WO2023048284A1 - Method for supporting operation of multi-tube reactor or supporting actions to prepare same - Google Patents

Method for supporting operation of multi-tube reactor or supporting actions to prepare same Download PDF

Info

Publication number
WO2023048284A1
WO2023048284A1 PCT/JP2022/035708 JP2022035708W WO2023048284A1 WO 2023048284 A1 WO2023048284 A1 WO 2023048284A1 JP 2022035708 W JP2022035708 W JP 2022035708W WO 2023048284 A1 WO2023048284 A1 WO 2023048284A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
catalyst
reaction
reaction tube
man
Prior art date
Application number
PCT/JP2022/035708
Other languages
French (fr)
Japanese (ja)
Inventor
成喜 奥村
智志 河村
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN202280064922.1A priority Critical patent/CN117999119A/en
Priority to JP2022573624A priority patent/JP7345072B2/en
Publication of WO2023048284A1 publication Critical patent/WO2023048284A1/en
Priority to JP2023142719A priority patent/JP2023164493A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/173Alkadienes with five carbon atoms
    • C07C11/18Isoprene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to a method for supporting the operation of a shell-and-tube reactor or its preparatory actions.
  • Patent Document 1 discloses a life prediction method and a life prediction program for a fixed bed catalyst. As described above, the temperature distribution in a catalyst packed bed using a fixed bed catalyst has been conventionally used to predict, for example, the service life of the catalyst.
  • a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor
  • a method of supporting, computer equipment an acquiring step of acquiring reaction tube information about some of the plurality of reaction tubes included in the multi-tubular reactor; and an output step of outputting support information that supports operation of the multi-tubular reactor or preparatory actions thereof by statistically processing the reaction tube information.
  • the reaction tube information includes filling length information regarding the filling length of the catalyst filled in the reaction tube, The method of (1), wherein the aiding information includes out-of-threshold reactor tube information for the reactor tube whose fill length is not within a specified threshold range.
  • the output step includes outputting the out-of-threshold reaction tube information by statistically processing the filling length information assuming that the filling length of the catalyst follows a normal distribution.
  • the reaction tube information includes section information about a part of a plurality of reaction tubes included in each section of the multi-tubular reactor divided into two or more sections,
  • the section information includes section filling length information regarding the filling length of the catalyst packed in the reaction tube included in the section,
  • the method according to any one of (1) to (7), wherein the outputting step includes outputting the support information by statistically processing the partition filling length information for each partition.
  • FIG. 2 is a schematic plan view showing a multi-tubular reactor according to an embodiment, and a diagram showing an example in which the multi-tubular reactor is spatially divided into three sections.
  • FIG. 3 is a schematic diagram showing layers of catalyst packed in one reaction tube.
  • Fig. 3 shows a flow chart of a method according to an embodiment; It is a table
  • 4 is a table showing the packing length of the second catalyst layer;
  • FIG. 11 shows a histogram of the packing length of the second catalyst layer in the reaction tube of section A;
  • FIG. 11 shows a histogram of the packing length of the second catalyst layer in the reaction tube of section B;
  • 10 is a histogram of the packing length of the second catalyst layer in the reaction tube of section C;
  • 4 is a table showing the designed value of the filling length of the second catalyst layer, the allowable width, the lower allowable limit, the allowable upper limit, the total number of reaction tubes, the number of reaction tubes below the allowable lower limit, and the number of reaction tubes exceeding the allowable upper limit.
  • 4 is a table showing repair work information for a first catalyst layer and repair work information for a second catalyst layer;
  • the method according to the present embodiment is a multitubular reaction comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction. It is a method to support the operation of the vessel or its preparatory act.
  • the method includes an acquisition step of acquiring reaction tube information about a part of a plurality of reaction tubes included in the multi-tubular reactor, and statistically processing the reaction tube information to obtain information on the multi-tubular reactor. and an output step of outputting assistance information for assisting driving or preparatory actions thereof.
  • the computer device used in this embodiment is a computer device comprising a microprocessor such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a memory such as a flash memory, and a bus.
  • the computer device may execute at least part of the method according to the present embodiment by means of a program recorded in a memory included in the computer device or in a recording medium readable by the computer device.
  • the present embodiment also presents a program for causing a computer device to execute at least part of a method described later, and a recording medium recording the program.
  • the computer device that can be used in this embodiment is not limited to this aspect.
  • a cloud computing system in which computer resources are connected via a network may be used as the computer device used in the method of the present disclosure.
  • FIG. 1 is a schematic plan view showing a multi-tubular reactor 10 to be subjected to the method according to this embodiment.
  • the shell-and-tube reactor 10 shown in FIG. 1 is cylindrical.
  • FIG. 1 shows three compartments A, B, and C that are divided every 120° with respect to the center of the multi-tubular reactor 10 in plan view.
  • a portion of the plurality of reaction tubes 20 included in section A is shown surrounded by a dashed line.
  • a plurality of reaction tubes 20 are also provided outside the dashed line in section A and in sections B and C, but illustration of these reaction tubes 20 is omitted.
  • the multitubular reactor 10 produces at least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene depending on the catalyst to be filled, the raw material to be supplied, and the like.
  • unsaturated aldehydes and unsaturated carboxylic acids to be produced include acrolein and acrylic acid, methacrolein and methacrylic acid, and examples of conjugated dienes include 1,3-butadiene and isoprene.
  • Each of the plurality of reaction tubes 20 included in the multitubular reactor 10 is filled with a catalyst.
  • FIG. 2 is a schematic diagram showing a catalyst layer packed in one reaction tube 20. As shown in FIG. In the example shown in FIG. 2, four layers of catalyst layers 22, 24, 26, 28 packed on the support ring 30 are shown. The activity of the plurality of layers is different from each other. For example, the activity of the fourth catalyst layer 28 is low in the order of filling on the inlet side where the raw material is supplied, and the activity increases toward the outlet side (support ring 30 side).
  • activity of the fourth catalyst layer 28 ⁇ activity of the third catalyst layer 26 ⁇ activity of the second catalyst layer 24 ⁇ activity of the first catalyst layer 22 may be At least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene is produced by supplying raw materials to a reaction tube 20 filled with a catalyst so as to form a plurality of layers and controlling operating conditions such as temperature. manufactured.
  • the operation of the multitubular reactor 10 in the present embodiment means supplying raw materials to the reaction tube 20 filled with a catalyst to produce at least one of unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene. .
  • the operation includes a start-up operation of charging the raw material into the multi-tubular reactor 10 to raise the temperature, and a start-up operation in which the raw material gas is mixed with an oxygen-containing gas and and/or performing a catalyst air treatment operation switched to a steam-containing gas.
  • the preparatory action for operation of the multi-tubular reactor 10 in the present embodiment includes work for starting the operation of the multi-tubular reactor 10, such as filling the reaction tube 20 with a catalyst, cleaning the reaction tube 20, etc. and maintenance work such as a part of the multi-tubular reactor 10 or a reactor other than the multi-tubular reactor 10 (however, the reaction tube diameter, the length of the reaction tube, etc. are equivalent to the multi-tubular reactor 10 ) to measure the filling length, filling time, etc. of the multitubular reactor 10 on a trial basis.
  • the preparatory action refers to the action before the start of the catalytic reaction, and the operation of the multitubular reactor 10 is to produce at least one of unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene after the catalytic reaction is started. Point.
  • FIG. 3 is a diagram showing a flow chart of the method according to this embodiment.
  • a computer device is provided with an acquisition step S1 of acquiring reaction tube information about some of the plurality of reaction tubes 20 included in the multi-tubular reactor 10, and statistically processing the reaction tube information. and an output step S2 for outputting support information for supporting the operation of the multi-tubular reactor 10 or its preparatory action.
  • the method according to this embodiment optionally further comprises a providing step S3 of providing assistance information to the user of the shell-and-tube reactor 10 .
  • the providing step S3 may be performed by a computer device, or may be performed by providing the support information output by the computer device to the user of the multi-tubular reactor 10 by telephone or FAX.
  • the support information may be provided to the user's terminal via the network.
  • the provision of the support information via the network may be performed by a computer device that outputs the support information, or may be performed by a device other than the computer device.
  • the computer device may acquire the reaction tube information by input from the terminal of the user of the multi-tube reactor 10 or input from the administrator of the computer device using an input device such as a keyboard.
  • Reaction tube information may be acquired from various sensors provided in the reactor 10 .
  • the user of the multi-tubular reactor 10 and the administrator of the computer may be the same.
  • the reaction tube information acquired in the acquisition step S1 may include filling length information regarding the filling length of the catalyst.
  • the reaction tube information acquired in the acquisition step S1 may include temperature information related to temperature data of a temperature sensor provided in a part of the reaction tube 20 . Specific aspects of the method according to the present embodiment will be described below with reference to FIGS. 4 to 8. FIG.
  • a multitubular reactor 10 containing tens of thousands of reaction tubes 20 is divided into three compartments A, B, and C as shown in FIG. and causing the computer to execute an acquisition step S1 of acquiring section information including section packing length information about the packing length of the catalyst for a part of the.
  • the number of partitions is not limited to three, and any number of partitions of two or more may be used.
  • the multi-tubular reactor 10 may not be compartmentalized in the method of the present invention.
  • FIG. 4 shows the space length from the inlet of the reaction tube 20 to the second catalyst layer 24 after the reaction tube 20 in the sections A, B, and C is filled with a predetermined amount of catalyst to form the second catalyst layer 24.
  • FIG. 5 is a table showing the filling length L24 of the second catalyst layer 24 calculated by subtracting the space length L2 shown in FIG. 4 from the space length L1 after the first catalyst layer 22 is provided. From FIG. 5, even if a predetermined amount of catalyst is filled, there is a difference in the filling length due to variations in the catalyst filling amount measured in advance to a predetermined amount and differences and variations in the inner diameter and state of each reaction tube 20. I understand. In this embodiment, the thickness of a layer of a certain type of catalyst is treated as the packing length. For example, the value shown in FIG.
  • the filling length L24 of the second catalyst layer 24 may be obtained as the filling length L 24 of the second catalyst layer 24 in the obtaining step S1 of the method of this specific embodiment.
  • the spatial length L2 from the inlet to the second catalyst layer 24 shown in FIG. 4 and the spatial length L1 after the first catalyst layer 22 is provided are obtained,
  • the filling length L24 of the second catalyst layer 24 may be calculated based on L1.
  • the acquisition step S1 also includes a process in which the computer device converts the space length to obtain the filling length.
  • the method statistically processes the data on the packing length L 24 of the second catalyst layer 24 shown in FIG. and causing the computer device to execute an output step S2 for performing the processing.
  • the assistance information includes out-of-threshold reactor tube information for reactor tubes 20 whose fill length is not within a specified threshold range.
  • the output step S2 optionally includes outputting out-of-threshold reactor tube information by statistically processing the fill length information assuming that the catalyst fill length is normally distributed.
  • the method optionally further comprises causing the computing device to perform a histogram output step of outputting a histogram of catalyst packing lengths, the histogram optionally being output for each section.
  • the output may be by displaying the information on an output device such as a display connected to the computing device.
  • the output histogram can be provided to the user in a manner similar to the providing step S3 described above.
  • FIGS. 6A-6C are histograms of the packing length L 24 of the second catalyst layer 24 in the reaction tubes 20 of compartments A, B and C, respectively.
  • the method assumes that the packing length L 24 of the second catalyst layer 24 shown in FIGS. 6A-6C follows a normal distribution and outputs out-of-threshold reactor tube information.
  • FIG. 7 shows the design value of the filling length of the second catalyst layer 24, the allowable width, the allowable lower limit, the allowable upper limit, the total number of reaction tubes, the number of reaction tubes 20 whose filling length L 24 is less than the allowable lower limit, and the allowable upper limit.
  • the allowable lower limit is the value obtained by subtracting the allowable range from the design value
  • the allowable upper limit is the value obtained by adding the allowable range to the design value.
  • a threshold range from the lower allowable limit to the upper allowable limit is set according to the design value of the filling length of the second catalyst layer 24 according to the operating conditions and the allowable width thereof. Assuming that the filling lengths (section filling length information) of the reaction tubes 20 in Section A, Section B, and Section C follow a normal distribution, the number of reaction tubes 20 not included in the threshold range from the lower allowable limit to the upper allowable limit is calculated for each section.
  • the reaction tubes 20 not included in the threshold range in each section Estimate the number. Subsequently, the number of reaction tubes 20 not included in the threshold range calculated for each section is summed up, and the number of reaction tubes 20 below the allowable lower limit and the number of reaction tubes 20 exceeding the allowable upper limit are output. The number of reaction tubes 20 below the allowable lower limit and the number of reaction tubes 20 exceeding the allowable upper limit correspond to non-threshold reaction tube information.
  • the distribution of the filling length may be calculated by regarding the entire reactor 10 as one section without dividing the sections.
  • FIG. 1 it is assumed that all filling lengths (section filling length information) in the reaction tube 20 of section A, section B, and section C follow a normal distribution, and the threshold range from the allowable lower limit to the allowable upper limit is The number of reaction tubes 20 in the entire reactor 10 not included is calculated. Note that even when the distribution of the filling length is calculated by regarding the entire reactor 10 as one section, it is preferable to divide the whole into a plurality of sections and acquire the filling length information for each section.
  • the filling length of a specific section is extremely long or short compared to other sections due to the fact that there are sections where the reaction tube diameter differs from the design value, or the work method of the filling operator is different. there is a possibility.
  • By obtaining filling length information for each section it is possible to check whether there is a section whose filling length is extremely long or short compared to other sections.
  • the method is based on the number of reaction tubes 20 below the permissible lower limit and the number of reaction tubes 20 exceeding the permissible upper limit (non-threshold reaction tube information) and the standard man-hour information of the multi-tubular reactor 10.
  • causing the computer device to perform a man-hour output step of outputting at least one of the man-hours required to replenish the catalyst in the reactor 10 and the man-hours required to withdraw the catalyst.
  • the output can be performed by displaying the man-hours on an output device such as a display connected to the computer device.
  • the number of man-hours indicates the time required for a specific work process, and is a value that can be increased or decreased depending on the number of personnel and the number of facilities.
  • the method optionally further comprises providing the man-hour output by the man-hour output step to a user of the shell-and-tube reactor 10 .
  • the step of providing man-hours may take the same aspect as the providing step S3 described above.
  • FIG. 8 is a table showing correction work information for the first catalyst layer 22 (upper side) and correction work information for the second catalyst layer 24 (lower side).
  • the repair work information for the first catalyst layer 22 shown in the upper part of FIG. It includes the number of reaction tubes 20 whose length was less than the allowable lower limit and the number of reaction tubes 20 whose filling length exceeded the allowable upper limit.
  • the repair work information for the first catalyst layer 22 includes the total number of reaction tubes 20 that have been repaired by replenishing or removing the catalyst, the number of repair workers, the man-hours for the repair work, and the repair speed of the reaction tubes 20. ,including.
  • the repair speed of the reaction tubes 20 is calculated based on the total number of repaired reaction tubes 20, the number of repair workers, and the man-hours for the repair work.
  • the repair speed of the reaction tube 20 corresponds to the standard man-hour information of the multi-tubular reactor 10 .
  • FIG. 8 it is assumed that the rework speed of the catalyst removal work and the rework speed of the catalyst replenishment work are the same. and the rework speed of replenishment work may be calculated separately and used in subsequent calculations.
  • the repair work information for the second catalyst layer 24 shown in the lower part of FIG. man-hours, and The total number of reaction tubes 20 to be corrected is the number of reaction tubes 20 whose filling length L 24 in the second catalyst layer 24 was less than the allowable lower limit and the number of reaction tubes 20 whose filling length L 24 exceeded the allowable upper limit in the second catalyst layer 24. It is the total number of reaction tubes 20 that have been in use (FIG. 7), and corresponds to out-of-threshold reaction tube information.
  • the above method acquires reaction tube information about some of the plurality of reaction tubes 20 included in the multi-tubular reactor 10, and statistically processes the reaction tube information to operate the multi-tubular reactor 10.
  • the support information can be output with less man-hours than the method of acquiring the reaction tube information of all the reaction tubes 20 .
  • replenishment and extraction of the catalyst are required by statistical processing. It is possible to estimate with high accuracy the number of necessary reaction tubes 20 and the amount of catalyst required for replenishment, and to output useful support information. Then, the user who has acquired the support information can efficiently proceed with the operation of the multi-tubular reactor 10 and the preparatory actions therefor.
  • reaction tube information including the filling length information regarding the filling length of the catalyst packed in the reaction tube 20
  • reactions whose filling length in the multi-tubular reactor 10 is not within a specific threshold range are detected.
  • the support information in the multi-tube reactor 10 can be output with less man-hours than the method of acquiring the filling length information of all the reaction tubes 20. be able to.
  • the out-of-threshold reaction tube information included in the support information it is possible to estimate the amount of catalyst required to replenish the reaction tube 20 with the catalyst and the man-hours required to replenish and withdraw the catalyst from the multi-tubular reactor 10. .
  • the necessary catalyst amount can be calculated by using the bulk specific gravity of the catalyst with respect to the information regarding the filling length.
  • T be a predetermined target value of the filling length
  • S be its one-sided allowable error. That is, the allowable fill length range is from TS to T+S.
  • A be the average value of the measured filling lengths of the filling length information obtained for a part of the reaction tubes 20, and B be its standard deviation.
  • Tn a target value as a reference for rework of the filling length, which is newly determined as described below, is set to Tn, and its one-sided allowable error is set to Sn. That is, the range of the filling length newly set as the repair reference is Tn-Sn or more and Tn+Sn or less.
  • the distribution shape of the filling length information acquired for a part of the reaction tubes 20 can be the following four cases and their combinations.
  • (Case 1) When the average value A of the measured filling length is equal to T, and the standard deviation B is equal to or less than S;
  • (Case 2) When the average value A of the measured filling length deviates greatly from T and the standard deviation B is equivalent to S;
  • (Case 3) When the average value A of the measured filling length is equal to T and the standard deviation B is larger than S;
  • (Case 4) When the average value A of the measured filling length is equal to T and the standard deviation B is equal to S, but the distribution has a large skewness on one side.
  • the solutions are the following nine methods and their combinations and serial processing.
  • the method described in the present application is substantially Solution 1 to Solution 8, statistically processing the filling length information obtained for some of the reaction tubes 20, predicting the number of working days and man-hours in advance, and if necessary Ability to be shortened is to be included in the methods described herein that efficiently support the operation of a shell-and-tube reactor or its preparatory actions.
  • Solution 1 From the information of the average value A and the standard deviation B, it is estimated that the packed length of the reaction tube has a normal distribution with the mean A and the variance B 2 , and the packed length is TS or more and T + S or less.
  • Another method for estimating the man-hours required for replenishing and extracting the catalyst in the multi-tubular reactor 10 is to fill each layer or all layers of the catalyst packed in part or all of the reaction tubes of the multi-tubular reactor 10.
  • a method is to measure the time, multiply the reference filling time obtained by simply averaging these times by the number of workers involved in filling the target catalyst layer, and divide the number of workers involved in filling the reference filling time. mentioned.
  • the other method may be adopted to implement the method of the above embodiment.
  • the filling length information includes not only the filling length but also data such as space length, differential pressure, filling amount, bulk specific gravity, etc., which are results of measuring the length of the upper hollow portion of the reaction tube.
  • the filling length information of the catalyst is assumed to be a normal distribution, and the filling length information is statistically processed to output the out-of-threshold reaction tube information.
  • Information can be estimated for reactor tubes 20 whose fill length in the tubular reactor 10 is not within a certain threshold range. For example, based on the number of reaction tubes 20 whose filling length is not within a specific threshold range and the amount of excess or deficiency in the filling length of each reaction tube 20, the amount of catalyst required to replenish the catalyst to the reaction tubes 20 and the multi-tube reaction The man-hours required to replenish and withdraw catalyst from vessel 10 can be estimated.
  • the trend of the state of the multi-tubular reactor 10 can be visualized by the histogram output step of outputting a histogram relating to the packing length of the catalyst.
  • the user who has acquired the histogram can recognize the tendency of the state of the multi-tubular reactor 10 and quickly determine the measures to be taken, and the action of preparing for the operation of the multi-tubular reactor 10 can be performed more effectively. can proceed efficiently.
  • the man-hour output step of outputting at least one of the man-hour required for replenishing the catalyst and the man-hour required for extracting the catalyst from the multitubular reactor 10 is used to estimate the man-hour required for adjusting the catalyst filling. can be done. Then, the user who has obtained the estimated number of man-hours can adjust the number of workers and the distribution of work hours according to the man-hours, and can proceed with preparations for operation of the multi-tubular reactor 10 more efficiently.
  • the reaction tube 20 of the multitubular reactor 10 is divided into two or more sections, and section filling length information regarding the packing length of the catalyst packed in the reaction tube 20 included in each section is obtained for each section.
  • section filling length information regarding the packing length of the catalyst packed in the reaction tube 20 included in each section is obtained for each section.
  • an arbitrary reaction tube 20 is spatially selected from the reaction tubes 20 of the multitubular reactor 10, the catalyst is filled therein (trial filling work), and the obtained filling length information is statistically processed to obtain support information. You may implement the method of the said embodiment by outputting.
  • the histogram output processing for outputting a histogram regarding the packing length of the catalyst for each section can be used to detect insufficient cleaning, the inner diameter of the reaction tube, variations in work performed by each worker, etc. for each section of the multi-tubular reactor 10. It is possible to visualize the trend of the state of the reaction tube 20 for each section due to . As a result, the user who acquired the histogram can quickly recognize the necessary measures in each section, and can proceed with preparations for operation of the multi-tubular reactor 10 more efficiently.
  • the method of the present invention is used and when it is not used, there is a difference of about 1.1 times to 5.0 times at maximum in the working time required for filling, and the method of the present invention is effective.
  • the present invention has been described above using the above-described embodiments as examples, the present invention is not limited to these. Moreover, each of the effects described above is merely a list of the most suitable effects produced by the present invention, and the effects of the present invention are not limited to those described in this embodiment.
  • the above-mentioned filling operation can be read as an extraction operation of extracting the packed catalyst from the reaction tube, or can be read as a repair operation of extracting the packed catalyst, mixing it with a new catalyst in an arbitrary ratio, and filling it again. , a differential pressure measurement operation of measuring the differential pressure of each of the filled reaction tubes 20 .
  • the computer device may be caused to perform a step of statistically processing the temperature data and outputting temperature distribution data in the multi-tubular reactor from maximum, minimum, average, etc. values.
  • the output may be performed by displaying the temperature distribution data on an output device such as a display connected to the computer device. Also, the temperature distribution may be shown as a graph based on the temperature distribution data.
  • the computer device may execute a step of outputting a margin for maintaining safe operation with respect to the use limit temperature of the catalyst or the like based on the temperature distribution data. For example, based on the graph showing the temperature distribution and the margin for maintaining safe operation, the user of the multi-tubular reactor can adjust the reaction bath temperature, load, Advice on management operations such as gas molar ratio adjustment and outlet pressure adjustment is possible, and highly accurate and stable operation can be achieved.
  • the case of outputting the support information for supporting the operation with the temperature data may be, for example, the time of starting up the reaction or the time of restarting the reaction.
  • start-up and re-startup particularly careful temperature control is required, and it is necessary to accurately grasp the temperature information of multiple reaction tubes and perform temperature control.
  • temperature data are acquired at two or more locations in a plurality of reaction tubes at the time of starting up or restarting the reaction. Then, the temperature data of the multi-tubular reactor 10 is calculated by statistically processing the temperature data.
  • a method of performing statistical processing using a computer device as in the above-described embodiment is preferable, and a method of performing statistical processing assuming that the temperature distribution in a plurality of reaction tubes follows a normal distribution is preferable.
  • statistical processing such as rejection of the temperature data of the reaction tube may be performed. good.
  • the judgment criterion for this rejection is not limited to any method as long as it is a general statistical processing, but judgment is made, for example, by the 5% significance level according to the standard normal distribution.
  • each reaction tube is independent and takes continuous measurements, so an aspect has been described that assumes a normal distribution.
  • Arbitrary statistical processing may be adopted by assuming other distributions depending on the distribution shape and data properties. That is, if the distribution shape is bimodal (mixture of two or more types of distributions) for some reason, a mixed normal distribution may be assumed.
  • statistical processing statistical processing of dividing into two or more normal distributions using a Gaussian mixture model or the like can also be performed as necessary. If there are only two types of data and discrete numerical values for some reason, a binomial distribution may be assumed and statistical processing may be performed. If the skewness of the distribution shape is high, a logarithmic normal distribution may be assumed and statistical processing may be performed. If the data are the same for most of the reaction tubes, a Poisson distribution may be assumed and statistical processing may be performed.
  • the statistical processing preferably includes at least a process of estimating the distribution of the item in all the reaction tubes 20 based on the information on one item included in the reaction tube information on some of the plurality of reaction tubes 20.
  • Examples of items include, but are not limited to, the packed length of the catalyst and the temperature of the reaction tube.
  • the above-described method also applies to the filling of the first catalyst layer 22, the third catalyst layer 26, and the fourth catalyst layer 28. Applicable.
  • the prediction criteria are based on the past experiences of users who use the multi-tubular reactor 10 and actual values at other manufacturing sites. Man-hour information may be prepared and the man-hours for the repair work may be calculated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

The present invention relates to a method for supporting the operation of a multi-tube reactor or supporting actions to prepare the same, the multi-tube reactor including a plurality of reaction tubes for producing an unsaturated aldehyde and/or an unsaturated carboxylic acid through an oxidation reaction using a catalyst, or for producing a conjugated diene through an oxidative dehydrogenation reaction. This method includes causing a computer device to execute: an acquisition step (S1) for acquiring reaction tube information relating to some of the plurality of reaction tubes included in the multi-tube reactor; and an output step (S2) for carrying out statistical processing of the reaction tube information, thereby outputting assistance information for assisting with the operation of the multi-tube reactor or assisting with actions to prepare the same.

Description

多管式反応器の運転またはその準備行為をサポートする方法A method for supporting the operation or preparatory actions of a shell-and-tube reactor
 本発明は、多管式反応器の運転またはその準備行為をサポートする方法に関する。 The present invention relates to a method for supporting the operation of a shell-and-tube reactor or its preparatory actions.
 特許文献1は、固定床触媒の寿命予測方法及び寿命予測プログラムを開示する。このように、従来から固定床触媒を用いた触媒充填層内の温度分布を用いて、例えば触媒寿命を予測する等は行われている。 Patent Document 1 discloses a life prediction method and a life prediction program for a fixed bed catalyst. As described above, the temperature distribution in a catalyst packed bed using a fixed bed catalyst has been conventionally used to predict, for example, the service life of the catalyst.
日本国特開2002‐372507号公報Japanese Patent Application Laid-Open No. 2002-372507
 数千~数万本の反応管を備える反応器において、全ての反応管情報を取得することは現実的ではなく、1~数本の情報を、特に加工することなく反応器全体の情報とみなしているのが通常である。しかし、実際には部分的に反応管の状態が異なることがあり、この部分的な差異を考慮してデータ処理して情報を把握することは、多管式反応器の運転時のみならず準備行為時(たとえば、触媒の充填作業)においても重要である。
 不飽和アルデヒドや不飽和カルボン酸、および共役ジエンを製造する触媒反応等は一般に発熱反応であり、多管式反応器において反応ガスの入口側から出口側に向けて活性の異なる触媒種を多層で充填することが一般的である。その場合、各層の触媒の充填長を測定し高度に調整することが求められる。しかしながら、従来はどのようにして充填長を測定し、これをデータ処理し、最終的に調整するのか報告されておらず、反応管一本ずつ充填長を測定し、調整する方法は非効率的であった。
 触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転時またはその準備行為時において、全ての反応管の情報を取得することは作業効率を低減させるおそれがある。本発明は、効率良く多管式反応器の運転またはその準備行為をサポートする方法を提供することを目的とする。
In a reactor with thousands to tens of thousands of reaction tubes, it is not realistic to obtain information on all of the reaction tubes, and information on one to several tubes is regarded as information on the entire reactor without special processing. It is normal to have However, in reality, the state of the reaction tubes may differ partially, and it is important to understand the information by processing data in consideration of this partial difference, not only during the operation of the multi-tube reactor, but also during preparations. It is also important during operation (for example, catalyst filling operations).
Catalytic reactions that produce unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes are generally exothermic reactions. Filling is common. In that case, it is required to measure and highly adjust the packing length of the catalyst in each layer. However, there is no report on how to measure the filling length, process the data, and finally adjust the filling length, and it is inefficient to measure and adjust the filling length of each reaction tube. Met.
Operation of a shell-and-tube reactor containing a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor At times, acquiring information for all reaction tubes may reduce work efficiency. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of efficiently supporting the operation of a shell and tube reactor or its preparatory actions.
 以下、上記課題を解決するための手段を列記する。
(1)
 触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法であって、
 コンピュータ装置に、
 前記多管式反応器に含まれる複数の反応管のうちの一部に関して反応管情報を取得する取得ステップと、
 前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、を実行させることを含む、方法。
(2)
 前記反応管情報は前記反応管に充填された触媒の充填長に関する充填長情報を含み、
 前記支援情報は前記充填長が特定の閾値範囲内にない前記反応管に関する閾値外反応管情報を含む、(1)に記載の方法。
(3)
 前記出力ステップが、前記触媒の充填長が正規分布に従うとみなして前記充填長情報を統計処理することにより、前記閾値外反応管情報を出力することを含む、(2)に記載の方法。
(4)
 前記触媒の充填長のヒストグラムを出力するヒストグラム出力ステップを、前記コンピュータ装置に実行させることをさらに含む、(2)または(3)に記載の方法。
(5)
 前記閾値外反応管情報と、前記多管式反応器の基準工数情報と、に基づいて、前記多管式反応器における前記触媒の補充に要する工数および前記触媒の抜き出しに要する工数のうちの少なくとも一方を出力する工数出力ステップを、前記コンピュータ装置に実行させることをさらに含む、(2)~(4)のいずれか一項に記載の方法。
(6)
 前記支援情報を前記多管式反応器のユーザーに提供するステップをさらに含む、(1)~(5)のいずれか一項に記載の方法。
(7)
 前記工数出力ステップにより出力された工数を前記多管式反応器のユーザーに提供するステップをさらに含む、(5)に記載の方法。
(8)
 前記反応管情報が、2以上の区画に分割された前記多管式反応器の各区画に含まれる複数の反応管のうちの一部に関する区画情報を含み、
 前記区画情報が、前記区画に含まれる前記反応管に充填された触媒の充填長に関する区画充填長情報を含み、
 前記出力ステップが、前記区画充填長情報を区画毎に統計処理することにより前記支援情報を出力することを含む、(1)~(7)のいずれか一項に記載の方法。
(9)
 区画毎に前記触媒の充填長のヒストグラムを出力するヒストグラム出力ステップを、前記コンピュータ装置に実行させることをさらに含む、(8)に記載の方法。
Means for solving the above problems are listed below.
(1)
Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A method of supporting,
computer equipment,
an acquiring step of acquiring reaction tube information about some of the plurality of reaction tubes included in the multi-tubular reactor;
and an output step of outputting support information that supports operation of the multi-tubular reactor or preparatory actions thereof by statistically processing the reaction tube information.
(2)
The reaction tube information includes filling length information regarding the filling length of the catalyst filled in the reaction tube,
The method of (1), wherein the aiding information includes out-of-threshold reactor tube information for the reactor tube whose fill length is not within a specified threshold range.
(3)
The method according to (2), wherein the output step includes outputting the out-of-threshold reaction tube information by statistically processing the filling length information assuming that the filling length of the catalyst follows a normal distribution.
(4)
The method according to (2) or (3), further comprising causing the computer device to execute a histogram output step of outputting a histogram of packing lengths of the catalyst.
(5)
Based on the non-threshold reaction tube information and the standard man-hour information of the multi-tubular reactor, at least the man-hours required for replenishing the catalyst in the multi-tubular reactor and the man-hours required for extracting the catalyst The method according to any one of (2) to (4), further comprising causing the computer device to execute a man-hour output step of outputting one.
(6)
The method of any one of (1) to (5), further comprising providing said assistance information to a user of said shell-and-tube reactor.
(7)
The method according to (5), further comprising providing the man-hour output by the man-hour output step to a user of the multi-tubular reactor.
(8)
The reaction tube information includes section information about a part of a plurality of reaction tubes included in each section of the multi-tubular reactor divided into two or more sections,
The section information includes section filling length information regarding the filling length of the catalyst packed in the reaction tube included in the section,
The method according to any one of (1) to (7), wherein the outputting step includes outputting the support information by statistically processing the partition filling length information for each partition.
(9)
The method according to (8), further comprising causing the computer device to execute a histogram output step of outputting a histogram of the packing length of the catalyst for each section.
 本発明によれば、効率良く多管式反応器の運転またはその準備行為をサポートする方法を提供できる。 According to the present invention, it is possible to provide a method for efficiently supporting the operation of a multi-tubular reactor or its preparatory action.
実施形態に係る多管式反応器を示す平面模式図であり、かつ当該多管式反応器を空間的に3区画に分割した例を示す図である。FIG. 2 is a schematic plan view showing a multi-tubular reactor according to an embodiment, and a diagram showing an example in which the multi-tubular reactor is spatially divided into three sections. 1つの反応管に充填された触媒の層を示す模式図である。FIG. 3 is a schematic diagram showing layers of catalyst packed in one reaction tube. 実施形態に係る方法のフローチャートを示す図である。Fig. 3 shows a flow chart of a method according to an embodiment; 反応管の出口から第2の触媒層までの空間長を示す表である。It is a table|surface which shows the space length from the outlet of a reaction tube to a 2nd catalyst layer. 第2の触媒層の充填長を示す表である。4 is a table showing the packing length of the second catalyst layer; 区画Aの反応管における第2の触媒層の充填長のヒストグラムを示す図である。FIG. 11 shows a histogram of the packing length of the second catalyst layer in the reaction tube of section A; 区画Bの反応管における第2の触媒層の充填長のヒストグラムを示す図である。FIG. 11 shows a histogram of the packing length of the second catalyst layer in the reaction tube of section B; 区画Cの反応管における第2の触媒層の充填長のヒストグラムを示す図である。FIG. 10 is a histogram of the packing length of the second catalyst layer in the reaction tube of section C; 第2の触媒層の充填長の設計値、許容幅、許容下限、許容上限、総反応管本数、許容下限未満の反応管の本数および許容上限を超える反応管の本数を示す表である。4 is a table showing the designed value of the filling length of the second catalyst layer, the allowable width, the lower allowable limit, the allowable upper limit, the total number of reaction tubes, the number of reaction tubes below the allowable lower limit, and the number of reaction tubes exceeding the allowable upper limit. 第1の触媒層の修正作業情報と、第2の触媒層の修正作業情報と、を示す表である。4 is a table showing repair work information for a first catalyst layer and repair work information for a second catalyst layer;
 以下、図面を参照しつつ本発明の実施形態について説明する。本実施形態に係る方法は、触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法である。当該方法は、コンピュータ装置に、多管式反応器に含まれる複数の反応管のうちの一部に関して反応管情報を取得する取得ステップと、反応管情報を統計処理することにより多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、を実行させることを含む。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The method according to the present embodiment is a multitubular reaction comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction. It is a method to support the operation of the vessel or its preparatory act. The method includes an acquisition step of acquiring reaction tube information about a part of a plurality of reaction tubes included in the multi-tubular reactor, and statistically processing the reaction tube information to obtain information on the multi-tubular reactor. and an output step of outputting assistance information for assisting driving or preparatory actions thereof.
 本実施形態において用いられるコンピュータ装置は、CPU(Central Processing Unit)などのマイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなどのメモリ、およびバスを備えるコンピュータ装置である。コンピュータ装置は、コンピュータ装置が備えるメモリやコンピュータ装置が読み取り可能な記録媒体に記録されたプログラムによって、本実施形態に係る方法の少なくとも一部を実行してもよい。本実施形態では、後述する方法の少なくとも一部をコンピュータ装置に実行させるためのプログラム、および当該プログラムを記録した記録媒体も提示される。なお、本実施形態において用いることのできるコンピュータ装置はこの態様に限定されない。例えば、コンピュータ資源をネットワークを介して接続したクラウドコンピューティングシステムなどを、本開示の方法に用いるコンピュータ装置としてもよい。 The computer device used in this embodiment is a computer device comprising a microprocessor such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a memory such as a flash memory, and a bus. The computer device may execute at least part of the method according to the present embodiment by means of a program recorded in a memory included in the computer device or in a recording medium readable by the computer device. The present embodiment also presents a program for causing a computer device to execute at least part of a method described later, and a recording medium recording the program. Note that the computer device that can be used in this embodiment is not limited to this aspect. For example, a cloud computing system in which computer resources are connected via a network may be used as the computer device used in the method of the present disclosure.
 図1は、本実施形態に係る方法の対象となる多管式反応器10を示す平面模式図である。図1に示される多管式反応器10は筒状である。図1では、多管式反応器10を平面視した時の中心を基準として120°毎に分けられた3つの区画A,B,Cが示されている。区画Aに含まれる複数の反応管20の一部が一点鎖線で囲まれて示されている。区画Aにおける一点鎖線の外側、並びに区画B及びCにも複数の反応管20が備えられているが、それらの反応管20については図示を省略する。多管式反応器10は、充填する触媒、供給する原料などに応じて、目的とする不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種を製造する。製造される不飽和アルデヒドおよび不飽和カルボン酸としては、アクロレインおよびアクリル酸、メタクロレインおよびメタクリル酸、などが例示され、共役ジエンとしては、1,3-ブタジエン、イソプレン、などが例示される。多管式反応器10が含む複数の反応管20のそれぞれに触媒が充填される。 FIG. 1 is a schematic plan view showing a multi-tubular reactor 10 to be subjected to the method according to this embodiment. The shell-and-tube reactor 10 shown in FIG. 1 is cylindrical. FIG. 1 shows three compartments A, B, and C that are divided every 120° with respect to the center of the multi-tubular reactor 10 in plan view. A portion of the plurality of reaction tubes 20 included in section A is shown surrounded by a dashed line. A plurality of reaction tubes 20 are also provided outside the dashed line in section A and in sections B and C, but illustration of these reaction tubes 20 is omitted. The multitubular reactor 10 produces at least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene depending on the catalyst to be filled, the raw material to be supplied, and the like. Examples of unsaturated aldehydes and unsaturated carboxylic acids to be produced include acrolein and acrylic acid, methacrolein and methacrylic acid, and examples of conjugated dienes include 1,3-butadiene and isoprene. Each of the plurality of reaction tubes 20 included in the multitubular reactor 10 is filled with a catalyst.
 触媒は、一般に多管式反応器に互いに異なる触媒種が複数の層をなすようにして反応管20に充填される。図2は1つの反応管20に充填された触媒の層を示す模式図である。図2に示す例では、サポートリング30の上に充填された4層の触媒層22,24,26,28が示されている。複数の層はそれぞれ互いに活性が異なり、例えば原料が供給される入口側、充填される順番で第4の触媒層28は活性が低く、出口側(サポートリング30側)に向かうにつれて活性が大きくなるように(入口側から数えて第4の触媒層28の活性<第3の触媒層26の活性<第2の触媒層24の活性<第1の触媒層22の活性、となるように)充填されてもよい。複数の層をなすように触媒が充填された反応管20に原料を供給し、温度等の運転条件を制御することで目的とする不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種が製造される。 The catalyst is generally packed in the reaction tube 20 in a multi-tube reactor so that different catalyst species form a plurality of layers. FIG. 2 is a schematic diagram showing a catalyst layer packed in one reaction tube 20. As shown in FIG. In the example shown in FIG. 2, four layers of catalyst layers 22, 24, 26, 28 packed on the support ring 30 are shown. The activity of the plurality of layers is different from each other. For example, the activity of the fourth catalyst layer 28 is low in the order of filling on the inlet side where the raw material is supplied, and the activity increases toward the outlet side (support ring 30 side). (Counting from the inlet side, activity of the fourth catalyst layer 28<activity of the third catalyst layer 26<activity of the second catalyst layer 24<activity of the first catalyst layer 22) may be At least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene is produced by supplying raw materials to a reaction tube 20 filled with a catalyst so as to form a plurality of layers and controlling operating conditions such as temperature. manufactured.
 本実施形態における多管式反応器10の運転とは、触媒が充填された反応管20に原料を供給して不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種を製造することを表す。当該運転は、触媒の充填後に所定の運転条件での連続運転を開始するために、多管式反応器10に原料を投入して温度を上げていくスタートアップ作業や、原料ガスを含酸素ガスおよび/または含水蒸気ガスに切り替えた触媒の空気処理作業を行うことも含む。本実施形態における多管式反応器10の運転の準備行為とは、反応管20に触媒を充填する作業等の、多管式反応器10の運転を開始するための作業、反応管20の清掃などのメンテナンス作業、および多管式反応器10の一部または多管式反応器10とは別の反応器(ただし、反応管径や反応管の長さ等は多管式反応器10と同等)を用いて試験的に多管式反応器10における充填長や充填時間などを測定する試し充填作業、を含む。当該準備行為は触媒反応開始前の行為を指し、多管式反応器10の運転は触媒反応が開始された後で不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種を製造することを指す。 The operation of the multitubular reactor 10 in the present embodiment means supplying raw materials to the reaction tube 20 filled with a catalyst to produce at least one of unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene. . In order to start continuous operation under predetermined operating conditions after filling the catalyst, the operation includes a start-up operation of charging the raw material into the multi-tubular reactor 10 to raise the temperature, and a start-up operation in which the raw material gas is mixed with an oxygen-containing gas and and/or performing a catalyst air treatment operation switched to a steam-containing gas. The preparatory action for operation of the multi-tubular reactor 10 in the present embodiment includes work for starting the operation of the multi-tubular reactor 10, such as filling the reaction tube 20 with a catalyst, cleaning the reaction tube 20, etc. and maintenance work such as a part of the multi-tubular reactor 10 or a reactor other than the multi-tubular reactor 10 (however, the reaction tube diameter, the length of the reaction tube, etc. are equivalent to the multi-tubular reactor 10 ) to measure the filling length, filling time, etc. of the multitubular reactor 10 on a trial basis. The preparatory action refers to the action before the start of the catalytic reaction, and the operation of the multitubular reactor 10 is to produce at least one of unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene after the catalytic reaction is started. Point.
 図3は、本実施形態に係る方法のフローチャートを示す図である。本実施形態に係る方法は、コンピュータ装置に、多管式反応器10に含まれる複数の反応管20のうちの一部に関して反応管情報を取得する取得ステップS1と、反応管情報を統計処理することにより多管式反応器10の運転またはその準備行為を支援する支援情報を出力する出力ステップS2と、を実行させることを含む。本実施形態に係る方法は、支援情報を多管式反応器10のユーザーに提供する提供ステップS3を任意にさらに含む。提供ステップS3は、コンピュータ装置により実行されてもよいし、コンピュータ装置により出力された支援情報を電話やFAXで多管式反応器10のユーザーに提供することにより実行されてもよい。また、ネットワークを介してユーザーの端末に支援情報を提供してもよい。ネットワークを介した支援情報の提供は、支援情報を出力するコンピュータ装置によって行われてもよいし、当該コンピュータ装置とは別の装置によって行われてもよい。 FIG. 3 is a diagram showing a flow chart of the method according to this embodiment. In the method according to the present embodiment, a computer device is provided with an acquisition step S1 of acquiring reaction tube information about some of the plurality of reaction tubes 20 included in the multi-tubular reactor 10, and statistically processing the reaction tube information. and an output step S2 for outputting support information for supporting the operation of the multi-tubular reactor 10 or its preparatory action. The method according to this embodiment optionally further comprises a providing step S3 of providing assistance information to the user of the shell-and-tube reactor 10 . The providing step S3 may be performed by a computer device, or may be performed by providing the support information output by the computer device to the user of the multi-tubular reactor 10 by telephone or FAX. Also, the support information may be provided to the user's terminal via the network. The provision of the support information via the network may be performed by a computer device that outputs the support information, or may be performed by a device other than the computer device.
 取得ステップS1において、コンピュータ装置は多管式反応器10のユーザーの端末からの入力またはコンピュータ装置の管理者からキーボードなどの入力装置などによる入力により反応管情報を取得してもよく、多管式反応器10に設けられた各種センサーから反応管情報を取得してもよい。なお、多管式反応器10のユーザーと、コンピュータ装置の管理者は同一でありうる。取得ステップS1において取得される反応管情報は触媒の充填長に関する充填長情報を含んでもよい。また、取得ステップS1において取得される反応管情報は反応管20の一部に設けられた温度センサーの温度データに関する温度情報を含んでもよい。以下、図4~図8を参照して、本実施形態に係る方法の具体的態様を説明する。 In the acquisition step S1, the computer device may acquire the reaction tube information by input from the terminal of the user of the multi-tube reactor 10 or input from the administrator of the computer device using an input device such as a keyboard. Reaction tube information may be acquired from various sensors provided in the reactor 10 . In addition, the user of the multi-tubular reactor 10 and the administrator of the computer may be the same. The reaction tube information acquired in the acquisition step S1 may include filling length information regarding the filling length of the catalyst. Further, the reaction tube information acquired in the acquisition step S1 may include temperature information related to temperature data of a temperature sensor provided in a part of the reaction tube 20 . Specific aspects of the method according to the present embodiment will be described below with reference to FIGS. 4 to 8. FIG.
 具体的態様における方法は、数万本の反応管20を含む多管式反応器10を図1に示すように3つの区画A,B,Cに分けて、それぞれの区画に含まれる反応管20の一部について触媒の充填長に関する区画充填長情報を含む区画情報を取得する取得ステップS1をコンピュータ装置に実行させることを含む。なお、区画数は3に限定されず、2以上の任意の区画としてもよい。あるいは、本具体的態様における方法とは異なり、本発明の方法においては、多管式反応器10を区画分けせずともよい。
 図4は、区画A,B,Cの反応管20に所定量の触媒を充填して第2の触媒層24を設けた後の反応管20の入口から第2の触媒層24までの空間長L2を示す表である。当該例では各区画のサンプル数は11である。
 図5は、第1の触媒層22が設けられた後の空間長L1から図4に示される空間長L2を差し引いて算出した第2の触媒層24の充填長L24を示す表である。図5から、所定量の触媒を充填しても、事前に所定量に測定しておいた触媒充填量のばらつきや各反応管20の内径や状態の違い及びばらつきによって充填長に差があることが分かる。
 本具体的態様では、ある種類の触媒の層の厚みを充填長として取り扱う。例えば、本具体的態様の方法の取得ステップS1では、第2の触媒層24の充填長L24として図5に示した値を取得してもよい。あるいは、取得ステップS1として、図4に示される入口から第2の触媒層24までの空間長L2と、第1の触媒層22が設けられた後の空間長L1を取得し、空間長L2,L1に基づき第2の触媒層24の充填長L24を算出するように構成してもよい。なお、当該例においてコンピュータ装置が空間長を換算して充填長を得る処理も、取得ステップS1に含まれる。
In a specific embodiment, a multitubular reactor 10 containing tens of thousands of reaction tubes 20 is divided into three compartments A, B, and C as shown in FIG. and causing the computer to execute an acquisition step S1 of acquiring section information including section packing length information about the packing length of the catalyst for a part of the. Note that the number of partitions is not limited to three, and any number of partitions of two or more may be used. Alternatively, unlike the method in this embodiment, the multi-tubular reactor 10 may not be compartmentalized in the method of the present invention.
FIG. 4 shows the space length from the inlet of the reaction tube 20 to the second catalyst layer 24 after the reaction tube 20 in the sections A, B, and C is filled with a predetermined amount of catalyst to form the second catalyst layer 24. It is a table showing L2. In the example, the number of samples in each partition is 11.
FIG. 5 is a table showing the filling length L24 of the second catalyst layer 24 calculated by subtracting the space length L2 shown in FIG. 4 from the space length L1 after the first catalyst layer 22 is provided. From FIG. 5, even if a predetermined amount of catalyst is filled, there is a difference in the filling length due to variations in the catalyst filling amount measured in advance to a predetermined amount and differences and variations in the inner diameter and state of each reaction tube 20. I understand.
In this embodiment, the thickness of a layer of a certain type of catalyst is treated as the packing length. For example, the value shown in FIG. 5 may be obtained as the filling length L 24 of the second catalyst layer 24 in the obtaining step S1 of the method of this specific embodiment. Alternatively, as an obtaining step S1, the spatial length L2 from the inlet to the second catalyst layer 24 shown in FIG. 4 and the spatial length L1 after the first catalyst layer 22 is provided are obtained, The filling length L24 of the second catalyst layer 24 may be calculated based on L1. In this example, the acquisition step S1 also includes a process in which the computer device converts the space length to obtain the filling length.
 具体的態様における方法は、図5に示される第2の触媒層24の充填長L24に関するデータを統計処理することにより、多管式反応器10の運転の準備行為を支援する支援情報を出力する出力ステップS2をコンピュータ装置に実行させることを含む。当該支援情報は、充填長が特定の閾値範囲内にない反応管20に関する閾値外反応管情報を含む。出力ステップS2は、触媒の充填長が正規分布であるとみなして充填長情報を統計処理することにより、閾値外反応管情報を出力することを任意に含む。当該方法は、触媒の充填長のヒストグラムを出力するヒストグラム出力ステップを、コンピュータ装置に実行させることを任意にさらに含み、ヒストグラムは区画毎に任意に出力される。出力は、例えばコンピュータ装置に接続されたディスプレイ等の出力装置に情報を表示することにより行われうる。出力されたヒストグラムは、上述の提供ステップS3と同様の態様によりユーザーに提供されうる。 In a specific embodiment, the method statistically processes the data on the packing length L 24 of the second catalyst layer 24 shown in FIG. and causing the computer device to execute an output step S2 for performing the processing. The assistance information includes out-of-threshold reactor tube information for reactor tubes 20 whose fill length is not within a specified threshold range. The output step S2 optionally includes outputting out-of-threshold reactor tube information by statistically processing the fill length information assuming that the catalyst fill length is normally distributed. The method optionally further comprises causing the computing device to perform a histogram output step of outputting a histogram of catalyst packing lengths, the histogram optionally being output for each section. The output may be by displaying the information on an output device such as a display connected to the computing device. The output histogram can be provided to the user in a manner similar to the providing step S3 described above.
 図6A、図6Bおよび図6Cは、それぞれ区画A、区画Bおよび区画Cの反応管20における第2の触媒層24の充填長L24のヒストグラムを示す図である。当該方法は、図6A~図6Cに示される第2の触媒層24の充填長L24が正規分布に従うとみなして、閾値外反応管情報を出力する。図7は、第2の触媒層24の充填長の設計値、許容幅、許容下限、許容上限、総反応管本数、充填長L24が許容下限未満の反応管20の本数および許容上限を超える反応管20の本数を示す表である。なお、設計値から許容幅を引いた値が許容下限であり、設計値に許容幅を加えた値が許容上限である。運転条件に応じた第2の触媒層24の充填長の設計値と、その許容幅により許容下限から許容上限までの閾値範囲が設定される。区画A、区画Bおよび区画Cの反応管20における充填長(区画充填長情報)が正規分布に従うとみなして、許容下限から許容上限までの閾値範囲に含まれない反応管20の本数を区画毎に算出する。すなわち、各区画における反応管20の一部の充填長の分布が、各区画におけるすべての反応管20の充填長の分布と一致すると仮定し、各区画における閾値範囲に含まれない反応管20の本数を見積もる。続いて各区画で算出された閾値範囲に含まれない反応管20の本数を足し合わせて、許容下限未満の反応管20の本数および許容上限を超える反応管20の本数を出力する。許容下限未満の反応管20の本数および許容上限を超える反応管20の本数が閾値外反応管情報に相当する。また、上述の各区画毎に充填長の分布を算出する方法のほか、区画を分けず反応器10全体を一つの区画とみなして充填長の分布を算出してもよい。この場合、図1を例にすると区画A、区画Bおよび区画Cの反応管20におけるすべての充填長(区画充填長情報)が正規分布に従うとみなして、許容下限から許容上限までの閾値範囲に含まれない反応器10全体の反応管20の本数を算出する。なお、反応器10全体を一つの区画とみなして充填長の分布を算出する場合であっても、充填長情報は全体を複数の区画に分けて区画毎に取得しておくことが好ましい。たとえば反応管径が設計値と異なる区画があることや、充填作業者の作業法に違いがある等の理由により、特定の区画の充填長が他の区画と比べ極端に長くまたは短くなっている可能性がある。区画毎の充填長情報を取得することにより、他の区画と比べ充填長が極端に長いまたは短い区画の有無を確認できる。 6A, 6B and 6C are histograms of the packing length L 24 of the second catalyst layer 24 in the reaction tubes 20 of compartments A, B and C, respectively. The method assumes that the packing length L 24 of the second catalyst layer 24 shown in FIGS. 6A-6C follows a normal distribution and outputs out-of-threshold reactor tube information. FIG. 7 shows the design value of the filling length of the second catalyst layer 24, the allowable width, the allowable lower limit, the allowable upper limit, the total number of reaction tubes, the number of reaction tubes 20 whose filling length L 24 is less than the allowable lower limit, and the allowable upper limit. 4 is a table showing the number of reaction tubes 20; The allowable lower limit is the value obtained by subtracting the allowable range from the design value, and the allowable upper limit is the value obtained by adding the allowable range to the design value. A threshold range from the lower allowable limit to the upper allowable limit is set according to the design value of the filling length of the second catalyst layer 24 according to the operating conditions and the allowable width thereof. Assuming that the filling lengths (section filling length information) of the reaction tubes 20 in Section A, Section B, and Section C follow a normal distribution, the number of reaction tubes 20 not included in the threshold range from the lower allowable limit to the upper allowable limit is calculated for each section. Calculate to That is, assuming that the distribution of the filling length of some of the reaction tubes 20 in each section matches the distribution of the filling length of all the reaction tubes 20 in each section, the reaction tubes 20 not included in the threshold range in each section Estimate the number. Subsequently, the number of reaction tubes 20 not included in the threshold range calculated for each section is summed up, and the number of reaction tubes 20 below the allowable lower limit and the number of reaction tubes 20 exceeding the allowable upper limit are output. The number of reaction tubes 20 below the allowable lower limit and the number of reaction tubes 20 exceeding the allowable upper limit correspond to non-threshold reaction tube information. In addition to the method of calculating the distribution of the filling length for each section as described above, the distribution of the filling length may be calculated by regarding the entire reactor 10 as one section without dividing the sections. In this case, taking FIG. 1 as an example, it is assumed that all filling lengths (section filling length information) in the reaction tube 20 of section A, section B, and section C follow a normal distribution, and the threshold range from the allowable lower limit to the allowable upper limit is The number of reaction tubes 20 in the entire reactor 10 not included is calculated. Note that even when the distribution of the filling length is calculated by regarding the entire reactor 10 as one section, it is preferable to divide the whole into a plurality of sections and acquire the filling length information for each section. For example, the filling length of a specific section is extremely long or short compared to other sections due to the fact that there are sections where the reaction tube diameter differs from the design value, or the work method of the filling operator is different. there is a possibility. By obtaining filling length information for each section, it is possible to check whether there is a section whose filling length is extremely long or short compared to other sections.
 当該方法は、許容下限未満の反応管20の本数および許容上限を超える反応管20の本数(閾値外反応管情報)と、多管式反応器10の基準工数情報と、に基づいて、多管式反応器10における触媒の補充に要する工数および触媒の抜き出しに要する工数のうちの少なくとも一方を出力する工数出力ステップを、コンピュータ装置に実行させることを任意にさらに含む。出力は、例えばコンピュータ装置に接続されたディスプレイ等の出力装置に工数を表示することにより行われうる。なお、工数は特定の作業工程に必要な時間を指し、人員数や設備数により増減しうる値である。また、当該方法は工数出力ステップにより出力された工数を多管式反応器10のユーザーに提供するステップを任意にさらに含む。工数を提供するステップは上述の提供ステップS3と同様の態様を取りうる。 The method is based on the number of reaction tubes 20 below the permissible lower limit and the number of reaction tubes 20 exceeding the permissible upper limit (non-threshold reaction tube information) and the standard man-hour information of the multi-tubular reactor 10. Optionally further comprising causing the computer device to perform a man-hour output step of outputting at least one of the man-hours required to replenish the catalyst in the reactor 10 and the man-hours required to withdraw the catalyst. The output can be performed by displaying the man-hours on an output device such as a display connected to the computer device. The number of man-hours indicates the time required for a specific work process, and is a value that can be increased or decreased depending on the number of personnel and the number of facilities. In addition, the method optionally further comprises providing the man-hour output by the man-hour output step to a user of the shell-and-tube reactor 10 . The step of providing man-hours may take the same aspect as the providing step S3 described above.
 前述したように、充填長が特定の閾値範囲内にない反応管20が存在する場合、このような反応管20が閾値範囲内となるように、触媒を補充するあるいは触媒を抜き出す工程が必要となる。このような工程に要する工数(作業時間)を、工数出力ステップとして出力する。
 図8を用いて工数出力ステップとして出力する工数を説明する。図8は、第1の触媒層22の修正作業情報(上側)と、第2の触媒層24の修正作業情報(下側)と、を示す表である。図8の上側に示す第1の触媒層22の修正作業情報は、多管式反応器10の反応管20において第1の触媒層22を設けるために所定量の触媒を充填した際の、充填長が許容下限未満であった反応管20の本数と、充填長が許容上限を超えていた反応管20の本数を含む。また第1の触媒層22の修正作業情報は、触媒の補充または抜き出しの手直しをした反応管20の合計本数と、手直し作業の人員数と、手直し作業の工数と、反応管20の手直し速度と、を含む。反応管20の手直し速度は、手直しをした反応管20の合計本数、手直し作業の人員数および手直し作業の工数に基づいて算出される。具体的には、手直し速度は、以下の式により計算される。
(手直し速度)=(手直しをした反応管の合計本数)÷{(人員数)×(手直し作業の工数)}
 この例では、反応管20の手直し速度が多管式反応器10の基準工数情報に相当する。図8では、触媒の抜き出し作業の手直し速度と、触媒の補充作業の手直し速度は同じと仮定しているが、一般に前者の方が手直しに時間を要するため、触媒の抜き出し作業の手直し速度と触媒の補充作業の手直し速度とを別々に計算し、これ以降の計算で使用することもある。
As described above, when there are reaction tubes 20 whose filling length is not within a specific threshold range, a step of replenishing or removing catalyst is required so that such reaction tubes 20 are within the threshold range. Become. The number of man-hours (work time) required for such a process is output as a man-hour output step.
The man-hour output as the man-hour output step will be described with reference to FIG. FIG. 8 is a table showing correction work information for the first catalyst layer 22 (upper side) and correction work information for the second catalyst layer 24 (lower side). The repair work information for the first catalyst layer 22 shown in the upper part of FIG. It includes the number of reaction tubes 20 whose length was less than the allowable lower limit and the number of reaction tubes 20 whose filling length exceeded the allowable upper limit. The repair work information for the first catalyst layer 22 includes the total number of reaction tubes 20 that have been repaired by replenishing or removing the catalyst, the number of repair workers, the man-hours for the repair work, and the repair speed of the reaction tubes 20. ,including. The repair speed of the reaction tubes 20 is calculated based on the total number of repaired reaction tubes 20, the number of repair workers, and the man-hours for the repair work. Specifically, the rework speed is calculated by the following formula.
(rework speed) = (total number of reworked reaction tubes) ÷ {(number of personnel) x (man-hours for rework work)}
In this example, the repair speed of the reaction tube 20 corresponds to the standard man-hour information of the multi-tubular reactor 10 . In FIG. 8, it is assumed that the rework speed of the catalyst removal work and the rework speed of the catalyst replenishment work are the same. and the rework speed of replenishment work may be calculated separately and used in subsequent calculations.
 図8の下側に示す第2の触媒層24の修正作業情報は、触媒の補充または抜き出しの手直しをする(修正する)反応管20の合計本数と、手直し作業の人員数と、手直し作業の工数と、を含む。修正する反応管20の合計本数は、第2の触媒層24において充填長L24が許容下限未満であった反応管20の本数および第2の触媒層24において充填長L24が許容上限を超えていた反応管20の本数の合計であり(図7)、閾値外反応管情報に相当する。手直し作業の工数は、上記閾値外反応管情報と、手直し作業の人員数と、上述の反応管20の手直し速度(基準工数情報)と、に基づいて算出される。具体的には、手直し作業の工数は、以下の式により計算される。
(手直し作業の工数)=(修正する反応管の合計本数)÷{(人員数)×(手直し速度)}
The repair work information for the second catalyst layer 24 shown in the lower part of FIG. man-hours, and The total number of reaction tubes 20 to be corrected is the number of reaction tubes 20 whose filling length L 24 in the second catalyst layer 24 was less than the allowable lower limit and the number of reaction tubes 20 whose filling length L 24 exceeded the allowable upper limit in the second catalyst layer 24. It is the total number of reaction tubes 20 that have been in use (FIG. 7), and corresponds to out-of-threshold reaction tube information. The number of man-hours for the repair work is calculated based on the non-threshold reaction tube information, the number of personnel for the repair work, and the above-mentioned repair speed of the reaction tube 20 (reference man-hour information). Specifically, the number of man-hours for the repair work is calculated by the following formula.
(man-hours for repair work) = (total number of reaction tubes to be repaired) ÷ {(number of personnel) × (repair speed)}
 上記の方法は、多管式反応器10に含まれる複数の反応管20のうちの一部に関して反応管情報を取得し、当該反応管情報を統計処理することにより多管式反応器10の運転またはその準備行為を支援する支援情報を出力することで、全ての反応管20の反応管情報を取得する方法と比較して少ない工数で支援情報を出力することができる。また、1~数本に関する反応管20の情報を、統計処理のような加工をすることなく多管式反応器10全体の情報とみなす方法と比較すると、統計処理によって触媒の補充や抜き出しが必要な反応管20の本数や補充に必要な触媒量を高い精度で見積もることができ、有益な支援情報を出力することができる。そして、当該支援情報を取得したユーザーは、多管式反応器10の運転やその準備行為を効率良く進めることができる。 The above method acquires reaction tube information about some of the plurality of reaction tubes 20 included in the multi-tubular reactor 10, and statistically processes the reaction tube information to operate the multi-tubular reactor 10. Alternatively, by outputting the support information for supporting the preparatory action, the support information can be output with less man-hours than the method of acquiring the reaction tube information of all the reaction tubes 20 . In addition, when compared with the method of regarding the information of one to several reaction tubes 20 as the information of the entire multi-tubular reactor 10 without processing such as statistical processing, replenishment and extraction of the catalyst are required by statistical processing. It is possible to estimate with high accuracy the number of necessary reaction tubes 20 and the amount of catalyst required for replenishment, and to output useful support information. Then, the user who has acquired the support information can efficiently proceed with the operation of the multi-tubular reactor 10 and the preparatory actions therefor.
 また上記の方法において、反応管20に充填された触媒の充填長に関する充填長情報を含む反応管情報を統計処理することにより多管式反応器10における充填長が特定の閾値範囲内にない反応管20に関する閾値外反応管情報を含む支援情報を出力することで、全ての反応管20の充填長情報を取得する方法と比較して少ない工数で多管式反応器10における支援情報を出力することができる。そして、支援情報に含まれる閾値外反応管情報から、反応管20への触媒の補充に必要な触媒量や、多管式反応器10における触媒の補充および抜き出しに必要な工数を見積もることができる。なお必要な触媒量は、充填長に関する情報に対し、触媒の嵩比重を用いることで算出できる。また、運転を開始する時期において制約がある場合には、多管式反応器10における触媒の補充および抜き出しに必要な工数に基づいて、充填長についての閾値を見直して工数の削減を図ることができる。この一例を以下に示す。 Further, in the above method, by statistically processing the reaction tube information including the filling length information regarding the filling length of the catalyst packed in the reaction tube 20, reactions whose filling length in the multi-tubular reactor 10 is not within a specific threshold range are detected. By outputting the support information including the non-threshold reaction tube information regarding the tubes 20, the support information in the multi-tube reactor 10 can be output with less man-hours than the method of acquiring the filling length information of all the reaction tubes 20. be able to. Then, from the out-of-threshold reaction tube information included in the support information, it is possible to estimate the amount of catalyst required to replenish the reaction tube 20 with the catalyst and the man-hours required to replenish and withdraw the catalyst from the multi-tubular reactor 10. . The necessary catalyst amount can be calculated by using the bulk specific gravity of the catalyst with respect to the information regarding the filling length. In addition, if there are restrictions on the timing of starting operation, it is possible to reduce the man-hours by reviewing the threshold for the filling length based on the man-hours required for replenishing and removing the catalyst from the multi-tubular reactor 10. can. An example of this is shown below.
 まず、あらかじめ決めておいた充填長の目標値をT、その片側許容誤差をSとする。すなわち、許容できる充填長の範囲はT-S以上T+S以下である。そして、反応管20のうちの一部に関して取得した充填長情報のうち、測定した充填長の平均値をA、その標準偏差をBとする。さらに、この充填長情報をもとに後述の通り新たに決定される、充填長の手直しの基準としての目標値をTn、その片側許容誤差をSnとする。すなわち、手直し基準として新たに設定される充填長の範囲はTn-Sn以上Tn+Sn以下である。次に、反応管20のうちの一部に関して取得した充填長情報の分布形状は、以下に示す4つの場合およびそれらの組み合わせになりうる。
  (ケース1)測定した充填長の平均値AがTと同等、かつ標準偏差BがSと同等以下の場合;
  (ケース2)測定した充填長の平均値AがTから大きく外れ、かつ標準偏差BがSと同等の場合;
  (ケース3)測定した充填長の平均値AがTと同等、かつ標準偏差BがSより大きい場合;
  (ケース4)測定した充填長の平均値AがTと同等、かつ標準偏差BがSと同等の場合だが、片側に歪度が大きい分布の場合。
First, let T be a predetermined target value of the filling length, and S be its one-sided allowable error. That is, the allowable fill length range is from TS to T+S. Let A be the average value of the measured filling lengths of the filling length information obtained for a part of the reaction tubes 20, and B be its standard deviation. Further, based on this filling length information, a target value as a reference for rework of the filling length, which is newly determined as described below, is set to Tn, and its one-sided allowable error is set to Sn. That is, the range of the filling length newly set as the repair reference is Tn-Sn or more and Tn+Sn or less. Next, the distribution shape of the filling length information acquired for a part of the reaction tubes 20 can be the following four cases and their combinations.
(Case 1) When the average value A of the measured filling length is equal to T, and the standard deviation B is equal to or less than S;
(Case 2) When the average value A of the measured filling length deviates greatly from T and the standard deviation B is equivalent to S;
(Case 3) When the average value A of the measured filling length is equal to T and the standard deviation B is larger than S;
(Case 4) When the average value A of the measured filling length is equal to T and the standard deviation B is equal to S, but the distribution has a large skewness on one side.
 これらのケースに対し、解決策は以下に示す9つの方法およびそれらの組み合わせと直列処理となる。本願記載の方法は実質的に解決策1から解決策8であり、反応管20のうちの一部に関して取得した充填長情報を統計処理し、作業日数及び作業工数を前もって予測し、必要に応じ短縮できることが、多管式反応器の運転またはその準備行為を効率良くサポートする本願記載の方法、に含まれることになる。
  (解決策1)平均値Aおよび標準偏差Bの情報から、反応管の充填長は平均をA、分散をBとする正規分布になると推定して、充填長がT-S以上T+S以下の範囲外である反応管本数を算出し、作業者数や設備数から手直し工数(作業日数)を算出し、その手直し工数が全体のプラント準備工程において許容できるか否かを確認する方法(最も典型的な解決策で、ケース1において有効である。);
  (解決策2)平均値Aおよび標準偏差Bの情報から、反応管の充填長は平均をA、分散をBとする正規分布になると推定して、充填長がT-S以下の反応管本数を算出し、作業者数や設備数から手直し工数(作業日数)を算出し、手直し工数が全体のプラント準備工程において許容できるか否かを確認する方法(足りない触媒を補充する解決策で、次の解決策3より早期の充填の手直しが可能である。);
  (解決策3)平均値Aおよび標準偏差Bの情報から、反応管の充填長は平均をA、分散をBとする正規分布になると推定して、充填長がT+S以上の反応管本数を算出し、作業者数や設備数から手直し工数(作業日数)を算出し、手直し工数が全体のプラント準備工程において許容できるか否かを確認する方法(過剰な触媒を抜き取る解決策で、解決策2より作業日数が多くなるが、余剰触媒量が足りない場合にやむを得ず実施する方法である。);
  (解決策4)目標値Tn=平均値Aに設定して手直し基準とする方法(ケース2の場合に取りうる解決策であり、充填長が目標値Tよりも短くまたは長くなるが、プラントの反応成績に影響がないか検証したうえで、許容できる手直し工数(作業日数)が短い場合にやむを得ず実施する解決策である。);
  (解決策5)目標値Tnを平均値Aから目標値Tの間に設定して手直し基準とする方法(解決策1と解決策4の折衷策である。);
  (解決策6)片側許容誤差Snを大きく設定して手直し基準とする方法(ケース3やケース4において、プラントの反応成績に影響がないか検証したうえで、許容できる手直し工数(作業日数)が短い場合にやむを得ず実施する解決策である。);
  (解決策7)反応管20のうちの一部に関して取得した充填長情報が、他の区画または他の作業者による充填長情報と分布形状、平均値A、標準偏差Bに違いがないかを解析し、区画ごとの反応管径や作業者の作業方法の違いがあれば、改善案を検討する方法;
  (解決策8)目標値Tnおよび/または片側許容誤差Snを、平均値Aおよび/または標準偏差Bに設定する方法(ほぼ手直しをしない方法であり、手直し工数(作業日数)は短縮できるもののプラントの反応成績への影響が懸念される。);
  (解決策9)反応管20のうちの一部に関して取得した充填長情報を無視し、すべての反応管20の充填長がT-S以上T+S以下の範囲内に入るよう手直しする方法(本発明の方法を用いない方法である。多管式反応器10のすべての反応管の充填長を測定し、コンピュータ装置を用いずに過不足を確認し、すべての反応管で充填長が特定の閾値範囲内に入るよう手直しをする必要が生じる。非効率であり手直し工数(作業日数)および作業に必要な工数が莫大になり、その予測も困難となる。)。
For these cases, the solutions are the following nine methods and their combinations and serial processing. The method described in the present application is substantially Solution 1 to Solution 8, statistically processing the filling length information obtained for some of the reaction tubes 20, predicting the number of working days and man-hours in advance, and if necessary Ability to be shortened is to be included in the methods described herein that efficiently support the operation of a shell-and-tube reactor or its preparatory actions.
(Solution 1) From the information of the average value A and the standard deviation B, it is estimated that the packed length of the reaction tube has a normal distribution with the mean A and the variance B 2 , and the packed length is TS or more and T + S or less. A method of calculating the number of reaction tubes outside the range, calculating the man-hours for rework (working days) from the number of workers and the number of facilities, and confirming whether or not the man-hours for rework are permissible in the entire plant preparation process (most typical solution, valid in case 1);
(Solution 2) From the information of the average value A and the standard deviation B, it is assumed that the packed length of the reaction tube has a normal distribution with the mean A and the variance B 2 , and the packed length is TS or less. A method of calculating the number of units, calculating the number of man-hours for rework (working days) from the number of workers and the number of facilities, and confirming whether the man-hours for rework can be tolerated in the entire plant preparation process (a solution to replenish the missing catalyst) , it is possible to rework the filling earlier than the following solution 3);
(Solution 3) From the information of the average value A and the standard deviation B, it is estimated that the packed length of the reaction tube has a normal distribution with the mean A and the variance B 2 , and the number of reaction tubes with a packed length of T + S or more is calculated. Calculate the man-hours for rework (working days) from the number of workers and the number of facilities, and confirm whether the man-hours for rework are acceptable in the entire plant preparation process Although the work days are longer than 2, this method is unavoidably implemented when the amount of surplus catalyst is insufficient.);
(Solution 4) A method of setting the target value Tn = average value A as a reference for rework (this is a possible solution for case 2, and the filling length becomes shorter or longer than the target value T, but the plant After verifying that there is no effect on the reaction performance, this is a solution that is unavoidably implemented when the allowable number of man-hours for rework (working days) is short.);
(Solution 5) A method of setting the target value Tn between the average value A and the target value T as a repair reference (a compromise between Solution 1 and Solution 4);
(Solution 6) Method of setting a large one-sided allowable error Sn as a rework standard This is an unavoidable solution when the time is short.);
(Solution 7) Check whether the filling length information obtained for a part of the reaction tube 20 is different from the filling length information obtained by other sections or other workers in the distribution shape, average value A, and standard deviation B. A method of analyzing and considering improvement plans if there are differences in the reaction tube diameter for each section and the work method of workers;
(Solution 8) Method of setting target value Tn and/or one-sided allowable error Sn to average value A and/or standard deviation B There is concern about the effect on the reaction performance of
(Solution 9) A method of ignoring the filling length information acquired for some of the reaction tubes 20 and adjusting the filling length of all the reaction tubes 20 to be within the range of TS or more and T+S or less (this invention It is a method that does not use the method of.Measure the filling length of all the reaction tubes of the multi-tubular reactor 10, check the excess or deficiency without using a computer device, and check that the filling length is a specific threshold for all reaction tubes It is inefficient, and the man-hours for rework (working days) and the man-hours required for the work become enormous, and it becomes difficult to predict them.).
 このように、当該支援情報を取得したユーザーは、多管式反応器10の運転の準備行為をより効率良く進めることができる。多管式反応器10における触媒の補充および抜き出しに必要な工数を見積もる別の方法としては、多管式反応器10の一部または全部の反応管に充填された触媒の各層又は全層の充填時間を計測しておき、単純にこれらの平均を取り得られた参照充填時間に、対象とする触媒層の充填にあたる作業人員数をかけ、参照充填時間の充填にあたった作業人員数を割る方法が挙げられる。当該別の方法を採用して上記実施形態の方法を実施してもよい。なお、上述の充填長情報は広義には充填長だけでなく反応管上部の空筒部の測長結果である空間長、差圧、充填量や嵩比重などのデータを含むものとする。 In this way, the user who has acquired the support information can proceed with preparations for operation of the multi-tubular reactor 10 more efficiently. Another method for estimating the man-hours required for replenishing and extracting the catalyst in the multi-tubular reactor 10 is to fill each layer or all layers of the catalyst packed in part or all of the reaction tubes of the multi-tubular reactor 10. A method is to measure the time, multiply the reference filling time obtained by simply averaging these times by the number of workers involved in filling the target catalyst layer, and divide the number of workers involved in filling the reference filling time. mentioned. The other method may be adopted to implement the method of the above embodiment. In a broad sense, the filling length information includes not only the filling length but also data such as space length, differential pressure, filling amount, bulk specific gravity, etc., which are results of measuring the length of the upper hollow portion of the reaction tube.
 また上記の方法において、触媒の充填長が正規分布であるとみなして充填長情報を統計処理することにより閾値外反応管情報を出力することで、一部の反応管20の充填長情報から多管式反応器10における充填長が特定の閾値範囲内にない反応管20の情報を見積もることができる。例えば、充填長が特定の閾値範囲内にない反応管20の数量や各反応管20における充填長の過不足量から、反応管20への触媒の補充に必要な触媒量や、多管式反応器10における触媒の補充および抜き出しに必要な工数を見積もることができる。 Further, in the above method, the filling length information of the catalyst is assumed to be a normal distribution, and the filling length information is statistically processed to output the out-of-threshold reaction tube information. Information can be estimated for reactor tubes 20 whose fill length in the tubular reactor 10 is not within a certain threshold range. For example, based on the number of reaction tubes 20 whose filling length is not within a specific threshold range and the amount of excess or deficiency in the filling length of each reaction tube 20, the amount of catalyst required to replenish the catalyst to the reaction tubes 20 and the multi-tube reaction The man-hours required to replenish and withdraw catalyst from vessel 10 can be estimated.
 また上記の方法において、触媒の充填長に関するヒストグラムを出力するヒストグラム出力ステップにより、多管式反応器10の状態の傾向を可視化できる。これにより、当該ヒストグラムを取得したユーザーは、多管式反応器10の状態の傾向を認識して取るべき措置を早期に判断することができ、多管式反応器10の運転の準備行為をより効率良く進めることができる。 Also, in the above method, the trend of the state of the multi-tubular reactor 10 can be visualized by the histogram output step of outputting a histogram relating to the packing length of the catalyst. As a result, the user who has acquired the histogram can recognize the tendency of the state of the multi-tubular reactor 10 and quickly determine the measures to be taken, and the action of preparing for the operation of the multi-tubular reactor 10 can be performed more effectively. can proceed efficiently.
 また上記の方法において、多管式反応器10における触媒の補充に要する工数および触媒の抜き出しに要する工数のうちの少なくとも一方を出力する工数出力ステップにより、触媒の充填の手直しに要する工数を見積もることができる。そして、当該工数の見積もりを取得したユーザーは、当該工数に応じて作業員の人数や作業時間の配分を調整でき、多管式反応器10の運転の準備行為をより効率良く進めることができる。 In the above method, the man-hour output step of outputting at least one of the man-hour required for replenishing the catalyst and the man-hour required for extracting the catalyst from the multitubular reactor 10 is used to estimate the man-hour required for adjusting the catalyst filling. can be done. Then, the user who has obtained the estimated number of man-hours can adjust the number of workers and the distribution of work hours according to the man-hours, and can proceed with preparations for operation of the multi-tubular reactor 10 more efficiently.
 また上記の方法において、多管式反応器10の反応管20を2以上の区画に分割し、各区画に含まれる反応管20に充填された触媒の充填長に関する区画充填長情報を区画毎に統計処理して支援情報を出力することで、多管式反応器10の区画毎に、洗浄不足、反応管の内径、各作業者の作業のばらつき等に起因する区画毎の反応管20の状態の傾向を認識できる。これにより、区画毎に統計処理されて出力された支援情報を取得したユーザーは、各区画における取るべき措置を早期に認識することができ、多管式反応器10の運転の準備行為をより効率良く進めることができる。この区画の分割は、図1のように空間的に分割することも可能であるが、別の分割方法であってもよい。たとえば多管式反応器10の反応管20より空間的に任意の反応管20を選別し、そこに触媒を充填し(試し充填作業)、得られた充填長情報を統計処理して支援情報を出力することで、上記実施形態の方法を実施してもよい。 Further, in the above method, the reaction tube 20 of the multitubular reactor 10 is divided into two or more sections, and section filling length information regarding the packing length of the catalyst packed in the reaction tube 20 included in each section is obtained for each section. By statistically processing and outputting support information, for each section of the multi-tubular reactor 10, the state of the reaction tube 20 for each section caused by insufficient cleaning, inner diameter of the reaction tube, variation in work performed by each worker, etc. can recognize the tendency of As a result, the user who has obtained the support information that has been statistically processed and output for each section can quickly recognize the measures to be taken in each section, and the preparation for operation of the multi-tubular reactor 10 can be performed more efficiently. can proceed well. This partitioning can be spatially partitioned as shown in FIG. 1, but another partitioning method may be used. For example, an arbitrary reaction tube 20 is spatially selected from the reaction tubes 20 of the multitubular reactor 10, the catalyst is filled therein (trial filling work), and the obtained filling length information is statistically processed to obtain support information. You may implement the method of the said embodiment by outputting.
 また上記の方法において、区画毎に触媒の充填長に関するヒストグラムを出力するヒストグラム出力処理により、多管式反応器10の区画毎に、洗浄不足、反応管の内径、各作業者の作業のばらつき等に起因する区画毎の反応管20の状態の傾向を可視化できる。これにより、当該ヒストグラムを取得したユーザーは、各区画における必要な措置を早期に認識することができ、多管式反応器10の運転の準備行為をより効率良く進めることができる。本発明の方法を用いる場合と用いない場合では、充填に必要な作業時間において1.1倍から最大で5.0倍程度の違いがあり、本発明の方法は効果的である。 In addition, in the above method, the histogram output processing for outputting a histogram regarding the packing length of the catalyst for each section can be used to detect insufficient cleaning, the inner diameter of the reaction tube, variations in work performed by each worker, etc. for each section of the multi-tubular reactor 10. It is possible to visualize the trend of the state of the reaction tube 20 for each section due to . As a result, the user who acquired the histogram can quickly recognize the necessary measures in each section, and can proceed with preparations for operation of the multi-tubular reactor 10 more efficiently. When the method of the present invention is used and when it is not used, there is a difference of about 1.1 times to 5.0 times at maximum in the working time required for filling, and the method of the present invention is effective.
 以上、上述した実施形態を一例として本発明を説明してきたが、本発明はこれらに限定されるものではない。また、上述した各効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。たとえば上述した充填作業を、充填された触媒を反応管から抜き出す抜き出し作業と読み替えることや、充填された触媒を抜き出して新品の触媒と任意の割合で混合し、再度充填する手直し作業と読み替えることや、充填された反応管20の各々の差圧を測定する差圧測定作業と読み替えることが、可能である。 Although the present invention has been described above using the above-described embodiments as examples, the present invention is not limited to these. Moreover, each of the effects described above is merely a list of the most suitable effects produced by the present invention, and the effects of the present invention are not limited to those described in this embodiment. For example, the above-mentioned filling operation can be read as an extraction operation of extracting the packed catalyst from the reaction tube, or can be read as a repair operation of extracting the packed catalyst, mixing it with a new catalyst in an arbitrary ratio, and filling it again. , a differential pressure measurement operation of measuring the differential pressure of each of the filled reaction tubes 20 .
 上述の実施形態において触媒の充填長に関する態様を説明したが、これ以外にも反応管の一部に設けられた温度センサーが出力する温度データ(温度情報)を含む反応管情報を取得するステップ、温度データを統計処理して、最大値、最小値、平均値等から、多管式反応器における温度分布データを出力するステップをコンピュータ装置に実行させてもよい。出力は、例えばコンピュータ装置に接続されたディスプレイ等の出力装置に温度分布データを表示することにより行われうる。また、温度分布データに基づいて温度分布をグラフとして示してもよい。そして、温度分布データに基づいて触媒の使用制限温度等に対して安全運転維持のためのマージンを出力するステップをコンピュータ装置に実行させてもよい。例えば温度分布を示すグラフと、安全運転維持のためのマージンと、に基づいて、多管式反応器のユーザーに対して、安定な運転を実施する上での、反応浴温度調節、ロード調節、ガスモル比調節、出口圧調節など、管理操作のアドバイスが可能となり精度の高い安定運転を実現できる。 In the above-described embodiment, an aspect related to the filling length of the catalyst has been described, but in addition to this, a step of acquiring reaction tube information including temperature data (temperature information) output by a temperature sensor provided in a part of the reaction tube; The computer device may be caused to perform a step of statistically processing the temperature data and outputting temperature distribution data in the multi-tubular reactor from maximum, minimum, average, etc. values. The output may be performed by displaying the temperature distribution data on an output device such as a display connected to the computer device. Also, the temperature distribution may be shown as a graph based on the temperature distribution data. Then, the computer device may execute a step of outputting a margin for maintaining safe operation with respect to the use limit temperature of the catalyst or the like based on the temperature distribution data. For example, based on the graph showing the temperature distribution and the margin for maintaining safe operation, the user of the multi-tubular reactor can adjust the reaction bath temperature, load, Advice on management operations such as gas molar ratio adjustment and outlet pressure adjustment is possible, and highly accurate and stable operation can be achieved.
 上記温度データに基づく方法の具体的態様を以下に説明する。
 温度データで運転を支援する支援情報を出力する場合とは、例えば反応のスタートアップ時や再スタートアップ時が考えられる。スタートアップ時や再スタートアップ時は、特に慎重な温度管理が要求される場面であり、複数の反応管の温度情報を正確に把握し、温度管理を行う必要がある。
 まず、反応のスタートアップ時や再スタートアップ時に複数の反応管における2箇所以上の温度データを取得する。そしてこの温度データを統計処理することで多管式反応器10としての温度データを算出する。この際の方法として、上記の実施形態と同様にコンピュータ装置を用いて統計処理する方法が好ましく、また複数の反応管における温度分布は、正規分布に従うとして統計処理する方法が好ましい。また、複数の反応管の中で、温度データが測定器の故障や断線その他の要因により不正確であると判断された場合、当該反応管の温度データは棄却するなどの統計処理も行ってもよい。この棄却するための判断基準は一般的な統計処理であればその方法を問わないが、例えば標準正規分布に従った5%有意水準により判断される。
A specific embodiment of the method based on the temperature data is described below.
The case of outputting the support information for supporting the operation with the temperature data may be, for example, the time of starting up the reaction or the time of restarting the reaction. During start-up and re-startup, particularly careful temperature control is required, and it is necessary to accurately grasp the temperature information of multiple reaction tubes and perform temperature control.
First, temperature data are acquired at two or more locations in a plurality of reaction tubes at the time of starting up or restarting the reaction. Then, the temperature data of the multi-tubular reactor 10 is calculated by statistically processing the temperature data. As a method in this case, a method of performing statistical processing using a computer device as in the above-described embodiment is preferable, and a method of performing statistical processing assuming that the temperature distribution in a plurality of reaction tubes follows a normal distribution is preferable. In addition, if the temperature data of a plurality of reaction tubes is determined to be inaccurate due to failure of the measuring device, disconnection, or other factors, statistical processing such as rejection of the temperature data of the reaction tube may be performed. good. The judgment criterion for this rejection is not limited to any method as long as it is a general statistical processing, but judgment is made, for example, by the 5% significance level according to the standard normal distribution.
 データの統計処理に関して、上述の実施形態において、各々の反応管は独立であり連続的な測定値を取るため、正規分布を取ると仮定する態様を説明したが、以下の例のようにデータの分布形状やデータの性質により、そのほかの分布を仮定して任意の統計処理を採用してもよい。すなわち、何らかの要因でバイモーダル(2種類以上の分布の混合)な分布形状の場合、混合正規分布を仮定してもよい。統計処理として、混合ガウスモデルなどを使い2つ以上の正規分布に分ける統計処理も、必要に応じ行われうる。何らかの要因で、データが2種類しかなく離散的な数値の場合、二項分布を仮定し、統計処理を行ってもよい。分布形状の歪度が高い場合、対数正規分布を仮定し、統計処理を行ってもよい。ほとんどの反応管でデータが同一な場合、ポアソン分布を仮定し、統計処理を行ってもよい。 Regarding the statistical processing of data, in the above-described embodiment, each reaction tube is independent and takes continuous measurements, so an aspect has been described that assumes a normal distribution. Arbitrary statistical processing may be adopted by assuming other distributions depending on the distribution shape and data properties. That is, if the distribution shape is bimodal (mixture of two or more types of distributions) for some reason, a mixed normal distribution may be assumed. As statistical processing, statistical processing of dividing into two or more normal distributions using a Gaussian mixture model or the like can also be performed as necessary. If there are only two types of data and discrete numerical values for some reason, a binomial distribution may be assumed and statistical processing may be performed. If the skewness of the distribution shape is high, a logarithmic normal distribution may be assumed and statistical processing may be performed. If the data are the same for most of the reaction tubes, a Poisson distribution may be assumed and statistical processing may be performed.
 統計処理は、少なくとも、複数の反応管20の一部に関する反応管情報に含まれる一の項目に係る情報に基づいて、すべての反応管20の当該項目の分布を推定する処理を含むことが好ましい。項目の例として触媒の充填長や反応管の温度が挙げられるが、これらに限られない。このような統計処理を行うことにより、すべての反応管20の反応管情報を一本ずつ取得することなくすべての反応管20の状態を推定でき、それに基づいた支援情報を出力できる。 The statistical processing preferably includes at least a process of estimating the distribution of the item in all the reaction tubes 20 based on the information on one item included in the reaction tube information on some of the plurality of reaction tubes 20. . Examples of items include, but are not limited to, the packed length of the catalyst and the temperature of the reaction tube. By performing such statistical processing, the states of all the reaction tubes 20 can be estimated without acquiring the reaction tube information of all the reaction tubes 20 one by one, and the support information based thereon can be output.
 また、上述の実施形態において第2の触媒層24の充填の態様を説明したが、上述の方法は第1の触媒層22、第3の触媒層26、第4の触媒層28の充填に関しても適用できる。第1の触媒層22の充填において手直し作業の工数を出力する場合には、多管式反応器10を使用するユーザーの過去の経験や、他の製造現場における実績値などに基づいて予測の基準工数情報を用意し、手直し作業の工数を算出してもよい。 In addition, although the aspect of filling the second catalyst layer 24 has been described in the above-described embodiment, the above-described method also applies to the filling of the first catalyst layer 22, the third catalyst layer 26, and the fourth catalyst layer 28. Applicable. When outputting the man-hours for rework in filling the first catalyst layer 22, the prediction criteria are based on the past experiences of users who use the multi-tubular reactor 10 and actual values at other manufacturing sites. Man-hour information may be prepared and the man-hours for the repair work may be calculated.
 本出願は、2021年9月27日出願の日本特許出願2021-156481に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application 2021-156481 filed on September 27, 2021, the contents of which are incorporated herein by reference.
10:多管式反応器、20:反応管、22,24,26,28:触媒層、30:サポートリング、S1:取得ステップ、S2:出力ステップ、S3:提供ステップ 10: multitubular reactor, 20: reaction tube, 22, 24, 26, 28: catalyst layer, 30: support ring, S1: acquisition step, S2: output step, S3: provision step

Claims (9)

  1.  触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の運転またはその準備行為をサポートする方法であって、
     コンピュータ装置に、
     前記多管式反応器に含まれる複数の反応管のうちの一部に関して反応管情報を取得する取得ステップと、
     前記反応管情報を統計処理することにより前記多管式反応器の運転またはその準備行為を支援する支援情報を出力する出力ステップと、を実行させることを含む、方法。
    Operation of a shell-and-tube reactor comprising a plurality of reaction tubes for producing at least one of an unsaturated aldehyde and an unsaturated carboxylic acid by an oxidation reaction using a catalyst, or a conjugated diene by an oxidative dehydrogenation reaction, or preparatory actions therefor A method of supporting,
    computer equipment,
    an acquiring step of acquiring reaction tube information about some of the plurality of reaction tubes included in the multi-tubular reactor;
    and an output step of outputting support information that supports operation of the multi-tubular reactor or preparatory actions thereof by statistically processing the reaction tube information.
  2.  前記反応管情報は前記反応管に充填された触媒の充填長に関する充填長情報を含み、
     前記支援情報は前記充填長が特定の閾値範囲内にない前記反応管に関する閾値外反応管情報を含む、請求項1に記載の方法。
    The reaction tube information includes filling length information regarding the filling length of the catalyst filled in the reaction tube,
    2. The method of claim 1, wherein said aiding information includes out-of-threshold reactor tube information for said reactor tubes whose fill length is not within a specified threshold range.
  3.  前記出力ステップが、前記触媒の充填長が正規分布に従うとみなして前記充填長情報を統計処理することにより、前記閾値外反応管情報を出力することを含む、請求項2に記載の方法。 3. The method according to claim 2, wherein the output step includes outputting the non-threshold reaction tube information by statistically processing the filling length information assuming that the filling length of the catalyst follows a normal distribution.
  4.  前記触媒の充填長のヒストグラムを出力するヒストグラム出力ステップを、前記コンピュータ装置に実行させることをさらに含む、請求項2または請求項3に記載の方法。 4. The method according to claim 2 or 3, further comprising causing the computer device to execute a histogram output step of outputting a histogram of the filling length of the catalyst.
  5.  前記閾値外反応管情報と、前記多管式反応器の基準工数情報と、に基づいて、前記多管式反応器における前記触媒の補充に要する工数および前記触媒の抜き出しに要する工数のうちの少なくとも一方を出力する工数出力ステップを、前記コンピュータ装置に実行させることをさらに含む、請求項2~請求項4のいずれか一項に記載の方法。 Based on the non-threshold reaction tube information and the standard man-hour information of the multi-tubular reactor, at least the man-hours required for replenishing the catalyst in the multi-tubular reactor and the man-hours required for extracting the catalyst 5. The method according to any one of claims 2 to 4, further comprising causing the computer device to execute a man-hour output step of outputting one.
  6.  前記支援情報を前記多管式反応器のユーザーに提供するステップをさらに含む、請求項1~請求項5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, further comprising the step of providing said assistance information to a user of said shell-and-tube reactor.
  7.  前記工数出力ステップにより出力された工数を前記多管式反応器のユーザーに提供するステップをさらに含む、請求項5に記載の方法。 6. The method according to claim 5, further comprising the step of providing the man-hour output by said man-hour output step to a user of said multi-tubular reactor.
  8.  前記反応管情報が、2以上の区画に分割された前記多管式反応器の各区画に含まれる複数の反応管のうちの一部に関する区画情報を含み、
     前記区画情報が、前記区画に含まれる前記反応管に充填された触媒の充填長に関する区画充填長情報を含み、
     前記出力ステップが、前記区画充填長情報を区画毎に統計処理することにより前記支援情報を出力することを含む、請求項1~請求項7のいずれか一項に記載の方法。
    The reaction tube information includes section information about a part of a plurality of reaction tubes included in each section of the multi-tubular reactor divided into two or more sections,
    The section information includes section filling length information regarding the filling length of the catalyst packed in the reaction tube included in the section,
    A method according to any one of claims 1 to 7, wherein said outputting step comprises outputting said assisting information by statistically processing said compartment filling length information for each compartment.
  9.  区画毎に前記触媒の充填長のヒストグラムを出力するヒストグラム出力ステップを、前記コンピュータ装置に実行させることをさらに含む、請求項8に記載の方法。 The method according to claim 8, further comprising causing the computer device to execute a histogram output step of outputting a histogram of the filling length of the catalyst for each section.
PCT/JP2022/035708 2021-09-27 2022-09-26 Method for supporting operation of multi-tube reactor or supporting actions to prepare same WO2023048284A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280064922.1A CN117999119A (en) 2021-09-27 2022-09-26 Method for supporting operation or preparation behavior of multitube reactor
JP2022573624A JP7345072B2 (en) 2021-09-27 2022-09-26 Methods to support the operation of shell-and-tube reactors or their preparatory actions
JP2023142719A JP2023164493A (en) 2021-09-27 2023-09-04 Operation of multitubular reactor or method for supporting preparatory action thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156481 2021-09-27
JP2021156481 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023048284A1 true WO2023048284A1 (en) 2023-03-30

Family

ID=85720819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035708 WO2023048284A1 (en) 2021-09-27 2022-09-26 Method for supporting operation of multi-tube reactor or supporting actions to prepare same

Country Status (3)

Country Link
JP (2) JP7345072B2 (en)
CN (1) CN117999119A (en)
WO (1) WO2023048284A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306953A (en) * 2001-01-25 2002-10-22 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and its usage
JP2002372507A (en) * 2001-06-14 2002-12-26 Sumitomo Chem Co Ltd Method and program for estimating service life of fixed bed catalyst
JP2008238044A (en) * 2007-03-27 2008-10-09 Mitsubishi Chemicals Corp Method for specifying faultily-packed reaction tube
JP2012101189A (en) * 2010-11-11 2012-05-31 Sumitomo Chemical Co Ltd Catalyst filling machine and method of filling catalyst using the same
JP2013233503A (en) * 2012-05-08 2013-11-21 Nippon Kayaku Co Ltd Method for filling solid catalyst
WO2020203266A1 (en) * 2019-03-29 2020-10-08 日本化薬株式会社 Method for producing unsaturated aldehyde
JP2020192531A (en) * 2020-08-07 2020-12-03 日本化薬株式会社 Method for filling solid catalyst
JP2021133295A (en) * 2020-02-26 2021-09-13 三菱ケミカル株式会社 Filling method of granular material into multi-tube reactor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306953A (en) * 2001-01-25 2002-10-22 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and its usage
JP2002372507A (en) * 2001-06-14 2002-12-26 Sumitomo Chem Co Ltd Method and program for estimating service life of fixed bed catalyst
JP2008238044A (en) * 2007-03-27 2008-10-09 Mitsubishi Chemicals Corp Method for specifying faultily-packed reaction tube
JP2012101189A (en) * 2010-11-11 2012-05-31 Sumitomo Chemical Co Ltd Catalyst filling machine and method of filling catalyst using the same
JP2013233503A (en) * 2012-05-08 2013-11-21 Nippon Kayaku Co Ltd Method for filling solid catalyst
WO2020203266A1 (en) * 2019-03-29 2020-10-08 日本化薬株式会社 Method for producing unsaturated aldehyde
JP2021133295A (en) * 2020-02-26 2021-09-13 三菱ケミカル株式会社 Filling method of granular material into multi-tube reactor
JP2020192531A (en) * 2020-08-07 2020-12-03 日本化薬株式会社 Method for filling solid catalyst

Also Published As

Publication number Publication date
JPWO2023048284A1 (en) 2023-03-30
JP7345072B2 (en) 2023-09-14
JP2023164493A (en) 2023-11-10
CN117999119A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
JP4521152B2 (en) Semiconductor manufacturing equipment
JP6525044B1 (en) Monitoring system, learning apparatus, learning method, monitoring apparatus and monitoring method
JP7077553B2 (en) Quality control equipment
JP5704040B2 (en) Product quality management method and product quality management device
JP7214417B2 (en) Data processing method and data processing program
WO2023048284A1 (en) Method for supporting operation of multi-tube reactor or supporting actions to prepare same
CN116362410B (en) MES-based production time prediction method, system and storage medium
Kim et al. A framework to estimate probability of diagnosis error in NPP advanced MCR
KR20190096274A (en) Data processing method, data processing apparatus, data processing system, and data processing program
JP7360925B2 (en) analysis system
CN117333143A (en) Cost subject dictionary setting method and system
JP2018113027A (en) Process abnormality state diagnosis method and abnormality state diagnosis device
JP6885321B2 (en) Process status diagnosis method and status diagnosis device
JP7223947B2 (en) Manufacturing condition calculation device, manufacturing condition calculation method, and manufacturing condition calculation program
WO2009122613A1 (en) Method of determining irregular pipe
CN116167788A (en) Industrial product design cost accounting method
CN112557793B (en) Power plug-in health state detection method and device and storage medium
JP2009271865A (en) Replenishment production method, replenishment production apparatus, and replenishment production program
CN108388770A (en) The noninvasive antenatal bioinformatics detecting system of one kind and its methods and applications
JP4825482B2 (en) Failure occurrence prediction device and failure occurrence prediction method
JP7316482B1 (en) Methods and apparatus for supporting the operation or preparatory actions of a multitubular reactor
JP4284666B1 (en) Dissimilar pipe judgment method
CN111143325A (en) Data acquisition monitoring method, monitoring device and readable storage medium
Fu et al. Measurement system escape and overkill rate analysis
JP2010092267A (en) Production cost calculation device and production cost calculation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022573624

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280064922.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE