断し、必要に応じ棄却してもよい。棄却する基準は、(1)統計的に公知な方法、例えばQ検定、4dルール、Dixonの方法、Grubbsの方法のほか、(2)複数本の反応管で同じ深さ位置での管内温度の標準偏差が、熱電対や各種機器の分析精度に適切な係数をかけたパラメーターの範囲内に入っているかを判断する(入っていなければ、疑わしいデータを棄却)などが挙げられる。棄却する対象は、特定の熱電対の入った反応管、特定の区画、特定の熱電対の特定の測定箇所、およびそれらの組み合わせ、のいずれでも良い。
(Acquisition and processing of actual machine temperature information)
Next, pipe internal temperature information (actual machine temperature information) during operation in the actual machine is acquired. In-tube temperature information is acquired from multiple reaction tubes in the reactor, and the user of the actual machine inputs the in-tube temperature information into the computer device using an input device, or the in-tube temperature information is automatically sent to the computer device at regular time intervals. get it. The acquired in-pipe temperature information is first put together in a tabular format as shown in FIG. 4, for example. At this time, if possible, compare the temperature information in the tubes at the same depth position in multiple reaction tubes, perform statistical processing such as averaging, judge whether there is any data that should be rejected, and reject it if necessary. You may Rejection criteria include (1) statistically known methods such as Q-test, 4d rule, Dixon's method, Grubbs' method, and (2) tube temperature at the same depth position in multiple reaction tubes. Judging whether the standard deviation is within the range of parameters obtained by multiplying the analytical accuracy of thermocouples and various instruments by an appropriate coefficient (if not, discard questionable data). Objects to be rejected may be reaction tubes containing specific thermocouples, specific compartments, specific measurement points of specific thermocouples, and combinations thereof.
 データの棄却について、図4の125cmの位置でのTE-3を例にとり、R.B.Dean, W.J.Dixon, Analytical Chemistry, Vol.23, No.4 636ページ (1951)に記載のDeanとDixonによるQテストの方法を説明する。データ数はTE-1、TE-3、TE-5があるので3、90%信頼限界におけるQ値は0.90となる。全データの範囲Rは440℃-385℃=55℃であり、棄却対象のTE-3と、それに最も近いデータの差の絶対値R’=440℃-390℃=50℃である。したがってR’/R=50/55=0.91であり、Q値より高いため、この125cmの位置のTE-3は異常値であると判定した。このように、Qテストであれば統計的根拠に基づき、異常値かどうかを判定できる。Qテストにおける信頼限界として、一般的に19%、34%、38%、43%、48%、49%、86%、90%、95%、99.7%が採用されるが、好ましくは86%、90%、95%であり、最も好ましくは90%である。 Regarding the rejection of data, taking TE-3 at the position of 125 cm in Fig. 4 as an example, B. Dean, W. J. Dixon, Analytical Chemistry, Vol. 23, No. 4 page 636 (1951) describes the Q test method by Dean and Dixon. Since the number of data is TE-1, TE-3, and TE-5, the Q value at the 90% confidence limit is 0.90. The range R of all data is 440°C - 385°C = 55°C and the absolute value of the difference between the TE-3 to be rejected and the closest data R' = 440°C - 390°C = 50°C. Therefore, since R'/R=50/55=0.91, which is higher than the Q value, TE-3 at the position of 125 cm was determined to be an abnormal value. In this way, the Q test can determine whether the value is an abnormal value based on statistical grounds. Confidence limits for the Q-test are generally 19%, 34%, 38%, 43%, 48%, 49%, 86%, 90%, 95%, 99.7%, but preferably 86%. %, 90%, 95%, most preferably 90%.
 データの棄却について、Qテストのほか、経験的に異常値とみなされるデータと、それ以外の反応管の同じ深さ位置での測定データの平均値の差を評価する方法も用いられる。例えば図4において、TE-3と、それ以外の熱電対の平均値の差は、深さ位置75cm、125cm、175cmにて、それぞれ88℃、53℃、38℃である。この数値と、使用したK熱電対の測定誤差:2℃に係数Yをかけた数値を比較する。今回、Yとして10を使用すると、2℃×10=20℃がデータを棄却する基準となる。深さ位置75cm、125cm、175cmにおけるTE-3と、それ以外の熱電対の平均値の差の絶対値は、20℃よりも大きいため、これらのデータは棄却されることになる。係数Yは本来なら1であるが、K熱電対のショートレンジオーダリング効果や熱電対の触媒との接し方等により適宜設定される。係数Yは例えば2、3、4、5、8、10、13、15、18、20であり、好ましくは5、8、10、13である。更に、棄却されるデータについて、棄却する基準に従い異常値と判断されたデータ点のみ棄却する場合、異常値を示したデータ点とその周囲の測定点を棄却する場合、異常値を示した反応管全てのデータを棄却する場合が挙げられ、熱電対の挿入された反応管の本数等により適宜設定される。そのほか、各反応管の温度情報は、反応管の太さや熱電対およびサーモウェルの太さを考慮して、データ棄却の判断がなされる。例えば、複数本の反応管のうち1本だけ他と異なり反応管が太く、熱電対も太い場合、他の反応管と同列で比較できないという理由でデータを棄却することがありうる。 Regarding the rejection of data, in addition to the Q test, a method of evaluating the difference between the average value of the data empirically regarded as an abnormal value and the measured data at the same depth position of the other reaction tubes is also used. For example, in FIG. 4, the difference in average values between TE-3 and other thermocouples is 88° C., 53° C., and 38° C. at depth positions of 75 cm, 125 cm, and 175 cm, respectively. This numerical value is compared with the measurement error of the K thermocouple used: 2° C. multiplied by the coefficient Y. This time, if 10 is used as Y, 2° C.×10=20° C. becomes the criterion for rejecting the data. Since the absolute values of the differences between the average values of TE-3 and other thermocouples at depth positions of 75 cm, 125 cm, and 175 cm are greater than 20° C., these data will be discarded. Although the coefficient Y is originally 1, it is appropriately set depending on the short range ordering effect of the K thermocouple, how the thermocouple contacts the catalyst, and the like. The factor Y is for example 2, 3, 4, 5, 8, 10, 13, 15, 18, 20, preferably 5, 8, 10, 13. Furthermore, regarding the data to be rejected, when only data points judged to be abnormal values according to the rejection criteria are rejected, when the data points showing the abnormal values and the measurement points around them are rejected, the reaction tube showing the abnormal values There is a case where all data are rejected, and it is appropriately set depending on the number of reaction tubes into which thermocouples are inserted. In addition, the temperature information of each reaction tube is judged to be discarded in consideration of the thickness of the reaction tube, the thickness of the thermocouple and the thermowell. For example, if only one of a plurality of reaction tubes is different from the others and has a thicker thermocouple, the data may be rejected on the grounds that it cannot be compared with other reaction tubes in the same line.
 必要に応じデータを棄却した後、実機温度情報を統計処理する。この統計処理は、複数本の反応管で同じ深さ位置のデータにおいて、平均値、最小値、最大値、中央値、最頻値を使用する方法が挙げられる。発熱反応においては反応の暴走を適切に把握し、迅速に判断できることが求められるので、最大値を取得する方法が最も好ましい。こうして統計処理された実機温度情報を、視覚化処理(グラフ上にプロット)する。横軸を反応管入口からの距離、縦軸を各深さ位置での統計処理された実機温度情報とした分散図が最も好ましいが、当業者にとって公知な任意の視覚化であってよい。この処理によって得られた視覚化情報を、本発明では触媒層の温度分布とも呼ぶ。
 実機温度情報を取得する時期は、例えば反応のスタートアップにおけるロードアップやリサイクルガス切り替え、定常反応からの設定値(入口ガスモル比、負荷)の変更、反応のシャットダウンにおけるロードダウンやリサイクルガス切り替え、空気処理(本発明の運転またはその準備行為)時となる。
After rejecting the data as necessary, the actual machine temperature information is statistically processed. This statistical processing includes a method of using the average value, minimum value, maximum value, median value, and mode of data at the same depth position in a plurality of reaction tubes. In the case of an exothermic reaction, it is required to be able to appropriately grasp the runaway of the reaction and to judge it quickly. Therefore, the method of obtaining the maximum value is most preferable. The actual machine temperature information thus statistically processed is visualized (plotted on a graph). A scatter diagram in which the horizontal axis is the distance from the inlet of the reaction tube and the vertical axis is the statistically processed actual temperature information at each depth position is most preferable, but any visualization known to those skilled in the art may be used. The visualization information obtained by this processing is also called the temperature distribution of the catalyst layer in the present invention.
The time to acquire the actual temperature information is, for example, load-up and recycle gas switching at reaction startup, change of set values (inlet gas molar ratio, load) from steady reaction, load-down and recycle gas switching at reaction shutdown, and air treatment. (Operation of the present invention or its preparatory act) It is time.
 本発明の方法の効果の一部は、上記実機温度情報の取得と処理の一部または全部を、コンピュータ装置で自動的または半自動的に処理することで、従来は人が判断、描画していた作業を迅速化、省力化している点にある。従来においてもプラントの中央制御室において反応管の温度分布をリアルタイムで表示することは可能であり当業者にとって公知ではあったが、本発明のように得られたデータを統計処理し、さらに事前温度情報と比較できるようにする点、さらにこの一連の作業を半自動的に処理できるようコンピュータ装置を使用する点は、本発明において初めて開示された点である。 A part of the effect of the method of the present invention is that part or all of the acquisition and processing of the above-mentioned actual machine temperature information is automatically or semi-automatically processed by a computer device. The point is that it speeds up the work and saves labor. In the past, it was possible to display the temperature distribution of the reaction tubes in real time in the central control room of the plant, and it was known to those skilled in the art. The point of enabling comparison with information and the point of using a computer device so as to semi-automatically process this series of operations are disclosed for the first time in the present invention.
(実機温度情報と事前温度情報の比較と判断)
 視覚化処理された実機温度情報に、同様の視覚化処理がなされた事前温度情報を重ね合わせたグラフ(本発明における比較情報の一例)を用いて、実機温度情報と事前温度情報を比較することができる。例えば、発熱反応においては反応器入口側に低活性な触媒、反応器出口側に高活性な触媒を充填することが当業者にとって公知であるが、一般的には入口側の触媒層のピーク温度の方が、出口側の触媒層のピーク温度よりも高くなる。
(Comparison and determination of actual machine temperature information and pre-temperature information)
Using a graph (an example of comparison information in the present invention) in which pre-temperature information that has undergone similar visualization processing is superimposed on visualized actual-machine temperature information, and comparing actual-machine temperature information and preliminary temperature information. can be done. For example, in an exothermic reaction, it is known to those skilled in the art to fill the reactor inlet side with a low activity catalyst and the reactor outlet side with a high activity catalyst, but generally the peak temperature of the catalyst layer on the inlet side is is higher than the peak temperature of the catalyst layer on the outlet side.
 図7に示す例では、事前温度情報では入口側の触媒層の触媒ピーク温度の方が、出口側のピーク温度よりも高い。それにもかかわらず、実機での運転において出口側の触媒層のピーク温度の方が、入口側の触媒層のピーク温度よりも高い現象が生じ、両者の温度の違いが熱電対の測定誤差を超えている場合、明らかに異常な状態(例えば、触媒ピーク温度が20℃以上異なる、またはピーク位置が20cm以上異なる状態)であると判断できる。この場合の取りうる対策として例えば、(1)過去の類似データを調査し比較する方法、(2)異常値の要因となる特定の反応管を調査する方法、および(3)実機温度情報が異常ではないと判断して実機制御に移る方法、が挙げられる。前記の対策(1)~(3)をいずれの順番で実施するかは状況によるが、同時に実施するのではなく要因の特定の観点から順番に実施することが好ましく、また漏れなく実施する目的ですべての対策を行うことが好ましい。 In the example shown in FIG. 7, according to the preliminary temperature information, the catalyst peak temperature of the catalyst layer on the inlet side is higher than the peak temperature on the outlet side. In spite of this, a phenomenon occurs in which the peak temperature of the catalyst layer on the outlet side is higher than that of the catalyst layer on the inlet side in actual operation, and the difference between the two temperatures exceeds the measurement error of the thermocouple. If so, it can be determined that there is a clearly abnormal state (for example, a difference in catalyst peak temperature of 20° C. or more, or a difference in peak position of 20 cm or more). Possible countermeasures in this case include (1) a method of investigating and comparing past similar data, (2) a method of investigating a specific reaction tube that causes an abnormal value, and (3) the temperature information of the actual machine is abnormal. A method of judging that it is not, and moving to actual machine control. The order in which the above measures (1) to (3) should be implemented depends on the situation, but it is preferable to implement them in order from the viewpoint of specific factors rather than implementing them at the same time. It is preferable to take all measures.
 前記対策(1)は、過去の類似データの中から実機温度情報と近いデータを特定し、特定したデータと実機温度情報との比較から、実機がどのような状態であるかを類推する。この対策(1)については、過去の知見として所有している類似の反応条件または空気処理条件における管内温度情報を、なるべく多く収集し事前温度情報として追記することが重要である。事前温度情報を増やすことにより、当該運転時の使用条件における管内温度情報のばらつきも考慮に入れられる。追記するデータ数は多い方が良いが、統計的な管内温度情報のばらつきを正確に判断するために最低でも3つ、好ましくは5つ以上の管内温度情報があると良い。  Measurement (1) above identifies data that is close to the actual machine temperature information from past similar data, and infers the state of the actual machine from the comparison between the identified data and the actual machine temperature information. Regarding this countermeasure (1), it is important to collect as much pipe internal temperature information as possible under similar reaction conditions or air treatment conditions that we have as past knowledge and add it as preliminary temperature information. By increasing the pre-temperature information, variations in pipe temperature information under operating conditions are also taken into account. Although the number of data to be added should be as large as possible, it is preferable to have at least three, preferably five or more pieces of in-pipe temperature information in order to accurately judge the statistical variation of the in-pipe temperature information.
 前記対策(2)は、異常値を示す反応管のデータを棄却して、再び残りの反応管の反応管情報を統計処理して実機温度情報を算出する手法である。異常値を示す反応管は、熱電対の初期異常や、反応器への設置時の異常、電気信号の処理異常、データ収集時の異常等により発生する可能性が高いことを、本発明者は経験的に見出している。このため、対策(2)を実施することにより、より実機の実情に即した情報を得られる場合がある。対策(2)は、例えば、実機温度情報が複数の反応管の管内温度情報を統計処理したものであり、かつ特定の反応管の管内温度情報が他の反応管の管内温度情報と比較し、明らかに異常値であったときに実施される。具体的には、触媒ピーク温度が20℃以上異なる、またはピーク位置が20cm以上異なる場合に実施する。前記特定の反応管を棄却し統計処理した実機温度情報が、事前温度情報と同等(例えば、触媒ピーク温度の差が20℃未満、またはピーク位置が20cm未満の位置で一致)となれば、本対策は有効と言える。 The above countermeasure (2) is a method of discarding the data of the reaction tube showing an abnormal value and statistically processing the reaction tube information of the remaining reaction tubes again to calculate the actual machine temperature information. The inventors of the present invention have found that a reaction tube showing an abnormal value is likely to occur due to an initial abnormality of a thermocouple, an abnormality at the time of installation in the reactor, an abnormality in the processing of electrical signals, an abnormality at the time of data collection, etc. found empirically. Therefore, by implementing countermeasure (2), it may be possible to obtain information that is more in line with the actual conditions of the actual machine. In countermeasure (2), for example, the actual machine temperature information is obtained by statistically processing the in-tube temperature information of a plurality of reaction tubes, and the in-tube temperature information of a specific reaction tube is compared with the in-tube temperature information of other reaction tubes, Executed when the value is clearly abnormal. Specifically, it is carried out when the catalyst peak temperature differs by 20° C. or more, or when the peak position differs by 20 cm or more. If the actual temperature information obtained by rejecting the specific reaction tube and performing statistical processing is equivalent to the preliminary temperature information (for example, the catalyst peak temperature difference is less than 20 ° C., or the peak position matches at a position of less than 20 cm), this It can be said that the countermeasures are effective.
 前記対策(3)に関しては、実機プラントの流量や圧力などの制御自体に問題があった可能性を疑うものである。実機制御の具体的な方法としては、例えば入口ガスの組成比を変えて活性を上げる方法、反応浴温度を上げて上層触媒の活性を上げる方法、逆に反応浴温度を下げて下層触媒の活性を下げる方法、触媒への負荷を下げて活性を上げる方法、触媒入口圧力を高めて上層触媒の活性を上げる方法、反応を止めて空気処理などを行い触媒を再活性化させる方法、など当業者にとって公知な方法が挙げられる。上記異常な状態が生じたとき、上記視覚化情報に自動的にアラームメッセージなどを表示させ、多管式反応器のユーザーに明示的に異常を知らせる方法、あるいは上記異常な状態に対してユーザーが実施すべき対処法を所定の判断基準に従い判断、出力させてユーザーに示す方法も、本発明に含まれる。事前温度情報との比較の他、実機温度情報は、ピーク温度が触媒の使用制限温度に達していないか、経時的な変化や傾向に問題がないか、等の観点からも解析される。 Regarding the measure (3) above, we suspect that there may have been a problem with the control of the actual plant's flow rate, pressure, etc. Specific methods for controlling the actual equipment include, for example, changing the composition ratio of the inlet gas to increase the activity, raising the reaction bath temperature to increase the activity of the upper catalyst, and conversely, lowering the reaction bath temperature to increase the activity of the lower catalyst. a method of lowering the load on the catalyst to increase its activity; a method of increasing the catalyst inlet pressure to increase the activity of the upper catalyst; a method of stopping the reaction and performing air treatment to reactivate the catalyst methods known to the public. When the above abnormal state occurs, a method of automatically displaying an alarm message or the like in the above visualization information to explicitly inform the user of the multi-tubular reactor of the abnormality, or The present invention also includes a method of judging and outputting measures to be taken according to predetermined judgment criteria and presenting them to the user. In addition to comparison with the preliminary temperature information, the actual machine temperature information is also analyzed from the viewpoint of whether the peak temperature has reached the use limit temperature of the catalyst, whether there are any problems with changes and trends over time, and so on.
(ある時点での実機温度情報と別の時点での実機温度情報との比較)
 次に、本発明の別の実施形態に係る方法について説明する。別の実施形態に係る方法は、触媒を用いた酸化反応により不飽和アルデヒド、不飽和カルボン酸、または共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法である。当該方法は、コンピュータ装置に、多管式反応器に含まれる複数の反応管のうちの一部の反応管に関して反応管情報を取得する取得ステップと、反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、を実行させることを含む。これらの構成は上述した実施形態に係る方法と同様であるため詳細な説明を省略し、以下では、本実施形態と上述した実施形態との相違点についてのみ説明する。
 本実施形態に係る方法において、出力ステップS2で出力される支援情報は、ある時点での実機温度情報(以下、第一実機温度情報と呼ぶ)と別の時点での実機温度情報(以下、第二実機温度情報と呼ぶ)との比較情報を含む。例えば第一実機温度情報は、反応のスタートアップ時において多管式反応器10の一部の反応管から取得された実機温度情報であり、第二実機温度情報は、スタートアップ後の定常運転時に多管式反応器10の一部の反応管から取得された実機温度情報である。第一実機温度情報を取得する反応管と第二実機温度情報を取得する反応管は、異なっていてもよいが、同一であることが好ましい。比較情報の一例として、第一実機温度情報を統計処理して得られる温度分布と、第二実機温度情報を統計処理して得られる温度分布を一つのグラフ上にプロットしたものが挙げられる。このような視覚化処理を経て出力された比較情報によれば、多管式反応器10のユーザーが反応管の状態の経時的変化を容易に確認することができる。ユーザーは、経時的変化の様子に基づいて運転条件の変更や運転の終了等の判断を行うことができるほか、次回のスタートアップ時の条件等の検討を効率的に行うことができる。
(Comparison of actual machine temperature information at one point in time with actual machine temperature information at another point in time)
A method according to another embodiment of the invention will now be described. A method according to another embodiment supports the operation or preparatory action of a multi-tube reactor comprising a plurality of reactor tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by catalytic oxidation reactions. It is a way to The method comprises a step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in a multi-tube reactor, and statistically processing the reaction tube information to obtain the multi-tube information. and an outputting step of outputting support information to support operation of the tubular reactor or preparatory actions thereof. Since these configurations are the same as the method according to the above-described embodiment, detailed description is omitted, and only differences between this embodiment and the above-described embodiment will be described below.
In the method according to the present embodiment, the support information output in the output step S2 includes actual machine temperature information at a certain point in time (hereinafter referred to as first actual machine temperature information) and actual machine temperature information at another point in time (hereinafter referred to as second actual machine temperature information). (referred to as temperature information of two actual machines). For example, the first actual temperature information is actual temperature information obtained from some of the reaction tubes of the multi-tubular reactor 10 at the start-up of the reaction, and the second actual temperature information is the multi-tube temperature information during steady operation after startup. It is the actual machine temperature information acquired from some reaction tubes of the formula reactor 10 . The reaction tube from which the first actual temperature information is obtained and the reaction tube from which the second actual temperature information is obtained may be different, but are preferably the same. An example of the comparison information is a temperature distribution obtained by statistically processing the first actual machine temperature information and a temperature distribution obtained by statistically processing the second actual machine temperature information plotted on one graph. According to the comparison information output through such visualization processing, the user of the multi-tubular reactor 10 can easily confirm the change in the state of the reaction tubes over time. The user can decide whether to change the operating conditions or terminate the operation based on the changes over time, and also efficiently consider the conditions for the next start-up.
 上述の説明は、反応のスタートアップにおけるロードアップ時に本発明を適用することを想定しているが、その他リサイクルガス切り替え時、定常反応からの設定値(入口ガスモル比、負荷)の変更時、反応のシャットダウンにおけるロードダウン時やリサイクルガス切り替え時、空気処理時における実機の運転操作にも本発明の方法を適用できる。
 また、上記の例では主に触媒層の温度分布を対象に記載したが、不活性担体やサポートリングが入ったイナート層での温度分布の比較および判断にも本発明を同様に適用することが可能である。例えば、反応器入口側触媒層手前の入口ガス余熱層における昇温速度の確認および/または出口ガス放熱層における降温速度の確認、反応器入口および/または出口側触媒層におけるガス温度の確認、反応器出口側イナート層および/またはサポートリングにおける降温速度の確認、および確認された降温速度に基づく出口側での反応堆積物の析出の自動検出、各イナート層の昇温/降温速度の確認、および確認された昇温/降温速度に基づく反応管の熱伝達係数や反応管内汚れの把握、およびこれらの図3で示した処理が含まれる。
 仮に、事前温度情報と実機温度情報の温度分布および/またはピーク温度が±20℃の範囲内に入らない場合、事前温度情報が正しいことを前提に、多管式反応器における設定パラメーター(原料のガス流量、出口圧力、反応浴温度、および入口ガスの組成比のうち少なくとも一部)を変更することが好ましい。また、別の方法として多管式反応器の設定パラメーターが妥当か確認する方法も取られうる。この場合、実機温度情報の詳細から、どの設定パラメーターを確認するかが決定される。例えば事前温度情報の温度分布に比べ実機温度情報の温度分布が触媒層全体で高温である場合には、単に熱電対からの測定データが異常である可能性があるため、まずは電気系統や信号の異常を確認する。また、ピーク温度が低いもしくは高い場合、原料のガス流量、出口圧力および触媒の充填量や充填された触媒の活性が妥当であるかを確認する。
In the above description, it is assumed that the present invention is applied during load-up during reaction start-up. The method of the present invention can also be applied to the operation of actual equipment during load down during shutdown, switching of recycled gas, and air treatment.
In the above example, the temperature distribution of the catalyst layer is mainly described, but the present invention can be similarly applied to the comparison and judgment of the temperature distribution in the inert layer containing an inert carrier or support ring. It is possible. For example, confirmation of the temperature rise rate in the inlet gas preheating layer in front of the reactor inlet side catalyst layer and/or confirmation of the temperature drop rate in the outlet gas heat dissipation layer, confirmation of the gas temperature in the reactor inlet and/or outlet side catalyst layer, reaction Confirmation of the temperature drop rate in the inert layer and/or support ring on the outlet side of the vessel, automatic detection of precipitation of reaction deposits on the outlet side based on the confirmed temperature drop rate, confirmation of the temperature rise/cool rate of each inert layer, and This includes the understanding of the heat transfer coefficient of the reaction tube and the contamination inside the reaction tube based on the confirmed heating/cooling rate, and the processing shown in FIG.
If the temperature distribution and/or peak temperature of the preliminary temperature information and the actual temperature information do not fall within the range of ± 20 ° C, the set parameters in the multi-tubular reactor (raw material It is preferable to change at least part of the gas flow rate, outlet pressure, reaction bath temperature, and inlet gas composition ratio. Alternatively, a method of validating the setting parameters of the shell-and-tube reactor can be taken. In this case, which setting parameter to check is determined from the details of the actual machine temperature information. For example, if the temperature distribution in the actual temperature information is higher than the temperature distribution in the preliminary temperature information, the measured data from the thermocouple may simply be abnormal. Check for anomalies. Also, if the peak temperature is low or high, confirm whether the gas flow rate of the raw material, the outlet pressure, the filling amount of the catalyst, and the activity of the packed catalyst are appropriate.
 以上、上述した実施形態を一例として本発明を説明してきたが、本発明はこれらに限定されるものではない。また、上述した各効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。 Although the present invention has been described above using the above-described embodiments as examples, the present invention is not limited to these. Moreover, each of the effects described above is merely a list of the most suitable effects produced by the present invention, and the effects of the present invention are not limited to those described in this embodiment.
 例えば反応のスタートアップ時や再スタートアップ時は、特に慎重な温度管理が要求される場面であり、複数の反応管情報を正確に把握し、温度管理を行う必要がある。従って、本発明は、反応のスタートアップ時、すなわち運転の準備行為についても十分に効果を実現するものである。 For example, when starting up or restarting a reaction, it is a scene that requires particularly careful temperature control, and it is necessary to accurately grasp information on multiple reaction tubes and perform temperature control. Therefore, the present invention achieves sufficient effects at the time of reaction start-up, that is, in preparatory actions for operation.
 本出願は、2022年2月18日出願の日本特許出願2022-23451に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2022-23451 filed on February 18, 2022, the contents of which are incorporated herein by reference.
 本発明は、触媒を用いた酸化反応により不飽和アルデヒド、不飽和カルボン酸または共役ジエンを製造する、複数の反応管を含む多管式反応器の運転時またはその準備行為時において、より効率的かつ安定した製造工程を提供できるものである。 INDUSTRIAL APPLICABILITY The present invention is more efficient during the operation or preparatory action of a shell-and-tube reactor comprising a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids or conjugated dienes by catalytic oxidation reactions. And it can provide a stable manufacturing process.
10:多管式反応器、20:反応管、22、24、26、28:触媒層、30:サポートリング、S1:取得ステップ、S2:出力ステップ、S3:提供ステップ 10: multitubular reactor, 20: reaction tube, 22, 24, 26, 28: catalyst layer, 30: support ring, S1: acquisition step, S2: output step, S3: provision step

Claims (5)

  1.  触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法であって、
     コンピュータ装置に、
     前記多管式反応器に含まれる複数の反応管のうちの一部の反応管に関して反応管情報を取得する取得ステップと、
     前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、
     を実行させることを含む方法であり、
     前記反応管情報は、前記酸化反応または前記酸化的脱水素反応の開始時、終了時、定常運転時、制御因子の設定変更時、または空気処理時における、反応管内の温度に関する実機温度情報を含み、
     前記支援情報は、前記実機温度情報と、前記多管式反応器とは異なる反応器の管内温度情報との比較情報を含む、
     多管式反応器の運転またはその準備行為をサポートする方法。
    Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A method of supporting,
    computer equipment,
    an acquiring step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor;
    an output step of statistically processing the reaction tube information to output support information for supporting the operation of the multi-tubular reactor or its preparatory action;
    a method comprising causing to execute
    The reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment. ,
    The support information includes comparison information between the actual machine temperature information and tube internal temperature information of a reactor different from the multi-tubular reactor,
    A method for supporting the operation or preparatory actions of a shell and tube reactor.
  2.  前記支援情報は、反応管内の温度分布に関する情報である温度分布情報を含み、
     前記温度分布情報は、前記実機温度情報を統計処理することにより得られたものである、
     請求項1に記載の多管式反応器の運転またはその準備行為をサポートする方法。
    The support information includes temperature distribution information, which is information about the temperature distribution in the reaction tube,
    The temperature distribution information is obtained by statistically processing the actual machine temperature information,
    10. A method of supporting the operation of, or preparatory actions for, the shell-and-tube reactor of claim 1.
  3.  前記支援情報は、前記実機温度情報と、反応管内に充填された触媒の種類と充填位置に関する情報である触媒情報とを対応づけた情報を含む、請求項2に記載の多管式反応器の運転またはその準備行為をサポートする方法。 3. The multi-tubular reactor according to claim 2, wherein the support information includes information that associates the actual machine temperature information with catalyst information that is information about the type and filling position of the catalyst filled in the reaction tubes. How to support driving or preparatory actions.
  4.  触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法であって、
     コンピュータ装置に、
     前記多管式反応器に含まれる複数の反応管のうちの一部の反応管に関して反応管情報を取得する取得ステップと、
     前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、
     を実行させることを含む方法であり、
     前記反応管情報は、前記酸化反応または前記酸化的脱水素反応の開始時、終了時、定常運転時、制御因子の設定変更時、または空気処理時における、反応管内の温度に関する実機温度情報を含み、
     前記支援情報は、ある時点での前記実機温度情報と、別の時点での前記実機温度情報との比較情報を含む、
     多管式反応器の運転またはその準備行為をサポートする方法。
    Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A method of supporting,
    computer equipment,
    an acquiring step of acquiring reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor;
    an output step of statistically processing the reaction tube information to output support information for supporting the operation of the multi-tubular reactor or its preparatory action;
    a method comprising causing to execute
    The reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment. ,
    The support information includes comparison information between the actual machine temperature information at one point in time and the actual machine temperature information at another point in time,
    A method for supporting the operation or preparatory actions of a shell and tube reactor.
  5.  触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする装置であって、
     前記装置は、取得部と、出力部とを有し、
     前記取得部は、前記多管式反応器に含まれる複数の反応管のうちの一部の反応管に関して反応管情報を取得するように構成され、
     前記出力部は、前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力するように構成され、
     前記反応管情報は、前記酸化反応または前記酸化的脱水素反応の開始時、終了時、定常運転時、制御因子の設定変更時、または空気処理時における、反応管内の温度に関する実機温度情報を含み、
     前記支援情報は、前記実機温度情報と、前記多管式反応器とは異なる反応器の管内温度情報との比較情報を含む、
     多管式反応器の運転またはその準備行為をサポートする装置。
    Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A device that supports
    The device has an acquisition unit and an output unit,
    The acquisition unit is configured to acquire reaction tube information about some reaction tubes among a plurality of reaction tubes included in the multi-tubular reactor,
    The output unit is configured to output support information for supporting the operation of the multi-tubular reactor or its preparatory action by statistically processing the reaction tube information,
    The reaction tube information includes actual machine temperature information regarding the temperature in the reaction tube at the time of starting and ending the oxidation reaction or the oxidative dehydrogenation reaction, during steady operation, when changing control factor settings, or during air treatment. ,
    The support information includes comparison information between the actual machine temperature information and tube internal temperature information of a reactor different from the multi-tubular reactor,
    A device that supports the operation of a shell and tube reactor or its preparatory actions.
PCT/JP2023/003847 2022-02-18 2023-02-06 Method and apparatus for supporting operation of multitubular reactor or preparation action thereof WO2023157699A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023532783A JP7316482B1 (en) 2022-02-18 2023-02-06 Methods and apparatus for supporting the operation or preparatory actions of a multitubular reactor
JP2023115545A JP2023133352A (en) 2022-02-18 2023-07-14 Method and apparatus for supporting operation or preparation of multitubular reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-023451 2022-02-18
JP2022023451 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157699A1 true WO2023157699A1 (en) 2023-08-24

Family

ID=87578570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003847 WO2023157699A1 (en) 2022-02-18 2023-02-06 Method and apparatus for supporting operation of multitubular reactor or preparation action thereof

Country Status (1)

Country Link
WO (1) WO2023157699A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126835A (en) * 1994-10-28 1996-05-21 Mitsubishi Chem Corp Operation control of batch plant
JP2005325044A (en) * 2004-05-13 2005-11-24 Mitsubishi Chemicals Corp Method for conducting pilot test of multitubular reactor
JP2007509051A (en) * 2003-12-26 2007-04-12 エルジー・ケム・リミテッド Method for producing unsaturated aldehyde and / or unsaturated fatty acid
JP2012121842A (en) * 2010-12-09 2012-06-28 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same
JP2018206316A (en) * 2017-06-09 2018-12-27 株式会社日立製作所 Plant operation monitoring system and plant operation monitoring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126835A (en) * 1994-10-28 1996-05-21 Mitsubishi Chem Corp Operation control of batch plant
JP2007509051A (en) * 2003-12-26 2007-04-12 エルジー・ケム・リミテッド Method for producing unsaturated aldehyde and / or unsaturated fatty acid
JP2005325044A (en) * 2004-05-13 2005-11-24 Mitsubishi Chemicals Corp Method for conducting pilot test of multitubular reactor
JP2012121842A (en) * 2010-12-09 2012-06-28 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same
JP2018206316A (en) * 2017-06-09 2018-12-27 株式会社日立製作所 Plant operation monitoring system and plant operation monitoring method

Similar Documents

Publication Publication Date Title
TW201003812A (en) Etching process state judgment method and system therefor
US10402246B2 (en) Method for generating a machine heartbeat
US7974729B2 (en) Server device and program with sub-recipe measurement communication
JP7126406B2 (en) PIPE INSPECTION DEVICE AND PIPE INSPECTION METHOD
JP5866446B2 (en) Graph drawing apparatus, graph drawing method, process management system, process management method, control program, and readable storage medium
JP7316482B1 (en) Methods and apparatus for supporting the operation or preparatory actions of a multitubular reactor
WO2023157699A1 (en) Method and apparatus for supporting operation of multitubular reactor or preparation action thereof
JP5538955B2 (en) Method and system for predicting apparatus abnormality in semiconductor manufacturing
JP2011238769A (en) Process control device and process control method, control program, readable recording medium
JP2009265944A (en) Screen display method, screen display program and screen display device
JP2018113027A (en) Process abnormality state diagnosis method and abnormality state diagnosis device
JP3669573B2 (en) Life prediction method and life prediction program for fixed bed catalyst
JP5138396B2 (en) Production process abnormality detection method and production process abnormality detection system, program for causing a computer to execute the production process abnormality detection method, and computer-readable recording medium storing the program
JP2010170178A (en) Production management system
JP2009076772A (en) Process monitoring method
JP2003068717A (en) Semiconductor processing apparatus
JP7289419B1 (en) Method and apparatus for supporting air handling in multi-tubular reactors
JP2002358120A (en) Batch plant operation managing device
WO2023157700A1 (en) Method for supporting air treatment in multitubular reactor, and device
JP4836994B2 (en) Semiconductor processing equipment
WO2023048284A1 (en) Method for supporting operation of multi-tube reactor or supporting actions to prepare same
JP6832175B2 (en) Processing flow management device and processing flow management method
JP2005051269A (en) Semiconductor processing apparatus
JP2003162309A (en) Manufacturing method of worked products, manufacturing equipment and program for manufacture
US20240210917A1 (en) Method and system for optimizing an alkane dehydrogenation operation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023532783

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756226

Country of ref document: EP

Kind code of ref document: A1